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Purpose: Significant endothelial cell density (ECD) losses in Descemet
membrane endothelial keratoplasty (DMEK) can precipitate graft failure.
Currently, clinical practice only evaluates the central corneal endothelium and
not the paracentral or peripheral cornea. Here, we evaluate a deep learning
(DL) algorithm for automated image quality assessment and detection of low
corneal ECD in widefield specular microscopy (WFSM) images following DMEK,
at central, paracentral and peripheral regions.

Methods: Prospective observational study in eyes with clear, stable DMEKs.
WFSM imaging (CEM-530; Nidek, Japan) performed at a baseline visit (mean
of 23 months post-DMEK) and 6 months after. Images at 15 locations were
captured; 1 central, 8 paracentral, and 6 peripheral. Image quality and corneal
endothelial cell parameters including ECD were assessed. SqueezeNet
architecture was employed for binary and multi-class automated image quality
and low ECD detection (threshold set at < 1,000 cells/mm?). Main outcome
measures were regional ECD and area under curve (AUC) for DL tasks.

Results: DMEK was performedin 53 eyes (43 subjects, meanage 674 + 10.1 years)
with Fuchs endothelial corneal dystrophy (FECD) (71.7%; 38 eyes) and
pseudophakic bullous keratopathy (PBK) (28.3%; 15 eyes). The DL classification
models were trained and validated on 1,362 images, achieving AUCs of 0.979
(binary image quality), 0.907 (multi-class image quality) and 0.980 (low ECD
detection). WFSM imaging was able to detect both central ECD loss (1,709 vs.
1,555 cells/mm?; p < 0.001) and peripheral ECD loss (1,498 vs. 1,347 cells/mm?;
p = 0.016). Overall, we estimated a mean annual central ECD loss of 5.81% (95%
Cls: 3.54-8.08%) in the stable phase of our DMEK cohort.

Conclusion: Serial WFSM was able to image a larger area of the endothelium
in eyes with DMEK. Our DL model was a useful adjunct that analysed the large
number of specular microscopy images to identify scans of adequate quality and
ECD based on pre-defined thresholds. This approach may support the use of
DL-assisted WFSM for early detection of ECD loss which may aid in monitoring
endothelial health and graft survival following DMEK.
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Introduction

Descemet membrane endothelial keratoplasty (DMEK) has
gained popularity over Descemet stripping automated endothelial
keratoplasty (DSAEK) for the treatment of endothelial failure, as it can
achieve better visual outcomes (1-3), quicker recovery (4), with lower
rejection rates (5, 6). However, endothelial cell loss (ECL) is an
inevitable consequence of any successful endothelial keratoplasty (7,
8). Even after a successful DMEK, endothelial cell density (ECD)
continues to decline over time, with the rate of decline reaching a
plateau around 12 months post-operatively (9). Excessive post-
operative ECL can lead to late graft failure, which has been reported
in up to 30% of patients within 5 years (10, 11). Factors such as
glaucoma (12, 13), rejection (14) and uveitis (15) contribute to long-
term ECL, highlighting the importance of post-operative monitoring
of the cornea endothelium and ECD to ensure long-term graft survival.

Post-operative monitoring of ECD is typically performed in a
limited, central region (0.55 mm x 0.25 mm) of the entire corneal
endothelial area using specular microscopy (16-20). This proxy does
not fully reflect the overall endothelial health, as it only represents a
thousandth of the entire endothelial surface area (21). Evaluating the
entire graft, including the paracentral and peripheral regions, is
important to understanding cell migration and morphology associated
with ECL, which can differ significantly between conditions such as
Fuchs endothelial cell dystrophy (FECD) and pseudophakic bullous
keratopathy (PBK) (22). Accurate ECD measurement depends on
high-quality imaging, which is often compromised in corneal edema.
Moreover, as imaging volumes increase, substantial time is required
to validate the reliability of automated cell segmentation, posing a
challenge for consistent and reproducible analysis.

