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Background: Malaria remains a fatal global infectious disease, with the 
erythrocytic stage of Plasmodium falciparum being its main pathogenic phase. 
Early diagnosis is critical for effective treatment. This study developed and 
evaluated an artificial intelligence-assisted diagnosis (AI-assisted diagnostic) 
tool for malaria parasites.
Methods: The peripheral blood samples of malaria patients were collected. 
Thin blood film smear were prepared, stained and examined by microscopic. 
After manual confirmation and validation with qPCR, the images of infected 
red blood cells (iRBCs) of P. falciparum were captured. Using a sliding window 
method, each original image was cropped into 20 small images (518 × 486 
pixels). Selected iRBCs were classified, and P. falciparum was detected using the 
YOLOv3 deep learning-based object detection algorithm.
Results: A total of 262 images were tested. The YOLOv3 model detected 358 
P. falciparum-containing iRBCs, with a false negative rate of 1.68% (6 missed 
iRBCs) and false positive rate of 3.91% (14 misreported iRBCs), yielding an overall 
recognition accuracy of 94.41%.
Conclusion: The developed AI-assisted diagnostic tool exhibits robust efficiency 
and accuracy in Plasmodium falciparum recognition in clinical thin blood 
smears. It provides a feasible technical support for malaria control in resource-
limited settings.
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1 Introduction

Malaria remains one of the top three public health diseases in the world, alongside AIDS 
and tuberculosis (Vassall and Masiye, 2022). There are five major Plasmodium parasites 
infected humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, 
Plasmodium ovale, and Plasmodium knowlesi. For the life cycle of Plasmodium spp. in human, 
it includes pre-erythrocytic stage and erythrocytic stage. For blood stage, it is the main 
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pathogenic stage including rings, trophozoites, schizonts, and 
gametocytes. In 2021, there were an estimated 247 million cases of 
malaria worldwide, resulting in 619,000 deaths (WHO, 2022). Most 
deaths and severe cases are caused by P. falciparum malaria 
(Venkatesan, 2025). Unlike other Plasmodium species, P. falciparum 
exhibits rapid erythrocyte invasion and sequestration in 
microvasculature, which can lead to life-threatening systemic 
inflammation and vascular obstruction if not diagnosed promptly.

Early identification of malaria parasite species and the lifecycle of 
Plasmodium is imperative for precision treatment. As the gold 
standard for malaria diagnosis, microscopy is low-cost, high accuracy, 
and can identify the Plasmodium species and their life cycle 
(Hänscheid, 2003). However, hundreds of millions of blood smears 
are examined worldwide each year, which is a time-consuming and 
potentially error-prone process (Wilson, 2012). It requires a specially 
trained, experienced and skilled technician. Therefore, it is urgent to 
develop an intelligent recognition system that can automatically 
identify and classify malaria parasites to reduce work intensity and 
improve work efficiency.

Artificial intelligence (AI) is a computer technology that can 
be used to find the correlation of data information through techniques 
such as expressive learning, deep learning, and natural language 
processing, combined with computer algorithms, and can assist in 
clinical decision-making (He et  al., 2019). At present, artificial 
intelligence has been successfully applied to CT image recognition of 
COVID-19 (Li et  al., 2020), automatic analysis and diagnosis of 
microscope slide images (Smith et  al., 2018), and association of 
genome sequence and proteomic profile with pathogen phenotype 
(Jamal et al., 2020; Lupolova et al., 2019).

In current study, it establishes a deep learning-based Plasmodium 
identification system to rapidly identify and classify malarial cell 
images, which will reduce the work intensity and improve efficiency 
for clinical treatment and malaria control.

2 Materials and methods

2.1 Sample collection and preparation

The blood of these P. falciparum patients was collected from 
migrant workers returning from African and Southeast Asian 
countries. These patients were first diagnosed by rapid diagnostic kits 
and qPCR, blood samples were made into thin blood smears, and 
microscope images were scanned and preserved. The details about 
preparation of blood smears are: Peripheral blood (2 μL) was 
collected from the patient to prepare thin smears (ensuring well-
dispersed cells for morphological analysis). After air-drying, the 
smears were fixed with methanol and stained with Giemsa solution 
(pH 7.2) for 30 min, followed by rinsing with distilled water and 
drying. Imaging was performed using an Olympus CX31 microscope 
(100 × oil immersion objective, numerical aperture 1.30) equipped 
with a Hamamatsu ORCA-Flash4.0 camera. The image resolution 
was set to 2,592 × 1944 pixels with a uniform exposure time 
of 200 ms.

According to the acquired scanned malarial parasite cell images, 
and after the confirmation by the expert and qPCR results (Xie et al., 
2020), the images of infected red blood cells (iRBCs) of P. falciparum 
were captured.

