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Tripartite exacerbation
stratification in AECOPD suggests
a gradient of lower airway
dysbiosis: a metagenomic
transition from commensal taxa
to pseudomonadota dominance
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1Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital,
Henan Provincial People’s Hospital, Zhengzhou, China, 2Department of Infectious Diseases,
Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China

Background: The frequency of acute exacerbations (AECOPD) is a critical
predictor of disease progression in chronic obstructive pulmonary disease
(COPD). However, the dynamics of the lower respiratory microbiome across
a spectrum of exacerbation frequency remain poorly characterized, limiting
insights into microbial drivers of susceptibility.
Methods: We conducted a cross-sectional study of 39 hospitalized AECOPD
patients, stratified into non-frequent (NFE, ≤1 event/year, n = 11), moderate
(ME, 2 events/year, n = 13), and frequent exacerbators (FE, ≥3 events/year, n
= 15). Metagenomic next-generation sequencing (mNGS) was performed on
bronchoalveolar lavage fluid (BALF) to profile the airway microbiome.
Results: Microbial alpha diversity exhibited a significant, graded decline from NFE
to FE groups (e.g., Shannon index: NFE 3.68 ± 0.34, ME 3.02 ± 1.02, FE 0.84 ±
0.54; p < 0.05). Beta diversity analysis revealed distinct community clustering by
exacerbation phenotype (PERMANOVA R2 = 0.19, p = 0.001). The FE group was
characterized by a striking dominance of Pseudomonadota (relative abundance:
72.25%), which correlated positively with exacerbation frequency (r = 0.536, p
< 0.001). In contrast, commensal taxa including Streptococcus (r = −0.814,
p < 0.0001) and others within the Bacillota and Bacteroidota phyla were
depleted in FE and were negatively associated with exacerbation frequency.
Twelve exacerbation-resilient taxa (83.3% belonging to Bacillota/Bacteroidota)
were positively correlated with FEV1% predicted (r = 0.322–0.483, p < 0.05).
Alpha diversity indices showed a strong inverse association with exacerbation
frequency (r = −0.84 to −0.86, p < 0.001) but not spirometric measures.
Conclusion: Our findings delineate a gradient of airway microbial dysbiosis
along the exacerbation frequency spectrum in COPD. The exacerbation-prone
phenotype is defined by a loss of microbial diversity, expansion of
Pseudomonadota, and depletion of potentially protective commensals. These
microbiome features represent promising biomarkers for identifying high-risk
patients and may inform future microbiome-targeted therapeutic strategies.
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1 Introduction

Chronic obstructive pulmonary disease (COPD), the third
leading cause of global mortality, accounts for over 3 million
annual deaths and imposes substantial healthcare burdens through
progressive lung function deterioration and recurrent acute
exacerbations (AECOPD) (World Health Organization, 2020; Rabe
et al., 2007; Wedzicha and Seemungal, 2007; GBD 2019 Diseases
Injuries Collaborators, 2020). Although AECOPD frequency serves
as a critical prognostic indicator of disease severity (Hurst
et al., 2010), current therapeutic approaches remain insufficiently
tailored to individual exacerbation risk profiles, reflecting gaps in
understanding the microbial determinants of exacerbation-prone
phenotypes (Han et al., 2017).

The airway microbiome has emerged as a central player in
COPD pathogenesis, being intricately involved in inflammatory
cascades and immune dysregulation (Dickson et al., 2014; Sethi and
Murphy, 2008). However, traditional diagnostic tools—including
culture-based methods and 16S rRNA gene sequencing—fail to
capture the functional complexity of respiratory microbiota
due to inherent taxonomic biases and limited resolution
(Dickson et al., 2013; Biesbroek et al., 2012; Zhang et al.,
2020). Recent advances in bronchoalveolar lavage fluid (BALF)-
based metagenomic next-generation sequencing (mNGS) now
enable high-resolution profiling of the lower airway microbiome,
overcoming contamination issues associated with sputum analysis
while providing strain-level taxonomic and functional insights (Gu
et al., 2019).

