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Background: Malaria remains a fatal global infectious disease, with the
erythrocytic stage of Plasmodium falciparum being its main pathogenic phase.
Early diagnosis is critical for effective treatment. This study developed and
evaluated an artificial intelligence-assisted diagnosis (Al-assisted diagnostic)
tool for malaria parasites.

Methods: The peripheral blood samples of malaria patients were collected.
Thin blood film smear were prepared, stained and examined by microscopic.
After manual confirmation and validation with gPCR, the images of infected
red blood cells (iRBCs) of P. falciparum were captured. Using a sliding window
method, each original image was cropped into 20 small images (518 x 486
pixels). Selected iRBCs were classified, and P. falciparum was detected using the
YOLOV3 deep learning-based object detection algorithm.

Results: A total of 262 images were tested. The YOLOv3 model detected 358
P. falciparum-containing iRBCs, with a false negative rate of 1.68% (6 missed
iRBCs) and false positive rate of 3.91% (14 misreported iRBCs), yielding an overall
recognition accuracy of 94.41%.

Conclusion: The developed Al-assisted diagnostic tool exhibits robust efficiency
and accuracy in Plasmodium falciparum recognition in clinical thin blood
smears. It provides a feasible technical support for malaria control in resource-
limited settings.

KEYWORDS

malaria, Plasmodium falciparum, you only look once, artificial intelligence, deep
learning

1 Introduction

Malaria remains one of the top three public health diseases in the world, alongside AIDS
and tuberculosis (Vassall and Masiye, 2022). There are five major Plasmodium parasites
infected humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,
Plasmodium ovale, and Plasmodium knowlesi. For the life cycle of Plasmodium spp. in human,
it includes pre-erythrocytic stage and erythrocytic stage. For blood stage, it is the main
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pathogenic stage including rings, trophozoites, schizonts, and
gametocytes. In 2021, there were an estimated 247 million cases of
malaria worldwide, resulting in 619,000 deaths (WHO, 2022). Most
deaths and severe cases are caused by P falciparum malaria
(Venkatesan, 2025). Unlike other Plasmodium species, P. falciparum
exhibits rapid erythrocyte
microvasculature, which can lead to life-threatening systemic

invasion and sequestration in
inflammation and vascular obstruction if not diagnosed promptly.

Early identification of malaria parasite species and the lifecycle of
Plasmodium is imperative for precision treatment. As the gold
standard for malaria diagnosis, microscopy is low-cost, high accuracy,
and can identify the Plasmodium species and their life cycle
(Hianscheid, 2003). However, hundreds of millions of blood smears
are examined worldwide each year, which is a time-consuming and
potentially error-prone process (Wilson, 2012). It requires a specially
trained, experienced and skilled technician. Therefore, it is urgent to
develop an intelligent recognition system that can automatically
identify and classify malaria parasites to reduce work intensity and
improve work efficiency.

Artificial intelligence (AI) is a computer technology that can
be used to find the correlation of data information through techniques
such as expressive learning, deep learning, and natural language
processing, combined with computer algorithms, and can assist in
clinical decision-making (He et al., 2019). At present, artificial
intelligence has been successfully applied to CT image recognition of
COVID-19 (Li et al.,, 2020), automatic analysis and diagnosis of
microscope slide images (Smith et al., 2018), and association of
genome sequence and proteomic profile with pathogen phenotype
(Jamal et al., 2020; Lupolova et al., 2019).

In current study, it establishes a deep learning-based Plasmodium
identification system to rapidly identify and classify malarial cell
images, which will reduce the work intensity and improve efficiency
for clinical treatment and malaria control.

2 Materials and methods
2.1 Sample collection and preparation

The blood of these P. falciparum patients was collected from
migrant workers returning from African and Southeast Asian
countries. These patients were first diagnosed by rapid diagnostic kits
and qPCR, blood samples were made into thin blood smears, and
microscope images were scanned and preserved. The details about
preparation of blood smears are: Peripheral blood (2 puL) was
collected from the patient to prepare thin smears (ensuring well-
dispersed cells for morphological analysis). After air-drying, the
smears were fixed with methanol and stained with Giemsa solution
(pH 7.2) for 30 min, followed by rinsing with distilled water and
drying. Imaging was performed using an Olympus CX31 microscope
(100 x oil immersion objective, numerical aperture 1.30) equipped
with a Hamamatsu ORCA-Flash4.0 camera. The image resolution
was set to 2,592 x 1944 pixels with a uniform exposure time
of 200 ms.

