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Subclinical mastitis (SCM) is a widespread but frequently undetected condition in 
dairy cows, leading to reduced milk quality and compromised animal health. This 
study utilizes an integrated multi-omics strategy encompassing metabolomics 
and microbiome analyses to investigate the systemic effects of SCM across four 
biological matrices: blood, milk, feces, and rumen fluid. Our findings reveal significant 
alterations in hematological and biochemical parameters, with key biomarkers such 
as digalacturonic acid and N-ε-methyl-L-lysine indicating systemic metabolic and 
immune dysregulation. Metabolomic profiling uncovered distinct disease-related 
metabolic patterns, while 16S rRNA sequencing revealed substantial microbial shifts, 
particularly involving Succinivibrio and Methanobrevibacter, which are implicated 
in carbohydrate fermentation and methanogenesis. Noteworthy correlations 
between specific metabolites (e.g., ropinirole, arachidonic acid) and microbial 
genera (e.g., Succinivibrionaceae UCG-001, Alistipes) highlight the complex host-
microbiome-metabolite interplay associated with SCM. These findings provide 
new insights into the pathophysiology of SCM and identify candidate biomarkers 
for early detection. The integrative multi-omics approach adopted in this study 
offers a valuable framework for developing innovative diagnostic and therapeutic 
strategies to enhance dairy cow health and productivity.
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1 Introduction

Bovine mastitis, particularly in its subclinical form (SCM), remains a persistent 
challenge for the global dairy industry due to its high prevalence, asymptomatic nature, 
and detrimental impact on milk quality, animal welfare, and farm profitability (Demil 
et al., 2022; Abed et al., 2021; Kumari et al., 2018; Argaw, 2016; Wang et al., 2024). Unlike 
clinical mastitis, SCM lacks overt clinical signs such as udder swelling or abnormal milk, 
making early detection difficult (Tommasoni et al., 2023; Ruegg, 2012). Globally, SCM 
affects approximately 42% of dairy cows (Abed et al., 2021; Tassew et al., 2016; El-Tawab 
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et al., 2016), whereas clinical mastitis occurs in only about 15%, 
highlighting the need for enhanced surveillance and intervention 
strategies (Khasapane et al., 2024).

The economic implications of SCM are substantial, as it leads 
to elevated somatic cell counts (SCC), reduced milk yield, and 
compromised product safety (Kumari et al., 2018; Wang et  al., 
2024; Qolbaini et  al., 2021). These challenges are further 
compounded by increasing antimicrobial resistance in common 
pathogens such as Staphylococcus aureus and Streptococcus 
agalactiae (Farabi et al., 2024; Michira et al., 2023; Tassew, 2017; 
Eleodoro et al., 2022), making SCM increasingly difficult to treat 
effectively. Addressing SCM is therefore essential not only for 
improving herd productivity and animal health but also for 
safeguarding food quality and public health.

Advances in molecular biology and systems-level research 
have significantly deepened our understanding of host-pathogen 
interactions in mastitis (Eleodoro et al., 2022; Mudaliar et al., 
2017; Zhu et al., 2024). The application of systems biology has 
uncovered various virulence factors, host genetic susceptibilities, 
immune system impairments, and molecular mechanisms that 
contribute to disease progression (Couvillion et al., 2023; Tong 
et  al., 2019). Notably, predictive metabolomic profiling has 
identified serum biomarkers such as lysine, leucine, isoleucine, 
and kynurenine that can distinguish SCM cows from healthy 
animals weeks before parturition, providing opportunities for 
early intervention (Zandkarimi et al., 2018; Haxhiaj et al., 2022; 
Wang et al., 2021b).

Multi-omics approaches, integrating metabolomics, 
transcriptomics, proteomics, and microbiome analyses, provide a 
holistic perspective on complex biological processes and disease 
mechanisms (Alessandri et al., 2023a; Xi et al., 2017; Thomas et al., 
2016; Wang et  al., 2022). The use of diverse biological samples 
including cells, tissues, and bodily fluids enhances the detection of 
disease-specific biomarkers and provides insights into systemic 
changes associated with pathogenesis. Lipidomics analyses have 
identified over 600 altered lipid species in SCM milk, particularly 
in infections caused by non-aureus Staphylococci, which may serve 
as diagnostic indicators (Wang et  al., 2020; Zhu et  al., 2023). 
Additionally, subclinical inflammation is associated with elevated 
levels of serum NEFA, LDH, and globulins, indicating both 
metabolic stress and inflammatory responses (Ceciliani et al., 2020; 
Tang et al., 2024).