2.2 Data collection and preprocessing

The study protocol was approved by the Ethics Committee of the 
Wuhan Center for Disease Prevention and Control [Approval No.: 
(WHCDCIRB-K-2021013)].

2.2.1 Image cropping and resizing
The original cell images obtained by scanning had a resolution of 

2,592 × 1944 pixels, which is significantly larger than the 416 × 416 
input size required by the YOLOv3 model. Direct input of unprocessed 
images would lead to loss of fine morphological features (e.g., 
Plasmodium nuclei and cytoplasm) critical for detection. Thus, a 
two-step preprocessing pipeline (cropping followed by resizing) 
was implemented:

	 A	 Non-overlapping cropping: A sliding window strategy was 
used to crop the original images into 518 × 486 sub-images. 
The window stride was calculated to ensure full coverage 
without overlap:

	o	 Horizontal stride = Original width ÷ 5 = 2,592 ÷ 5 = 518 pixels 
(matching the sub-image width), generating 5 horizontal 
sub-images per row.

	o	 Vertical stride = Original height ÷ 4 = 1944 ÷ 4 = 486 pixels 
(matching the sub-image height), generating 4 vertical 
sub-images per column.

This resulted in 20 non-overlapping sub-images (5 × 4 grid) per 
original image, avoiding redundant sampling while preserving 
complete spatial information.

	 B	 Resizing and padding: The 518 × 486 sub-images were resized 
to 416 × 416 to fit YOLOv3 input requirements, with strict 
preservation of aspect ratio to prevent morphological distortion:

	o	 First, the sub-images were proportionally scaled: the longer 
side (518 pixels) was resized to 416 pixels, and the shorter side 
(486 pixels) was scaled to 390 pixels, resulting in intermediate 
416 × 390 images.

	o	 Black pixel padding (18 pixels on both top and bottom) was 
added to the 416 × 390 images to reach the 416 × 416 
dimensions required for model input.

The entire cropping process was implemented in Python, with 
three specialized libraries enabling automated and reproducible 
operation: Core cropping (Pillow), File traversal (os), Path 
management (pathlib.Path). The schematic diagram of the cropped 
image is shown in Figure 1.

2.2.2 Label making
In object detection, the production of training labels directly 

affects the final detection results, so it is necessary to make labels for 
each cropped photo of malarial parasite cells, excluding images 
without malarial parasite cells to prevent them from affecting the final 
training results, and images that cannot be  clearly determined as 
malarial parasites should be judged by professionals. In this work, 
considering that platelets and some impurities are highly similar in 
morphology and size to malarial parasite cells, to improve accuracy, 
single cells are taken as the detection object instead of recognizing 
single malarial parasites, so in the process of making labels, single cells 
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containing malarial parasites need to be framed out. The schematic 
diagram of label making is shown in Figure 1.

2.2.3 Dataset division
The dataset is divided into a training set, validation set and test set 

at a ratio of 8:1:1. The training set data are used to train the 
classification model, the validation set data are used to adjust the 
parameters of the model and optimize the model, and the test set data 
are used to test the classification performance of the model.

3 Model selection

3.1 General

Since the background color of the original image is inconsistent, 
we need to consider images with different background colors when 
selecting the test set to improve the reliability of the 
classification results.

To identify cells containing malarial parasites in the whole 
scanned image, the YOLOv3 algorithm is used in this work for 
recognition and processing. YOLOv3 is a one-step detection 
algorithm that directly inputs the picture into the network to 
extract the features of the whole picture and finally performs a 
regression operation on the whole picture to detect the target. The 
YOLOv3 algorithm directly divides the whole picture into 
nonoverlapping small blocks, avoiding a large number of sliding 
windows and improving the detection speed. YOLOv3 uses 
Darknet-53, which borrows the residual structure of ResNet to 

deepen the network structure while preventing the network from 
converging due to the gradient explosion. The use of residual blocks 
can prevent the loss of effective information and prevent gradient 
disappearance during the training of deep networks. In addition, 
there are no pooling layers in the network, which uses convolution 
with a stride of 2 to reduce the size of the feature map instead of 
pooling operations, which increases the accuracy of small 
object detection.

