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Axial Spondyloarthritis (axSpA) is a chronic inflammatory disease influenced by 
genetic, immune, metabolic, and environmental factors, significantly impacting 
patients’ quality of life. Recent advancements in multi-omics technologies—such as 
genomics, transcriptomics, proteomics, and metabolomics—provide new insights 
into axSpA pathogenesis and precision medicine. These technologies reveal genetic 
susceptibility, immune responses, and metabolic alterations, uncovering potential 
biomarkers and therapeutic targets. This review explores multi-omics applications 
in understanding axSpA mechanisms, developing targeted therapies, and advancing 
precision diagnostics. It also addresses challenges in data integration and highlights 
the role of artificial intelligence (AI) in enhancing analysis precision and constructing 
dynamic disease networks. Combining AI with multi-omics could revolutionize 
diagnosis, personalized treatment, and clinical translation for axSpA, driving the 
future of precision medicine.
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1 Introduction

AxSpA is a chronic, progressive inflammatory disease primarily affecting the spine and 
sacroiliac joints (1). It often leads to persistent pain, stiffness, and limited mobility, potentially 
resulting in spinal deformities and loss of function (2). The pathogenesis of axSpA is complex, 
involving the interplay of genetic predisposition, immune system abnormalities, and 
environmental factors (3–5). Although significant progress has been made in axSpA treatment, 
existing approaches still face notable limitations in early diagnosis, personalized treatment, 
and long-term management, hindering the realization of precision medicine (6). In particular, 
the incomplete understanding of axSpA’s pathological mechanisms and the atypical nature of 
its early symptoms lead many patients to miss the optimal window for treatment, resulting in 
significant variability in therapeutic outcomes (7).

In recent years, the rapid advancement of high-throughput omics technologies, 
including genomics, transcriptomics, proteomics, and metabolomics, has provided new 
opportunities for axSpA research (8). These technologies enable researchers to explore the 
molecular mechanisms of axSpA from multiple dimensions, identify potential biomarkers, 
and support targeted and personalized therapies. For instance, genomic studies have 
elucidated genetic risk factors like the HLA-B27 gene, while transcriptomic analyses have 
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revealed immune-related dysregulation in axSpA (9). However, 
single-omics approaches struggle to fully capture the complexity of 
the disease, and the challenges of data heterogeneity and integration 
limit their widespread clinical application.

In contrast to previous reviews, which primarily focus on 
individual omics layers, this review emphasizes the integrated 
application of multi-omics approaches, which offer a more holistic 
view of axSpA pathogenesis. By combining data across genomics, 
transcriptomics, proteomics, metabolomics, and microbiomics, 
we can better understand the disease’s complexity and identify patient 
subtypes, thereby laying the foundation for precision medicine in 
axSpA (10). However, processing vast amounts of omics data and 
uncovering underlying patterns remains a significant challenge in 
current research (11).

To address these challenges, AI has emerged as a 
transformative tool in the analysis and integration of multi-omics 
data. Machine learning and deep learning methods can uncover 
complex patterns and associations within large datasets, 
significantly improving the accuracy and efficiency of analyses 
(12). AI can automatically detect complex patterns within the 
data, enhancing the accuracy and efficiency of analyses, and 
offering new solutions for early diagnosis, disease prediction, and 
personalized treatment of axSpA. The integration of AI with 
multi-omics technologies not only aids in uncovering the 
pathophysiological mechanisms of axSpA but also facilitates 
clinical translation by constructing disease networks and 
identifying biomarkers for precision medicine.

This review provides a comprehensive examination of the current 
state of multi-omics research in axSpA, with a particular focus on how 
AI can facilitate the integration of omics data to enhance diagnostic 
and therapeutic precision. We also highlight the ongoing challenges 
and future prospects of integrating these technologies to drive the 
realization of personalized treatment strategies for axSpA, ultimately 
improving patient outcomes and quality of life.

2 Multi-omics research process in 
axial spondyloarthritis

The integration of multi-omics technologies provides a powerful 
approach for elucidating disease mechanisms, identifying reliable 
biomarkers, and advancing precision medicine in axSpA. Figure 1 
illustrates a comprehensive multi-omics research workflow specifically 
tailored for axSpA.

