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Subclinical mastitis (SCM) is a widespread but frequently undetected condition in
dairy cows, leading to reduced milk quality and compromised animal health. This
study utilizes an integrated multi-omics strategy encompassing metabolomics
and microbiome analyses to investigate the systemic effects of SCM across four
biological matrices: blood, milk, feces, and rumen fluid. Our findings reveal significant
alterations in hematological and biochemical parameters, with key biomarkers such
as digalacturonic acid and N-g-methyl-L-lysine indicating systemic metabolic and
immune dysregulation. Metabolomic profiling uncovered distinct disease-related
metabolic patterns, while 16S rRNA sequencing revealed substantial microbial shifts,
particularly involving Succinivibrio and Methanobrevibacter, which are implicated
in carbohydrate fermentation and methanogenesis. Noteworthy correlations
between specific metabolites (e.g., ropinirole, arachidonic acid) and microbial
genera (e.qg., Succinivibrionaceae UCG-001, Alistipes) highlight the complex host-
microbiome-metabolite interplay associated with SCM. These findings provide
new insights into the pathophysiology of SCM and identify candidate biomarkers
for early detection. The integrative multi-omics approach adopted in this study
offers a valuable framework for developing innovative diagnostic and therapeutic
strategies to enhance dairy cow health and productivity.

KEYWORDS
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1 Introduction

Bovine mastitis, particularly in its subclinical form (SCM), remains a persistent
challenge for the global dairy industry due to its high prevalence, asymptomatic nature,
and detrimental impact on milk quality, animal welfare, and farm profitability (Demil
etal., 2022; Abed et al., 2021; Kumari et al., 2018; Argaw, 2016; Wang et al., 2024). Unlike
clinical mastitis, SCM lacks overt clinical signs such as udder swelling or abnormal milk,
making early detection difficult (Tommasoni et al., 2023; Ruegg, 2012). Globally, SCM
affects approximately 42% of dairy cows (Abed et al., 2021; Tassew et al., 2016; El-Tawab
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et al., 2016), whereas clinical mastitis occurs in only about 15%,
highlighting the need for enhanced surveillance and intervention
strategies (Khasapane et al., 2024).

The economic implications of SCM are substantial, as it leads
to elevated somatic cell counts (SCC), reduced milk yield, and
compromised product safety (Kumari et al., 2018; Wang et al.,
2024; Qolbaini et al, 2021). These challenges are further
compounded by increasing antimicrobial resistance in common
pathogens such as Staphylococcus aureus and Streptococcus
agalactige (Farabi et al., 2024; Michira et al., 2023; Tassew, 2017;
Eleodoro et al., 2022), making SCM increasingly difficult to treat
effectively. Addressing SCM is therefore essential not only for
improving herd productivity and animal health but also for
safeguarding food quality and public health.

Advances in molecular biology and systems-level research
have significantly deepened our understanding of host-pathogen
interactions in mastitis (Eleodoro et al., 2022; Mudaliar et al.,
2017; Zhu et al., 2024). The application of systems biology has
uncovered various virulence factors, host genetic susceptibilities,
immune system impairments, and molecular mechanisms that
contribute to disease progression (Couvillion et al., 2023; Tong
et al., 2019). Notably, predictive metabolomic profiling has
identified serum biomarkers such as lysine, leucine, isoleucine,
and kynurenine that can distinguish SCM cows from healthy
animals weeks before parturition, providing opportunities for
early intervention (Zandkarimi et al., 2018; Haxhiaj et al., 2022;
Wang et al., 2021b).

Multi-omics  approaches, integrating  metabolomics,
transcriptomics, proteomics, and microbiome analyses, provide a
holistic perspective on complex biological processes and disease
mechanisms (Alessandri et al., 2023a; Xi et al., 2017; Thomas et al.,
2016; Wang et al., 2022). The use of diverse biological samples
including cells, tissues, and bodily fluids enhances the detection of
disease-specific biomarkers and provides insights into systemic
changes associated with pathogenesis. Lipidomics analyses have
identified over 600 altered lipid species in SCM milk, particularly
in infections caused by non-aureus Staphylococci, which may serve
as diagnostic indicators (Wang et al., 2020; Zhu et al., 2023).
Additionally, subclinical inflammation is associated with elevated
levels of serum NEFA, LDH, and globulins, indicating both
metabolic stress and inflammatory responses (Ceciliani et al., 2020;
Tang et al., 2024).