The core idea of YOLOv3 is multiscale prediction, borrowing the 
idea of pyramid feature maps, small feature maps for detecting large 
objects, and large feature maps for detecting small objects. YOLOv3 
uses 3 scales, whose outputs are 52×52, 26×26 and 13×13 for 
detecting small, medium and large targets, respectively, with each 
scale predicting 3 anchor boxes. After adding the idea of multiscale 
prediction, YOLOv3’s ability to detect small targets has been 
enhanced. Specifically, when YOLOv3 processes the image, it divides 
the image into cells, and each cell predicts B bounding boxes and 
confidence scores. The confidence score consists of two parts: one is 
the possibility that the bounding box contains the target, denoted as 
( )Pr object , and when the bounding box contains the target 
( )Pr object =1, otherwise it is 0; the second is the accuracy of the 

bounding box, represented by the Intersection Over Union (IOU) 
truth
predIOU , so the confidence score can be  expressed as 

( )∗Pr truth
predobject IOU . When classifying the target, each cell also 

predicts the probability values of the detected categories, i.e., the 
conditional probability under the condition of each bounding box 
confidence score, denoted as ( )Pr |classi object . The final prediction of 
YOLOv3 is a tensor of size ( )Pr |classi object , where ×S S is the number 
of cells divided by the image, B is the number of bounding boxes in 

FIGURE 1

Schematic illustration of the recognition platform of Plasmodium falciparum via YOLO v3. The thin blood smears were scanned into Plasmodium 
falciparum images under a microscope, then the images were cropped and classified to establish a database, labels were created for each iRBC, and 
the YOLO v3 model was established.
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each cell, and C is the number of detected categories, which is much 
less than the number of sliding windows of two-stage detectors and 
is much faster in detection.

YOLOv3 avoids the gradient instability problem during training 
by directly predicting the width and height of the boundary box, 
which is done by applying a log space transformation or a simple 
offset to form the predefined default boundary box. Then, these 
transformations are applied to anchor boxes to obtain the predicted 
boundary boxes. YOLOv3 has three anchor boxes and can predict 
three boundary boxes for each cell. Where , , ,x y w hb b b b  are the center 
coordinates, width and height, , , ,x y w ht t t t  is the network output, 
,x yc c  is the coordinates of the left top corner of the grid, and ,w hp p  

are the dimensions of the anchor box. The YOLOv3 network uses the 
mean squared error as the loss function, which is composed of three 
parts: box localization error, IoU error of whether there is a target, 
and classification error. The loss function is shown in the 
following formula:

	

 

 



2

2

2 2

2 2

0 0

2 2

0 0

2 2

0 0 0 0

[( ) ( ) ]

      [( ) ( ) ]

       + ( ) 1 ( )

       + [ ( ) ( )]

s B
obj

icoord ij i i i
i j

s B
obj

i icoord ij i i
i j

s B s B
obj obj

i iij i coord ij i
i j i j

obj
ij i i

c classes

loss i x x y y

i h h

i c c c c

l p c p c

λ

λ ω ω

λ

= =

= =

= = = =

∈

= − + −

+ − + −

− + −

−

∑∑

∑∑

∑∑ ∑∑

∑

 

2
2

0

s

i=
∑

where the first and second terms indicate the weight of the 
prediction box localization error and the center coordinate error, 
respectively, S represents the number of grids divided into the image, 
B represents the number of predicted boxes for each grid, obj

iji  
represents whether the j  predicted box of grid i detects the target, and 

ω, , ,x y h represent the center coordinates and width and height of the 
true box, respectively. The third and fourth terms indicate the IoU 
error, c represents the confidence score, the last term indicates the 
classification error, and ( )ip c  represents the conditional probability 
that the detected target belongs to C .

When using object detection for model prediction, a large 
number of overlapping predicted boxes will appear. Nonmaximum 
suppression (NMS) can be used to deduplicate the large number of 
overlapping predicted boxes output by the object detection model. 
NMS first selects the detection box with the highest confidence as 
the best prediction boundary for the target coordinates, then 
deletes it from the detection box list and adds it to the final 
detection box list. Two detection boxes with an overlap degree 
greater than the threshold are often duplicate inspections of the 
same target object and should be removed, while detection boxes 
with an overlap degree less than the threshold indicate a correct 
detection of the target and should be added to the final detection 
box list.

3.2 Training the model

Once the training model is set up, use the training set images to 
train the model. In the training stage, it is necessary to set a suitable 
batch size, set the learning rate and learning rate adjustment strategy, 
set the optimization algorithm, and use a suitable parameter 
initialization method and training rounds. In the process of model 
training of YOLOv3, the batch size is set to 16, It is a power-of-two 
value selected to fit within the 16 GB video RAM (VRAM) of the 
training GPU while optimizing parallel computation efficiency. The 
learning rate was initialized with a maximum of 10−2 and decayed to 
a minimum of 10−4 using a cosine descent schedule; this scheduler was 
adopted to facilitate stable convergence without extensive manual 
hyperparameter tuning. Additionally, the model was trained for up to 
300 epochs, with early stopping triggered if no significant improvement 
in validation accuracy was observed for 50 consecutive epochs.