To address these challenges, we developed a deep learning (DL)
framework consisting of three independently trained models fine-
tuned from a pre-trained SqueezeNet architecture (23), for
automated binary and multi-class imaging grading, as well as low
ECD detection. Binary image quality assessment, for the selection of
reliable images, is necessary prior to low ECD detection. To our
knowledge, no comprehensive studies have characterized post-
DMEK corneal endothelial cell (CEC) changes in the paracentral
and peripheral regions using widefield specular microscopy
(WESM), particularly those employing DL techniques. Therefore,
this study aims to evaluate longitudinal changes in ECD over a
6-month period, at the central and peripheral cornea following
DMEK, using WFSM integrated with DL.

Materials and methods
Study design and participants
We conducted a longitudinal study with patients recruited between

January 2022 and December 2022 from a tertiary ophthalmology
centre - Singapore National Eye Centre. We included adults aged 21 years
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or older, who had undergone DMEK for corneal decompensation due
to FECD or PBK as surgical indications. All patients had DMEK for at
least one year to ensure cornea clarity and stable endothelial stability
(defined as unchanged central ECD for past 2 visits). A WESM scan was
done at a baseline visit, and repeated 6 months later. Basic demographic
data, glaucoma status and indications for DMEK were obtained and
compiled from electronic health records, along with DMEK donor graft
details such as age, gender, graft ECD, coefficient of variation (CV) and
hexagonality (HEX). Our study was conducted in accordance with the
Declaration of Helsinki, with informed consent obtained from all
subjects and ethics approval granted by the SingHealth Centralized
Institutional Review Board (CIRB R1501/84/2017).

Clinical assessment

All patients were clinically evaluated by three cornea specialists
(MA, JM, HSO). Best-corrected visual acuity (BCVA) was measured
using Snellen chart and subsequently converted to logarithm of
minimum angle of resolution (logMAR) units for statistical analysis
(24). Finger counting, hand movement perception, light perception
and no light perception were graded as 1.9, 2.3, 2.7 and 3.0 logMAR,
respectively (25-27). All investigations and clinical evaluation were
conducted at a baseline visit and repeated at a 6-month follow-up
as per the Singapore Corneal Transplant Registry protocol (28).

Regional analyses using widefield specular
microscopy

All scans were performed using a widefield specular microscopy
technique (CEM-530; Nidek, Japan). As illustrated in Figure 1A, each
scan achieves an image in 15 corneal locations: 1 central, 8 paracentral
and 6 peripheral images. Paracentral images are 0.65-0.80 mm from
the centre and peripheral images are 3.65-4.00 mm from the centre. In
our analysis, the central and paracentral images were considered the
“central region” of the cornea, with the peripheral images comprising
the “peripheral region”. The area of each captured image was 0.55 mm
by 0.25 mm. For all eyes, image quality, ECD, corneal thickness (CT),
CV and HEX obtained from the built-in software were compiled and
averaged within their respective regions; central or peripheral. These
parameters, except for image quality, were excluded from further
analyses if more than half of the images in that region (ie. > 5 central,
> 4 peripheral) had image quality graded as 1 (ungradable) by any of
the two independent graders. Image quality grading is described in the
following section.

Image quality grading

The image quality of each image was graded by two trained
graders (EC, QW) independently based on a standardized grading
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Peripheral
3.65 mm from center
“Peripheral region”
Central
“Central region”
Paracentral
0.65 mm from center
Grade 1 (ungradable) Grade 2 (usable) Grade 4 (excellent)
< 25% gradable 25% - 50% gradable > 75% gradable
FIGURE 1

gradable. This grading scheme was adapted from Huang et al. (29).

(A) Example of a widefield specular microscopy (WFSM) scan from the Nidek CEM-530. The different locations are depicted as: blue for central, red for
paracentral and green for peripheral. Each scan consists of 1 central, 8 paracentral and 6 peripheral images of the corneal endothelium. The central
and paracentral images comprise the central region within a 1.3 mm diameter. The peripheral region is an outer annulus that is 7.3 mm in diameter.

(B) Examples of specular images with various quality grades (1-4). Grade 1 images (ungradable) had less than 25% of the total area being gradable.
Grade 2 images (usable) had 25%—-50%, grade 3 images (good) had 50%—-75% and grade 4 images (excellent) had more than 75% of the total area being

scheme adapted from Huang et al. (29) The modified scheme is based
on the estimated percentage of the total image area that can
be confidently graded as depicted in Figure 1B. For further analysis of
image quality distribution as well as group classification for DL, the
lower of two image quality grades was selected in disagreements, in
order to be more conservative.