SCM is a multifactorial disease influenced by environmental 
conditions, pathogen load, immune competence, and the status of 
the gut and rumen microbiota (Wang et al., 2021a; Saleh et al., 
2022; Alessandri et al., 2023b). While microbial invasion initiates 
mammary gland inflammation, the broader systemic progression 
of SCM is modulated by stress, nutrition, hygiene, and immune 
function. Studies have also shown that poor milking hygiene, 
inadequate farm cleanliness, and substandard housing conditions 
significantly increase SCM prevalence (Wang et al., 2021c; Wang 
et  al., 2022). To address this complexity, we  employed a 
comprehensive multi-omics framework that integrates analyses of 
from blood, milk, feces, and rumen fluid. This innovative design 
enables a multi-dimensional exploration of the metabolic, 
microbial, and immunological factors underpinning SCM, paving 
the way for more effective detection and prevention strategies in 
dairy herd health management.

2 Materials and methods

2.1 Chemicals and materials

All solvents used for liquid chromatography-mass spectrometry 
(LC-MS), including methanol, acetonitrile (ACN), and isopropanol, 
were of LC-MS grade and obtained from Fisher Scientific 
(Loughborough, United Kingdom). LC-MS additives such as formic 
acid and ammonium acetate were purchased from Sigma-Aldrich 
(Madrid, Spain). The ACQUITY UPLC BEH Amide column was 
supplied by Waters (Milford, MA, United  States). Sterile vacuum 
blood collection tubes were provided by BD Medical Devices Shanghai 
Co., Ltd. (Shanghai, China).

2.2 Animal selection and sample collection

This prospective, single-location study was conducted at a 
commercial dairy farm in western Yinchuan with approximately 
4,000 Holstein cows. All animals were managed under consistent 
conditions, including a standardized total mixed ration (TMR) 
formulated according to NRC guidelines, uniform free-stall 
housing, and regular health monitoring. Milking procedures were 
fully automated and followed routine pre- and post-milking 
sanitation protocols. The farm also implemented a centralized 
Dairy Herd Improvement (DHI) system for monthly monitoring 
of milk production and health parameters, including somatic cell 
counts (SCC).

The average annual incidence of subclinical mastitis (SCM) on 
this farm was 30.4%, based on DHI records over the past 3 years. 
This rate is within the expected range for large-scale dairy 
operations in the region. SCM diagnosis was determined by SCC 
values greater than 200,000 cells/mL, in line with international 
thresholds. Measurements were collected monthly through the 
DHI system.

Ethical approval for animal handling and sampling was 
obtained from the Animal Care and Use Committee of the Ningxia 
Academy of Agricultural and Forestry Sciences (Approval No. 
2022-06). Cows diagnosed with SCM met the following criteria: 
(1) no visible clinical signs, (2) SCC >200,000 cells/mL in the most 
recent DHI report, and (3) no recent use of antibiotics or presence 
of systemic illness. Healthy controls had SCC <200,000 cells/mL 
and showed no signs of mastitis or other disease.

A total of 20 cows were selected—10 with SCM and 10 healthy 
controls—matched for age and parity. Each cow provided one 
sample from blood, milk, feces, and rumen fluid, resulting in 80 
biological samples. The sample size was informed by previous 
multi-omics studies in dairy science and was considered sufficient 
to detect meaningful differences in both metabolomic and 
microbiome profiles (Wang et  al., 2021a). Samples collected 
included blood, milk, feces, and rumen fluid. Blood was collected 
aseptically from the jugular vein and processed for serum 
separation. Milk samples were obtained during mid-milking using 
sterile containers after teat disinfection. Fecal samples were 
collected immediately after defecation using sterile tools. Rumen 
fluid was aspirated under veterinary supervision using a rumen 
cannula. All samples were stored at 4°C during transport and 
processed within 4 h.
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2.3 Hematological and biochemical 
analysis

Blood samples were divided into two aliquots: one for complete 
blood count (CBC) using an automated veterinary hematology 
analyzer (Mindray BC-5000 Vet, China) and another for serum 
biochemical analysis. CBC parameters included white blood cell 
(WBC) count, red blood cell (RBC) count, hemoglobin (Hb), 
hematocrit (HCT), and platelet count (PLT). Serum biochemical 
analyses were performed using standardized clinical 
chemistry analyzers.

Milk quality parameters including fat, protein, lactose, and milk 
urea nitrogen were quantified using Fourier-transform infrared 
(FTIR) spectroscopy (MilkoScan FT120, Denmark). Somatic cell 
counts were measured via flow cytometry using a Fossomatic FC 
analyzer (Denmark). All instruments were routinely calibrated with 
certified reference materials.