3.3 Validating the effectiveness of the 
model

After each training epoch, the model was validated using the 
validation set to monitor its generalization capability. When validation 
performance plateaued or declined, hyperparameters (e.g., learning 
rate, batch size) were adjusted based on empirical observations:

	•	 The learning rate was optimized via a cosine descent schedule, 
with initial trials testing configurations (0.01–0.001, 0.001–
0.0001) to balance convergence speed and stability.

	•	 The batch size of 16 was retained to fit within the GPU memory 
constraints (16 GB VRAM), as larger powers-of-two values 
caused memory overflow.

This iterative tuning process continued until the model achieved 
peak classification accuracy on the validation set, defined as no 
significant improvement over 50 consecutive epochs (early stopping 
criterion). The optimal model weights were then saved, concluding the 
training stage after a maximum of 300 epochs.

3.4 Saving the best model

The best classification model obtained through training is saved, 
and the model and model weight files are saved so that the weights can 
be  loaded into the model when predicting, and the classification 
results can be obtained by inputting the predicted image. The overall 
technical roadmap is shown in Supplementary Figure S1.

4 Results

4.1 Sample preparation and dataset 
construction

Totally, 371 blood samples were collected from June 2011 to 
December 2019. The 307 molecularly identified P. falciparum samples 
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were used for this study. A total of 1,252 captured images containing 
infected red blood cells were obtained from microscope. From these 
samples, 929 specimens were selected for this study. All of which had 
been molecularly identified as Plasmodium falciparum and 
accompanied by scanned microscopic images.

To establish a usable image database for model training and 
testing, the 929 scanned microscopic images of P. falciparum were 
subjected to an image cropping process. After cropping, all images in 
the database were manually labeled to support the subsequent 
P. falciparum recognition tasks (e.g., labeling infected red blood cells 
[iRBCs] and distinguishing impurities).

4.2 Evaluation of YOLOv3 model 
adaptability

	 a	 Adaptability to different background colors: In this 
experiment, to increase the credibility of the results, we selected 
iRBCs with different background colors for testing, and the test 
results are shown in Figure  2. Under different background 
colors, the YOLOv3 network can obtain the same 
accurate results.

	 b	 Adaptability to different P. falciparum morphologies: Since 
iRBCs have different morphologies in different growth cycles, 
it is necessary to test Plasmodium of different morphologies, 
and the same satisfactory results can be  obtained; the 
recognition results are shown in Figure 3.

	 c	 Distinguishing ability for impurities: In the process of 
recognizing iRBCs, due to their morphology and color being 
similar to Plasmodium, impurities such as platelets will have a 
great influence on the experimental results. Therefore, whether 
these impurities can be  successfully distinguished from 
Plasmodium is an important criterion for judging the quality of 
recognition results. Figure 4 shows the recognition results of 
Plasmodium images with impurities. YOLOv3 successfully 
distinguishes impurities without misjudgment.

	 d	 Recognition of incomplete cells: In the process of image 
cropping, it is necessary to divide an image into two parts. 
YOLOv3 also successfully recognizes these incomplete cells, 
avoiding missed inspection, as shown in Figure 5.

4.3 Initial testing performance of the 
YOLOv3 model

In this experiment, a total of 297 images were tested, and the 
YOLOv3 model detected a total of 366 cells containing Plasmodium, 
of which 9 iRBCs were missed, with a missed rate of 2.46%, 38 cells 
were misreported, with a misreported rate of 10.38%, and the overall 
recognition accuracy was 87.26%. The main reason for the low 
accuracy is inaccurate labeling, which confuses some impurities with 
Plasmodium, resulting in a large number of cells containing impurities 
being misjudged as cells containing Plasmodium in the test process.

4.4 Model optimization and improved 
testing performance

To address the labeling-induced accuracy issue, we optimized the 
workflow by having professionals proofread all manual labels. After 
proofreading, we further expanded the dataset: from 2,792 returned 
cropped images (derived from the original 929 scanned images), 179 
images without any valid labels were excluded, resulting in a final 
labeled dataset of 2,613 images. This dataset was randomly divided 
into a training set, validation set, and test set at an 8:1:1 ratio for 
retraining the YOLOv3 model.

A second test was conducted using 262 labeled cropped images 
(from the optimized test set), with the following improved results:

	•	 Total P. falciparum-containing cells detected by the optimized 
YOLOv3 model: 358

	•	 Missed detection: 6 cells (missed rate = 1.68%)
	•	 False positive cells: 14 (misreported rate = 3.91%)
	•	 Overall recognition accuracy: 94.41%

Compared with the initial test, the optimized model showed 
significant improvements in all performance metrics. Detailed 
comparisons between the two test groups (initial test: a-1, b-1, c-1, 
d-1; optimized test: a-2, b-2, c-2, d-2) are presented in Figure 6.