Deep learning architecture

The DL frameworks were trained separately for three main tasks:
binary image quality grading [usable (grade > 2) vs. ungradable
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(grade 1)], multi-class image quality grading (grades 1 to 4) and ECD
classification (< 1,000 cells/mm? vs. > 1,000 cells/mm?). For all three
tasks, we employed the same DL architecture based on transfer
learning with a pre-trained SqueezeNet model (23). Specifically,
SqueezeNet was selected after preliminary comparisons with other
convolutional neural networks (including ResNet-50, DenseNet-201,
EfficientNet-B0, and ShuffleNet). SqueezeNet achieved comparable or
superior performance to larger networks while being lightweight
(~1.2 M parameters vs. ~25 M for ResNet-50, ~20 M for DenseNet-
201, ~5.3 M for EfficientNet-B0, and ~2.3 M for ShuffleNet) and
computationally efficient, which is advantageous for resource-limited
clinical applications. In preliminary experiments on image quality
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FIGURE 2

architecture is used across the three tasks.

* same architecture for all 3 tasks, but models trained separately

Deep learning pipeline for automated image quality grading and ECD prediction using a fine-tuned SqueezeNetl. The early layers are frozen to retain
ImageNet-learned features, while only the final convolutional and classifier layers are fine-tuned using specular microscopy images. The same

ECD prediction
(< 1000 vs = 1000 cells/mm?)

grading, SqueezeNet achieved performance comparable or superior
to other tested architectures, including ResNet-50, DenseNet-201,
EfficientNet-BO and ShuffleNet. Given its efficiency and smaller
parameter size, SqueezeNet was adopted as the final model for all
classification tasks. The same transfer learning framework and
hyperparameter settings were applied across all architectures to ensure
a fair comparison.

As illustrated in Figure 2, the initial convolutional and Fire
modules (Convl to Fire9) were frozen to retain general visual
features learned from ImageNet, while the final layers (Conv10
and the classifier) were fine-tuned using task-specific datasets of
specular microscopy images. This transfer learning technique
offers efficient adaptation to limited labelled medical data while
preventing overfitting. Each model was trained independently on
its respective task. During training, all images were resized to
300 x 200 pixels and normalized using ImageNet mean and
standard deviation. We used a batch size of 32 and trained the
models using the Adam optimizer with a learning rate of 0.0005,
12 regularization of 0.0005 and cross-entropy loss. Early stopping
and learning rate scheduling were applied based on validation
performance. Only the final convolutional layer and classifier were
updated during training; all earlier layers were frozen to retain the
pre-trained weights. For model interpretability, we used gradient-
weighted class activation mapping (Grad-CAM) heatmaps to
visualize the key regions that influence model’s classification of
certain grades. Grad-CAM generates class-specific heatmaps by
using gradients from the target output flowing into the final
convolutional layer (30).

Deep learning data partitioning

Firstly, the binary image quality grading task was designed as a
pre-screening step to automatically identify and exclude ungradable
images from downstream analysis. Images were grouped as
ungradable (grade 1) or usable (grade > 2). The dataset consisted of
a total of 1,362 images, of which 18.9% (n = 258) were ungradable
and 81.1% (n = 1,104) were usable. This dataset of 1,362 images
were then split into 80% training and validation and 20% for testing.
Secondly, multi-class image quality grading was designed to
categorize images into four quality levels (grades 1-4) to reflect the

Frontiers in Medicine

severity of quality degradation. The data was stratified by image
quality grade and anatomical regions (central, paracentral and
peripheral) to ensure balanced representation across dataset
partitions. Lastly, for ECD classification, with input quality ensured
by excluding images graded as grade 1 (ungradable) from the
dataset, the remaining images were dichotomized into two ECD
classes: < 1,000 and > 1,000 cells/mm?. Thus, the final dataset
included 1,104 images and was partitioned into training, validation,
and test sets.