According to the acquired scanned malarial parasite cell images,
and after the confirmation by the expert and qQPCR results (Xie et al.,
2020), the images of infected red blood cells (iRBCs) of P, falciparum
were captured.
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2.2 Data collection and preprocessing

The study protocol was approved by the Ethics Committee of the
Wuhan Center for Disease Prevention and Control [Approval No.:
(WHCDCIRB-K-2021013)].

2.2.1 Image cropping and resizing

The original cell images obtained by scanning had a resolution of
2,592 x 1944 pixels, which is significantly larger than the 416 x 416
input size required by the YOLOv3 model. Direct input of unprocessed
images would lead to loss of fine morphological features (e.g.,
Plasmodium nuclei and cytoplasm) critical for detection. Thus, a
two-step preprocessing pipeline (cropping followed by resizing)
was implemented:

A Non-overlapping cropping: A sliding window strategy was
used to crop the original images into 518 x 486 sub-images.
The window stride was calculated to ensure full coverage
without overlap:

o Horizontal stride = Original width + 5 = 2,592 + 5 = 518 pixels
(matching the sub-image width), generating 5 horizontal
sub-images per row.

o Vertical stride = Original height + 4 = 1944 + 4 = 486 pixels
(matching the sub-image height), generating 4 vertical
sub-images per column.

This resulted in 20 non-overlapping sub-images (5 x 4 grid) per
original image, avoiding redundant sampling while preserving
complete spatial information.

B Resizing and padding: The 518 x 486 sub-images were resized

to 416 x 416 to fit YOLOV3 input requirements, with strict
preservation of aspect ratio to prevent morphological distortion:

o First, the sub-images were proportionally scaled: the longer
side (518 pixels) was resized to 416 pixels, and the shorter side
(486 pixels) was scaled to 390 pixels, resulting in intermediate
416 x 390 images.

o Black pixel padding (18 pixels on both top and bottom) was
added to the 416 x 390 images to reach the 416 x 416
dimensions required for model input.

The entire cropping process was implemented in Python, with
three specialized libraries enabling automated and reproducible
operation: Core cropping (Pillow), File traversal (os), Path
management (pathlib.Path). The schematic diagram of the cropped
image is shown in Figure 1.

2.2.2 Label making

In object detection, the production of training labels directly
affects the final detection results, so it is necessary to make labels for
each cropped photo of malarial parasite cells, excluding images
without malarial parasite cells to prevent them from affecting the final
training results, and images that cannot be clearly determined as
malarial parasites should be judged by professionals. In this work,
considering that platelets and some impurities are highly similar in
morphology and size to malarial parasite cells, to improve accuracy,
single cells are taken as the detection object instead of recognizing
single malarial parasites, so in the process of making labels, single cells
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Preparation of a blood smear

YOLO v3 model building

FIGURE 1

the YOLO v3 model was established.

Label making

Schematic illustration of the recognition platform of Plasmodium falciparum via YOLO v3. The thin blood smears were scanned into Plasmodium
falciparum images under a microscope, then the images were cropped and classified to establish a database, labels were created for each iRBC, and
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containing malarial parasites need to be framed out. The schematic
diagram of label making is shown in Figure 1.

2.2.3 Dataset division

The dataset is divided into a training set, validation set and test set
at a ratio of 8:1:1. The training set data are used to train the
classification model, the validation set data are used to adjust the
parameters of the model and optimize the model, and the test set data
are used to test the classification performance of the model.

3 Model selection

3.1 General

Since the background color of the original image is inconsistent,
we need to consider images with different background colors when
selecting the test set to improve the reliability of the
classification results.

To identify cells containing malarial parasites in the whole
scanned image, the YOLOV3 algorithm is used in this work for
recognition and processing. YOLOvV3 is a one-step detection
algorithm that directly inputs the picture into the network to
extract the features of the whole picture and finally performs a
regression operation on the whole picture to detect the target. The
YOLOvV3 algorithm directly divides the whole picture into
nonoverlapping small blocks, avoiding a large number of sliding
windows and improving the detection speed. YOLOV3 uses
Darknet-53, which borrows the residual structure of ResNet to
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deepen the network structure while preventing the network from
converging due to the gradient explosion. The use of residual blocks
can prevent the loss of effective information and prevent gradient
disappearance during the training of deep networks. In addition,
there are no pooling layers in the network, which uses convolution
with a stride of 2 to reduce the size of the feature map instead of
pooling operations, which increases the accuracy of small
object detection.