2.4 Metabolomics profiling via LC-MS

Sample preparation protocols were optimized for each matrix. 
Milk was defatted by cold centrifugation, while feces and rumen fluid 
were homogenized and filtered. Proteins were precipitated using a 
methanol: acetonitrile mixture. Extracted metabolites were analyzed 
using ultra-high-performance liquid chromatography (UHPLC) 
coupled with time-of-flight mass spectrometry (TOF-MS). Data were 
converted to mzXML format using ProteoWizard and processed using 
XCMS and CAMERA for peak detection, alignment, and annotation. 
Normalization was performed prior to statistical analysis. Multivariate 
analyses including principal component analysis (PCA) and partial 
least squares-discriminant analysis (PLS-DA) were conducted using 
R software. Metabolic pathway enrichment was performed using 
KEGG database annotations. Detailed methodology is provided in the 
Supplementary material.

2.5 16S rRNA gene sequencing for bovine 
fecal and rumen microbiome analysis

Microbial DNA was extracted from fecal and rumen samples 
using mechanical and chemical lysis protocols. DNA quality and 
quantity were assessed with spectrophotometry and fluorometry. The 
V3–V4 region of the 16S rRNA gene was amplified, purified, and 
sequenced on an Illumina platform. Bioinformatic analysis included 
quality filtering, operational taxonomic unit (OTU) clustering, 
taxonomic classification, and alpha/beta diversity evaluation. 
Rarefaction curves were generated to ensure consistent sequencing 
depth and sample coverage across groups. Detailed methodology is 
provided in the Supplementary material.

2.6 Integrated analysis of metabolomic and 
microbiome interactions

Integrated analyses were performed to correlate metabolomic and 
microbiome data. Normalized datasets were subjected to correlation 
analysis (Pearson or Spearman), network construction, and pathway 

enrichment using KEGG and Reactome databases. Feature selection 
and statistical validation were conducted using permutation testing 
and false discovery rate (FDR) correction to ensure robustness.

2.7 Statistical analyses

All statistical analyses were performed using SPSS version 22.0 
(IBM Corp., Armonk, NY, United States). Normality was assessed 
using the Shapiro–Wilk test. Parametric data were expressed as mean 
± SEM and analyzed using one-way ANOVA, followed by Tukey’s 
HSD test for multiple comparisons. Statistical significance was defined 
as p < 0.05. For microbiome data, OTUs were clustered at 97% 
sequence similarity using the UPARSE algorithm and annotated using 
the SILVA reference database (v138). Taxonomic profiles were 
summarized at the genus level for downstream analyses, including 
diversity metrics and metabolite correlation. Prior to statistical testing, 
low-abundance features were filtered to improve analytical robustness. 
Only OTUs with a relative abundance of ≥0.1% present in at least 30% 
of samples were retained. This filtering strategy was applied uniformly 
to reduce statistical noise and improve the biological interpretability 
of microbial patterns associated with subclinical mastitis.

3 Results

3.1 Hematological and biochemical 
alterations in subclinical mastitis

Cows with SCM exhibited a significant elevation in white blood 
cell (WBC) counts, particularly in basophils (Table 1), indicating an 
activated immune response. These findings align with the subclinical 
inflammatory nature of SCM, differentiating it from clinical mastitis, 
which is typically characterized by more pronounced neutrophil 
dominance. Other immune cell subsets, including neutrophils, 
lymphocytes, monocytes, and eosinophils, did not display statistically 
significant differences (Table  1), supporting the notion of milder 
systemic immune activation in SCM.

In addition, notable metabolic changes were observed. Milk from 
SCM-affected cows exhibited significantly reduced fat and lactose 
content, along with increased protein levels (Table  2), suggesting 
metabolic reprogramming associated with the inflammatory process. 
While changes in urea, total solids, red blood cell indices, and platelet 
parameters were noted, they did not reach statistical significance 
(Table 2).