Statistical analyses

SPSS 26.0 (SPSS; IBM Corp, USA) and GraphPad Prism
software (Prism; GraphPad, USA) were used for all statistical
analyses in this study. All between-groups comparisons of
continuous parameters were performed using independent t-tests
(paired tests for applicable comparisons). All between-groups
comparisons of categorical parameters were performed using
Fisher’s exact or chi-square tests. For multivariable linear regression,
variables were chosen by an automatic linear modelling process in
SPSS 26.0, using forward stepwise regression. Upper and lower 95%
confidence intervals (CIs) were used for graphs and means. Tests
were two-sided with statistical significance set at p < 0.05.
Categorical variables are detailed as number (%), and continuous
variables are detailed as mean + SD. Asterisks and bold p-values
indicate statistical significance. DL model performance was
evaluated using accuracy, precision, recall, F1 score, and area under
curve (AUC). Mean annual ECD loss was estimated using a scatter
plot of percentage of donor ECD remaining over time post-
DMEK. The percentage of donor ECD remaining was defined as the
central ECD obtained from WESM over the pre-operative DMEK
donor graft ECD.

Results
Demographics

We included 53 eyes with surviving DMEK grafts (43 subjects) at

least 1year after surgery (mean 23.2+20.6 months) that
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stable and stable
ECD. Demographics and clinical summary are detailed in Table 1.
Mean age of our subjects (at the time of DMEK) was 67.4 + 10.1 years,
71.7% of the eyes had DMEK for cornea decompensation due to
FECD (n = 38) and 28.3% for PBK (1 = 15). Of the 53 eyes, 35.8% had
pre-existing glaucoma (n = 19) and 64.2% did not have glaucoma

(n=34).

demonstrated clinically cornea clarity

Quality of widefield specular microscopy
images

Image quality of all WFSM images across 2 visits (# = 1,590) was
generally good, where graders had 87.0% agreement. All disagreements
were within 1 grade disparity. 83% (795/954) of central and paracentral
images were at least grade > 2 and 65% (622/954) were at least grade
> 3. Peripheral scans had poorer image quality scores compared to
central and paracentral scans (both p <0.0001). 53% (334/636) of
peripheral images were at least grade > 2 and 25% (161/636) were at
least grade > 3.

10.3389/fmed.2025.1715673

Changes in widefield specular microscopy
parameters

The mean image quality in the central region did not significantly
change over 6 months (2.79 vs. 2.80; p =0.926) but there was a
significant decline in peripheral region image quality (2.09 vs. 1.72;
p <0.001). ECD declined significantly at the central (1,709 vs. 1,555
cells/mm? p < 0.001) and peripheral regions (1,498 vs. 1,347 cells/
mm? p = 0.016). There were no significant changes observed in CV,
HEX, and CT.

Endothelial cell density decline

Overall, we estimated a mean annual central ECL of 5.81%
(95% Cls: 3.54-8.08%) post-DMEK. Sub-analysis comparing
central and peripheral ECD decline revealed that there were no
significant differences between regions in mean ECD declines in
unpaired (154 vs. 151 cells/mm? p = 0.968) and paired analyses
(106 vs. 151 cells/mm? p = 0.453). Comparing FECD and PBK

TABLE 1 Descriptive characteristics of the subject population at first baseline visit, along with DMEK donor graft characteristics.

Characteristics All eyes

n=>53

Glaucomatous

Glaucoma status

No glaucoma

DMEK recipient characteristics

n=19

n =34

Age at Ist visit (years) 69.4 £10.0 70.5 +10.6 68.7+£9.8 0.543
Time since DMEK (months) 23.2+20.6 20.3 +20.1 249 +21.0 0.448
Age at DMEK (years) 67.4+10.1 68.8 £10.1 66.7 £10.2 0.463
Ethnicity

Chinese 46 (86.8%) 16 (84.2%) 30 (88.2%)

Indian 3 (5.7%) 2(10.5%) 1(2.9%)

0.868

Malay 3 (5.7%) 1(5.3%) 2 (5.9%)

Others 1 (1.9%) 0 1(2.9%)

Gender

Male 27 (50.9%) 14 (73.7%) 13 (38.2%)

0.021*

Female 26 (49.1%) 5(26.3%) 21 (61.8%)
BCVA (logMAR) 0.30 £0.29 0.33£0.18 0.29+£0.33 0.628
Indication for DMEK

FECD 38 (71.7%) 9 (47.4%) 29 (85.3%)