SCM is a multifactorial disease influenced by environmental
conditions, pathogen load, immune competence, and the status of
the gut and rumen microbiota (Wang et al., 2021a; Saleh et al.,
2022; Alessandri et al., 2023b). While microbial invasion initiates
mammary gland inflammation, the broader systemic progression
of SCM is modulated by stress, nutrition, hygiene, and immune
function. Studies have also shown that poor milking hygiene,
inadequate farm cleanliness, and substandard housing conditions
significantly increase SCM prevalence (Wang et al., 2021¢; Wang
et al, 2022). To address this complexity, we employed a
comprehensive multi-omics framework that integrates analyses of
from blood, milk, feces, and rumen fluid. This innovative design
enables a multi-dimensional exploration of the metabolic,
microbial, and immunological factors underpinning SCM, paving
the way for more effective detection and prevention strategies in
dairy herd health management.
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2 Materials and methods
2.1 Chemicals and materials

All solvents used for liquid chromatography-mass spectrometry
(LC-MS), including methanol, acetonitrile (ACN), and isopropanol,
were of LC-MS grade and obtained from Fisher Scientific
(Loughborough, United Kingdom). LC-MS additives such as formic
acid and ammonium acetate were purchased from Sigma-Aldrich
(Madrid, Spain). The ACQUITY UPLC BEH Amide column was
supplied by Waters (Milford, MA, United States). Sterile vacuum
blood collection tubes were provided by BD Medical Devices Shanghai
Co., Ltd. (Shanghai, China).

2.2 Animal selection and sample collection

This prospective, single-location study was conducted at a
commercial dairy farm in western Yinchuan with approximately
4,000 Holstein cows. All animals were managed under consistent
conditions, including a standardized total mixed ration (TMR)
formulated according to NRC guidelines, uniform free-stall
housing, and regular health monitoring. Milking procedures were
fully automated and followed routine pre- and post-milking
sanitation protocols. The farm also implemented a centralized
Dairy Herd Improvement (DHI) system for monthly monitoring
of milk production and health parameters, including somatic cell
counts (SCC).

The average annual incidence of subclinical mastitis (SCM) on
this farm was 30.4%, based on DHI records over the past 3 years.
This rate is within the expected range for large-scale dairy
operations in the region. SCM diagnosis was determined by SCC
values greater than 200,000 cells/mL, in line with international
thresholds. Measurements were collected monthly through the
DHI system.

Ethical approval for animal handling and sampling was
obtained from the Animal Care and Use Committee of the Ningxia
Academy of Agricultural and Forestry Sciences (Approval No.
2022-06). Cows diagnosed with SCM met the following criteria:
(1) no visible clinical signs, (2) SCC >200,000 cells/mL in the most
recent DHI report, and (3) no recent use of antibiotics or presence
of systemic illness. Healthy controls had SCC <200,000 cells/mL
and showed no signs of mastitis or other disease.

A total of 20 cows were selected—10 with SCM and 10 healthy
controls—matched for age and parity. Each cow provided one
sample from blood, milk, feces, and rumen fluid, resulting in 80
biological samples. The sample size was informed by previous
multi-omics studies in dairy science and was considered sufficient
to detect meaningful differences in both metabolomic and
microbiome profiles (Wang et al., 2021a). Samples collected
included blood, milk, feces, and rumen fluid. Blood was collected
aseptically from the jugular vein and processed for serum
separation. Milk samples were obtained during mid-milking using
sterile containers after teat disinfection. Fecal samples were
collected immediately after defecation using sterile tools. Rumen
fluid was aspirated under veterinary supervision using a rumen
cannula. All samples were stored at 4°C during transport and
processed within 4 h.
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2.3 Hematological and biochemical
analysis

Blood samples were divided into two aliquots: one for complete
blood count (CBC) using an automated veterinary hematology
analyzer (Mindray BC-5000 Vet, China) and another for serum
biochemical analysis. CBC parameters included white blood cell
(WBC) count, red blood cell (RBC) count, hemoglobin (Hb),
hematocrit (HCT), and platelet count (PLT). Serum biochemical
analyses were performed wusing standardized clinical
chemistry analyzers.