2.1 Sample collection and preparation

The research process begins with the systematic collection of high-
quality biological samples from axSpA patients and appropriate 
controls (13). These include blood, urine, feces, synovial fluid, 
cartilage, synovium, and bone tissue, representing the diverse tissues 
involved in axSpA-related inflammation and structural changes, 
particularly in the sacroiliac joints and axial skeleton.

As illustrated in Figure 1, while axSpA primarily affects the axial 
joints, especially the spine and sacroiliac joints, it may also involve 
peripheral joints and lead to extra-articular manifestations in organs 
such as the gut, eyes, skin, lungs, heart, and kidneys. This highlights 

the importance of comprehensive and multi-source biological 
sampling to capture the systemic nature of the disease.

Simultaneously, detailed clinical information—including disease 
duration, symptom profile, imaging findings, treatment history, and 
associated comorbidities—is collected. This clinical context is essential 
for correlating molecular findings with phenotypic presentations and 
enhancing the biological interpretation of omics-derived insights.

2.2 Omics data generation

Advanced high-throughput platforms are employed to generate 
multi-layered omics data from collected samples, encompassing:

Genomics (e.g., whole genome/exome sequencing): Identifies 
genetic variants and risk alleles associated with axSpA 
predisposition (9).

Transcriptomics (e.g., RNA-Seq): Profiles gene expression 
signatures and identifies dysregulated transcriptional networks in 
axSpA-affected tissues (14).

Proteomics (e.g., mass spectrometry): Quantifies protein 
abundance and post-translational modifications, elucidating protein-
level alterations in disease progression (15).

Metabolomics (e.g., MS, NMR): Captures metabolic 
dysregulations and immune-metabolic interactions involved in axSpA 
pathogenesis (16).

Microbiomics: Investigates alterations in gut and mucosal 
microbiota, which are increasingly recognized as contributors to 
axSpA development (17, 18).

These diverse omics layers provide a multidimensional molecular 
atlas of axSpA, enabling comprehensive disease modeling.

2.3 Data preprocessing and quality control

Given the complexity and heterogeneity of omics datasets, 
rigorous data preprocessing is essential (19):

Data cleaning: Eliminates noise, contaminants, and 
low-confidence features.

Normalization: Adjusts for batch effects and technical variability, 
ensuring cross-sample comparability.

Missing data imputation: Employs statistical methods to handle 
incomplete entries, preserving dataset integrity.

These quality control measures are critical to ensure analytical 
reliability and reproducibility.

2.4 Multi-omics data integration and 
analysis

The integration of multi-omics datasets is essential for 
understanding the complexity of axSpA. By combining genomics, 
transcriptomics, proteomics, metabolomics, and microbiomics data, 
researchers can reveal systemic interactions driving axSpA 
pathophysiology. However, discrepancies often arise between different 
omics layers, such as genetic findings not fully aligning with 
transcriptomic or proteomic data. For instance, genetic risk factors 
identified in genomic studies may not always correlate directly with 
changes in gene expression or protein abundance, creating 
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inconsistencies across datasets. These discrepancies are influenced by 
factors such as sample types, disease stages, or technical limitations in 
omics platforms.

To address these challenges, systematic data integration and cross-
validation across omics layers are crucial. AI, particularly machine 
learning and deep learning techniques, aids in resolving these 
discrepancies by detecting hidden patterns across datasets, allowing 
for the harmonization of findings. This enables the identification of 
reliable biomarkers, disease subtypes, and therapeutic targets.

Despite the progress, challenges remain in ensuring the robustness 
and clinical applicability of multi-omics findings. Cross-validation 
using independent datasets is essential to confirm the reliability of 
biomarkers and therapeutic targets. Additionally, the development of 
standardized methods for integrating omics data and addressing data 
heterogeneity will improve the accuracy of multi-omics studies.

This systems-level approach provides a holistic view of axSpA, 
highlighting the critical role AI will continue to play in improving data 
integration, resolving inconsistencies, and facilitating the translation 
of omics insights into personalized treatment strategies. As discussed 
in Section 2.5, AI’s transformative role in data analysis further 

enhances the precision and applicability of these findings, leading to 
more effective diagnosis and treatment.

