& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Chunyou Wan,
Tianjin University, China

REVIEWED BY

Kenneth Pritzker,

University of Toronto, Canada
Shanjie Luan,

Shandong University, China

*CORRESPONDENCE

Huji Xu
huji_xu@smmu.edu.cn

Yufeng Qing
gingyufengqq@l163.com

These authors have contributed equally to
this work

RECEIVED 29 September 2025
ACCEPTED 27 October 2025
PUBLISHED 10 November 2025

CITATION

Ni 'Y, Zhang Q, Wu X, Xu H and Qing Y (2025)
Advancing precision medicine in axial
spondyloarthritis: insights from multi-omics
approaches.

Front. Med. 12:1715420.

doi: 10.3389/fmed.2025.1715420

COPYRIGHT

© 2025 Ni, Zhang, Wu, Xu and Qing. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Medicine

Frontiers in Medicine

TYPE Review
PUBLISHED 10 November 2025
pol 10.3389/fmed.2025.1715420

Advancing precision medicine in
axial spondyloarthritis: insights
from multi-omics approaches

Yuanpiao Ni*?3', Quanbo Zhang'!, Xin Wu®, Huji Xu** and
Yufeng Qing*?*

!Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College,
Nanchong, Sichuan, China, 2Department of Rheumatology and Immunology, Affiliated Hospital of
North Sichuan Medical College, Nanchong, Sichuan, China, *Department of Rheumatology and
Immunology, Mianyang Central Hospital, Mianyang, Sichuan, China, “Department of Geriatrics,
Affiliated Hospital of North Sichuan Medical College, Nanchong, China, *Department of
Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai,
China

Axial Spondyloarthritis (axSpA) is a chronic inflammatory disease influenced by
genetic, immune, metabolic, and environmental factors, significantly impacting
patients’ quality of life. Recent advancements in multi-omics technologies—such as
genomics, transcriptomics, proteomics, and metabolomics—provide new insights
into axSpA pathogenesis and precision medicine. These technologies reveal genetic
susceptibility, immune responses, and metabolic alterations, uncovering potential
biomarkers and therapeutic targets. This review explores multi-omics applications
in understanding axSpA mechanisms, developing targeted therapies, and advancing
precision diagnostics. It also addresses challenges in data integration and highlights
the role of artificial intelligence (Al) in enhancing analysis precision and constructing
dynamic disease networks. Combining Al with multi-omics could revolutionize
diagnosis, personalized treatment, and clinical translation for axSpA, driving the
future of precision medicine.
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1 Introduction

AxSpA is a chronic, progressive inflammatory disease primarily affecting the spine and
sacroiliac joints (1). It often leads to persistent pain, stiffness, and limited mobility, potentially
resulting in spinal deformities and loss of function (2). The pathogenesis of axSpA is complex,
involving the interplay of genetic predisposition, immune system abnormalities, and
environmental factors (3-5). Although significant progress has been made in axSpA treatment,
existing approaches still face notable limitations in early diagnosis, personalized treatment,
and long-term management, hindering the realization of precision medicine (6). In particular,
the incomplete understanding of axSpA’s pathological mechanisms and the atypical nature of
its early symptoms lead many patients to miss the optimal window for treatment, resulting in
significant variability in therapeutic outcomes (7).

In recent years, the rapid advancement of high-throughput omics technologies,
including genomics, transcriptomics, proteomics, and metabolomics, has provided new
opportunities for axSpA research (8). These technologies enable researchers to explore the
molecular mechanisms of axSpA from multiple dimensions, identify potential biomarkers,
and support targeted and personalized therapies. For instance, genomic studies have
elucidated genetic risk factors like the HLA-B27 gene, while transcriptomic analyses have
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revealed immune-related dysregulation in axSpA (9). However,
single-omics approaches struggle to fully capture the complexity of
the disease, and the challenges of data heterogeneity and integration
limit their widespread clinical application.