Milk quality parameters including fat, protein, lactose, and milk
urea nitrogen were quantified using Fourier-transform infrared
(FTIR) spectroscopy (MilkoScan FT120, Denmark). Somatic cell
counts were measured via flow cytometry using a Fossomatic FC
analyzer (Denmark). All instruments were routinely calibrated with

certified reference materials.

2.4 Metabolomics profiling via LC-MS

Sample preparation protocols were optimized for each matrix.
Milk was defatted by cold centrifugation, while feces and rumen fluid
were homogenized and filtered. Proteins were precipitated using a
methanol: acetonitrile mixture. Extracted metabolites were analyzed
using ultra-high-performance liquid chromatography (UHPLC)
coupled with time-of-flight mass spectrometry (TOF-MS). Data were
converted to mzXML format using ProteoWizard and processed using
XCMS and CAMERA for peak detection, alignment, and annotation.
Normalization was performed prior to statistical analysis. Multivariate
analyses including principal component analysis (PCA) and partial
least squares-discriminant analysis (PLS-DA) were conducted using
R software. Metabolic pathway enrichment was performed using
KEGG database annotations. Detailed methodology is provided in the
Supplementary material.

2.5 16S rRNA gene sequencing for bovine
fecal and rumen microbiome analysis

Microbial DNA was extracted from fecal and rumen samples
using mechanical and chemical lysis protocols. DNA quality and
quantity were assessed with spectrophotometry and fluorometry. The
V3-V4 region of the 16S rRNA gene was amplified, purified, and
sequenced on an Illumina platform. Bioinformatic analysis included
quality filtering, operational taxonomic unit (OTU) clustering,
taxonomic classification, and alpha/beta diversity evaluation.
Rarefaction curves were generated to ensure consistent sequencing
depth and sample coverage across groups. Detailed methodology is
provided in the Supplementary material.

2.6 Integrated analysis of metabolomic and
microbiome interactions

Integrated analyses were performed to correlate metabolomic and

microbiome data. Normalized datasets were subjected to correlation
analysis (Pearson or Spearman), network construction, and pathway
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enrichment using KEGG and Reactome databases. Feature selection
and statistical validation were conducted using permutation testing
and false discovery rate (FDR) correction to ensure robustness.

2.7 Statistical analyses

All statistical analyses were performed using SPSS version 22.0
(IBM Corp., Armonk, NY, United States). Normality was assessed
using the Shapiro-Wilk test. Parametric data were expressed as mean
+ SEM and analyzed using one-way ANOVA, followed by Tukey’s
HSD test for multiple comparisons. Statistical significance was defined
as p <0.05. For microbiome data, OTUs were clustered at 97%
sequence similarity using the UPARSE algorithm and annotated using
the SILVA reference database (v138). Taxonomic profiles were
summarized at the genus level for downstream analyses, including
diversity metrics and metabolite correlation. Prior to statistical testing,
low-abundance features were filtered to improve analytical robustness.
Only OT'Us with a relative abundance of >0.1% present in at least 30%
of samples were retained. This filtering strategy was applied uniformly
to reduce statistical noise and improve the biological interpretability
of microbial patterns associated with subclinical mastitis.

3 Results

3.1 Hematological and biochemical
alterations in subclinical mastitis

Cows with SCM exhibited a significant elevation in white blood
cell (WBC) counts, particularly in basophils (Table 1), indicating an
activated immune response. These findings align with the subclinical
inflammatory nature of SCM, differentiating it from clinical mastitis,
which is typically characterized by more pronounced neutrophil
dominance. Other immune cell subsets, including neutrophils,
lymphocytes, monocytes, and eosinophils, did not display statistically
significant differences (Table 1), supporting the notion of milder
systemic immune activation in SCM.

In addition, notable metabolic changes were observed. Milk from
SCM-affected cows exhibited significantly reduced fat and lactose
content, along with increased protein levels (Table 2), suggesting
metabolic reprogramming associated with the inflammatory process.
While changes in urea, total solids, red blood cell indices, and platelet
parameters were noted, they did not reach statistical significance
(Table 2).