2.5 Artificial intelligence-assisted analysis

As illustrated in Figure 1, AI—particularly machine learning and 
deep learning—plays a pivotal role in the analysis and interpretation 
of multi-omics data (20). AI offers robust solutions for data 
integration, subtype discovery, and precision diagnostics, providing 
new opportunities for enhancing disease understanding and 
treatment strategies.

2.5.1 Application of AI algorithms
Deep Learning (DL) and ensemble learning: Deep learning 

models, such as convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), are highly effective in processing complex, 
unstructured data like genomic sequences and transcriptomic data. 
These models excel at uncovering intricate patterns and identifying 
potential biomarkers within large datasets. In contrast, ensemble 

FIGURE 1

Multi-omics research process in axial spondyloarthritis.
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learning methods, such as random forests and XGBoost, are invaluable 
for integrating data from multiple sources, ensuring robustness in 
predictive modeling. These algorithms are particularly suited for 
structured data and multi-omics data integration, offering high 
accuracy and stability (21).

Large Language Models (LLM) in axSpA research: While machine 
learning has dominated axSpA research, large language models 
(LLMs) like GPT-4 and BERT are emerging as powerful tools in 
medical informatics. LLMs are particularly useful in natural language 
processing (NLP) tasks, such as extracting valuable insights from 
clinical records, medical literature, and patient narratives. These 
models facilitate the identification of disease patterns, biomarkers, and 
therapeutic targets by analyzing unstructured text data, offering an 
innovative approach to advancing early diagnosis and 
personalized treatment.

2.5.2 Data integration and disease modeling
AI’s role extends to integrating multi-omics data—genomics, 

transcriptomics, proteomics, metabolomics, and microbiomics—
enabling a more holistic understanding of axSpA pathophysiology. AI 
algorithms, such as autoencoders and factorization methods like 
MOFA+, allow researchers to uncover latent factors that influence 
disease progression, helping identify disease subtypes and novel 
therapeutic targets.

In the context of disease modeling, AI aids in developing dynamic 
models that predict disease progression and therapeutic responses, 
providing a personalized approach to axSpA management. Despite the 
progress, the scalability and clinical validation of these models remain 
challenges that require rigorous external validation through 
independent datasets and clinical trials.

2.5.3 Challenges in AI implementation
While AI shows significant promise in improving diagnostic 

precision and treatment prediction, challenges remain in the 
scalability and clinical applicability of these models. Future research 
should focus on verifying AI models in diverse, multi-center clinical 
studies to ensure broad applicability across different patient 
populations. Additionally, addressing issues related to data 
heterogeneity, model transparency, and interpretability will be critical 
to fully integrate AI into clinical practice and provide trustworthy 
decision support.

2.6 Result validation and clinical 
application

The final stage of the pipeline involves rigorous functional and 
clinical validation of candidate biomarkers and therapeutic targets:

Functional validation: Includes in vitro assays and in vivo animal 
models to test biological relevance.

Clinical cohort validation: Evaluates biomarker performance 
across diverse patient populations.

Translation to clinical tools: Successful candidates may 
be developed into diagnostic assays or therapeutic strategies.

Through this translational pipeline, multi-omics research can 
generate actionable insights that improve early diagnosis, prognostic 
accuracy, and tailored therapy, thereby enhancing clinical outcomes 
and quality of life for axSpA patients.

3 Applications of omics technologies 
in axial spondyloarthritis

3.1 Genomic research and findings

Genomic technologies, particularly genome-wide association studies 
(GWAS), have played a pivotal role in exploring the genetic susceptibility 
to axSpA (22, 23). GWAS has identified several genetic factors associated 
with axSpA, with the HLA-B27 gene being the most well-known genetic 
marker (24). However, due to variations in the sensitivity and specificity 
of HLA-B27 across different ethnic groups, its universal applicability is 
limited (25, 26). To overcome this, researchers have employed polygenic 
risk scores (PRS), combining HLA-B27 with other related genes such as 
ERAP1 and IL23R, thereby significantly improving axSpA diagnostic 
accuracy (27). Additionally, polymorphisms in genes like STAT3 and 
TNFRSF1A have been found to be closely related to immune responses, 
providing new insights into the immune mechanisms of axSpA (28). 
Through genomic research, researchers not only identify new genetic 
markers but also offer theoretical support for personalized treatment, 
driving the development of targeted therapeutic strategies.