3.2 Metabolomic profiling reveals key 
biomarkers and systemic disturbances

Comprehensive metabolomic profiling via LC-MS identified 
substantial alterations in metabolite composition across serum, 
milk, rumen fluid, and fecal samples. Orthogonal projections to 
latent structures discriminant analysis (OPLS-DA) confirmed clear 
group separation and robust differential metabolite identification 
(Figure 1). A total of 248 differential metabolites were identified in 
serum, 235  in milk, 284  in rumen fluid, and 376  in feces 
(Figures 2A–C). To validate the observed group separation and 

https://doi.org/10.3389/fmicb.2025.1613949
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al.� 10.3389/fmicb.2025.1613949

Frontiers in Microbiology 04 frontiersin.org

further strengthen the statistical interpretation, we  performed 
PERMANOVA (Permutational Multivariate Analysis of Variance) 
using Bray–Curtis dissimilarity and 999 permutations. Significant 
differences between subclinical mastitis (SCM) and healthy cows 
were observed in multiple sample types, including serum 
(p = 0.019), milk (p = 0.007), and feces (p = 0.022). These results 
provide statistical support for the metabolomic group differences 
and are presented in Supplementary Table S1.

Cross-sample comparisons revealed shared metabolites across 
matrices, including digalacturonic acid, lactose, and N-ε-methyl-L-
lysine, which were consistently altered in SCM-affected cows (Table 3). 
Elevated levels of lactose and N-ε-methyl-L-lysine were found in both 
serum and milk (VIP >1.0; p < 0.0001), while digalacturonic acid was 
notably increased in fecal samples (Table 3), corroborating previous 
reports of its association with gut inflammation.

Other metabolites of interest included acetylcarnitine and 
ropinirole, detected across multiple sample types, indicating their 
potential role in energy metabolism and neuromodulation in the 
context of SCM.

3.3 Metabolic pathway disruptions 
associated with SCM

Pathway enrichment analysis revealed that differentially expressed 
metabolites were significantly enriched in amino acid biosynthesis, 
pyrimidine metabolism, microbial metabolism, and ABC transporter 
pathways across all matrices (Figures 3A–D). Unique enrichment was 
observed in specific compartments: unsaturated fatty acid biosynthesis 
in serum, galactose metabolism in milk and serum, steroid 

TABLE 1  Comparison of hematological parameters between healthy and SCM dairy cows.

Parameter Health group SCM group p-value

WBC (109/L) 6.97 ± 1.05 10.03 ± 2.14 0.008

Neu # (109/L) 2.79 ± 0.53 3.20 ± 1.46 0.515

Lym # (109/L) 3.70 ± 0.65 3.17 ± 0.82 0.211

Mon # (109/L) 0.36 ± 0.07 0.48 ± 0.16 0.115

Eos # (109/L) 0.08 ± 0.04 0.14 ± 0.25 0.560

Bas # (109/L) 0.03 ± 0.01 0.06 ± 0.01 <0.001

Neu % (%) 40.03 ± 4.64 43.71 ± 14.09 0.531

Lym % (%) 52.99 ± 3.87 46.13 ± 10.98 0.160

Mon % (%) 5.26 ± 1.41 7.26 ± 3.40 0.189

Eos % (%) 1.14 ± 0.59 1.84 ± 2.90 0.553

Bas % (%) 0.51 ± 0.11 0.70 ± 0.08 0.004

RBC (1012/L) 7.63 ± 1.11 7.03 ± 1.02 0.316

HGB (g/L) 101 ± 9.73 96.71 ± 10.97 0.454

HCT (%) 40.96 ± 3.57 39.41 ± 4.63 0.499

MCV (fL) 54.20 ± 5.24 56.39 ± 4.76 0.430

MCH (pg) 13.36 ± 1.08 13.80 ± 1.00 0.442

MCHC (g/L) 246.57 ± 4.89 245.14 ± 3.85 0.556

RDW-CV (%) 20.30 ± 0.58 20.37 ± 0.85 0.858

RDW-SD (fL) 31.67 ± 3.25 33.07 ± 3.50 0.454

PLT (109/L) 327.29 ± 116.00 458.57 ± 351.78 0.378

MPV (fL) 6.76 ± 0.51 6.64 ± 0.68 0.729

PDW (fL) 15.16 ± 0.30 15.27 ± 0.24 0.449

PCT (%) 0.219 ± 0.07 0.312 ± 0.26 0.386

TABLE 2  Comparison of major milk constituents between healthy and SCM dairy cows.

Parameter Control (mean ± SD) Model (mean ± SD) p-value

FatB(T) 2.16 ± 0.21 1.42 ± 0.24 0.00005

Prot(T) 3.18 ± 0.12 3.57 ± 0.31 0.01394

Lact(T) 4.41 ± 0.35 3.74 ± 0.15 0.00160

TS(T) 10.84 ± 0.73 10.15 ± 0.66 0.08643

Cells 17.71 ± 16.40 1983.29 ± 382.47 0.00001

Urea 7.24 ± 0.62 6.03 ± 1.64 0.10505
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biosynthesis in rumen fluid, and bile acid biosynthesis in feces 
(Figure 3E). These findings reflect compartment-specific metabolic 
responses to subclinical inflammation and microbial perturbation.