The core idea of YOLOV3 is multiscale prediction, borrowing the
idea of pyramid feature maps, small feature maps for detecting large
objects, and large feature maps for detecting small objects. YOLOv3
uses 3 scales, whose outputs are 52x52, 26x26 and 13x13 for
detecting small, medium and large targets, respectively, with each
scale predicting 3 anchor boxes. After adding the idea of multiscale
prediction, YOLOvV3’s ability to detect small targets has been
enhanced. Specifically, when YOLOV3 processes the image, it divides
the image into cells, and each cell predicts B bounding boxes and
confidence scores. The confidence score consists of two parts: one is
the possibility that the bounding box contains the target, denoted as
Pr(object), and when the bounding box contains the target
Pr(object):l, otherwise it is 0; the second is the accuracy of the
bounding box, represented by the Intersection Over Union (IOU)

IOU"r"eg', so the confidence score can be expressed as
Pr(object)*IOUZfet;. When classifying the target, each cell also

predicts the probability values of the detected categories, i.e., the
conditional probability under the condition of each bounding box
confidence score, denoted as Pr(classi |object) The final prediction of
YOLOV3 is a tensor of size Pr (clussi|object) where Sx Sis the number
of cells divided by the image, B is the number of bounding boxes in
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each cell, and C is the number of detected categories, which is much
less than the number of sliding windows of two-stage detectors and
is much faster in detection.

YOLOV3 avoids the gradient instability problem during training
by directly predicting the width and height of the boundary box,
which is done by applying a log space transformation or a simple
offset to form the predefined default boundary box. Then, these
transformations are applied to anchor boxes to obtain the predicted
boundary boxes. YOLOV3 has three anchor boxes and can predict
three boundary boxes for each cell. Wherehx,by,bw,hh are the center
coordinates, width and height, tostystisth is the network output,
Cx»Cy is the coordinates of the left top corner of the grid, andp,,, pp
are the dimensions of the anchor box. The YOLOv3 network uses the
mean squared error as the loss function, which is composed of three
parts: box localization error, IoU error of whether there is a target,
and classification error. The loss function is shown in the
following formula:

loss=4,,, sz: ZB: i;bj [(x; — ;ci)z +(y, — 3;1.)2]
i=0 j=0
2 B — —
ot 2D, @) + (A
i=0 j=0
+SZ: i l;b] (Ci o 2»1,)2 + ﬂ’courd SZ: ZB: 1;‘12/ (Ci - 2Il’)z
i=0 j=0 i=0 j=0
IS ()= p O]
i=0 ceclasses

where the first and second terms indicate the weight of the
prediction box localization error and the center coordinate error,
respectively, S represents the number of grids divided into the image,
B represents the number of predicted boxes for each grid, i;bj
represents whether the j predicted box of grid i detects the target, and
X, ¥, @,h represent the center coordinates and width and height of the
true box, respectively. The third and fourth terms indicate the IoU
error, ¢ represents the confidence score, the last term indicates the
classification error, and p; (c) represents the conditional probability
that the detected target belongs to C.

When using object detection for model prediction, a large
number of overlapping predicted boxes will appear. Nonmaximum
suppression (NMS) can be used to deduplicate the large number of
overlapping predicted boxes output by the object detection model.
NMS first selects the detection box with the highest confidence as
the best prediction boundary for the target coordinates, then
deletes it from the detection box list and adds it to the final
detection box list. Two detection boxes with an overlap degree
greater than the threshold are often duplicate inspections of the
same target object and should be removed, while detection boxes
with an overlap degree less than the threshold indicate a correct
detection of the target and should be added to the final detection
box list.
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3.2 Training the model

Once the training model is set up, use the training set images to
train the model. In the training stage, it is necessary to set a suitable
batch size, set the learning rate and learning rate adjustment strategy,
set the optimization algorithm, and use a suitable parameter
initialization method and training rounds. In the process of model
training of YOLOV3, the batch size is set to 16, It is a power-of-two
value selected to fit within the 16 GB video RAM (VRAM) of the
training GPU while optimizing parallel computation efficiency. The
learning rate was initialized with a maximum of 10~? and decayed to
a minimum of 10~ using a cosine descent schedule; this scheduler was
adopted to facilitate stable convergence without extensive manual
hyperparameter tuning. Additionally, the model was trained for up to
300 epochs, with early stopping triggered if no significant improvement
in validation accuracy was observed for 50 consecutive epochs.