3.2 Transcriptomic research and findings

Transcriptomic technologies, especially RNA sequencing, have 
revealed significant differential expression of immune-related genes in 
axSpA patients, particularly pro-inflammatory cytokines such as TNF-α, 
IL-17, and IL-23, which play central roles in the immune response of 
axSpA (29). In conjunction with epigenetic studies, it has been found 
that hypomethylation of the IL-17A gene promoter region promotes 
excessive expression of IL-17A, providing new theoretical support for 
IL-17-targeted therapies (30, 31). Analysis of multiple datasets has also 
identified several key genes, such as ACSL1, SLC40A1, GZMM, TRIB1, 
and XBP1, which are closely associated with immune infiltration and 
disease activity in axSpA. Notably, the SLC40A1 gene, by regulating iron 
metabolism and ferroptosis, may exacerbate inflammation and drive 
axSpA progression (32). Furthermore, circRNA expression profiling in 
peripheral blood mononuclear cells has identified hsa_circRNA_001544 
and hsa_circRNA_102532 as potential molecular biomarkers for axSpA, 
with hsa_circRNA_012732 potentially reflecting disease activity (33). By 
integrating transcriptomic and epigenetic analyses, these studies offer 
new biomarkers and therapeutic targets for precise diagnosis and 
personalized treatment of axSpA, laying the foundation for the 
development of immune-targeted therapies.

In the context of the vast amount of available ‘omics’ data, genomics 
and transcriptomics are currently considered the most crucial. HLA-B27 
remains one of the most significant genetic markers for axSpA, and the 
integration of polygenic risk scores (PRS) provides additional predictive 
power. In terms of transcriptomics, the TNF-α and IL-17 signaling 
pathways play pivotal roles in the pathogenesis of axSpA and have a 
substantial impact on the development of targeted therapies.

3.3 The role of proteomics and 
metabolomics

Proteomics and metabolomics have provided critical information for 
understanding the pathological mechanisms of axSpA, particularly in 
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identifying key proteins and metabolic products associated with disease 
progression (34). Mass spectrometry analyses have revealed widespread 
lipid metabolism dysregulation in axSpA patients, particularly the 
increased levels of phospholipids and sphingolipids, which are closely 
linked to the activation of the NF-κB signaling pathway (35). Changes in 
lipid metabolism may serve as a key driver of the inflammatory response 
in axSpA (36, 37). Metabolomic technologies have also uncovered 
metabolic abnormalities in axSpA patients, particularly enhanced 
glycolysis and decreased levels of short-chain fatty acids (38–40). These 
metabolic changes are significantly intertwined with immune responses, 
indicating that metabolic reprogramming plays a crucial role in the 
inflammatory process of axSpA. The study of metabolomics provides a 
new perspective on the mechanisms of axSpA and offers theoretical 
support for therapeutic strategies targeting metabolic regulation.

3.4 Breakthroughs in microbiomics

Research in gut microbiomics has offered new insights into 
axSpA. Studies have shown that the gut microbiota of axSpA patients 
exhibit significant structural differences, with some bacterial epitopes 
resembling the HLA-B27 gene, potentially inducing immune 
responses through molecular mimicry (41, 42). Metagenomic 
analyses have revealed that changes in the gut microbiome structure 
are closely associated with immune responses in axSpA. Notably, 
following treatment with TNF-α inhibitors (TNFi), the restoration 

of the gut microbiome reflects changes in immune responses, 
suggesting that the microbiome plays a key role in immune regulation 
in axSpA (17). These findings indicate that the gut microbiome may 
contribute to the pathogenesis of axSpA by influencing immune 
responses and autoimmune mechanisms, providing new clues for the 
potential role of the microbiome in axSpA treatment.