3.4 Microbiota alterations in rumen and 
feces

16S rRNA sequencing revealed notable microbial community 
shifts in SCM cows. In rumen fluid, relative abundances of 
Spirochaetota increased, while Euryarchaeota and Planctomycetota 
decreased. In feces, Actinobacteriota, Patescibacteria, and 
Cyanobacteria were significantly reduced (Figures  4A,B). Alpha 
diversity analysis showed a significant decrease in rumen microbial 
richness in SCM cows (p < 0.05), as reflected by Chao1 (Figure 4G). 
Fecal microbial diversity showed a similar downward trend 
(Figure 4C). Beta diversity analyses further underscored the distinct 
clustering of microbial communities in SCM cows (Figures 4D,H).

At the genus level, 21 genera were differentially abundant in 
rumen fluid (Figures  4E,F), including Succiniclasticum and 
Succinivibrio, while 13 genera, such as Alistipes and 
Methanobrevibacter, were altered in feces. Several genera including 

Succinivibrionaceae UCG-001, Alistipes, and Ruminococcus torques 
group were identified as core taxa altered in both rumen and feces, 
though with opposing trends in abundance.

Predicted functional profiling using PICRUSt2 suggested that 
microbial shifts in SCM were associated with immune-related 
pathways, including cytokine signaling and antigen processing. These 
predictions are inferential and based on 16S taxonomic data, not 
direct functional measurements (Figures 5, 6).

3.5 Metabolite-microbiome correlations

Correlation analysis between differential metabolites and 
microbial genera revealed several significant associations. 
Correlation analysis between differential metabolites, alpha 
diversity indices and microbial genera was conducted using 
Spearman correlation with FDR-adjusted p-values. Associations 
were visualized in heatmaps (Figure  7), and significance was 
defined as adjusted p < 0.05. A negative correlation was observed 
between alpha diversity and inflammatory metabolites such as 
digalacturonic acid. Ropinirole showed positive correlation with 
Succinivibrionaceae UCG-001; Alpha diversity indices, particularly 

FIGURE 1

Metabolic alterations across sample types in subclinical mastitis (SCM) and healthy dairy cows. (A) Principal component analysis (PCA) score plots 
visualizing the separation of metabolic profiles in serum, feces, rumen fluid, and milk between healthy and SCM cows. (B) Orthogonal partial least 
squares discriminant analysis (OPLS-DA) score plots showing discriminatory metabolic signatures across the same sample types. (C) Permutation test 
results confirming the statistical validity and robustness of the OPLS-DA models for each matrix.
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Chao1, were negatively correlated with inflammatory metabolites 
such as N-ε-methyl-L-lysine and digalacturonic acid, suggesting 
that reduced microbial richness may drive metabolic dysregulation 

in SCM. Ropinirole and arachidonic acid positively correlated with 
Succinivibrionaceae UCG-001, while acetylcarnitine showed similar 
correlations in rumen fluid (Figure  7). Conversely, 

FIGURE 2

Identification and distribution of differential metabolites between healthy and SCM cows. (A) Volcano plots presenting significant differential 
metabolites (cutoff: |log2FC| >1, p < 0.05) in serum, feces, rumen fluid, and milk. (B,C) Venn diagrams illustrating the overlap and uniqueness of 
differential metabolites across the four biological matrices.

TABLE 3  The potentially differential metabolites in SCM dairy cows.

Sample type Differential metabolites VIP log2FC (SCM/health) p-value

Serum Lactose 11.03 2.3 0.006

Serum N-epsilon-methyl-L-lysine 1.01 0.92 0.002

Serum Acetylcarnitine 16.68 2.01 0.016

Serum Ropinirole 1.41 2.62 0.0007

Milk Digalacturonic acid 1.10 2.31 0.0006

Milk Lactose 16.58 0.98 0.00004

Milk N-epsilon-methyl-L-lysine 2.17 1.10 0.00001

Milk Ropinirole 2.06 5.02 0.0015

Feces Digalacturonic acid 1.86 −1.00 0.005

Feces Lactose 9.02 1.75 0.011

Feces N-epsilon-methyl-L-lysine 6.53 0.86 0.029

Rumen fluid N-epsilon-methyl-L-lysine 3.65 −1.26 0.0004

Rumen fluid Ropinirole 2.16 −0.74 0.04907
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N-ε-methyl-L-lysine exhibited a negative association with Alistipes 
in multiple sample types. These correlations point to potential 
metabolite-microbiota interaction networks that may underlie 
SCM pathology and serve as targets for biomarker discovery.