Despite these technological breakthroughs, fundamental
questions persist. Previous investigations have predominantly
dichotomized COPD cohorts into frequent versus non-frequent
exacerbators (Reilev et al., 2017; Le Rouzic et al., 2018), a binary
classification that risks masking transitional microbial states during
disease progression. We propose that a tripartite stratification
strategy—categorizing patients by annual exacerbation frequency
into ≤1 (non-frequent), 2 (moderate), and ≥3 (frequent) events—
will uncover a microbial ecological continuum. Specifically,
we hypothesize that frequent exacerbators exhibit progressive
pathogen dominance (e.g., Pseudomonadota phylum) accompanied
by collapse of alpha diversity, whereas non-frequent exacerbators
retain protective commensal taxa (e.g., Streptococcus, Prevotella)
associated with lung function preservation. Furthermore, we
anticipate that microbiome-driven exacerbation risk operates
independently of conventional spirometric indices, suggesting
novel pathways for therapeutic targeting.

Abbreviations: COPD, Chronic obstructive pulmonary disease; mNGS,

Metagenomic next generation sequencing; FE, Frequent exacerbators; ME,

Moderate frequent exacerbators; NFE, Non-frequent exacerbators; FEV1,

Forced expiratory volume in 1 s; FEV1/pre, FEV1 percent predicted; n,

Number; NGS, Next-generation sequencing; 16S rRNA, 16S ribosomal RNA;

mMRC, Modified Medical Research Council dyspnea scale; PERMANOVA,

Permutational multi-variate analysis of variance; PCoA, Principal co-

ordinates analysis; LEfSe, Linear discriminant analysis effect size; BMI, Body

mass index; FVC, Forced vital capacity; LDA, Linear discriminant analysis;

BALF, Bronchoalveolar lavage fluid.

By integrating BALF mNGS with tripartite phenotyping,
this study aims to delineate dynamic microbiome shifts
along the AECOPD severity spectrum, thereby providing
mechanistic insights into microbial drivers of exacerbation
susceptibility and paving the way for personalized
microbiome-modulating interventions.

2 Methods

2.1 Patient recruitment and grouping

This study was conducted in the Department of Respiratory
Medicine at Henan Provincial People’s Hospital from March
2021 to December 2023. We consecutively enrolled patients
diagnosed with an acute exacerbation of chronic obstructive
pulmonary disease (AECOPD) according to the 2023 Global
Initiative for Chronic Obstructive Lung Disease (GOLD) criteria.
The study protocol was approved by the Institutional Review
Board of Henan Provincial People’s Hospital, and written informed
consent was obtained from all participants or their legally
authorized representatives.

The inclusion criteria were: (1) worsening respiratory
symptoms (cough, sputum production, dyspnea); (2) purulent or
mucopurulent sputum; (3) post-bronchodilator ratio of forced
expiratory volume in 1 s to forced vital capacity (FEV1/FVC)
<70%; and (4) no antibiotic use within 4 weeks prior to
enrollment. Exclusion criteria included comorbidities such as heart
failure, malignancy, autoimmune diseases, or contraindications
to bronchoscopy.

Based on the frequency of acute exacerbations in the preceding
year, patients were stratified into three groups: the frequent
exacerbator (FE) group (≥3 episodes, n = 15), the moderate
exacerbator (ME) group (2 episodes, n = 13), and the non-
frequent exacerbator (NFE) group (≤1 episode, n = 11). Baseline
demographic and clinical data, including gender, age, smoking
history, alcohol consumption, comorbidities, mMRC score, and
body mass index (BMI), were collected for all patients.

2.2 Bronchoalveolar lavage fluid collection
and DNA extraction

Bronchoscopy and bronchoalveolar lavage fluid (BALF)
collection were performed following a standardized protocol. The
sampling site was determined by reviewing chest CT scans prior
to the procedure: for localized lesions, the most severely affected
subsegment was chosen; for diffuse lung disease, the right middle
lobe or lingular segment of the left upper lobe was selected. After
wedging the bronchoscope into the target bronchus, pre-warmed
(37 ◦C) sterile saline was instilled in 20–50 mL aliquots to a total
volume of 120 mL. The fluid was immediately aspirated under
appropriate negative pressure (80–120 mmHg). The total fluid
recovery rate was >40% for all analyzed samples. Qualified samples
met the following cytological criteria: squamous epithelial cells
<5% and red blood cells <10%. Samples were stored at −80 ◦C
until DNA extraction.
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Total DNA was extracted from BALF using the QIAamp UCP
Pathogen DNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. To reduce host DNA contamination,
samples were pretreated with Benzonase (Qiagen) and 0.1% Tween-
20 (Sigma-Aldrich, St. Louis, MO, USA) prior to extraction.
DNA concentration and purity were assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific) and the Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific).