In contrast to previous reviews, which primarily focus on
individual omics layers, this review emphasizes the integrated
application of multi-omics approaches, which offer a more holistic
view of axSpA pathogenesis. By combining data across genomics,
transcriptomics, proteomics, metabolomics, and microbiomics,
we can better understand the disease’s complexity and identify patient
subtypes, thereby laying the foundation for precision medicine in
axSpA (10). However, processing vast amounts of omics data and
uncovering underlying patterns remains a significant challenge in
current research (11).

To address these challenges, AI has emerged as a
transformative tool in the analysis and integration of multi-omics
data. Machine learning and deep learning methods can uncover
complex patterns and associations within large datasets,
significantly improving the accuracy and efficiency of analyses
(12). AI can automatically detect complex patterns within the
data, enhancing the accuracy and efficiency of analyses, and
offering new solutions for early diagnosis, disease prediction, and
personalized treatment of axSpA. The integration of AI with
multi-omics technologies not only aids in uncovering the
pathophysiological mechanisms of axSpA but also facilitates
clinical translation by constructing disease networks and
identifying biomarkers for precision medicine.

This review provides a comprehensive examination of the current
state of multi-omics research in axSpA, with a particular focus on how
Al can facilitate the integration of omics data to enhance diagnostic
and therapeutic precision. We also highlight the ongoing challenges
and future prospects of integrating these technologies to drive the
realization of personalized treatment strategies for axSpA, ultimately
improving patient outcomes and quality of life.

2 Multi-omics research process in
axial spondyloarthritis

The integration of multi-omics technologies provides a powerful
approach for elucidating disease mechanisms, identifying reliable
biomarkers, and advancing precision medicine in axSpA. Figure 1
illustrates a comprehensive multi-omics research workflow specifically
tailored for axSpA.

2.1 Sample collection and preparation

The research process begins with the systematic collection of high-
quality biological samples from axSpA patients and appropriate
controls (13). These include blood, urine, feces, synovial fluid,
cartilage, synovium, and bone tissue, representing the diverse tissues
involved in axSpA-related inflammation and structural changes,
particularly in the sacroiliac joints and axial skeleton.

As illustrated in Figure 1, while axSpA primarily affects the axial
joints, especially the spine and sacroiliac joints, it may also involve
peripheral joints and lead to extra-articular manifestations in organs
such as the gut, eyes, skin, lungs, heart, and kidneys. This highlights
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the importance of comprehensive and multi-source biological
sampling to capture the systemic nature of the disease.
Simultaneously, detailed clinical information—including disease
duration, symptom profile, imaging findings, treatment history, and
associated comorbidities—is collected. This clinical context is essential
for correlating molecular findings with phenotypic presentations and
enhancing the biological interpretation of omics-derived insights.

2.2 Omics data generation

Advanced high-throughput platforms are employed to generate
multi-layered omics data from collected samples, encompassing:

Genomics (e.g., whole genome/exome sequencing): Identifies
genetic variants and risk alleles associated with axSpA
predisposition (9).

Transcriptomics (e.g., RNA-Seq): Profiles gene expression
signatures and identifies dysregulated transcriptional networks in
axSpA-affected tissues (14).

Proteomics (e.g., mass spectrometry): Quantifies protein
abundance and post-translational modifications, elucidating protein-
level alterations in disease progression (15).
(e.g, MS, NMR):

dysregulations and immune-metabolic interactions involved in axSpA

Metabolomics Captures metabolic
pathogenesis (16).

Microbiomics: Investigates alterations in gut and mucosal
microbiota, which are increasingly recognized as contributors to
axSpA development (17, 18).

These diverse omics layers provide a multidimensional molecular
atlas of axSpA, enabling comprehensive disease modeling.

2.3 Data preprocessing and quality control

Given the complexity and heterogeneity of omics datasets,
rigorous data preprocessing is essential (19):

Data
low-confidence features.

cleaning: Eliminates noise, contaminants, and

Normalization: Adjusts for batch effects and technical variability,
ensuring cross-sample comparability.

Missing data imputation: Employs statistical methods to handle
incomplete entries, preserving dataset integrity.

These quality control measures are critical to ensure analytical

reliability and reproducibility.