3.5 An integrated immunological model of 
axSpA pathogenesis

Although the etiology of axSpA has not been fully elucidated, 
recent multi-omics studies have provided multi-layered evidence 
suggesting that its pathogenesis involves a complex interplay among 
genetic susceptibility, gut microbiota dysbiosis, immune 
dysregulation, and mechanical stress. Based on current findings from 
basic research, we have constructed an integrated immunological 
model of axSpA (see Figure  2) to better illustrate its complex 
pathological mechanisms.

At the genetic level, susceptibility genes—particularly HLA-B27—
may contribute to aberrant antigen presentation, thereby inducing 
CD8+ T cell-mediated IFN-γ responses and activating canonical 
inflammatory signaling pathways such as JAK-STAT3 and NF-κB 
(43). This activation leads to the sustained production of 
pro-inflammatory cytokines including TNF-α, IL-6, and IL-1, 
establishing a chronic inflammatory milieu.

FIGURE 2

Integrated immunopathogenic model of axial spondyloarthritis.
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From a microbial perspective, gut dysbiosis in axSpA patients 
permits pathogen-associated molecular patterns (PAMPs) to traverse 
the impaired mucosal barrier, triggering pattern recognition receptors 
(PRRs) on dendritic cells and macrophages (44). This, in turn, promotes 
the secretion of IL-23 and IL-12, facilitating the differentiation of Th17 
and Th1 cells. Activated Th17 cells and innate lymphoid cells type 3 
(ILC3s) secrete large amounts of IL-17 in response to IL-23 stimulation, 
a pivotal cytokine in both enthesitis and bone remodeling (18).

Concurrently, mechanical stress at entheses induces the release of 
damage-associated molecular patterns (DAMPs), which recruit and 
activate γδ T cells and neutrophils. These cells further amplify the 
IL-17- and TNF-dominated inflammatory cascade, promoting bone 
resorption and tissue destruction (45).

As the disease progresses to later stages, chronic inflammation 
persistently activates the Wnt/β-catenin signaling pathway, aberrantly 
enhancing osteoblast activity and mesenchymal stem cell proliferation. 
This results in pathological new bone formation and the development 
of syndesmophytes (46). This inflammation-to-bone-remodeling 
transition elucidates the molecular basis of axSpA progression from 
bone erosion to ankylosis.

Although this model captures the major pathological pathways 
underlying articular manifestations in axSpA, it remains insufficient 
in explaining systemic features such as acute anterior uveitis (AAU). 
Future studies should leverage high-resolution technologies, including 
spatial transcriptomics and single-cell omics, to further unravel the 
dynamics of tissue microenvironments and immune cell lineages.

This schematic illustrates the interplay of genetic predisposition, 
microbial dysbiosis, immune dysregulation, and mechanical stress in 
the pathogenesis of axSpA. Genetic variants—particularly HLA-B27—
contribute to aberrant antigen presentation and activation of CD8+ T 
cells, initiating IFN-γ production and downstream NF-κB and 
JAK-STAT3 signaling. Gut barrier dysfunction permits PAMPs to 
activate antigen-presenting cells (APCs), leading to IL-12 and IL-23 
secretion and subsequent differentiation of Th1 and Th17 cells. Innate 
lymphoid cells (ILC3s) and γδ T cells further amplify IL-17–mediated 
inflammation in response to IL-23. Mechanical stress induces DAMP 
release, enhancing recruitment of pro-inflammatory immune cells. 
Chronic inflammation activates Wnt/β-catenin signaling, driving 
mesenchymal proliferation and osteoblast differentiation, culminating 
in pathological new bone formation and syndesmophyte development.

4 Applications of systems biology and 
multi-omics integration in axSpA 
research

Systems biology and multi-omics integration offer a novel 
perspective for axSpA research, particularly in elucidating the 
interactions between disease mechanisms and signaling pathways (see 
Figure 2). By integrating multi-omics data, systems biology not only 
deepens our understanding of the pathology of axSpA but also 
provides critical support for precision medicine (22).

4.1 Key network modeling and molecular 
mechanism analysis

Systems biology constructs protein–protein interaction (PPI) 
networks to identify core molecules and their signaling pathways in 

axSpA. Studies have shown that the NF-κB, JAK/STAT, and IL-23/
IL-17 pathways play central roles in the immune regulation and 
inflammatory responses in axSpA (47–49). By combining proteomic 
and transcriptomic data, researchers have identified key genes such as 
IL-23R, ERAP1, and HLA-B27, which play significant roles in the 
pathogenesis of axSpA and have driven the development of targeted 
drugs and therapeutic strategies (50–52).