2.3 Library preparation and metagenomic
sequencing

Libraries were constructed using the Nextera XT DNA
Library Prep Kit (Illumina) with 10 ng of high-quality
genomic DNA as input. The quality of the resulting
libraries was assessed using the Agilent 2100 Bioanalyzer
with the High Sensitivity DNA Kit (Agilent Technologies,
Santa Clara, CA, USA). Qualified libraries were pooled in
equimolar concentrations and sequenced on the Illumina
NextSeq 550Dx platform using a 75-cycle single-end strategy
(NextSeq 500/550 High Output Kit v2.5), aiming to generate
approximately 20 million raw reads per library. Peripheral
blood mononuclear cells (PBMCs, 105 cells/mL) from healthy
donors served as a negative process control, and DNA-free
water subjected to the entire DNA extraction and sequencing
workflow served as a no-template control (NTC) to assess
background contamination.

2.4 Bioinformatics analysis

Raw sequencing reads were quality-filtered using Trimmomatic
v0.39 (Bolger et al., 2014) with the following parameters:
SLIDINGWINDOW:4:20, MINLEN:50. Adapter sequences
were removed using the Illumina adapter database. Host DNA
contamination was minimized by aligning reads to the GRCh38
human reference genome using Bowtie2 v2.5.4 (Langmead
and Salzberg, 2012) (very-sensitive-local mode).Taxonomic
profiling was performed using Kraken2 v2.1.3 and Bracken
v2.9 with the Standard Plus Protozoa & Fungi database
(version 2024Q3).

Alpha diversity indices and Beta diversity were calculated
using the Vegan package (v2.6.8) in R. Beta diversity, based on
Bray-Curtis dissimilarity (calculated using the vegdist function),
was used to assess differences in microbial community structure
among groups via Permutational Multivariate Analysis of Variance
(PERMANOVA) with 999 permutations. Visualization of beta
diversity patterns was performed using Principal Coordinate
Analysis (PCoA) (cmdscale()). The Linear Discriminant Analysis
Effect Size (LEfSe) (Segata et al., 2011) method was employed to
identify differentially abundant taxonomic features across groups,
with a significance threshold set at an LDA score > 3.5. All analyses
were implemented in R v4.3.1.

2.5 Statistical analysis

Statistical analyses were performed using SPSS Statistics 21
(IBM, Armonk, NY, USA) and R software (v4.3.1). Normally
distributed continuous variables are presented as mean ± standard
deviation and were compared using one-way ANOVA. Non-
normally distributed continuous variables are presented as median
(interquartile range) and were compared using the Kruskal–Wallis
test. Categorical variables are expressed as counts (percentages)
and were compared using the Chi-square test or Fisher’s exact
test, as appropriate. The relative abundances of the top 10
microbial phyla, genera, and species were arcsine square root-
transformed to normalize skewed distributions (Li et al., 2019),
and group differences were assessed using the Kruskal–Wallis test.
The Jonckheere–Terpstra trend test was used to analyze trends
in microbial relative abundance across exacerbation frequency
groups. Spearman’s rank correlation was used to assess associations
between bacterial relative abundance and clinical indicators. All
statistical tests were two-sided, and a p-value < 0.05 was considered
statistically significant.

3 Results

3.1 Patient characteristics

The study enrolled 39 AECOPD patients stratified by
exacerbation frequency into: NFE (n = 11), ME (n = 13),
and FE (n = 15) groups. Clinical characteristics, including
gender, age, smoking history, BMI, mMRC scores, comorbidities,
and inflammatory markers (NLR, CRP), showed no significant
differences across groups (all p > 0.05; Table 1). However, the
FE group exhibited significantly lower lung function compared to
the NFE group, as evidenced by FEV1% predicted (34(20.0) vs.
62(30.9), p = 0.018) and FEV1/FVC% (41.68 ± 12.74 vs. 54.30 ±
10.9, p = 0.049) (Table 1).

3.2 BALF microbial composition

Deep metagenome sequencing of BALF samples revealed
distinct microbial community structures among the FE,
ME, and NFE groups at both phylum and genus/species
levels (Figures 1A–C). Notably, the NFE and ME groups
exhibited comparable profiles dominated by Pseudomonadota
(formerly Proteobacteria; mean relative abundance: 42.82%
across all samples), Bacillota (15.98%, formerly Firmicutes),
Actinomycetota (15.78%, formerly known as Actinobacteria),
and Bacteroidota (12.43%, formerly known as Bacteroidetes)
(Figure 1A). Pseudomonadota were prevalent in the FE group,
with 72.25% of the relative abundance, whereas in the NFE and
ME groups, their relative abundance was 19.79% and 28.08%,
respectively. On the other hand, Bacillota were more abundant in
the NFE and ME groups, with 36.80% and 13.95% of the relative
abundance, respectively, compared to the FE group (2.38%).
The top 15 bacterial genera included Pseudomonas, Prevotella,
Streptococcus, Stenotrophomonas, Neisseria, Rothia, Veillonella, and
Corynebacterium (among others). Streptococcus, Prevotella, and
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TABLE 1 Clinical characteristics of the study population.