3.2 Metabolomic profiling reveals key
biomarkers and systemic disturbances

Comprehensive metabolomic profiling via LC-MS identified
substantial alterations in metabolite composition across serum,
milk, rumen fluid, and fecal samples. Orthogonal projections to
latent structures discriminant analysis (OPLS-DA) confirmed clear
group separation and robust differential metabolite identification
(Figure 1). A total of 248 differential metabolites were identified in
serum, 235 in milk, 284 in rumen fluid, and 376 in feces
(Figures 2A-C). To validate the observed group separation and
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TABLE 1 Comparison of hematological parameters between healthy and SCM dairy cows.

10.3389/fmicb.2025.1613949

Parameter Health group SCM group p-value
WBC (10°/L) 6.97 + 1.05 10.03 + 2.14 0.008
Neu # (10°/1) 2.79+0.53 3.20 + 1.46 0515
Lym # (10°/L) 3.70 +0.65 3.17+0.82 0211
Mon # (10°/L) 0.36 + 0.07 0.48 +0.16 0.115
Eos # (10°/L) 0.08 + 0.04 0.14+0.25 0.560
Bas # (10°/L) 0.03 +0.01 0.06 +0.01 <0.001
Neu % (%) 40.03 + 4.64 43.71 + 14.09 0531
Lym % (%) 52.99 +3.87 46.13 +10.98 0.160
Mon % (%) 526 + 1.41 7.26 +3.40 0.189
Eos % (%) 114+ 0.59 1.84+2.90 0553
Bas % (%) 0.51+0.11 0.70 +0.08 0.004
RBC (10%/1) 7.63+ 111 7.03 + 1.02 0316
HGB (g/L) 101+9.73 96.71 +10.97 0.454
HCT (%) 40.96 + 3.57 39.41 + 4.63 0.499
MCV (fL) 5420 +5.24 56.39 + 4.76 0.430
MCH (pg) 13.36 + 1.08 13.80 £ 1.00 0.442
MCHC (g/L) 246.57 + 4.89 245.14 +3.85 0.556
RDW-CV (%) 20.30 +0.58 2037 +0.85 0.858
RDW-SD (fL) 31.67 +3.25 33.07 +3.50 0.454
PLT (10°/L) 327.29 + 116.00 458.57 +351.78 0378
MPV (fL) 6.76 +0.51 6.64 +0.68 0.729
PDW (fL) 15.16 + 0.30 15.27 +0.24 0.449
PCT (%) 0219 +0.07 0312+0.26 0.386
TABLE 2 Comparison of major milk constituents between healthy and SCM dairy cows.

Parameter Control (mean + SD) Model (mean + SD) p-value
FatB(T) 2.16+0.21 1424024 0.00005
Prot(T) 3.18+0.12 3.57+0.31 0.01394
Lact(T) 4414035 3.74+0.15 0.00160
TS(T) 10.84 +0.73 10.15 + 0.66 0.08643
Cells 17.71 + 16.40 1983.29 + 382.47 0.00001
Urea 7.24 +0.62 6.03 + 1.64 0.10505

further strengthen the statistical interpretation, we performed
PERMANOVA (Permutational Multivariate Analysis of Variance)
using Bray-Curtis dissimilarity and 999 permutations. Significant
differences between subclinical mastitis (SCM) and healthy cows
were observed in multiple sample types, including serum
(p =0.019), milk (p = 0.007), and feces (p = 0.022). These results
provide statistical support for the metabolomic group differences
and are presented in Supplementary Table S1.

Cross-sample comparisons revealed shared metabolites across
matrices, including digalacturonic acid, lactose, and N-e-methyl-L-
lysine, which were consistently altered in SCM-affected cows (Table 3).
Elevated levels of lactose and N-e-methyl-L-lysine were found in both
serum and milk (VIP >1.0; p < 0.0001), while digalacturonic acid was
notably increased in fecal samples (Table 3), corroborating previous
reports of its association with gut inflammation.

Frontiers in Microbiology

Other metabolites of interest included acetylcarnitine and
ropinirole, detected across multiple sample types, indicating their
potential role in energy metabolism and neuromodulation in the
context of SCM.