4.2 Dynamic network modeling and 
personalized treatment

Dynamic network modeling, which incorporates time-series data, 
offers valuable insights into the progression of axSpA, from early 
immune responses to the late development of bone lesions. This 
approach helps clarify the biological mechanisms driving the disease 
at different stages, particularly in the context of immune inflammation 
and bone remodeling. Research has shown that in the early stages of 
axSpA, the IL-23/IL-17 pathway plays a predominant role in initiating 
inflammation by promoting the proliferation and differentiation of 
Th17 cells. As the disease progresses, the Wnt signaling pathway 
becomes a key driver, regulating bone metabolism and contributing 
to the formation of bone lesions. Wnt activation exacerbates bone 
hypertrophy, which is critical in the later stages of disease progression 
(46, 53). These findings underscore the complex interactions between 
immune and skeletal systems that are central to axSpA.

Additionally, the IL-23/IL-17 signaling pathway interacts with the 
NF-κB pathway, enhancing the inflammatory response and 
simultaneously activating the Wnt pathway. This molecular cascade 
strengthens the link between immune inflammation and bone 
remodeling, offering a clear biological rationale for intervention at 
multiple disease stages (54–57). Based on dynamic network modeling, 
personalized treatment strategies for axSpA can be tailored to the 
patient’s stage of disease. In the early stage, targeting IL-17 with 
inhibitors like Secukinumab can effectively control the inflammatory 
response, potentially halting disease progression. In contrast, in the 
later stage, treatments focused on modulating bone metabolism have 
shown clinical promise in reducing bone lesions and preventing 
further joint fusion, highlighting their clinical relevance for improving 
patient outcomes and quality of life (58, 59).

5 Technological innovation and future 
development

With continuous advances in science and technology, research 
and treatment methods for axSpA are undergoing profound changes. 
From multi-omics integration to the application of AI, technological 
innovations are paving new pathways for precision medicine in 
axSpA (60).

5.1 Integration of single-cell omics and 
precision medicine

The rapid development of single-cell omics technologies offers 
new opportunities for precision medicine (61, 62). This technology 
allows for the precise identification of functional differences among 
various cell populations within the immune system of axSpA 
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patients, revealing their specific roles in immune responses (63). It 
provides accurate immune targets for personalized treatment, 
especially in immunosuppressive therapies, enabling more targeted 
treatment plans based on the patient’s immune phenotype. Single-
cell RNA sequencing has enabled in-depth analysis of dynamic 
changes in immune cells in axSpA patients, revealing the pivotal 
roles of Th17 and Treg cells in the immune response of axSpA (64). 
In the future, single-cell omics may be integrated with other omics 
technologies to provide more precise disease subtyping, helping 
physicians select the best treatment strategies for axSpA patients (65).

5.2 The prospects of spatial omics

Spatial omics technologies, particularly spatial transcriptomics, 
allow for precise localization of gene expression within tissue slices 
and enable the observation of spatial distribution and interactions 
between different cell types (66, 67). In axSpA research, spatial 
omics offers an opportunity to deeply understand changes in the 
microenvironment of bone and joint tissues (68, 69). This 
technology enables the exploration of interactions between immune 
cells and bone-metabolism cells in the bone and joint inflammation 
regions of axSpA, shedding light on their critical roles in disease 
pathogenesis. Specifically, in the study of bone hypertrophy and 
bone remodeling, spatial omics can accurately depict the spatial 
localization of different immune and bone cells, further uncovering 
their roles in disease (70). Spatial omics not only provides 
fundamental insights into disease mechanisms but also offers new 
biomarkers for clinical applications, driving personalized diagnosis 
and treatment of axSpA.

5.3 The deepening application of AI and 
data mining technologies

AI and machine learning have become indispensable tools in 
multi-omics data analysis for axSpA research (71). AI’s ability to 
identify disease patterns, predict therapeutic responses, and uncover 
novel biomarkers is transforming how we  approach diagnosis 
and treatment.