Characteristics NFE ME FE P-value

N 11 13 15

Age (years), median (IQR) 70(9) 68(13) 66(20) 0.562$

Sex, male, n (%) 8(72.73) 12(92.31) 12(80.00) 0.509#

BMI (kg/m2), mean ± SD 20.87 ± 2.34 22.95 ± 3.17 22.27 ± 3.64 0.279∗

Smoking index (pack-years), median (IQR) 30(50) 30(45) 15(32) 0.584$

Drinking history 0.711#

Ever-drinker, n (%) 4(36.36) 4(30.77) 7(46.67)

Never-drinker, n (%) 7(63.64) 9(69.23) 8(53.33)

Comorbidities

Hypertension (%), n 4(36.36) 5(38.46) 4(26.67) 0.762#

Diabetes mellitus (%), n 3(27.27) 1(7.69) 5(33.33) 0.278#

mMRC Score, median (IQR) 1(1) 2(1) 2(1) 0.834$

WBC (∗109/L), mean ± SD 7.40 ± 2.79 10.23 ± 4.59 7.89 ± 2.76 0.107∗

NEUT (∗109/L), mean ± SD 5.09 ± 2.72 7.97 ± 4.56 6.21 ± 2.82 0.133∗

NEUT (%), mean ± SD 66.52 ± 13.13 73.67 ± 12.90 76.92 ± 13.86 0.156∗

LYM (∗109/L), median (IQR) 1.27(1.55) 1.27(0.89) 0.79(0.75) 0.107$

NLR, median (IQR) 2.26(4.23) 6.09(7.74) 6.56(7.71) 0.130$

Eos (∗109/L), median (IQR) 0.08(0.11) 0.11(0.24) 0.03(0.20) 0.674$

CRP (mg/L), median (IQR) 5.41(90.67) 51.57(48.31) 38.51(121.98) 0.165$

FEV1/pred (%), median (IQR) 62(30.9) 47(37.5) 34(20.0) 0.022$

FEV1/FVC, mean ± SD 54.30 ± 10.90 48.42 ± 13.78 41.68 ± 12.74 0.052∗

History of COPD, median (IQR) 1(3) 7(10) 10(17) 0.053$

Continuous variables are presented as median (interquartile range, IQR) or mean ± standard deviation (SD); categorical variables are expressed as n (%). Differences among the three groups
were assessed using one-way ANOVA (for normally distributed data) (∗), Kruskal–Wallis test (for non-normally distributed data) ($), or Fisher’s exact test (for categorical data) (#). Post-hoc
analyses were performed with Bonferroni correction (for ANOVA) or Dunn’s test (for Kruskal–Wallis test) when significant differences were found.
BMI, body mass index; mMRC, modified Medical Research Council; WBC, white blood cell; Neut, neutrophil; Lym, lymphocyte; Eos, eosinophil; NLR, neutrophil-to-lymphocyte ratio; CRP,
C-reactive protein; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; COPD, chronic obstructive pulmonary disease.

Pseudomonas were identified as the dominant genera in the NFE,
ME, and FE groups, respectively (Figure 1B). Species-level analysis
identified Pseudomonas aeruginosa, Stenotrophomonas maltophilia,
Prevotella melaninogenica, and Rothia mucilaginosa as the most
abundant species, with Prevotella melaninogenica dominating the
NFE and ME groups and Pseudomonas aeruginosa predominating
in the FE group (Figure 1C).

3.3 Diversity comparison across
exacerbation groups

Alpha diversity, reflecting microbial richness and evenness
within individual samples, was significantly higher in the NFE
group compared to the FE group at the species level. Specifically,
the NFE group exhibited elevated Shannon index (p < 0.0001),
Simpson index (p < 0.0001), Invsimpson index (p < 0.0001), ACE
index (p = 0.011), and Richness index (p = 0.011). In contrast,
the Chao1 index showed no significant difference between the two
groups (p = 0.074) (Figure 2).