3.3 Metabolic pathway disruptions
associated with SCM

Pathway enrichment analysis revealed that differentially expressed
metabolites were significantly enriched in amino acid biosynthesis,
pyrimidine metabolism, microbial metabolism, and ABC transporter
pathways across all matrices (Figures 3A-D). Unique enrichment was
observed in specific compartments: unsaturated fatty acid biosynthesis
in serum, galactose metabolism in milk and serum, steroid
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FIGURE 1
Metabolic alterations across sample types in subclinical mastitis (SCM) and healthy dairy cows. (A) Principal component analysis (PCA) score plots
visualizing the separation of metabolic profiles in serum, feces, rumen fluid, and milk between healthy and SCM cows. (B) Orthogonal partial least
squares discriminant analysis (OPLS-DA) score plots showing discriminatory metabolic signatures across the same sample types. (C) Permutation test
results confirming the statistical validity and robustness of the OPLS-DA models for each matrix.

biosynthesis in rumen fluid, and bile acid biosynthesis in feces
(Figure 3E). These findings reflect compartment-specific metabolic
responses to subclinical inflammation and microbial perturbation.

3.4 Microbiota alterations in rumen and
feces

16S rRNA sequencing revealed notable microbial community
shifts in SCM cows. In rumen fluid, relative abundances of
Spirochaetota increased, while Euryarchaeota and Planctomycetota
decreased. In feces, Actinobacteriota, Patescibacteria, and
Cyanobacteria were significantly reduced (Figures 4A,B). Alpha
diversity analysis showed a significant decrease in rumen microbial
richness in SCM cows (p < 0.05), as reflected by Chaol (Figure 4G).
Fecal microbial diversity showed a similar downward trend
(Figure 4C). Beta diversity analyses further underscored the distinct
clustering of microbial communities in SCM cows (Figures 4D,H).

At the genus level, 21 genera were differentially abundant in
rumen fluid (Figures 4E,F), including Succiniclasticum and
Succinivibrio, while 13 Alistipes

Methanobrevibacter, were altered in feces. Several genera including

genera, such as and
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Succinivibrionaceae UCG-001, Alistipes, and Ruminococcus torques
group were identified as core taxa altered in both rumen and feces,
though with opposing trends in abundance.

Predicted functional profiling using PICRUSt2 suggested that
microbial shifts in SCM were associated with immune-related
pathways, including cytokine signaling and antigen processing. These
predictions are inferential and based on 16S taxonomic data, not
direct functional measurements (Figures 5, 6).

3.5 Metabolite-microbiome correlations

Correlation analysis between differential metabolites and
microbial genera revealed several significant associations.
Correlation analysis between differential metabolites, alpha
diversity indices and microbial genera was conducted using
Spearman correlation with FDR-adjusted p-values. Associations
were visualized in heatmaps (Figure 7), and significance was
defined as adjusted p < 0.05. A negative correlation was observed
between alpha diversity and inflammatory metabolites such as
digalacturonic acid. Ropinirole showed positive correlation with
Succinivibrionaceae UCG-001; Alpha diversity indices, particularly
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TABLE 3 The potentially differential metabolites in SCM dairy cows.

Sample type Differential metabolites VIP log2FC (SCM/health) p-value
Serum Lactose 11.03 2.3 0.006
Serum N-epsilon-methyl-L-lysine 1.01 0.92 0.002
Serum Acetylcarnitine 16.68 2.01 0.016
Serum Ropinirole 1.41 2.62 0.0007
Milk Digalacturonic acid 1.10 231 0.0006
Milk Lactose 16.58 0.98 0.00004
Milk N-epsilon-methyl-L-lysine 2.17 1.10 0.00001
Milk Ropinirole 2.06 5.02 0.0015
Feces Digalacturonic acid 1.86 —-1.00 0.005
Feces Lactose 9.02 1.75 0.011
Feces N-epsilon-methyl-L-lysine 6.53 0.86 0.029
Rumen fluid N-epsilon-methyl-L-lysine 3.65 -1.26 0.0004
Rumen fluid Ropinirole 2.16 —-0.74 0.04907

Chaol, were negatively correlated with inflammatory metabolites
such as N-e-methyl-L-lysine and digalacturonic acid, suggesting
that reduced microbial richness may drive metabolic dysregulation
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correlations  in

rumen fluid (Figure

in SCM. Ropinirole and arachidonic acid positively correlated with
Succinivibrionaceae UCG-001, while acetylcarnitine showed similar