2.4 Multi-omics data integration and
analysis

The integration of multi-omics datasets is essential for
understanding the complexity of axSpA. By combining genomics,
transcriptomics, proteomics, metabolomics, and microbiomics data,
researchers can reveal systemic interactions driving axSpA
pathophysiology. However, discrepancies often arise between different
omics layers, such as genetic findings not fully aligning with
transcriptomic or proteomic data. For instance, genetic risk factors
identified in genomic studies may not always correlate directly with
changes in gene expression or protein abundance, creating
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FIGURE 1

Multi-omics research process in axial spondyloarthritis.

inconsistencies across datasets. These discrepancies are influenced by
factors such as sample types, disease stages, or technical limitations in
omics platforms.

To address these challenges, systematic data integration and cross-
validation across omics layers are crucial. Al, particularly machine
learning and deep learning techniques, aids in resolving these
discrepancies by detecting hidden patterns across datasets, allowing
for the harmonization of findings. This enables the identification of
reliable biomarkers, disease subtypes, and therapeutic targets.

Despite the progress, challenges remain in ensuring the robustness
and clinical applicability of multi-omics findings. Cross-validation
using independent datasets is essential to confirm the reliability of
biomarkers and therapeutic targets. Additionally, the development of
standardized methods for integrating omics data and addressing data
heterogeneity will improve the accuracy of multi-omics studies.

This systems-level approach provides a holistic view of axSpA,
highlighting the critical role AI will continue to play in improving data
integration, resolving inconsistencies, and facilitating the translation
of omics insights into personalized treatment strategies. As discussed
in Section 2.5, ATs transformative role in data analysis further
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enhances the precision and applicability of these findings, leading to
more effective diagnosis and treatment.

2.5 Artificial intelligence-assisted analysis

As illustrated in Figure 1, Al—particularly machine learning and
deep learning—plays a pivotal role in the analysis and interpretation
of multi-omics data (20). AI offers robust solutions for data
integration, subtype discovery, and precision diagnostics, providing
new opportunities for enhancing disease understanding and

treatment strategies.

2.5.1 Application of Al algorithms

Deep Learning (DL) and ensemble learning: Deep learning
models, such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), are highly effective in processing complex,
unstructured data like genomic sequences and transcriptomic data.
These models excel at uncovering intricate patterns and identifying
potential biomarkers within large datasets. In contrast, ensemble
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learning methods, such as random forests and XGBoost, are invaluable
for integrating data from multiple sources, ensuring robustness in
predictive modeling. These algorithms are particularly suited for
structured data and multi-omics data integration, offering high
accuracy and stability (21).

Large Language Models (LLM) in axSpA research: While machine
learning has dominated axSpA research, large language models
(LLMs) like GPT-4 and BERT are emerging as powerful tools in
medical informatics. LLMs are particularly useful in natural language
processing (NLP) tasks, such as extracting valuable insights from
clinical records, medical literature, and patient narratives. These
models facilitate the identification of disease patterns, biomarkers, and
therapeutic targets by analyzing unstructured text data, offering an
innovative approach to

advancing early diagnosis and

personalized treatment.

2.5.2 Data integration and disease modeling

AT role extends to integrating multi-omics data—genomics,
transcriptomics, proteomics, metabolomics, and microbiomics—
enabling a more holistic understanding of axSpA pathophysiology. AI
algorithms, such as autoencoders and factorization methods like
MOFA+, allow researchers to uncover latent factors that influence
disease progression, helping identify disease subtypes and novel
therapeutic targets.

In the context of disease modeling, Al aids in developing dynamic
models that predict disease progression and therapeutic responses,
providing a personalized approach to axSpA management. Despite the
progress, the scalability and clinical validation of these models remain
challenges that require rigorous external validation through
independent datasets and clinical trials.

2.5.3 Challenges in Al implementation

While AI shows significant promise in improving diagnostic
precision and treatment prediction, challenges remain in the
scalability and clinical applicability of these models. Future research
should focus on verifying AI models in diverse, multi-center clinical
studies to ensure broad applicability across different patient
populations. Additionally, addressing issues related to data
heterogeneity, model transparency, and interpretability will be critical
to fully integrate Al into clinical practice and provide trustworthy
decision support.