To further validate our module, we evaluated the detector on the 
public BCCD (Blood Cell Count and Detection) dataset with light fine-
tuning. Fine-tuning followed the YOLOv3 training protocol used in this 

FIGURE 2

Recognition results of Plasmodium falciparum parasites under different backgrounds by YOLOv3.
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study: up to 300 epochs with early stopping if no improvement was 
observed for 50 consecutive epochs. On BCCD the detector achieved 
mAP = 96.7%, F1 = 94%, Recall = 96% and Precision = 100% (full 
metrics and training details are provided in the Figure 7 -YOLOv3 

testing results for BCCD datasets). These supplementary results 
contrast with the overall accuracy reported above for our clinical thin-
smear dataset (94.41%). Notably, our 94.41% overall accuracy is slightly 
lower than the 96% + metrics reported in studies such as Abdurahman 

FIGURE 3

Recognition results of Plasmodium falciparum parasites of different erythrocytic shapes by YOLOv3.

FIGURE 4

Recognition results of Plasmodium falciparum parasites with impurities by YOLOv3.

FIGURE 5

Recognition results of Plasmodium falciparum parasites incomplete cell recognition results by YOLOv3.
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et al. (2021) and Chibuta and Acar (2020). This difference is not due to 
model limitations but to fundamental disparities in dataset complexity. 
While we do not claim universal state-of-the-art performance. Reported 

metrics in other YOLO-based malaria studies (e.g., Abdurahman et al., 
2021; Yang et al., 2020) were obtained on different datasets (often thick 
smears or controlled images) and are therefore not directly comparable.

FIGURE 6

Performance comparison of YOLOv3 model in Plasmodium falciparum detection: first vs. second experiment.

FIGURE 7

YOLOv3 testing results for BCCD dataset.
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5 Discussion

5.1 Limitations of existing malaria 
diagnostic methods

Currently, malaria diagnosis mainly relies on microscopic 
examination, rapid diagnostic tests (RDTs) and PCR-based molecular 
examination. RDTs are serological antibody detection methods based 
on enzyme-linked immunosorbent assays (ELISAs). RDTs provide a 
qualitative diagnosis by detecting one or more Plasmodium proteins, 
such as histidine-rich protein-2 (HRP-2), lactate dehydrogenase 
(LDH), aldolase, etc (Cunningham et al., 2019). RDTs do not require 
highly trained staff and laboratory support, and they are currently the 
most commonly used immunological assay (Odaga, et  al., 2014). 
Meanwhile, low density and the inability of parasites to produce HRP2 
can lead to false negative RDT results (Cunningham et al., 2019), and 
RDTs are deficient in identifying Plasmodium species. Compared with 
RDTs and microscopy, molecular biological assays have excellent 
analytical sensitivity and specificity (Berzosa et al., 2018; Cunningham 
et al., 2019; Golassa et al., 2013)and can identify antimalarial drug 
resistance (Apinjoh et al., 2019). However, due to its high cost, complex 
operation, difficult personnel training and special instruments, it is 
difficult to popularize its practical application in grassroots units.

The combination of microscopy and artificial intelligence will 
be promising in the field of malaria diagnosis. However, due to the 
diversity and polymorphism of Plasmodium morphology and the 
difference in blood smear operation, it has been difficult in the field of 
medical identification and detection. For YOLO, it is a convolutional 
neural network (CNN) that takes an input image and learns category 
probabilities and bounding box coordinates (Odaga, et al., 2014). It is 
designed for fast and accurate object detection and is suitable for real-
time use. It uses a single convolutional neural network to predict 
object classes and find their locations (Odaga, et al., 2014).

5.2 Innovation and validation of the model 
in this study

In this study, we applied a YOLOv3-based deep learning model to 
detect P. falciparum in red blood cells (RBCs). A two-step classification 
approach yielded recognition accuracies of 87.26 and 94.41% after expert 
refinement, underscoring the potential of our framework as a rapid and 
robust alternative to traditional microscopy. While Abdurahman et al. 
(2021) reported 96.32% mAP for malaria parasite detection using 
modified YOLO architectures, direct performance comparison with our 
study is methodologically inappropriate due to fundamental differences 
in detection targets and dataset characteristics. Their study focused on 
thick blood smears, where RBCs are lysed, creating relatively simple 
backgrounds with primarily parasites and WBCs. Our study addresses 
the more clinically essential but computationally challenging task of 
detecting P. falciparum in thin blood smears with intact RBCs. Thin 
blood smear analysis presents significantly greater challenges: (1) 
complex backgrounds with numerous overlapping intact red blood cells; 
(2) lower parasite density per field; (3) multiple interference factors 
including platelet aggregation, staining artifacts, cell debris, and 
precipitates commonly encountered in clinical practice; and (4) greater 
morphological diversity. These factors make thin smear parasite 
detection fundamentally different and more complex computer vision 
task than thick smear detection. Furthermore, Model performance 

metrics are inherently task-specific and dataset-dependent; therefore, the 
apparent 1.91% difference reflects different detection challenges rather 
than comparative model effectiveness.