Beta diversity, which assesses differences in microbial
community structure across groups, was analyzed using principal
coordinate analysis (PCoA) based on Bray–Curtis. The first two
principal components accounted for 32.29% of variance explained,
with clear clustering observed among the groups. PERMANOVA
confirmed significant separation in microbial community
composition (p = 0.001), supporting distinct structural patterns
between groups (Figure 3).

3.4 Differential taxa and shifts along the
exacerbation spectrum

Comparative analysis of the top 10 microbial taxa revealed
distinct compositional patterns across the groups (Figure 4). The
relative abundance of Pseudomonadota was significantly higher
in the FE group than in both the NFE and ME groups (p = 0.013
for both). In contrast, Actinomycetota, Bacillota, Bacteroidota,
Fusobacteriota, and Campylobacterota were preferentially
enriched in the NFE group (all p < 0.05). The ME group
exhibited a transitional microbiome profile, with intermediate
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FIGURE 1

Microbial community composition of bronchoalveolar lavage fluid (BALF) samples. Stacked bar plots show the relative abundance of microbial taxa
at the (A) phylum, (B) genus, and (C) species levels across the FE, ME, and NFE groups. Panel (A) displays the top 10 most abundant phyla, while
panels (B, C) illustrate the top 30 most abundant genera and species, respectively.
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FIGURE 2

Alpha diversity indices across exacerbation frequency groups. Boxplots (A–F) display the distribution of (A) Shannon, (B) Simpson, (C) InvSimpson, (D)
ACE, (E) Chao1, and (F) Richness indices among NFE, ME, and FE groups. Statistical comparisons were performed using the Kruskal-Wallis test with
Dunn’s post-hoc test (Bonferroni-adjusted), and exact p-values are annotated on the figure.

abundances of several phyla, including Pseudomonadota, Bacillota,
Bacteroidota, and Fusobacteriota (Figure 4A). At the genus level,
taxa such as Prevotella, Streptococcus, Neisseria, Veillonella,
and Rothia were significantly more abundant in the NFE
group compared to the FE group (all p < 0.05) (Figure 4B).
Similarly, at the species level, Prevotella melaninogenica, Rothia
mucilaginosa, Veillonella parvula, Neisseria subflava, Prevotella
jejuni, and Schaalia odontolytica were significantly enriched
in the NFE group (all p < 0.05). Although Pseudomonas
aeruginosa was more abundant in the FE group, this difference
was not statistically significant (FE vs. NFE: p = 0.240)
(Figure 4C).

To quantitatively assess whether these microbial changes
followed an ordered pattern, we performed Jonckheere–Terpstra
trend tests on all taxa that showed significant overall differences in
the Kruskal-Wallis test (p < 0.05). A significant increasing trend
from NFE to ME to FE was confirmed for Pseudomonadota (J–
T = 3.346, p = 0.001). Conversely, significant decreasing trends
were identified for the Shannon diversity index (J–T = −5.620,

p < 0.0001) and for a range of commensal-rich taxa. At the
phylum level, these included Bacillota (J–T =−5.904, p < 0.0001),
Bacteroidota (J–T = −4.716, p < 0.0001), Fusobacteriota (J–T =
−3.711, p < 0.0001), and Campylobacterota (J–T = −3.506, p
< 0.0001). This graded pattern was also observed at the genus
level for Streptococcus (J–T = −5.367, p < 0.0001), Prevotella (J–
T = −4.355, p < 0.0001), Neisseria (J–T = −3.983, p < 0.0001),
Veillonella (J–T =−3.771, p < 0.0001), and Rothia (J–T =−4.222,
p < 0.0001), and at the species level for Prevotella melaninogenica
(J–T =−4.273, p < 0.0001), Rothia mucilaginosa (J–T =−3.856, p
< 0.0001), Veillonella parvula (J–T =−2.831, p = 0.005), Neisseria
subflava (J–T = −3.307, p = 0.001), Prevotella jejuni (J–T =
−4.124, p < 0.0001), and Schaalia odontolytica (J–T =−2.910, p =
0.004). The convergence of significant inter-group differences and
robust monotonic trends across taxonomic levels is consistent with
a gradient-like reorganization of the lower respiratory microbiome
along the exacerbation frequency spectrum.