3.3 Validating the effectiveness of the
model

After each training epoch, the model was validated using the
validation set to monitor its generalization capability. When validation
performance plateaued or declined, hyperparameters (e.g., learning
rate, batch size) were adjusted based on empirical observations:

o The learning rate was optimized via a cosine descent schedule,
with initial trials testing configurations (0.01-0.001, 0.001-
0.0001) to balance convergence speed and stability.

o The batch size of 16 was retained to fit within the GPU memory
constraints (16 GB VRAM), as larger powers-of-two values
caused memory overflow.

This iterative tuning process continued until the model achieved
peak classification accuracy on the validation set, defined as no
significant improvement over 50 consecutive epochs (early stopping
criterion). The optimal model weights were then saved, concluding the
training stage after a maximum of 300 epochs.

3.4 Saving the best model

The best classification model obtained through training is saved,
and the model and model weight files are saved so that the weights can
be loaded into the model when predicting, and the classification
results can be obtained by inputting the predicted image. The overall
technical roadmap is shown in Supplementary Figure S1.

4 Results

4.1 Sample preparation and dataset
construction

Totally, 371 blood samples were collected from June 2011 to
December 2019. The 307 molecularly identified P. falciparum samples
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were used for this study. A total of 1,252 captured images containing
infected red blood cells were obtained from microscope. From these
samples, 929 specimens were selected for this study. All of which had
been molecularly identified as Plasmodium falciparum and
accompanied by scanned microscopic images.

To establish a usable image database for model training and
testing, the 929 scanned microscopic images of P. falciparum were
subjected to an image cropping process. After cropping, all images in
the database were manually labeled to support the subsequent
P, falciparum recognition tasks (e.g., labeling infected red blood cells
[iRBCs] and distinguishing impurities).

4.2 Evaluation of YOLOvV3 model
adaptability

a Adaptability to different background colors: In this
experiment, to increase the credibility of the results, we selected
iRBCs with different background colors for testing, and the test
results are shown in Figure 2. Under different background

the

accurate results.

Adaptability to different P. falciparum morphologies: Since

iRBCs have different morphologies in different growth cycles,

colors, YOLOv3 network can obtain the same

it is necessary to test Plasmodium of different morphologies,
and the same satisfactory results can be obtained; the
recognition results are shown in Figure 3.

Distinguishing ability for impurities: In the process of
recognizing iRBCs, due to their morphology and color being
similar to Plasmodium, impurities such as platelets will have a
great influence on the experimental results. Therefore, whether
these impurities can be successfully distinguished from
Plasmodium is an important criterion for judging the quality of
recognition results. Figure 4 shows the recognition results of
Plasmodium images with impurities. YOLOV3 successfully
distinguishes impurities without misjudgment.

Recognition of incomplete cells: In the process of image
cropping, it is necessary to divide an image into two parts.
YOLOV3 also successfully recognizes these incomplete cells,

avoiding missed inspection, as shown in Figure 5.

10.3389/fmicb.2025.1471436

4.3 Initial testing performance of the
YOLOv3 model

In this experiment, a total of 297 images were tested, and the
YOLOV3 model detected a total of 366 cells containing Plasmodium,
of which 9 iRBCs were missed, with a missed rate of 2.46%, 38 cells
were misreported, with a misreported rate of 10.38%, and the overall
recognition accuracy was 87.26%. The main reason for the low
accuracy is inaccurate labeling, which confuses some impurities with
Plasmodium, resulting in a large number of cells containing impurities
being misjudged as cells containing Plasmodium in the test process.

4.4 Model optimization and improved
testing performance

To address the labeling-induced accuracy issue, we optimized the
workflow by having professionals proofread all manual labels. After
proofreading, we further expanded the dataset: from 2,792 returned
cropped images (derived from the original 929 scanned images), 179
images without any valid labels were excluded, resulting in a final
labeled dataset of 2,613 images. This dataset was randomly divided
into a training set, validation set, and test set at an 8:1:1 ratio for
retraining the YOLOvV3 model.

A second test was conducted using 262 labeled cropped images
(from the optimized test set), with the following improved results:

« Total P. falciparum-containing cells detected by the optimized
YOLOvV3 model: 358

o Missed detection: 6 cells (missed rate = 1.68%)

« False positive cells: 14 (misreported rate = 3.91%)

« Overall recognition accuracy: 94.41%

Compared with the initial test, the optimized model showed
significant improvements in all performance metrics. Detailed
comparisons between the two test groups (initial test: a-1, b-1, c-1,
d-1; optimized test: a-2, b-2, c-2, d-2) are presented in Figure 6.