<0.01%*

PBK 15 (28.3%) 10 (52.6%) 5(14.7%)
DMEK donor characteristics
Age (years) 61.9+7.0 62.7+£7.6 61.5+6.8 0.574
Gender

Male 35 (66.0%) 13 (68.4%) 22 (64.7%)

Female 18 (34.0%) 6 (31.6%) 12 (35.3%) Ho
ECD (cells/mm?) 2,849 + 228 2,791 £ 187 2,881 + 246 0.174
CV (%) 34.1+£32 340+24 341+£35 0.923
HEX (%) 56.4 £ 6.1 57.1+49 559+6.7 0.513

*Bolded p-values with asterisks indicate statistical significance. BCVA, best corrected visual acuity; FECD, Fuchs endothelial cell dystrophy; PBK, pseudophakic bullous keratopathy; ECD,

endothelial cell density; CV, coefficient of variation; HEX, hexagonality.
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eyes, there were no significant differences in ECD decline at the
central (143 vs. 190 cells/mm? p = 0.596) and peripheral regions
(134 vs. 213 cells/mm? p = 0.587). DMEK donor graft ECD was
detected to be inversely associated with central ECD decline in
multivariable analysis (Beta = —0.591 [—1.15 - -0.034]; p = 0.038),
adjusting for age, gender and surgical indication. There was also
poor correlation between central and peripheral ECD decline
(r=0.245; p = 0.261). Two case study eyes were highlighted to
illustrate regional ECD trends, with WFSM images shown at
baseline and 6-month visits (Figure 3). The case study eye in
Figure 3A shows concordance between the regional ECD
declines, while Figure 3B demonstrates discordant regional
ECD declines.

Deep learning assessment of image quality
and endothelial cell density

We evaluated three DL classification models: (i) binary image
quality grading, (ii) multi-class image quality grading, and (iii)
rapid ECD screening on their respective test sets (Figure 4). The
binary image quality grading model classified ungradable (grade
1) vs. usable images (grade > 2) with 0.956 accuracy, 0.929
precision, recall and F1 score, and an AUC of 0.979. The multi-
class image quality grading (grade 1 to 4) model obtained an
overall accuracy of 0.868, 0.730 precision, 0.727 recall, F1 score of
0.723, and AUC of 0.907. The model performed best on grades 1
(AUC = 0.980) and 4 (AUC = 0.934). Misclassifications were more
frequent between grades 2 and 3 due to overlapping image quality
characteristics. To enhance interpretability, Grad-CAM was used
to visualize image regions that contributed most to the model’s
classifications. Figure 5 shows representative examples from the
multi-class image quality grading task. In lower-quality images
(grades 1-2), the model focused on blurred areas, signal dropout,
and low contrast. For higher-quality images (grades 3-4),
attention was centred on visible and well-defined cell structures.
These attention patterns align with expert human grading. The
ECD classification model, which aimed to detect low ECD < 1,000
cells/mm?, achieved 0.932 accuracy, 0.914 precision, 0.899 recall,
0.906 F1 score, and an AUC of 0.980.

Discussion

In this ‘proof of concept’ study, we observed that WESM was
useful in detecting longitudinal declines in ECD in the central
(1,709 vs. 1,555 cells/mm? p < 0.001) and peripheral regions (1,498
vs. 1,347 cells/mm?; p = 0.016). We also demonstrated the potential
for DL analysis of specular images derived from WFSM in eyes
post-DMEK, achieving high diagnostic performance AUCs of 0.979
for binary image quality classification, 0.907 for multi-class image
quality classification and 0.980 for detecting critical ECD threshold
(< 1,000 cells/mm?). To our knowledge, this is the first DL approach
to simultaneously assess image quality and ECD from WFSM in
post-DMEK eyes, enabling early detection of CEC loss, particularly
in peripheral regions where CEC migration and apoptosis typically
begin—areas often overlooked by conventional central imaging.
Practitioners can thus leverage this integrated assistive tool to
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intuitively interpret large volumes of specular images in a single
session, facilitating efficient monitoring of eyes at risk of ECD loss.