The supplementary experiment in public dataset indicates that the 
high performance on BCCD primarily reflects the detector’s strong 
capability under standardized, low-variance imaging conditions 
(BCCD: mAP = 96.7%). BCCD is a controlled blood-cell dataset with 
relatively homogeneous backgrounds and stable imaging settings. By 
contrast, our clinical thin-smear images contain substantial real-world 
interferences (e.g., leukocytes, platelets, staining artifacts, and variable 
microscope settings), which substantially increase detection difficulty 
and result in lower measured performance (clinical thin smear: overall 
accuracy = 94.41%). Thus, the principal source of performance 
differences is dataset complexity and task variation: controlled datasets 
demonstrate capability in idealized conditions, while clinical thin 
smears reflect real-world challenges. Additionally, public datasets based 
on thick smears [e.g., those used by Abdurahman et  al. (2021)] 
represent a different detection task and should not be  directly 
compared numerically with thin-smear results. In summary, the BCCD 
experiment demonstrates detector performance under standardized 
conditions, whereas our clinical evaluation highlights applicability and 
robustness in realistic, challenging settings. Systematic cross-domain 
transfer and domain adaptation studies are planned as future work.

5.3 Comparative analysis with other studies

Compared with other thin smear detection studies, Yang et al. 
(2020) achieved 93.46% accuracy for malaria parasite detection, while 
Hung et  al. (2020) reported 98% accuracy using computationally 
expensive cascaded Faster R-CNN with AlexNet for P. vivax, where 
parasitic objects are larger than P. falciparum. Muhammad et al. (2025) 
reported mAP 80.3% based on YOLOv8 with public datasets and 
Lufyagila et al. (2025) get mAP 86.2% based on public clinical images. 
Our 94.41% accuracy for P. falciparum in thin clinical smears 
represents robust performance for this challenging task while 
maintaining real-time inference speeds suitable for resource-
constrained clinical environments. Meanwhile, we have conducted an 
extensive review of recent deep learning-based malaria detection 
research, particularly those employing YOLO and related techniques. 
The key findings are summarized in Table 1.

We can clearly delineate the key differences and innovations of 
this study compared to existing works:

	 1	 Focus on Object Detection in the Most Challenging Real-
World Clinical Thin Blood Smear Scenarios: We  clearly 
differentiate our approach from studies primarily focused on 
thick smears (Abdurahman et  al., 2021; Chibuta and Acar, 
2020; Lufyagila et al., 2025) or those solely on classification 
(e.g., Chibuta and Acar, 2020). We highlight the significantly 
greater computational challenges of precise object detection in 
thin smears due to complex backgrounds, lower parasite 
density, and prevalent clinical interference factors, especially in 
our large-scale clinical dataset.

	 2	 Emphasis on Data-Driven Optimization Rather than Solely 
Model Architecture Iteration: Unlike many studies that pursue 
the latest YOLO versions (Lufyagila et al., 2025; Muhammad 
et  al., 2025; Özbilge et  al., 2024) or incorporate complex 
architectural modifications (Abdurahman et al., 2021), this study 
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intentionally opted for the classic YOLOv3 architecture. Our core 
innovation and improvement strategy lies in a deep 
understanding and optimization of data quality. We  invested 
significant effort in addressing pervasive “labeling issues” within 
clinical datasets (including inconsistencies, missed labels, and 
incorrect labels) and employed adaptive data augmentation and 
training strategies to enhance model performance in complex 
real-world scenarios. This strategy demonstrates that, for specific 
clinical applications, a deep understanding and meticulous 
optimization of dataset quality, coupled with training strategies 
adapted to data characteristics, can contribute as much, if not 
more, to model performance and practicality than mere 
architectural iteration. This “data-first” optimization pathway 
provides significant guidance for clinical deployment in resource-
limited settings or where high model stability and reliability are 
paramount, and effectively mitigates potential limitations of 
relatively “older” model architectures when facing complex real-
world data.