To further validate our module, we evaluated the detector on the
public BCCD (Blood Cell Count and Detection) dataset with light fine-
tuning. Fine-tuning followed the YOLOV3 training protocol used in this

4
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FIGURE 2

Recognition results of Plasmodium falciparum parasites under different backgrounds by YOLOV3.
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Recognition results of Plasmodium falciparum parasites of different erythrocytic shapes by YOLOvV3.

FIGURE 4
Recognition results of Plasmodium falciparum parasites with impurities by YOLOV3.

{

FIGURE 5
Recognition results of Plasmodium falciparum parasites incomplete cell recognition results by YOLOv3.

study: up to 300 epochs with early stopping if no improvement was  testing results for BCCD datasets). These supplementary results
observed for 50 consecutive epochs. On BCCD the detector achieved ~ contrast with the overall accuracy reported above for our clinical thin-
mAP =96.7%, F1=94%, Recall =96% and Precision = 100% (full ~ smear dataset (94.41%). Notably, our 94.41% overall accuracy is slightly
metrics and training details are provided in the Figure 7 -YOLOv3  lower than the 96% + metrics reported in studies such as Abdurahman
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Performance comparison of YOLOv3 model in Plasmodium falciparum detection: first vs. second experiment.
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etal. (2021) and Chibuta and Acar (2020). This difference is not due to

metrics in other YOLO-based malaria studies (e.g., Abdurahman et al.,
2021; Yang et al., 2020) were obtained on different datasets (often thick
smears or controlled images) and are therefore not directly comparable.

model limitations but to fundamental disparities in dataset complexity.
While we do not claim universal state-of-the-art performance. Reported
Frontiers in Microbiology
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5 Discussion

5.1 Limitations of existing malaria
diagnostic methods

Currently, malaria diagnosis mainly relies on microscopic
examination, rapid diagnostic tests (RDTs) and PCR-based molecular
examination. RDTs are serological antibody detection methods based
on enzyme-linked immunosorbent assays (ELISAs). RDTs provide a
qualitative diagnosis by detecting one or more Plasmodium proteins,
such as histidine-rich protein-2 (HRP-2), lactate dehydrogenase
(LDH), aldolase, etc (Cunningham et al., 2019). RDTs do not require
highly trained staff and laboratory support, and they are currently the
most commonly used immunological assay (Odaga, et al., 2014).
Meanwhile, low density and the inability of parasites to produce HRP2
can lead to false negative RDT results (Cunningham et al., 2019), and
RDTs are deficient in identifying Plasmodium species. Compared with
RDTs and microscopy, molecular biological assays have excellent
analytical sensitivity and specificity (Berzosa et al., 2018; Cunningham
et al., 2019; Golassa et al., 2013)and can identify antimalarial drug
resistance (Apinjoh et al., 2019). However, due to its high cost, complex
operation, difficult personnel training and special instruments, it is
difficult to popularize its practical application in grassroots units.

The combination of microscopy and artificial intelligence will
be promising in the field of malaria diagnosis. However, due to the
diversity and polymorphism of Plasmodium morphology and the
difference in blood smear operation, it has been difficult in the field of
medical identification and detection. For YOLO, it is a convolutional
neural network (CNN) that takes an input image and learns category
probabilities and bounding box coordinates (Odaga, et al., 2014). It is
designed for fast and accurate object detection and is suitable for real-
time use. It uses a single convolutional neural network to predict
object classes and find their locations (Odaga, et al., 2014).

5.2 Innovation and validation of the model
in this study

In this study, we applied a YOLOv3-based deep learning model to
detect P, falciparum in red blood cells (RBCs). A two-step classification
approach yielded recognition accuracies of 87.26 and 94.41% after expert
refinement, underscoring the potential of our framework as a rapid and
robust alternative to traditional microscopy. While Abdurahman et al.
(2021) reported 96.32% mAP for malaria parasite detection using
modified YOLO architectures, direct performance comparison with our
study is methodologically inappropriate due to fundamental differences
in detection targets and dataset characteristics. Their study focused on
thick blood smears, where RBCs are lysed, creating relatively simple
backgrounds with primarily parasites and WBCs. Our study addresses
the more clinically essential but computationally challenging task of
detecting P, falciparum in thin blood smears with intact RBCs. Thin
blood smear analysis presents significantly greater challenges: (1)
complex backgrounds with numerous overlapping intact red blood cells;
(2) lower parasite density per field; (3) multiple interference factors
including platelet aggregation, staining artifacts, cell debris, and
precipitates commonly encountered in clinical practice; and (4) greater
morphological diversity. These factors make thin smear parasite
detection fundamentally different and more complex computer vision
task than thick smear detection. Furthermore, Model performance

Frontiers in Microbiology

10.3389/fmicb.2025.1471436

metrics are inherently task-specific and dataset-dependent; therefore, the
apparent 1.91% difference reflects different detection challenges rather
than comparative model effectiveness.