4 Discussion

Subclinical mastitis (SCM) imposes substantial economic and 
welfare burdens on the dairy industry due to its asymptomatic nature, 

FIGURE 3

KEGG pathway enrichment analysis of identified differential metabolites. (A–D) Bubble charts indicating significantly enriched KEGG pathways in 
serum, feces, rumen fluid, and milk, respectively. (E) Composite Venn diagram comparing enriched pathways across the four sample types, highlighting 
shared and unique metabolic routes.

FIGURE 4

Microbiota composition and diversity shifts in feces and rumen fluid between healthy and SCM cows. (A,B) Stacked bar plots depicting microbial 
composition at the phylum and genus levels in fecal samples. (C) Alpha diversity analysis of fecal microbiota using the Chao1 index. (D) Non-metric 
multidimensional scaling (NMDS) analysis reflecting beta diversity in fecal microbiota. (E,F) Microbial composition in rumen fluid samples at phylum 
and genus levels. (G) Alpha diversity analysis in rumen fluid using Chao1 index. (H) NMDS plots displaying beta diversity in rumen microbiota.
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FIGURE 5

Taxonomic comparison of microbial species between healthy and SCM cows. (A,B) Differential abundance of microbial taxa in fecal samples at phylum 
and genus levels. (C,D) Differential microbial species identified in rumen fluid at phylum and genus levels.
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delayed detection, and persistent impact on milk yield and quality 
(Demil et al., 2022; Abed et al., 2021; Kumari et al., 2018). Our study 
provides an in-depth exploration of the systemic changes associated 
with SCM using a multi-omics framework that integrates metabolic 
and microbiome data from multiple biological matrices. This 
comprehensive approach enhances current understanding of the 
disease’s pathophysiology and offers valuable targets for early diagnosis 
and intervention (Tong et al., 2019; Zandkarimi et al., 2018; Haxhiaj 
et al., 2022; Wang et al., 2021b; Alessandri et al., 2023a).

The observed hematological shifts, including elevated WBC and 
basophil counts, suggest an ongoing low-grade inflammatory state in 
SCM-affected cows. Unlike clinical mastitis, where acute inflammation 
is evident, SCM is marked by subtler yet persistent immune activation. 
This chronic immunological imbalance likely contributes to metabolic 
disturbances and altered nutrient partitioning, as evidenced by 
decreased milk fat and lactose levels alongside increased protein 
content (Xi et al., 2017; Thomas et al., 2016).

In addition to immune-related changes, nutritional factors have 
emerged as crucial regulators of the gut and rumen microbiome in 
ruminants. Variations in dietary fiber type, fermentable carbohydrate 
content, and inclusion of prebiotics are known to influence microbial 
community composition and metabolic activity, with implications 
for host immunity and mammary gland health. For instance, 
substantial shifts in both intestinal and milk microbial populations 
have been linked to dietary modifications, underscoring the direct 
impact of nutrition on microbial dynamics (Alvanou et al., 2024). 
Evidence also suggests that functional feed additives can positively 
modulate microbiota-related inflammation. In previous study, 
dietary inulin was shown to promote the abundance of beneficial 
microbes and enhance anti-inflammatory metabolic pathways, 
ultimately leading to a measurable reduction in SCM-associated 
biomarkers in both feces and milk (Wang et al., 2021a). Furthermore, 
multi-omics research has indicated that tailored nutritional 
interventions can alter the milk microbiome structure in ways that 

FIGURE 6

Functional profiling of differential microbial taxa in feces and rumen fluid. (A,B) KEGG-based functional prediction analyses revealing enriched 
metabolic and signaling pathways among the differential microbiota from SCM vs. healthy cows.
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may support epithelial integrity and improve resistance to infection 
(Couvillion et al., 2023).