2.6 Result validation and clinical
application

The final stage of the pipeline involves rigorous functional and
clinical validation of candidate biomarkers and therapeutic targets:

Functional validation: Includes in vitro assays and in vivo animal
models to test biological relevance.

Clinical cohort validation: Evaluates biomarker performance
across diverse patient populations.

Translation to clinical tools: Successful candidates may
be developed into diagnostic assays or therapeutic strategies.

Through this translational pipeline, multi-omics research can
generate actionable insights that improve early diagnosis, prognostic
accuracy, and tailored therapy, thereby enhancing clinical outcomes
and quality of life for axSpA patients.
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3 Applications of omics technologies
in axial spondyloarthritis

3.1 Genomic research and findings

Genomic technologies, particularly genome-wide association studies
(GWAS), have played a pivotal role in exploring the genetic susceptibility
to axSpA (22, 23). GWAS has identified several genetic factors associated
with axSpA, with the HLA-B27 gene being the most well-known genetic
marker (24). However, due to variations in the sensitivity and specificity
of HLA-B27 across different ethnic groups, its universal applicability is
limited (25, 26). To overcome this, researchers have employed polygenic
risk scores (PRS), combining HLA-B27 with other related genes such as
ERAPI1 and IL23R, thereby significantly improving axSpA diagnostic
accuracy (27). Additionally, polymorphisms in genes like STAT3 and
TNFRSFI1A have been found to be closely related to immune responses,
providing new insights into the immune mechanisms of axSpA (28).
Through genomic research, researchers not only identify new genetic
markers but also offer theoretical support for personalized treatment,
driving the development of targeted therapeutic strategies.

3.2 Transcriptomic research and findings

Transcriptomic technologies, especially RNA sequencing, have
revealed significant differential expression of immune-related genes in
axSpA patients, particularly pro-inflammatory cytokines such as TNF-a,
IL-17, and IL-23, which play central roles in the immune response of
axSpA (29). In conjunction with epigenetic studies, it has been found
that hypomethylation of the IL-17A gene promoter region promotes
excessive expression of IL-17A, providing new theoretical support for
IL-17-targeted therapies (30, 31). Analysis of multiple datasets has also
identified several key genes, such as ACSL1, SLC40A1, GZMM, TRIB1,
and XBP1, which are closely associated with immune infiltration and
disease activity in axSpA. Notably, the SLC40A1 gene, by regulating iron
metabolism and ferroptosis, may exacerbate inflammation and drive
axSpA progression (32). Furthermore, circRNA expression profiling in
peripheral blood mononuclear cells has identified hsa_circRNA_001544
and hsa_circRNA_102532 as potential molecular biomarkers for axSpA,
with hsa_circRNA_012732 potentially reflecting disease activity (33). By
integrating transcriptomic and epigenetic analyses, these studies offer
new biomarkers and therapeutic targets for precise diagnosis and
personalized treatment of axSpA, laying the foundation for the
development of immune-targeted therapies.

In the context of the vast amount of available ‘omics’ data, genomics
and transcriptomics are currently considered the most crucial. HLA-B27
remains one of the most significant genetic markers for axSpA, and the
integration of polygenic risk scores (PRS) provides additional predictive
power. In terms of transcriptomics, the TNF-o and IL-17 signaling
pathways play pivotal roles in the pathogenesis of axSpA and have a
substantial impact on the development of targeted therapies.

3.3 The role of proteomics and
metabolomics

Proteomics and metabolomics have provided critical information for
understanding the pathological mechanisms of axSpA, particularly in
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identifying key proteins and metabolic products associated with disease
progression (34). Mass spectrometry analyses have revealed widespread
lipid metabolism dysregulation in axSpA patients, particularly the
increased levels of phospholipids and sphingolipids, which are closely
linked to the activation of the NF-«B signaling pathway (35). Changes in
lipid metabolism may serve as a key driver of the inflammatory response
in axSpA (36, 37). Metabolomic technologies have also uncovered
metabolic abnormalities in axSpA patients, particularly enhanced
glycolysis and decreased levels of short-chain fatty acids (38-40). These
metabolic changes are significantly intertwined with immune responses,
indicating that metabolic reprogramming plays a crucial role in the
inflammatory process of axSpA. The study of metabolomics provides a
new perspective on the mechanisms of axSpA and offers theoretical
support for therapeutic strategies targeting metabolic regulation.