The supplementary experiment in public dataset indicates that the
high performance on BCCD primarily reflects the detector’s strong
capability under standardized, low-variance imaging conditions
(BCCD: mAP =96.7%). BCCD is a controlled blood-cell dataset with
relatively homogeneous backgrounds and stable imaging settings. By
contrast, our clinical thin-smear images contain substantial real-world
interferences (e.g., leukocytes, platelets, staining artifacts, and variable
microscope settings), which substantially increase detection difficulty
and result in lower measured performance (clinical thin smear: overall
accuracy = 94.41%). Thus, the principal source of performance
differences is dataset complexity and task variation: controlled datasets
demonstrate capability in idealized conditions, while clinical thin
smears reflect real-world challenges. Additionally, public datasets based
on thick smears [e.g., those used by Abdurahman et al. (2021)]
represent a different detection task and should not be directly
compared numerically with thin-smear results. In summary, the BCCD
experiment demonstrates detector performance under standardized
conditions, whereas our clinical evaluation highlights applicability and
robustness in realistic, challenging settings. Systematic cross-domain
transfer and domain adaptation studies are planned as future work.

5.3 Comparative analysis with other studies

Compared with other thin smear detection studies, Yang et al.
(2020) achieved 93.46% accuracy for malaria parasite detection, while
Hung et al. (2020) reported 98% accuracy using computationally
expensive cascaded Faster R-CNN with AlexNet for P. vivax, where
parasitic objects are larger than P, falciparum. Muhammad et al. (2025)
reported mAP 80.3% based on YOLOvS with public datasets and
Lufyagila et al. (2025) get mAP 86.2% based on public clinical images.
Our 94.41% accuracy for P falciparum in thin clinical smears
represents robust performance for this challenging task while
maintaining real-time inference speeds suitable for resource-
constrained clinical environments. Meanwhile, we have conducted an
extensive review of recent deep learning-based malaria detection
research, particularly those employing YOLO and related techniques.
The key findings are summarized in Table 1.

We can clearly delineate the key differences and innovations of
this study compared to existing works:

1 Focus on Object Detection in the Most Challenging Real-
World Clinical Thin Blood Smear Scenarios: We clearly
differentiate our approach from studies primarily focused on
thick smears (Abdurahman et al., 2021; Chibuta and Acar,
20205 Lufyagila et al., 2025) or those solely on classification
(e.g., Chibuta and Acar, 2020). We highlight the significantly
greater computational challenges of precise object detection in
thin smears due to complex backgrounds, lower parasite
density, and prevalent clinical interference factors, especially in
our large-scale clinical dataset.

2 Emphasis on Data-Driven Optimization Rather than Solely
Model Architecture Iteration: Unlike many studies that pursue
the latest YOLO versions (Lufyagila et al., 2025; Muhammad
et al, 2025; Ozbilge et al., 2024) or incorporate complex
architectural modifications (Abdurahman et al., 2021), this study
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TABLE 1 Comparison of recent YOLO-based and related deep learning malaria detection studies.

Study (Year)

YOLO version/

Model type

Detection object
(Smear type)

Dataset size
and source

Key performance
metrics

10.3389/fmicb.2025.1471436

Highlights and limitations

imgs)

Chibuta and Acar Modified YOLOv3 Thick smear Clinical/size N/A Accuracy: 96.5% Improved small-object detection; strong

(2020) performance on thick smears; not
adapted for thin smear morphology.

Abdurahman etal. | YOLOv3 / YOLOv4- Thick smear Public (1780~ YOLOv4-MOD mAP@0.3: | Engineering-oriented design

(2021) MOD 2,300 imgs) 96.32% emphasizing CPU/GPU/NCS2
deployment; lacks complex thin-smear
testing.

Paul et al. (2022) YOLOV5 Thin smear Public (1,182 mAP@50: 79% Enhanced small-object and cross-

species generalization; mostly public

datasets, not clinical-grade images.

Zedda Lucas et al.

YOLO-SPAM/PAM

Thin smear and cropped

Public datasets

mAP@50 varies 67.4-96%

Dual detection for clinical parasitemia

(2025)

(2,310 imgs)

(2024) cells estimation; remains thick-smear-based.