While both quantitative and qualitative assessments of
endothelial cell health are essential for evaluating graft integrity,
image quality remains a key determinant of ECD measurement
reproducibility and reliability (29). This is particularly critical for
non-expert practitioners, where poor image quality, often due to
corneal edema, can lead to inaccurate ECD estimations. Our DL
model has effectively stratified reliable (grade > 2) from unreliable
(grade 1) (AUC: 0.979) as well as multi-class image quality grading
(AUC: 0.907). We selected grade 2 as the cut-off for image quality
as it provides adequate area (> 25% of image) of CEC for ECD
calculation, with grade 1 images typically having no identifiable
CECs in the image.

The greatest CEC loss following DMEK occurs perioperatively
in the first 6 months (5, 19, 31), with reported ECL between 25 to
42% (32-34). Factors associated with perioperative ECL include
graft diameter (35), type of tamponade gas (36), need for rebubbling
(37), and surgical experience (38). However, beyond the initial
perioperative period, the rate of ECL reduces to approximately
between 3 and 6% annually after the first post-operative year (39-
41). In our study of stable DMEKSs, we estimated an overall average
annual ECL of 5.81% which is inclusive of perioperative ECL. Long-
term ECL in stable DMEK grafts is greater than physiological
decline in normal corneas (42), and is associated with immune-
mediated rejection (43) or non-immune mediated CEC attrition
(44). However, long-term monitoring of DMEK CECs in most
studies and clinical settings remain confined to the ‘central’ region
of the DMEK graft. Our study underscores the importance of
evaluating the corneal graft beyond the central region, as ECL can
vary substantially between central and peripheral areas. Patients
may exhibit early peripheral ECL that remains undetected when
assessments are limited to the central cornea as illustrated in
Figure 3B. This observation aligns with the study by Monnereau
etal. (45), which demonstrated that early morphological changes in
endothelial cells beyond the central zone may precede allograft
rejection. Such peripheral changes could warrant early steroid or
Rho kinase inhibitor (46) intervention to prevent irreversible graft
damage associated with rejection. Future studies could correlate
graft survival with regional ECL and other endothelial cell changes
(45, 47).

The peripheral endothelium and the transitional zone contain
endothelium progenitors (48) and influence cell migration (49-51),
which are the foundation of regenerative therapies such as
Rho-associated kinase inhibitors (52-54) and fibroblast growth
factors (55), used alongside surgical techniques such as Descemet
(56-59)
transplantation (DMT) (51, 60, 61). Furthermore, corneal regions

stripping only (DSO) and Descemet membrane
are not perfectly symmetrical in morphology (62) and are
differentially affected by pathologies (63, 64). For example, in
advanced FECD, the peripheral ECD may be able to detect severity
of disease better than central ECD (65). Glaucoma drainage devices
have been shown to reduce ECD (66), possibly due to damage to the
transition zone in the peripheral cornea (67). The above examples
where monitoring of the peripheral corneal endothelium is crucial,
highlight the clinical utility of WESM. Studies have shown that
healthy peripheral CECs from the host may migrate and repopulate
the DMEK graft in FECD (68), whereas in PBK the peripheral
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A: Concordant regional ECD decline

Baseline:

Central region:
Mean decline of 487
cells/mm?

Peripheral region:
Mean decline of 305 cells/mm?

B: Discordant regional ECD decline

Baseline: 6 month:

Central region:
No ECD decline detected

||
Peripheral region:
Mean decline of 769 cells/mm?

FIGURE 3
Widefield specular microscopy (WFSM) images at baseline visit and 6-month visit, highlighting endothelial cell decline (ECD) regionally. ECD for each
image are marked at the bottom of the image in white, and areas that had > 10% decline in ECD were marked with red arrows next to the ECD values.
(A) demonstrates concordant regional declines between the central and peripheral regions. This patent is a Chinese male who had DMEK at age 57 for
FECD. (B) demonstrates discordant regional declines between the central and peripheral regions. This patent is a Chinese female who had DMEK at
age 66 for FECD.

endothelium is compromised and donor-to-host migration may =~ DMEKs. This could possibly be explored in future studies using
predominate (69). However, we did not detect a difference in ~ WFSM, focusing on and investigating the early post-
peripheral ECD change between FECD and PBK in our stable  operative period.
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FIGURE 4
Confusion matrices and receiver operating characteristic (ROC) curves assessing the three tasks of the deep learning model for (A) binary image quality
classification, (B) multi-class image quality classification and (C) ECD classification. Average AUCs for the tasks are 0.979, 0.907 and 0.980 respectively.