7). Conversely,
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shared and unique metabolic routes.
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serum, feces, rumen fluid, and milk, respectively. (E) Composite Venn diagram comparing enriched pathways across the four sample types, highlighting
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Microbiota composition and diversity shifts in feces and rumen fluid between healthy and SCM cows. (A,B) Stacked bar plots depicting microbial
composition at the phylum and genus levels in fecal samples. (C) Alpha diversity analysis of fecal microbiota using the Chaol index. (D) Non-metric
multidimensional scaling (NMDS) analysis reflecting beta diversity in fecal microbiota. (E,F) Microbial composition in rumen fluid samples at phylum
and genus levels. (G) Alpha diversity analysis in rumen fluid using Chaol index. (H) NMDS plots displaying beta diversity in rumen microbiota.

N-e-methyl-L-lysine exhibited a negative association with Alistipes
in multiple sample types. These correlations point to potential
metabolite-microbiota interaction networks that may underlie
SCM pathology and serve as targets for biomarker discovery.
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4 Discussion

Subclinical mastitis (SCM) imposes substantial economic and

welfare burdens on the dairy industry due to its asymptomatic nature,
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Functional profiling of differential microbial taxa in feces and rumen fluid. (A,B) KEGG-based functional prediction analyses revealing enriched
metabolic and signaling pathways among the differential microbiota from SCM vs. healthy cows.

delayed detection, and persistent impact on milk yield and quality
(Demil et al., 2022; Abed et al., 2021; Kumari et al., 2018). Our study
provides an in-depth exploration of the systemic changes associated
with SCM using a multi-omics framework that integrates metabolic
and microbiome data from multiple biological matrices. This
comprehensive approach enhances current understanding of the
disease’s pathophysiology and offers valuable targets for early diagnosis
and intervention (Tong et al., 2019; Zandkarimi et al., 2018; Haxhiaj
etal., 2022; Wang et al., 2021b; Alessandri et al., 2023a).

The observed hematological shifts, including elevated WBC and
basophil counts, suggest an ongoing low-grade inflammatory state in
SCM-affected cows. Unlike clinical mastitis, where acute inflammation
is evident, SCM is marked by subtler yet persistent immune activation.
This chronic immunological imbalance likely contributes to metabolic
disturbances and altered nutrient partitioning, as evidenced by
decreased milk fat and lactose levels alongside increased protein
content (Xi et al., 2017; Thomas et al., 2016).
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In addition to immune-related changes, nutritional factors have
emerged as crucial regulators of the gut and rumen microbiome in
ruminants. Variations in dietary fiber type, fermentable carbohydrate
content, and inclusion of prebiotics are known to influence microbial
community composition and metabolic activity, with implications
for host immunity and mammary gland health. For instance,
substantial shifts in both intestinal and milk microbial populations
have been linked to dietary modifications, underscoring the direct
impact of nutrition on microbial dynamics (Alvanou et al., 2024).
Evidence also suggests that functional feed additives can positively
modulate microbiota-related inflammation. In previous study,
dietary inulin was shown to promote the abundance of beneficial
microbes and enhance anti-inflammatory metabolic pathways,
ultimately leading to a measurable reduction in SCM-associated
biomarkers in both feces and milk (Wang et al., 2021a). Furthermore,
multi-omics research has indicated that tailored nutritional
interventions can alter the milk microbiome structure in ways that
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FIGURE 7
Correlation analyses between key metabolites and microbial taxa. (A) Heatmap showing Spearman correlations between significantly altered fecal
microbiota and differential metabolites. (B) Correlation heatmap between rumen microbiota and corresponding metabolites. (C) Cross-matrix
correlations between fecal and rumen microbial taxa. (D) Global correlation overview summarizing associations between all significant microbiota and
metabolites across sample types. p-values were adjusted using the Benjamini—-Hochberg method, and the significance threshold was adjusted
p < 0.05.

may support epithelial integrity and improve resistance to infection
(Couvillion et al., 2023).