5.3.1 AI in data analysis and integration
AI for multi-omics integration: One of the most critical 

applications of AI in axSpA research is its ability to integrate multi-
omics data from different layers—such as genomics, proteomics, and 
metabolomics. Machine learning algorithms enhance data integration 
by identifying hidden correlations and providing a more 
comprehensive view of the disease mechanisms (11). For example, AI 
models like XGBoost are being explored for predicting treatment 
responses based on multi-omics profiles, offering more personalized 
and effective treatment strategies.

Biomarker discovery and disease subtype classification: 
Unsupervised learning algorithms have the ability to discover 
previously unknown disease subtypes by analyzing complex 
datasets. These AI-driven models help identify specific biomarkers 
related to different disease stages and therapeutic responses, 
improving diagnostic precision. For example, MOFA+ has been 
used to integrate transcriptomics and proteomics data, identifying 

hidden factors that influence disease progression and 
treatment outcomes.

5.3.2 AI in precision medicine
AI technologies contribute significantly to precision medicine by 

providing models that predict disease trajectories and patient-specific 
treatment responses. By leveraging multi-omics data, AI enhances the 
identification of molecular biomarkers and disease networks, helping 
to define personalized treatment regimens for axSpA (72). For 
instance, AI-driven predictive models can forecast patient responses 
to therapies like TNF-α inhibitors or IL-17 inhibitors, guiding 
clinicians in making more informed treatment decisions.

5.3.3 Challenges and future prospects
Despite AI’s transformative potential, there are several challenges 

that must be addressed for widespread clinical adoption. Key issues 
include data privacy, model interpretability, and data validation. AI 
models in axSpA must undergo rigorous validation in independent 
datasets and clinical trials to confirm their reliability and applicability 
in real-world settings. Furthermore, addressing the biases inherent in 
AI algorithms and ensuring that models are transparent and 
explainable will be  crucial to gaining clinical trust and ensuring 
equitable patient care.

The future of AI in axSpA lies in its ability to assist in clinical 
decision-making by integrating clinical, genomic, and treatment 
response data. By continuing to enhance AI’s analytical capabilities, 
the integration of multi-omics data will play a pivotal role in realizing 
personalized and effective treatments for axSpA.

5.4 New targeted therapies and 
immunomodulation strategies

The field of targeted therapy for axSpA is rapidly advancing, 
especially in immunomodulatory treatments. With a deeper 
understanding of the pathogenesis of axSpA, new targeted treatment 
strategies and immunomodulatory methods are gradually entering 
clinical practice. Currently, TNF-α inhibitors, IL-17 inhibitors, and 
JAK inhibitors have shown significant clinical effects in the treatment 
of axSpA, and more refined targeted drugs may emerge in the future 
(73–75). Targeted drugs that focus on different immune pathways will 
make axSpA treatment more personalized. Researchers are exploring 
immunotolerance strategies (e.g., antibody-dependent cytotoxicity) to 
modulate immune responses, thereby reducing abnormal activation 
of the immune system in axSpA patients, alleviating symptoms, and 
improving treatment efficacy. In the future, drug development will 
increasingly focus on precisely targeting specific molecules and cell 
subpopulations to enhance efficacy and reduce side effects. Drug 
development will not only rely on basic research but also integrate 
patients’ genomic and phenotypic information to create personalized 
treatment plans.

5.5 Clinical translation challenges in 
multi-omics integration

Despite significant progress in understanding axSpA through 
multi-omics technologies, clinical application still faces several 
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challenges. These include data heterogeneity, the lack of standardized 
multi-omics integration protocols, and insufficient clinical validation 
of identified biomarkers and therapeutic targets (11). To overcome 
these challenges, several strategies should be considered:

Development of standardized methods for data preprocessing, 
integration, and interpretation: These methods will enhance the 
comparability of findings across different studies, making multi-omics 
data more reliable for clinical decision-making (76, 77).

Large-scale, multi-center clinical studies: To validate the clinical 
relevance of biomarkers and therapeutic targets identified through 
multi-omics integration, large-scale, multi-center studies are crucial. 
These studies will provide the necessary evidence to confirm the 
robustness and applicability of findings across diverse 
patient populations.