LEfSe analysis further identified specific microbial taxa whose
abundances were statistically different among groups (LDA score
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FIGURE 3

Microbial beta diversity across exacerbation frequency groups.
Principal coordinate analysis (PCoA) plot based on Bray-Curtis
dissimilarity visualizes the observed clustering pattern of microbial
communities among NFE, ME, and FE groups (PERMANOVA, R2 =
0.19, p = 0.001).

[log10] > 3.5) (Figure 5). The FE group was characterized by
Pseudomonadota and Pseudomonas aeruginosa. The NFE group
was associated with Bacteroidota, Bacillota, Fusobacteriota, and
genera including Streptococcus, Prevotella, and Neisseria. The ME
group featured a distinct signature, including Actinomycetota and
the genus Malassezia.

3.5 Correlation between the microbiome
and clinical indexes

Spearman correlation analysis was performed to assess the
relationships between clinical variables and microbiome diversity
index. The frequency of exacerbation was strongly negatively
correlated with both the Shannon index (r = −0.842, p < 0.0001)
and Simpson index (r =−0.836, p < 0.0001). In contrast, FEV1/pre
(%) and FEV1/FVC (%) showed no significant correlation with
either Shannon or Simpson index (Figure 6). The neutrophil-to-
lymphocyte ratio (NLR) and COPD duration were also found to
be negatively correlated with the Shannon and Simpson index
(Supplementary Figure 1).

We further examined the associations between microbial
taxa (identified by LDA) and clinical parameters. The relative
abundance of Pseudomonadota was positively correlated with
exacerbation frequency (r = 0.536, p < 0.0001), whereas
Fusobacteriota, Actinomycetota, Bacteroidota, and Bacillota
showed significant negative correlations (r = −0.58, −0.347,
−0.74, and −0.862, respectively; all p < 0.05) (Figure 7A).
A total of 43 microbial genera and species were negatively
correlated with exacerbation frequency (r ranged from −0.814
to −0.336), 60.5% (26/43) of which belonged to the Bacillota

and Bacteroidota phyla. Notably, Streptococcus exhibited a strong
negative correlation (r = −0.814, p < 0.0001) (Figures 7B, C).
Exacerbation frequency was also negatively associated with both
FEV1/pre (r =−0.434, p = 0.006) and FEV1/FVC (r =−0.404, p =
0.011) (Supplementary Figure 2). Klebsiella pneumoniae proved to
have a negative correlation with FEV1/pre(r = −0.336, p = 0.036).
A total of 12 microbial genera and species (r ranged from 0.322 to
0.483) showed positive correlations with FEV1/pre and negative
correlations with acute exacerbation frequency, 83.3% (10/12) of
which belonged to phylum Bacillota and Bacteroidota (Figure 7D).

To explore potential co-occurrence and co-exclusion
relationships within the microbial community, spearman
correlation analysis among the top 20 microbial genera and species
was performed (Figure 8).

4 Discussion

To the best of our knowledge, this study represents the first
application of metagenomic next-generation sequencing (mNGS)
to systematically characterize the bronchoalveolar lavage fluid
(BALF) microbiome in AECOPD patients stratified by exacerbation
frequency. Our principal findings reveal a significant microbial
gradient across the exacerbation spectrum (from NFE to ME to
FE), characterized by a stepwise expansion of Pseudomonadota and
a concomitant decline in commensal-rich taxa, accompanied by
a marked loss of microbial alpha diversity. Correlation analyses
further support the potential link between these microbial shifts
and key clinical phenotypes, such as exacerbation frequency and
lung function.

4.1 Microbial diversity decreases along the
exacerbation spectrum

Our metagenomic analysis of bronchoalveolar lavage fluid
(BALF) revealed a significant and progressive decline in microbial
alpha diversity in the lower airways with increasing exacerbation
frequency (Shannon index, Jonckheere–Terpstra test statistic =
−5.620, p < 0.0001). This diversity gradient may reflect an
impairment of “colonization resistance”—an ecological concept
wherein a diverse commensal microbiota typically prevents
pathogen expansion through direct mechanisms such as niche
competition, metabolic exclusion, and production of antimicrobial
substances (Caballero-Flores et al., 2023). We observed that
in frequent exacerbators, the expansion of potential pathogens
coexists with a reduction in complex commensal communities,
which may represent a manifestation of pulmonary microecological
destabilization that is associated with the exacerbation-prone
phenotype. This pattern of diversity loss observed in the lower
respiratory tract is consistent with previous studies based on
upper airway and sputum samples. For instance, Pragman et al.
similarly reported reduced alpha-diversity in the oropharyngeal
and sputum microbiota of COPD frequent exacerbators (Pragman
et al., 2019). Furthermore, the association between microbial
community simplification and adverse clinical outcomes has
been demonstrated in multiple studies: Galiana et al. found
that sputum microbial diversity was lower in patients with
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FIGURE 4