3.4 Breakthroughs in microbiomics

Research in gut microbiomics has offered new insights into
axSpA. Studies have shown that the gut microbiota of axSpA patients
exhibit significant structural differences, with some bacterial epitopes
resembling the HLA-B27 gene, potentially inducing immune
responses through molecular mimicry (41, 42). Metagenomic
analyses have revealed that changes in the gut microbiome structure
are closely associated with immune responses in axSpA. Notably,
following treatment with TNF-a inhibitors (TNFi), the restoration

10.3389/fmed.2025.1715420

of the gut microbiome reflects changes in immune responses,
suggesting that the microbiome plays a key role in immune regulation
in axSpA (17). These findings indicate that the gut microbiome may
contribute to the pathogenesis of axSpA by influencing immune
responses and autoimmune mechanisms, providing new clues for the
potential role of the microbiome in axSpA treatment.

3.5 An integrated immunological model of
axSpA pathogenesis

Although the etiology of axSpA has not been fully elucidated,
recent multi-omics studies have provided multi-layered evidence
suggesting that its pathogenesis involves a complex interplay among
genetic  susceptibility, gut microbiota dysbiosis, immune
dysregulation, and mechanical stress. Based on current findings from
basic research, we have constructed an integrated immunological
model of axSpA (see Figure 2) to better illustrate its complex
pathological mechanisms.

At the genetic level, susceptibility genes—particularly HLA-B27—
may contribute to aberrant antigen presentation, thereby inducing
CD8" T cell-mediated IFN-y responses and activating canonical
inflammatory signaling pathways such as JAK-STAT3 and NF-xB
(43). This activation leads to the sustained production of
pro-inflammatory cytokines including TNF-«, IL-6, and IL-1,

establishing a chronic inflammatory milieu.

Mutations in HLA-B27, ERAP1, IL23R, STAT3, TNFRSF1A, etc., lead to the activation of endogenous antigens.

Bacteria
Viruses
Microorganisms,
Endogenous antigen

Py
ﬁ?” E$ogenous
antigen

Mechanical stress
./ DAMPs

IL-12
L IL18

The intestine
Epithelial mucosa damaged

| “micA

FIGURE 2
Integrated immunopathogenic model of axial spondyloarthritis.

“\ INF [l
J' L &L'Gq :
Ostegca§t

Ly,

u%.-l_nﬂammation

.;arly disease

stage

Wnt/B-Catenin pathway

promotes ('{nff?r-e‘n}[afnfag_ >

xcessive bone repair

Frontiers in Medicine

05

frontiersin.org


https://doi.org/10.3389/fmed.2025.1715420
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Nietal.

From a microbial perspective, gut dysbiosis in axSpA patients
permits pathogen-associated molecular patterns (PAMPs) to traverse
the impaired mucosal barrier, triggering pattern recognition receptors
(PRRs) on dendritic cells and macrophages (44). This, in turn, promotes
the secretion of IL-23 and IL-12, facilitating the differentiation of Th17
and Th1 cells. Activated Th17 cells and innate lymphoid cells type 3
(ILC3s) secrete large amounts of IL-17 in response to IL-23 stimulation,
a pivotal cytokine in both enthesitis and bone remodeling (18).

Concurrently, mechanical stress at entheses induces the release of
damage-associated molecular patterns (DAMPs), which recruit and
activate yd T cells and neutrophils. These cells further amplify the
IL-17- and TNF-dominated inflammatory cascade, promoting bone
resorption and tissue destruction (45).