Ozbilge et al. YOLOvS Thin smear Private (1,081 mAP@50: 90.3% First to address thin-smear rouleaux

(2024) imgs) morphology; performance limited by
complex cell stacking and artifacts.

Muhammad et al. YOLOv9 Thin smear Private mAP@50: 80.3%, Recall: Emphasizes multi-species, multi-stage

(2025) 76.6% end-to-end detection; public dataset—
based generalization.

Lufyagila et al. YOLOvIlm Thick smear Public clinical mAP@50: 86.2% Real-world African thick smears;

parasite & WBC co-detection; less

challenging visual background.

intentionally opted for the classic YOLOV3 architecture. Our core
innovation and improvement strategy lies in a deep
understanding and optimization of data quality. We invested
significant effort in addressing pervasive “labeling issues” within
clinical datasets (including inconsistencies, missed labels, and
incorrect labels) and employed adaptive data augmentation and
training strategies to enhance model performance in complex
real-world scenarios. This strategy demonstrates that, for specific
clinical applications, a deep understanding and meticulous
optimization of dataset quality, coupled with training strategies
adapted to data characteristics, can contribute as much, if not
more, to model performance and practicality than mere
architectural iteration. This “data-first” optimization pathway
provides significant guidance for clinical deployment in resource-
limited settings or where high model stability and reliability are
paramount, and effectively mitigates potential limitations of
relatively “older” model architectures when facing complex real-
world data.

3 Demonstration of Excellent Generalization Ability and
Clinical Relevance through Cross-Dataset Validation: To
further validate the model’s robustness and generalization
ability, we applied the model trained on our clinical thin blood
smear dataset, without any additional fine-tuning, to the
general BCCD dataset. On this dataset, our YOLOv3 model
achieved excellent performance with mAP of 96.7%, Precision
of 100%, Recall of 96%, and F1 of 94%. This result holds
dual significance:

a Strong Generalization Capability: It powerfully demonstrates

that a model trained on extremely complex and

Frontiers in Microbiology

interference-rich clinical thin blood smear data possesses
remarkable cross-dataset generalization ability. The model not
only learned to identify malaria parasites but also acquired core
visual features for precisely localizing and recognizing tiny
objects in noisy backgrounds, allowing it to adapt efficiently to
other blood cell images with simpler structures.

b Highlighting the Challenge of Clinical Data: The high
performance on the BCCD dataset retrospectively confirms the
high challenge level of our primary clinical dataset. Achieving
such high scores on a relatively clean dataset like BCCD, with
distinct object features, further underscores the difficulty and
practical significance of obtaining a 94.41% mAP on clinical
data laden with real-world interferences.

Our methodological contributions include: (1) validation on real
clinical data with authentic interference factors; (2) two-stage
classification with expert refinement demonstrating practical human-
in-the-loop validation; (3) incomplete cell recognition capability
crucial for practical deployment; (4) computational efficiency
prioritizing clinical applicability and (5) build the fundamental for
stage-specific classification of P. falciparum. These features position our
system for effective deployment in endemic regions where thin smear
examination remains the gold standard for species identification and
parasitemia quantification. We have therefore refrained from claiming
state-of-the-art performance. Differences in smear type (thin vs. thick),
dataset control (clinical vs. curated/controlled), image acquisition
(microscope settings, smartphone vs. slide scanner), and evaluation
metrics can substantially affect reported numbers; comparisons must
account for these factors. We cite representative YOLO-based malaria
detection studies (Abdurahman et al., 2021; Yang et al., 2020) and
discuss their dataset/task differences in the previous work section.
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5.4 Performance comparison with new
generation YOLO models

Considering the YOLO series of object detection algorithms have
undergone several significant iterations and performance improvements.
To further verify the continued superiority of the YOLO series in the
field of microscopic image recognition and to investigate its
additional
comparative experiments using the same dataset as in this study’s

technological development trends, we conducted
YOLOV3 experiments (selected from 2,613 optimized training images),
based on the YOLOv8 and YOLOv11 models. The test results are shown
in Figures 8, 9. The comparation results in showed in Table 2.
Through comparison, on the same clinical thin blood smear
dataset, YOLOv8 and YOLOv11 achieved mAP@0.5 scores of 0.977
and 0.978 respectively, showing slight improvements over YOLOv3’s

10.3389/fmicb.2025.1471436

0.973. The enhancement in precision metrics (2-3%) was particularly
significant, reflecting the new models’ advantages in reducing false
detections. However, the recall rates of the new models (0.918 and
0.912) were lower than YOLOv3 (0.943), indicating that while
maintaining high precision, they may sacrifice the detection rate of
some parasites. Confusion matrix analysis revealed that YOLOv8 and
YOLOvV11 had zero missed detections, but their false detection counts
were significantly higher than YOLOvV3, suggesting increased
sensitivity to non-parasitic structures in complex backgrounds.
Notably, compared to YOLOV3, the new generation models reduced
parameter count and computational load by nearly 90%, significantly
improving inference speed and deployment flexibility while
maintaining accuracy. This balance between performance and
efficiency provides crucial technical support for promoting microscopic
image detection in resource-constrained medical environments.