Although a uniform total mixed ration (TMR) was applied
across all animals in this study to minimize dietary variability,
differences in individual feed intake behavior, digestive efficiency, or
microbiota-host interactions could still account for the microbial
and metabolic heterogeneity observed between groups. Particularly
noteworthy are the taxa Succinivibrionaceae UCG-001 and Alistipes,
both of which are sensitive to substrate availability and dietary shifts.
Their differential abundance in SCM cows may therefore reflect an
indirect influence of nutrition, even under standardized feeding.
Future investigations incorporating dietary manipulation alongside
longitudinal microbiome and metabolome profiling will be essential
to uncover the causal links between nutrition, microbial balance,
and SCM. Through untargeted metabolomic profiling, we identified
consistent alterations in specific metabolites such as digalacturonic
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acid, N-e-methyl-L-lysine, ropinirole, and acetylcarnitine across
serum, milk, feces, and rumen fluid. The reproducibility of these
findings across matrices underscores their potential as reliable
biomarkers. Additionally, although ropinirole was detected across
multiple matrices and confirmed in serum via a targeted LC-MS/MS
method, its synthetic nature necessitates caution in interpretation.
The presence of ropinirole in 16 out of 20 cows suggests consistent
yet
contamination, feed additives, or veterinary drugs may be potential

exposure, its source remains unclear. Environmental

contributors. Until these factors are verified, ropinirole should not
be
SCM. N-e-methyl-L-lysine, in particular, emerged as a robust

considered a reliable endogenous biomarker for
candidate due to its consistent dysregulation, aligning with its
known role in immune modulation and inflammation. Similarly,
elevated arachidonic acid, a precursor of pro-inflammatory

mediators, supports the inflammatory underpinnings of SCM (Wang
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et al,, 2022; Wang et al., 2020; Zhu et al., 2023; Ceciliani et al., 2020;
Tang et al., 2024).

In addition to N-e-methyl-L-lysine and ropinirole, several
other metabolites identified in this study offer insights into the
metabolic alterations underlying subclinical mastitis (SCM).
Digalacturonic acid, elevated in both fecal and milk samples, likely
reflects increased microbial pectin degradation and may indicate
gut barrier disruption or microbial dysbiosis associated with
systemic inflammation (Beukema et al., 2020). Acetylcarnitine,
upregulated in serum and milk, is involved in fatty acid transport
and energy metabolism. Its elevation suggests a metabolic shift
toward lipid mobilization under inflammatory stress, consistent
with patterns seen in preclinical mastitis states (Zandkarimi et al.,
2018). Arachidonic acid, a precursor of pro-inflammatory
eicosanoids, was positively associated with Succinivibrionaceae
UCG-001, supporting its role as a mediator of host-microbe
inflammatory interactions (Rinaldi et al., 2021).

These findings underscore the value of metabolite profiling in
revealing host-microbe interactions and suggest that digalacturonic
acid, acetylcarnitine, and arachidonic acid may serve as candidate
biomarkers for SCM-related metabolic and immune disturbances.
Metabolic pathway analysis revealed dysregulation in essential
biosynthetic and degradation pathways, including amino acid and bile
acid metabolism, galactose metabolism, and microbial metabolic
networks. These systemic alterations reflect both host and microbial
contributions to SCM pathology, further emphasizing the importance
of gut and rumen microbial homeostasis in disease progression (Wang
et al., 2021a; Saleh et al., 2022; Alessandri et al., 2023b).

16S rRNA-based microbiota analysis demonstrated distinct
compositional shifts, with enrichment or depletion of specific genera
linked to inflammation and metabolic dysregulation. Notably,
alterations in Succinivibrio, Succinivibrionaceae UCG-001, Alistipes,
and Methanobrevibacter were consistently associated with changes in
metabolite levels. These functional predictions, based on 16S rRNA
profiles, suggest a potential association between microbial changes
and immune-related signaling. However, as these are computational
inferences, they should not be interpreted as direct evidence of
functional activity.

The observed correlations between metabolites and microbiota,
particularly involving Alistipes and Succinivibrionaceae UCG-001,
highlight potential axes of host-microbe metabolic crosstalk.
Alistipes, known for its role in short-chain fatty acid production and
inflammatory diseases, was inversely associated with key inflammatory
metabolites (Wang et al., 2021¢; Wang et al., 2022; Haxhiaj et al,,
2022). The neuromodulatory compound ropinirole showed multiple
associations across microbial genera, indicating possible microbiota-
mediated neurometabolic effects during SCM (Couvillion et al., 2023;
Hu et al,, 2021). The inverse correlations between alpha diversity and
inflammation-related metabolites support the hypothesis that
microbial richness loss contributes to metabolic imbalance in SCM.