As the disease progresses to later stages, chronic inflammation
persistently activates the Wnt/f-catenin signaling pathway, aberrantly
enhancing osteoblast activity and mesenchymal stem cell proliferation.
This results in pathological new bone formation and the development
of syndesmophytes (46). This inflammation-to-bone-remodeling
transition elucidates the molecular basis of axSpA progression from
bone erosion to ankylosis.

Although this model captures the major pathological pathways
underlying articular manifestations in axSpA, it remains insufficient
in explaining systemic features such as acute anterior uveitis (AAU).
Future studies should leverage high-resolution technologies, including
spatial transcriptomics and single-cell omics, to further unravel the
dynamics of tissue microenvironments and immune cell lineages.

This schematic illustrates the interplay of genetic predisposition,
microbial dysbiosis, immune dysregulation, and mechanical stress in
the pathogenesis of axSpA. Genetic variants—particularly HLA-B27—
contribute to aberrant antigen presentation and activation of CD8* T
cells, initiating IFN-y production and downstream NF-kB and
JAK-STATS3 signaling. Gut barrier dysfunction permits PAMPs to
activate antigen-presenting cells (APCs), leading to IL-12 and IL-23
secretion and subsequent differentiation of Th1 and Th17 cells. Innate
lymphoid cells (ILC3s) and y3 T cells further amplify IL-17-mediated
inflammation in response to IL-23. Mechanical stress induces DAMP
release, enhancing recruitment of pro-inflammatory immune cells.
Chronic inflammation activates Wnt/p-catenin signaling, driving
mesenchymal proliferation and osteoblast differentiation, culminating
in pathological new bone formation and syndesmophyte development.

4 AFplicat_ion_s of systems biology and
multi-omics integration in axSpA
research

Systems biology and multi-omics integration offer a novel
perspective for axSpA research, particularly in elucidating the
interactions between disease mechanisms and signaling pathways (see
Figure 2). By integrating multi-omics data, systems biology not only
deepens our understanding of the pathology of axSpA but also
provides critical support for precision medicine (22).

4.1 Key network modeling and molecular
mechanism analysis

Systems biology constructs protein—protein interaction (PPI)
networks to identify core molecules and their signaling pathways in
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axSpA. Studies have shown that the NF-«B, JAK/STAT, and IL-23/
IL-17 pathways play central roles in the immune regulation and
inflammatory responses in axSpA (47-49). By combining proteomic
and transcriptomic data, researchers have identified key genes such as
IL-23R, ERAPI1, and HLA-B27, which play significant roles in the
pathogenesis of axSpA and have driven the development of targeted
drugs and therapeutic strategies (50-52).

4.2 Dynamic network modeling and
personalized treatment

Dynamic network modeling, which incorporates time-series data,
offers valuable insights into the progression of axSpA, from early
immune responses to the late development of bone lesions. This
approach helps clarify the biological mechanisms driving the disease
at different stages, particularly in the context of immune inflammation
and bone remodeling. Research has shown that in the early stages of
axSpA, the IL-23/IL-17 pathway plays a predominant role in initiating
inflammation by promoting the proliferation and differentiation of
Th17 cells. As the disease progresses, the Wnt signaling pathway
becomes a key driver, regulating bone metabolism and contributing
to the formation of bone lesions. Wnt activation exacerbates bone
hypertrophy, which is critical in the later stages of disease progression
(46, 53). These findings underscore the complex interactions between
immune and skeletal systems that are central to axSpA.

Additionally, the IL-23/IL-17 signaling pathway interacts with the
NE-kB pathway, enhancing the inflammatory response and
simultaneously activating the Wnt pathway. This molecular cascade
strengthens the link between immune inflammation and bone
remodeling, offering a clear biological rationale for intervention at
multiple disease stages (54-57). Based on dynamic network modeling,
personalized treatment strategies for axSpA can be tailored to the
patient’s stage of disease. In the early stage, targeting IL-17 with
inhibitors like Secukinumab can effectively control the inflammatory
response, potentially halting disease progression. In contrast, in the
later stage, treatments focused on modulating bone metabolism have
shown clinical promise in reducing bone lesions and preventing
further joint fusion, highlighting their clinical relevance for improving
patient outcomes and quality of life (58, 59).