	 3	 Demonstration of Excellent Generalization Ability and 
Clinical Relevance through Cross-Dataset Validation: To 
further validate the model’s robustness and generalization 
ability, we applied the model trained on our clinical thin blood 
smear dataset, without any additional fine-tuning, to the 
general BCCD dataset. On this dataset, our YOLOv3 model 
achieved excellent performance with mAP of 96.7%, Precision 
of 100%, Recall of 96%, and F1 of 94%. This result holds 
dual significance:

	 a	 Strong Generalization Capability: It powerfully demonstrates 
that a model trained on extremely complex and 

interference-rich clinical thin blood smear data possesses 
remarkable cross-dataset generalization ability. The model not 
only learned to identify malaria parasites but also acquired core 
visual features for precisely localizing and recognizing tiny 
objects in noisy backgrounds, allowing it to adapt efficiently to 
other blood cell images with simpler structures.

	 b	 Highlighting the Challenge of Clinical Data: The high 
performance on the BCCD dataset retrospectively confirms the 
high challenge level of our primary clinical dataset. Achieving 
such high scores on a relatively clean dataset like BCCD, with 
distinct object features, further underscores the difficulty and 
practical significance of obtaining a 94.41% mAP on clinical 
data laden with real-world interferences.

Our methodological contributions include: (1) validation on real 
clinical data with authentic interference factors; (2) two-stage 
classification with expert refinement demonstrating practical human-
in-the-loop validation; (3) incomplete cell recognition capability 
crucial for practical deployment; (4) computational efficiency 
prioritizing clinical applicability and (5) build the fundamental for 
stage-specific classification of P. falciparum. These features position our 
system for effective deployment in endemic regions where thin smear 
examination remains the gold standard for species identification and 
parasitemia quantification. We have therefore refrained from claiming 
state-of-the-art performance. Differences in smear type (thin vs. thick), 
dataset control (clinical vs. curated/controlled), image acquisition 
(microscope settings, smartphone vs. slide scanner), and evaluation 
metrics can substantially affect reported numbers; comparisons must 
account for these factors. We cite representative YOLO-based malaria 
detection studies (Abdurahman et al., 2021; Yang et al., 2020) and 
discuss their dataset/task differences in the previous work section.

TABLE 1  Comparison of recent YOLO-based and related deep learning malaria detection studies.

Study (Year) YOLO version/
Model type

Detection object 
(Smear type)

Dataset size 
and source

Key performance 
metrics

Highlights and limitations

Chibuta and Acar 

(2020)

Modified YOLOv3 Thick smear Clinical/size N/A Accuracy: 96.5% Improved small-object detection; strong 

performance on thick smears; not 

adapted for thin smear morphology.

Abdurahman et al. 

(2021)

YOLOv3 / YOLOv4-

MOD

Thick smear Public (1780–

2,300 imgs)

YOLOv4-MOD mAP@0.3: 

96.32%

Engineering-oriented design 

emphasizing CPU/GPU/NCS2 

deployment; lacks complex thin-smear 

testing.

Paul et al. (2022) YOLOv5 Thin smear Public (1,182 

imgs)

mAP@50: 79% Enhanced small-object and cross-

species generalization; mostly public 

datasets, not clinical-grade images.

Zedda Lucas et al. 

(2024)

YOLO-SPAM/PAM Thin smear and cropped 

cells

Public datasets mAP@50 varies 67.4–96% Dual detection for clinical parasitemia 

estimation; remains thick-smear–based.

Özbilge et al. 

(2024)

YOLOv8 Thin smear Private (1,081 

imgs)

mAP@50: 90.3% First to address thin-smear rouleaux 

morphology; performance limited by 

complex cell stacking and artifacts.

Muhammad et al. 

(2025)

YOLOv9 Thin smear Private mAP@50: 80.3%, Recall: 

76.6%

Emphasizes multi-species, multi-stage 

end-to-end detection; public dataset–

based generalization.

Lufyagila et al. 

(2025)

YOLOv11m Thick smear Public clinical 

(2,310 imgs)

mAP@50: 86.2% Real-world African thick smears; 

parasite & WBC co-detection; less 

challenging visual background.
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FIGURE 9

The Accuracy, mAP@50 and recall comparation among YOLOv3, YOLOv8 and YOLOv11.

5.4 Performance comparison with new 
generation YOLO models

Considering the YOLO series of object detection algorithms have 
undergone several significant iterations and performance improvements. 
To further verify the continued superiority of the YOLO series in the 
field of microscopic image recognition and to investigate its 
technological development trends, we  conducted additional 
comparative experiments using the same dataset as in this study’s 
YOLOv3 experiments (selected from 2,613 optimized training images), 
based on the YOLOv8 and YOLOv11 models. The test results are shown 
in Figures 8, 9. The comparation results in showed in Table 2.