However, while WFSM imaging rapidly produces numerous
specular images across the corneal endothelium, this can be time-
consuming to interpret in a busy clinical practice. A typical visit
could require clinicians to interpret up to 120 images if this scan
is repeated and performed in both eyes and compared over 2
visits. Thus, we developed and validated DL models that could
assist clinicians in identifying high-quality WFSM images for
interpretation while enabling rapid screening of ECD values based

Frontiers in Medicine

on a pre-determined threshold (set at 1,000 cells/mm? in our
study). In this example user interface (Figure 6), clinicians can
quickly review the patient from an overview screen highlighting
both image quality and low ECD detection, as opposed to scrolling
through hundreds of specular images individually. This would
help clinicians quickly assess the reliability of endothelial images,
to then make clinical interpretations based on the best quality
specular images. Future iterations of this DL model could possibly
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Widefield specular microscopy images

Grad-CAM maps

FIGURE 5

Grad-CAM visualizations for multi-class image quality grading. Representative specular microscopy images (top row) and their corresponding Grad-
CAM maps (bottom row) for each quality grade. Warmer colours indicate image regions contributing most to the model's prediction. The model
focused on blurry, low-contrast, or dropout areas for lower grades (1 and 2), and on well-defined cell regions for higher grades (3 and 4). These
focused features align with human expert visual grading.

Total

v 3 %
HEX | 60 @ %

TNUM] 302 | cells |
CD | 1186 cerumet

Current ECD threshold:

000 cells/mm?

Preview

|:| More than threshold
|:| Less than threshold
B Poor quality / unreliable

FIGURE 6

(A) User interface currently for Nidek WFSM scans. (B) Example of user interface with deep learning assisted image quality and ECD classification. The
threshold can be preset by the user, and hovering the cursor over any of the areas shows a preview of that specular image.
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adjust for different ECD thresholds allowing greater flexibility
and utility.

Our study has some limitations that should be considered
when interpreting the findings. As this investigation was
conducted at a single tertiary centre, it lacks multi-centre external
validation, which may affect the generalisability and reliability of
our results. The study population was restricted to patients with
stable DMEK grafts, potentially omitting acute perioperative
events that could influence endothelial cell density (ECD).
However, this approach enabled us to capture a large sample of
high-quality specular images, which was instrumental in
developing deep learning (DL) algorithms. Importantly, it also
allowed us to focus on the long-term stability of corneal
endothelial cell (CEC) loss. This pilot study closely reflects our
routine clinical approach to monitoring patients after DMEK
surgery. Future studies with larger cohorts of DMEK patients
could enable the development of algorithms capable of
interpreting specular images, even in the presence of corneal
edema or scarring. In this work, we introduce a novel combination
of WESM and DL models to rapidly evaluate image quality and
identify low ECD below a defined threshold. This differs from
most existing deep learning applications in endothelial imaging,
which primarily focus on cell segmentation using convolutional
neural networks such as U-Net (70-74). Automated cell
segmentation has been demonstrated in specular imaging after
ultra-thin DSAEK (75) and confocal microscopy after DMEK
(76), highlighting the possibility of future work into DL-assisted
endothelial cell segmentation of WESM images for post-DMEK
eyes. Foo et al. previously described a DL application of WESM
to identify FECD eyes with healthy peripheral endothelial
reserves, achieving an AUC of 0.88 in detecting peripheral
ECD < 1,000 cells/mm? (77). The study presented here has
additionally utilized DL to assess for image quality and reliability
in DMEK eyes prior to evaluating for ECD. Overall, these studies
suggest the growing potential for DL-assisted WFSM in various
clinical scenarios for corneal endothelial diseases.

In conclusion, our longitudinal study on stable DMEK eyes
demonstrates the potential of WFSM beyond traditional central
endothelial imaging. This can be further augmented by DL
models, which analysed large numbers of specular microscopy
images to firstly identify scans of adequate quality and then to
detect low ECD images at a pre-set threshold. This holistic and
rapid assessment of could be utilized in clinical settings for
endothelial health

monitoring  of survival

following DMEK.
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