Our findings underscore the importance of sample-specific
biomarker discovery. For instance, fecal bile acid metabolites
demonstrated strong diagnostic potential, while serum and milk
biomarkers may better reflect systemic inflammation. The distinct
distribution patterns of ropinirole and N-e-methyl-L-lysine across
matrices highlight the value of multi-site sampling to enhance
diagnostic precision.
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The divergence of microbiota profiles between rumen fluid and
feces further reinforces the complexity of SCM’s microbial ecology.
These differences may stem from the distinct functional roles and
microenvironments of these compartments. Elevated Euryarchaeota
levels, linked to methane production and vitamin biosynthesis,
suggest metabolic consequences that extend beyond the mammary
gland and could impact feed efficiency and host metabolism (Mudaliar
etal,, 2017; Wang et al., 2021a). Although milk microbial communities
are directly relevant to mastitis, we focused on fecal and rumen
microbiota to capture gut-derived systemic influences and host-
microbe metabolic interactions. These matrices provide more stable
microbial signatures and lower susceptibility to environmental
contamination. Practical constraints, including sequencing resources
and sample throughput, also influenced this decision. Future studies
integrating milk microbiome data will be essential to more
comprehensively understand both local and systemic microbiota
contributions to subclinical mastitis.

In practical terms, our results advocate for the incorporation of
integrative metabolomic-microbiome monitoring in SCM surveillance
programs. Such approaches could facilitate earlier detection, guide
probiotic or dietary interventions, and inform precision health
strategies to mitigate economic losses and improve herd productivity.
Future studies should explore causality and validate these findings in
larger cohorts to support clinical translation.

5 Conclusion

This study provides a comprehensive systems level characterization
of subclinical mastitis (SCM) in dairy cows through the integration of
metabolomic and microbiome data across multiple biological
matrices. Our findings reveal that SCM is marked by subtle but
pervasive immune activation, metabolic reprogramming, and
microbial dysbiosis. Key biomarkers such as N-e-methyl-L-lysine,
digalacturonic acid, and ropinirole were identified consistently across
matrices, offering promising candidates for non-invasive and multi-
source detection of SCM. Furthermore, while ropinirole was validated
through targeted analysis, its synthetic origin and uncertain source
highlight the need for caution. Its inclusion as a biomarker is
further
exogenous contamination.

premature  without investigation into  potential

The altered microbial signatures, particularly involving
Succinivibrionaceae UCG-001 and Alistipes, and their correlations with
inflammatory and neuromodulatory metabolites, highlight the
intricate host-microbiome interactions underlying disease
progression. Functional pathway analysis further supports the
involvement of immune signaling, energy metabolism, and microbial
biosynthetic activity in SCM pathophysiology.

Collectively, this multi-omics approach advances our mechanistic
understanding of SCM and lays the groundwork for early diagnostic
biomarkers and precision-targeted interventions. Incorporating these
findings into herd health management strategies could significantly
enhance disease monitoring, reduce productivity losses, and improve
animal welfare.

Future research should focus on longitudinal validation of
identified biomarkers and exploration of causative links to further

support clinical translation and intervention development.
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Glossary

ANOVA - Analysis of variance

CBC - Complete blood count

DHI - Dairy herd improvement

FDR - False discovery rate

FTIR - Fourier transform infrared

Hb - Hemoglobin

HCT - Hematocrit

KEGG - Kyoto Encyclopedia of Genes and Genomes
LC-MS - Liquid chromatography-mass spectrometry
MS - Mass spectrometry

NMDS - Non-Metric Multidimensional Scaling
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OPLS-DA - Orthogonal partial least squares discriminant analysis
PCA - Principal component analysis

PLT - Platelet count

PLS-DA - Partial least squares discriminant analysis

RBC - Red blood cell

SCM - Subclinical mastitis

SCC - Somatic cell count

SEM - Standard error of the mean

UPLC - Ultra-performance liquid chromatography

VIP - Variable importance in projection

WBC - White blood cell
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