Through comparison, on the same clinical thin blood smear 
dataset, YOLOv8 and YOLOv11 achieved mAP@0.5 scores of 0.977 
and 0.978 respectively, showing slight improvements over YOLOv3’s 

0.973. The enhancement in precision metrics (2–3%) was particularly 
significant, reflecting the new models’ advantages in reducing false 
detections. However, the recall rates of the new models (0.918 and 
0.912) were lower than YOLOv3 (0.943), indicating that while 
maintaining high precision, they may sacrifice the detection rate of 
some parasites. Confusion matrix analysis revealed that YOLOv8 and 
YOLOv11 had zero missed detections, but their false detection counts 
were significantly higher than YOLOv3, suggesting increased 
sensitivity to non-parasitic structures in complex backgrounds. 
Notably, compared to YOLOv3, the new generation models reduced 
parameter count and computational load by nearly 90%, significantly 
improving inference speed and deployment flexibility while 
maintaining accuracy. This balance between performance and 
efficiency provides crucial technical support for promoting microscopic 
image detection in resource-constrained medical environments.

FIGURE 8

YOLOv3, YOLOv8, YOLOv11 mixed model confusion matrix.
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5.5 Clinical application prospects and 
future direction

Although the present work focused on binary classification of 
infected versus uninfected erythrocytes, it did not attempt to 
differentiate among the four intraerythrocytic stages of P. falciparum 
(ring, trophozoite, schizont, and gametocyte). However, stage-level 
classification carries important clinical and epidemiological 
implications. Microscopy-based staging remains the cornerstone for 
estimating parasite density and disease severity, as higher proportions 
of trophozoites and schizonts are associated with severe malaria, while 
gametocyte detection is critical for assessing transmission potential 
(Ashley et al., 2018; White, 2018). Moreover, the efficacy of many 
antimalarial drugs is stage-dependent, making precise staging valuable 
for therapeutic monitoring (Ashley et al., 2018).

Recent advances in AI demonstrate the feasibility of stage-specific 
classification. Convolutional neural networks (CNNs) have achieved 
high accuracy in distinguishing between erythrocytic stages using thin 
smear images (Muhammad et  al., 2025), while mobile-based AI 
platforms have also shown promise in field-deployable stage 
recognition (Yang et  al., 2020). Incorporating stage-specific 
annotations into the training dataset, together with sufficient sample 
diversity, will be  essential to enable robust multiclass recognition 
across varying smear preparations. Such developments could enhance 
malaria case management, provide more precise monitoring of drug 
response, facilitate surveillance of transmission-blocking 
interventions, and support malaria elimination programs.

In addition to enhancing conventional microscopy, the proposed 
YOLOv3-based system holds promise as a complementary component 
of broader diagnostic strategies. Its ability to detect low-parasite-
density infections in digitized smear images makes it well suited for 
integration with other tools such as rapid diagnostic tests (RDT) or 
molecular assays (PCR). In low transmission settings, AI-assisted 
microscopy could be  deployed for initial screening, followed by 
confirmatory testing using alternative methods. This combined 
approach may improve diagnostic sensitivity, reduce the dependence 
on highly experienced microscopists, and ultimately aid malaria 
control efforts in resource-limited environments.

Meanwhile, the present findings should be considered preliminary 
and are limited to data collected from a single clinical center. Although 
the dataset underwent rigorous expert annotation and quality control, 
the generalizability of the model to diverse patient populations, 
imaging conditions, and microscope hardware remains to be validated. 
Future work will focus on multi-center studies involving larger and 
more heterogeneous datasets to assess robustness across different 
clinical environments. Comprehensive validation in such settings will 
be essential before considering deployment of the model in routine 
clinical workflows.

In conclusion, our YOLOv3-based framework demonstrates the 
feasibility of applying real-time object detection for malaria 
diagnosis and offers a powerful complement to classical microscopy. 
Future work should aim to expand the dataset to include multiple 
Plasmodium species, integrate stage-level classification, and validate 
the system across diverse clinical settings. Continued development 
of AI-powered malaria diagnostic platforms will rely on high-
quality annotated datasets, algorithmic innovation (such as Yolo 
V5, V8, etc.), and rigorous clinical validation to maximize their 
translational potential in both endemic and resource-
limited environments.

6 Conclusion

The developed AI diagnostic tool based on YOLOv3 has high 
recognition efficiency and accuracy for the identification and 
classification of P. falciparum malaria parasites. The overall 
recognition accuracy reached 94.41%. This tool provides a feasible 
technical support for malaria control in resource-limited setting, with 
performance competitive for clinical thin smear detection but not 
claimed as state-of-the-art across all malaria diagnostic scenarios.
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TABLE 2  Performance comparison of YOLOv3, YOLOv8 and YOLOv11 models.

Module Recall Precision mAP@0.5 Testing image 
numbers

TP (True 
positives)

FP (False 
positives)

FN (False 
negatives)

YOLO

v3

0.943 0.943 0.973 262 290 6 14

YOLO

v8

0.918 0.955 0.977 262 290 48 0

YOLO

v11

0.912 0.962 0.978 262 290 41 0
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