Although a uniform total mixed ration (TMR) was applied 
across all animals in this study to minimize dietary variability, 
differences in individual feed intake behavior, digestive efficiency, or 
microbiota-host interactions could still account for the microbial 
and metabolic heterogeneity observed between groups. Particularly 
noteworthy are the taxa Succinivibrionaceae UCG-001 and Alistipes, 
both of which are sensitive to substrate availability and dietary shifts. 
Their differential abundance in SCM cows may therefore reflect an 
indirect influence of nutrition, even under standardized feeding. 
Future investigations incorporating dietary manipulation alongside 
longitudinal microbiome and metabolome profiling will be essential 
to uncover the causal links between nutrition, microbial balance, 
and SCM. Through untargeted metabolomic profiling, we identified 
consistent alterations in specific metabolites such as digalacturonic 

acid, N-ε-methyl-L-lysine, ropinirole, and acetylcarnitine across 
serum, milk, feces, and rumen fluid. The reproducibility of these 
findings across matrices underscores their potential as reliable 
biomarkers. Additionally, although ropinirole was detected across 
multiple matrices and confirmed in serum via a targeted LC-MS/MS 
method, its synthetic nature necessitates caution in interpretation. 
The presence of ropinirole in 16 out of 20 cows suggests consistent 
exposure, yet its source remains unclear. Environmental 
contamination, feed additives, or veterinary drugs may be potential 
contributors. Until these factors are verified, ropinirole should not 
be  considered a reliable endogenous biomarker for 
SCM. N-ε-methyl-L-lysine, in particular, emerged as a robust 
candidate due to its consistent dysregulation, aligning with its 
known role in immune modulation and inflammation. Similarly, 
elevated arachidonic acid, a precursor of pro-inflammatory 
mediators, supports the inflammatory underpinnings of SCM (Wang 

FIGURE 7

Correlation analyses between key metabolites and microbial taxa. (A) Heatmap showing Spearman correlations between significantly altered fecal 
microbiota and differential metabolites. (B) Correlation heatmap between rumen microbiota and corresponding metabolites. (C) Cross-matrix 
correlations between fecal and rumen microbial taxa. (D) Global correlation overview summarizing associations between all significant microbiota and 
metabolites across sample types. p-values were adjusted using the Benjamini–Hochberg method, and the significance threshold was adjusted 
p < 0.05.
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et al., 2022; Wang et al., 2020; Zhu et al., 2023; Ceciliani et al., 2020; 
Tang et al., 2024).

In addition to N-ε-methyl-L-lysine and ropinirole, several 
other metabolites identified in this study offer insights into the 
metabolic alterations underlying subclinical mastitis (SCM). 
Digalacturonic acid, elevated in both fecal and milk samples, likely 
reflects increased microbial pectin degradation and may indicate 
gut barrier disruption or microbial dysbiosis associated with 
systemic inflammation (Beukema et al., 2020). Acetylcarnitine, 
upregulated in serum and milk, is involved in fatty acid transport 
and energy metabolism. Its elevation suggests a metabolic shift 
toward lipid mobilization under inflammatory stress, consistent 
with patterns seen in preclinical mastitis states (Zandkarimi et al., 
2018). Arachidonic acid, a precursor of pro-inflammatory 
eicosanoids, was positively associated with Succinivibrionaceae 
UCG-001, supporting its role as a mediator of host–microbe 
inflammatory interactions (Rinaldi et al., 2021).

These findings underscore the value of metabolite profiling in 
revealing host–microbe interactions and suggest that digalacturonic 
acid, acetylcarnitine, and arachidonic acid may serve as candidate 
biomarkers for SCM-related metabolic and immune disturbances. 
Metabolic pathway analysis revealed dysregulation in essential 
biosynthetic and degradation pathways, including amino acid and bile 
acid metabolism, galactose metabolism, and microbial metabolic 
networks. These systemic alterations reflect both host and microbial 
contributions to SCM pathology, further emphasizing the importance 
of gut and rumen microbial homeostasis in disease progression (Wang 
et al., 2021a; Saleh et al., 2022; Alessandri et al., 2023b).

16S rRNA-based microbiota analysis demonstrated distinct 
compositional shifts, with enrichment or depletion of specific genera 
linked to inflammation and metabolic dysregulation. Notably, 
alterations in Succinivibrio, Succinivibrionaceae UCG-001, Alistipes, 
and Methanobrevibacter were consistently associated with changes in 
metabolite levels. These functional predictions, based on 16S rRNA 
profiles, suggest a potential association between microbial changes 
and immune-related signaling. However, as these are computational 
inferences, they should not be  interpreted as direct evidence of 
functional activity.