Collaborative data coordination and seamless integration: 
Coordinating data from multiple sources is vital for the seamless 
integration of clinical data, omics data, and patient metadata. This will 
mitigate the challenges posed by data heterogeneity and enable more 
accurate interpretation (78).

AI for data integration and analysis: AI, especially machine 
learning and deep learning, provides powerful tools for handling large, 
heterogeneous datasets. AI can optimize multi-omics data integration, 
identify meaningful patterns, and predict clinical outcomes more 
accurately, addressing issues such as data inconsistencies and missing 
information (79, 80). However, the interpretability, potential biases, 
and data privacy concerns of AI models must be carefully considered 
to ensure fairness and transparency in clinical applications.

Rigorous clinical validation: Clinical validation is essential for any 
potential biomarker or therapeutic target used in patient care. 
Structured validation processes, including in  vitro testing, animal 
models, and extensive clinical trials, are crucial for confirming the 
results of multi-omics studies and ensuring their practical applicability.

By focusing on these strategies, multi-omics research can advance 
toward clinical translation, paving the way for more precise and 
effective treatments for axSpA.

6 Conclusion

axSpA is a complex immune-mediated inflammatory disease 
influenced by genetic, immune, and environmental factors. Although 
significant progress has been made in axSpA treatment, challenges 
remain in early diagnosis, personalized care, and long-term 
management. The rapid development of multi-omics technologies has 
provided new insights into disease mechanisms, and the integration 
of these approaches is driving the shift toward precision medicine. By 
integrating multi-omics data and utilizing AI for analysis, researchers 
can more accurately identify biomarkers and immune pathways, 
enabling the development of personalized treatment strategies. These 
advancements not only deepen our understanding of the 
pathophysiology of axSpA but also lay a solid foundation for the 
development of targeted therapies and optimized treatment plans. 
However, challenges such as data heterogeneity, lack of 
standardization, and difficulties in clinical translation continue to 
hinder the widespread implementation of these technologies. 
Overcoming these obstacles will require interdisciplinary 
collaboration, data sharing, and further advancements in AI 

technologies. As emerging tools such as single-cell omics and spatial 
omics continue to evolve, the integration of multi-omics with 
precision medicine will provide more effective and personalized 
treatments for axSpA patients, significantly improving their quality 
of life.

In summary, multi-omics research and precision medicine in 
axSpA hold great potential. Ongoing technological innovation and 
interdisciplinary collaboration will drive the clinical application of 
precision medicine in axSpA, optimizing diagnosis and treatment 
outcomes while improving long-term patient prognosis.
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Glossary

axSpA - Axial spondyloarthritis

AI - Artificial intelligence

GWAS - Genome-wide association study

PRS - Polygenic risk scores

HLA-B27 - Human leukocyte antigen B27

IL - Interleukin

TNF-α - Tumor necrosis factor-alpha

TNFi - Tumor necrosis factor inhibitors

JAK - Janus kinase

STAT - Signal transducer and activator of transcription

ERAP1 - Endoplasmic reticulum aminopeptidase 1

NF-κB - Nuclear factor kappa B

PPI - Protein–protein interaction

Th17 - T helper 17 cells

Treg - Regulatory T cells

DKK-1 - Dickkopf-related protein 1

Wnt - Wingless/integrated signaling pathway

LC–MS - Liquid chromatography-mass spectrometry

GC–MS - Gas chromatography–mass spectrometry

RNA-seq - RNA sequencing

scRNA-seq - Single-cell RNA sequencing

APCs - Antigen-presenting cells

PAMPs - Pathogen-associated molecular patterns

DAMPs - Damage-associated molecular patterns

IFN-γ - Interferon gamma

Th1 - T-helper 1

CD8+ T cells - Cluster of differentiation 8 positive T cells

JAK-STAT - Janus kinase-signal transducer and activator 
of transcription

ILC3 - Innate lymphoid cells type 3

γδT cells - Gamma delta T cells

AAU - Acute anterior uveitis

Wnt/β-catenin - Wnt/β-catenin signaling pathway
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