YOLOvV3 YOLOV8

g

-

saamosum by

FIGURE 8
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TABLE 2 Performance comparison of YOLOv3, YOLOv8 and YOLOv11 models.

10.3389/fmicb.2025.1471436

Module Recall Precision mAP@O0.5 Testing image TP (True FP (False FN (False
numbers positives) positives) negatives)

YOLO 0.943 0.943 0.973 262 290 6 14

v3

YOLO 0.918 0.955 0.977 262 290 48 0

v8

YOLO 0.912 0.962 0.978 262 290 41 0

vll

5.5 Clinical application prospects and
future direction

Although the present work focused on binary classification of
infected versus uninfected erythrocytes, it did not attempt to
differentiate among the four intraerythrocytic stages of P. falciparum
(ring, trophozoite, schizont, and gametocyte). However, stage-level
classification carries important clinical and epidemiological
implications. Microscopy-based staging remains the cornerstone for
estimating parasite density and disease severity, as higher proportions
of trophozoites and schizonts are associated with severe malaria, while
gametocyte detection is critical for assessing transmission potential
(Ashley et al., 2018; White, 2018). Moreover, the efficacy of many
antimalarial drugs is stage-dependent, making precise staging valuable
for therapeutic monitoring (Ashley et al., 2018).

Recent advances in Al demonstrate the feasibility of stage-specific
classification. Convolutional neural networks (CNNs) have achieved
high accuracy in distinguishing between erythrocytic stages using thin
smear images (Muhammad et al., 2025), while mobile-based AI
platforms have also shown promise in field-deployable stage
recognition (Yang et al, 2020). Incorporating stage-specific
annotations into the training dataset, together with sufficient sample
diversity, will be essential to enable robust multiclass recognition
across varying smear preparations. Such developments could enhance
malaria case management, provide more precise monitoring of drug
of
interventions, and support malaria elimination programs.

response, facilitate  surveillance transmission-blocking

In addition to enhancing conventional microscopy, the proposed
YOLOV3-based system holds promise as a complementary component
of broader diagnostic strategies. Its ability to detect low-parasite-
density infections in digitized smear images makes it well suited for
integration with other tools such as rapid diagnostic tests (RDT) or
molecular assays (PCR). In low transmission settings, Al-assisted
microscopy could be deployed for initial screening, followed by
confirmatory testing using alternative methods. This combined
approach may improve diagnostic sensitivity, reduce the dependence
on highly experienced microscopists, and ultimately aid malaria
control efforts in resource-limited environments.

Meanwhile, the present findings should be considered preliminary
and are limited to data collected from a single clinical center. Although
the dataset underwent rigorous expert annotation and quality control,
the generalizability of the model to diverse patient populations,
imaging conditions, and microscope hardware remains to be validated.
Future work will focus on multi-center studies involving larger and
more heterogeneous datasets to assess robustness across different
clinical environments. Comprehensive validation in such settings will
be essential before considering deployment of the model in routine
clinical workflows.
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In conclusion, our YOLOv3-based framework demonstrates the
feasibility of applying real-time object detection for malaria
diagnosis and offers a powerful complement to classical microscopy.
Future work should aim to expand the dataset to include multiple
Plasmodium species, integrate stage-level classification, and validate
the system across diverse clinical settings. Continued development
of Al-powered malaria diagnostic platforms will rely on high-
quality annotated datasets, algorithmic innovation (such as Yolo
V5, V8, etc.), and rigorous clinical validation to maximize their
translational in both endemic and

potential resource-

limited environments.

6 Conclusion

The developed Al diagnostic tool based on YOLOv3 has high
recognition efficiency and accuracy for the identification and
classification of P falciparum malaria parasites. The overall
recognition accuracy reached 94.41%. This tool provides a feasible
technical support for malaria control in resource-limited setting, with
performance competitive for clinical thin smear detection but not
claimed as state-of-the-art across all malaria diagnostic scenarios.
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