The observed correlations between metabolites and microbiota, 
particularly involving Alistipes and Succinivibrionaceae UCG-001, 
highlight potential axes of host–microbe metabolic crosstalk. 
Alistipes, known for its role in short-chain fatty acid production and 
inflammatory diseases, was inversely associated with key inflammatory 
metabolites (Wang et  al., 2021c; Wang et  al., 2022; Haxhiaj et  al., 
2022). The neuromodulatory compound ropinirole showed multiple 
associations across microbial genera, indicating possible microbiota-
mediated neurometabolic effects during SCM (Couvillion et al., 2023; 
Hu et al., 2021). The inverse correlations between alpha diversity and 
inflammation-related metabolites support the hypothesis that 
microbial richness loss contributes to metabolic imbalance in SCM.

Our findings underscore the importance of sample-specific 
biomarker discovery. For instance, fecal bile acid metabolites 
demonstrated strong diagnostic potential, while serum and milk 
biomarkers may better reflect systemic inflammation. The distinct 
distribution patterns of ropinirole and N-ε-methyl-L-lysine across 
matrices highlight the value of multi-site sampling to enhance 
diagnostic precision.

The divergence of microbiota profiles between rumen fluid and 
feces further reinforces the complexity of SCM’s microbial ecology. 
These differences may stem from the distinct functional roles and 
microenvironments of these compartments. Elevated Euryarchaeota 
levels, linked to methane production and vitamin biosynthesis, 
suggest metabolic consequences that extend beyond the mammary 
gland and could impact feed efficiency and host metabolism (Mudaliar 
et al., 2017; Wang et al., 2021a). Although milk microbial communities 
are directly relevant to mastitis, we  focused on fecal and rumen 
microbiota to capture gut-derived systemic influences and host–
microbe metabolic interactions. These matrices provide more stable 
microbial signatures and lower susceptibility to environmental 
contamination. Practical constraints, including sequencing resources 
and sample throughput, also influenced this decision. Future studies 
integrating milk microbiome data will be  essential to more 
comprehensively understand both local and systemic microbiota 
contributions to subclinical mastitis.

In practical terms, our results advocate for the incorporation of 
integrative metabolomic-microbiome monitoring in SCM surveillance 
programs. Such approaches could facilitate earlier detection, guide 
probiotic or dietary interventions, and inform precision health 
strategies to mitigate economic losses and improve herd productivity. 
Future studies should explore causality and validate these findings in 
larger cohorts to support clinical translation.

5 Conclusion

This study provides a comprehensive systems level characterization 
of subclinical mastitis (SCM) in dairy cows through the integration of 
metabolomic and microbiome data across multiple biological 
matrices. Our findings reveal that SCM is marked by subtle but 
pervasive immune activation, metabolic reprogramming, and 
microbial dysbiosis. Key biomarkers such as N-ε-methyl-L-lysine, 
digalacturonic acid, and ropinirole were identified consistently across 
matrices, offering promising candidates for non-invasive and multi-
source detection of SCM. Furthermore, while ropinirole was validated 
through targeted analysis, its synthetic origin and uncertain source 
highlight the need for caution. Its inclusion as a biomarker is 
premature without further investigation into potential 
exogenous contamination.

The altered microbial signatures, particularly involving 
Succinivibrionaceae UCG-001 and Alistipes, and their correlations with 
inflammatory and neuromodulatory metabolites, highlight the 
intricate host–microbiome interactions underlying disease 
progression. Functional pathway analysis further supports the 
involvement of immune signaling, energy metabolism, and microbial 
biosynthetic activity in SCM pathophysiology.

Collectively, this multi-omics approach advances our mechanistic 
understanding of SCM and lays the groundwork for early diagnostic 
biomarkers and precision-targeted interventions. Incorporating these 
findings into herd health management strategies could significantly 
enhance disease monitoring, reduce productivity losses, and improve 
animal welfare.

Future research should focus on longitudinal validation of 
identified biomarkers and exploration of causative links to further 
support clinical translation and intervention development.
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Glossary

ANOVA - Analysis of variance

CBC - Complete blood count

DHI - Dairy herd improvement

FDR - False discovery rate

FTIR - Fourier transform infrared

Hb - Hemoglobin

HCT - Hematocrit

KEGG - Kyoto Encyclopedia of Genes and Genomes

LC-MS - Liquid chromatography-mass spectrometry

MS - Mass spectrometry

NMDS - Non-Metric Multidimensional Scaling

OPLS-DA - Orthogonal partial least squares discriminant analysis

PCA - Principal component analysis

PLT - Platelet count

PLS-DA - Partial least squares discriminant analysis

RBC - Red blood cell

SCM - Subclinical mastitis

SCC - Somatic cell count

SEM - Standard error of the mean

UPLC - Ultra-performance liquid chromatography

VIP - Variable importance in projection

WBC - White blood cell
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