Differential abundance analysis of microbial taxa. Boxplots show the distribution and relative abundance of the top 10 differentially abundant taxa at
the (A) phylum, (B) genus, and (C) species levels. Significance was determined using the Kruskal–Wallis test followed by Dunn’s post-hoc test for
multiple comparisons. P-values were adjusted using the Benjamini–Hochberg (FDR) method. Significance levels are indicated by asterisks: *p < 0.05,
**p < 0.01, ***p < 0.001.
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FIGURE 5

Linear discriminant analysis (LDA) of differentially enriched microbial taxa across the NFE, ME, and FE groups at the (A) phylum, (B) genus, and (C)
species levels.
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FIGURE 6

Correlations between microbial alpha diversity and clinical indexes. (A) Correlation of acute exacerbation frequency with Shannon index. (B)
Correlation of acute exacerbation frequency with Simpson index. (C) Correlation of FEV1/predicted (%) with Shannon index. (D) Correlation of
FEV1/predicted (%) with Simpson index.

severe COPD compared to those with moderate disease (Galiana
et al., 2014), while Leitao Filho et al. further established that
reduced microbial diversity was independently associated with
an increased one-year mortality risk in COPD patients (Leitao
Filho et al., 2019). Collectively, these findings suggest that
microbial diversity holds promise as an important biomarker for
identifying high-risk patients and guiding future microbiome-
targeted intervention strategies.

4.2 Microbial composition shows an
ordered shift along the exacerbation
spectrum

A core finding of our study is the profound and ordered
gradient shift in microbial community structure along the
exacerbation spectrum. Jonckheere–Terpstra trend tests confirmed
a significant stepwise increase in the relative abundance of
Pseudomonadota from the NFE to the ME to the FE group. This
finding is consistent with a prospective cohort study demonstrating
that the abundance of Pseudomonadota (formerly Proteobacteria)
was independently associated with acute exacerbation events
and frequency (Wang et al., 2016). Similarly, Wang et al. also
reported an increase in Pseudomonadota and a decrease in Bacillota
(formerly Firmicutes) during exacerbations (Wang et al., 2019).

Conversely, several commensal-rich phyla, including Bacillota,
Bacteroidota, and Fusobacteriota, showed a significant decreasing

trend with increasing exacerbation frequency. This graded pattern
was more pronounced at the genus and species levels, with
significant declines in taxa such as Streptococcus, Prevotella,
Veillonella, Rothia, Prevotella melaninogenica, and Rothia
mucilaginosa. These microorganisms are considered core members
of the healthy or stable COPD lung microbiome (Pragman et al.,
2018; Faner et al., 2017). Studies have shown that the abundance
of Prevotella increases with the alleviation of airflow limitation
(Su et al., 2022), while Rothia is more abundant in mild COPD
and may exert anti-inflammatory effects by suppressing the NF-κB
pathway (Rigauts et al., 2022). Importantly, this specific microbiota
configuration—characterized by the loss of commensals like
Veillonella and enrichment of pathogens like Staphylococcus—has
been independently established as a significant risk factor for
increased mortality in AECOPD patients (Leitao Filho et al.,
2019).

4.3 Unique mycobiota signature and its
potential implications in the ME Group

An intriguing finding from our LEfSe analysis was the specific
enrichment of the fungal genus Malassezia in the ME group.
While our study primarily focused on bacteria and the low
biomass for fungi limits definitive conclusions, this signal suggests
a potential, underappreciated role for the mycobiome in COPD
progression. Previous research on the COPD lung mycobiome
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FIGURE 7

Correlations between microbial relative abundance and clinical indexes. (A) Phylum-level correlation with acute exacerbation frequency. (B)
Genus-level correlation with acute exacerbation frequency. (C) Species-level correlation with acute exacerbation frequency. (D) Correlation of
microbial relative abundance with FEV1/predicted (%) at the phylum, genus, and species levels.

has predominantly focused on Candida and Aspergillus, leaving
the ecological significance of Malassezia in the respiratory tract
unclear (Nguyen et al., 2015; de Dios Caballero et al., 2022;
Garaci et al., 2024). Its co-occurrence with taxa like Prevotella
melaninogenica in the ME group may represent a unique
transitional ecological niche during the exacerbation process.
This hypothesis-generating discovery warrants validation in future
studies specifically designed with sufficient power to characterize
the lung mycobiome.

4.4 Correlation between microbiome and
clinical phenotypes

We identified robust associations between microbiome shifts
and key clinical indices. Exacerbation frequency was strongly and
negatively correlated with lung function parameters (FEV1/pred
and FEV1/FVC), underscoring its role as a key marker of disease
progression. Furthermore, the microbiome was closely linked to
clinical phenotypes: exacerbation frequency correlated positively
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FIGURE 8

BALF microbiome networks separately in AECOPD patients. Heatmaps display Spearman correlation coefficients among the relative abundances of
the top 20 (A) genera and (B) species. Significant correlations (p-value < 0.05) are marked with an asterisk.

with the abundance of Pseudomonadota and negatively with
the abundance of multiple commensal-rich phyla/genera/species.
Notably, we identified a set of microorganisms (e.g., Streptococcus)
that were negatively correlated with exacerbation frequency and
positively correlated with FEV1/pred. This observation aligns with
the perspective of the latest GOLD report, which states that
dysbiosis is associated with the presence and characteristics of
COPD, such as exacerbation frequency, potentially by altering
mucosal defense and stimulating lung inflammation [Global
Initiative for Chronic Obstructive Lung Disease (GOLD), 2024].
This further highlights the clinical relevance of the identified
microbial changes, placing them within the clinical continuum of
lung function impairment.

However, it must be emphasized that the cross-sectional
design of this study precludes causal inference. Frequent
exacerbations and poor lung function could be either a cause
or a consequence of microbial dysbiosis, and both may be
driven by underlying host immune factors (Plichta et al., 2019;
Wilde et al., 2024). For instance, ecological dysbiosis of the
lung microbiome has been implicated in the pathophysiology
of chronic obstructive pulmonary disease (COPD) and other
respiratory conditions through its role in modulating host immune
responses. Furthermore, the complex interplay between the
pulmonary microbiome and the host environment underscores
these relationships, with tissue-associated microbial communities
potentially participating more directly in this dynamic process (Sze
et al., 2012; Yi et al., 2022).

4.5 Study strengths, limitations, and future
perspectives

A key strength of this study is the use of BALF,
which more accurately reflects the lower respiratory tract

milieu, combined with high-resolution metagenomic next-
generation sequencing (mNGS). This approach not only
provided a refined microbial profile at the species level
but also serendipitously enabled the detection of unique
non-bacterial signals, such as the Malassezia signature
in the ME group, underscoring the value of an unbiased
sequencing method.

This study also has several limitations. First, the relatively
small sample size and single-center, cross-sectional design limit
the generalizability of our findings and prevent the establishment
of causal or temporal relationships. Second, although we excluded
patients with recent antibiotic use, the FE group’s history of
more frequent exacerbations likely resulted in greater cumulative
antibiotic exposure, a potential confounding factor that we
could not fully quantify or adjust for. Furthermore, our study
relied on patient-reported exacerbation frequency as a key
stratification variable. While this is a well-established and
clinically relevant metric, we lacked comprehensive data on
prior hospitalization history for exacerbations. Therefore, it is
possible that exacerbation frequency alone may not fully capture
the cumulative burden of severe exacerbation events requiring
hospitalization. Additionally, the analysis of non-bacterial domains
(e.g., fungi) was inherently limited by statistical power issues due
to their low biomass. Consequently, we prioritized the robust
bacterial community analysis while explicitly framing the fungal
signals as hypothesis-generating discoveries for future validation.
Finally, the substantial interpersonal variation in microbiome
composition necessitates validation of our findings in larger,
prospective cohorts.

Based on these considerations, we propose that future research
should: (1) expand to multi-center, longitudinal cohorts to
validate and extend our model of microbial succession along
the exacerbation spectrum; and (2) employ domain-specific
techniques (e.g., ITS sequencing) to definitively characterize
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the role of the mycobiota and its interactions with the
bacterial community.

5 Conclusion

Collectively, our findings delineate a gradient of airway
microbial ecology along the exacerbation frequency spectrum. We
propose that the observed expansion of Pseudomonadota, coupled
with the depletion of commensal Bacillota and Bacteroidota, may
collectively is associated with to the exacerbation-susceptible state
in COPD. Future studies are needed to test if this dysbiotic
configuration actively drives poor clinical outcomes.
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