5 Technological innovation and future
development

With continuous advances in science and technology, research
and treatment methods for axSpA are undergoing profound changes.
From multi-omics integration to the application of Al technological
innovations are paving new pathways for precision medicine in
axSpA (60).

5.1 Integration of single-cell omics and
precision medicine

The rapid development of single-cell omics technologies offers
new opportunities for precision medicine (61, 62). This technology
allows for the precise identification of functional differences among
various cell populations within the immune system of axSpA
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patients, revealing their specific roles in immune responses (63). It
provides accurate immune targets for personalized treatment,
especially in immunosuppressive therapies, enabling more targeted
treatment plans based on the patient’s immune phenotype. Single-
cell RNA sequencing has enabled in-depth analysis of dynamic
changes in immune cells in axSpA patients, revealing the pivotal
roles of Th17 and Treg cells in the immune response of axSpA (64).
In the future, single-cell omics may be integrated with other omics
technologies to provide more precise disease subtyping, helping
physicians select the best treatment strategies for axSpA patients (65).

5.2 The prospects of spatial omics

Spatial omics technologies, particularly spatial transcriptomics,
allow for precise localization of gene expression within tissue slices
and enable the observation of spatial distribution and interactions
between different cell types (66, 67). In axSpA research, spatial
omics offers an opportunity to deeply understand changes in the
microenvironment of bone and joint tissues (68, 69). This
technology enables the exploration of interactions between immune
cells and bone-metabolism cells in the bone and joint inflammation
regions of axSpA, shedding light on their critical roles in disease
pathogenesis. Specifically, in the study of bone hypertrophy and
bone remodeling, spatial omics can accurately depict the spatial
localization of different immune and bone cells, further uncovering
their roles in disease (70). Spatial omics not only provides
fundamental insights into disease mechanisms but also offers new
biomarkers for clinical applications, driving personalized diagnosis
and treatment of axSpA.

5.3 The deepening application of Al and
data mining technologies

Al and machine learning have become indispensable tools in
multi-omics data analysis for axSpA research (71). AT’s ability to
identify disease patterns, predict therapeutic responses, and uncover
novel biomarkers is transforming how we approach diagnosis
and treatment.

5.3.1 Al in data analysis and integration

Al for multi-omics integration: One of the most critical
applications of Al in axSpA research is its ability to integrate multi-
omics data from different layers—such as genomics, proteomics, and
metabolomics. Machine learning algorithms enhance data integration
by identifying hidden correlations and providing a more
comprehensive view of the disease mechanisms (11). For example, Al
models like XGBoost are being explored for predicting treatment
responses based on multi-omics profiles, offering more personalized
and effective treatment strategies.

Biomarker discovery and disease subtype classification:
Unsupervised learning algorithms have the ability to discover
previously unknown disease subtypes by analyzing complex
datasets. These AI-driven models help identify specific biomarkers
related to different disease stages and therapeutic responses,
improving diagnostic precision. For example, MOFA+ has been
used to integrate transcriptomics and proteomics data, identifying
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hidden factors that influence disease

treatment outcomes.

progression and

5.3.2 Al in precision medicine

Al technologies contribute significantly to precision medicine by
providing models that predict disease trajectories and patient-specific
treatment responses. By leveraging multi-omics data, Al enhances the
identification of molecular biomarkers and disease networks, helping
to define personalized treatment regimens for axSpA (72). For
instance, Al-driven predictive models can forecast patient responses
to therapies like TNF-a inhibitors or IL-17 inhibitors, guiding
clinicians in making more informed treatment decisions.

5.3.3 Challenges and future prospects

Despite AT’s transformative potential, there are several challenges
that must be addressed for widespread clinical adoption. Key issues
include data privacy, model interpretability, and data validation. AI
models in axSpA must undergo rigorous validation in independent
datasets and clinical trials to confirm their reliability and applicability
in real-world settings. Furthermore, addressing the biases inherent in
Al algorithms and ensuring that models are transparent and
explainable will be crucial to gaining clinical trust and ensuring
equitable patient care.

The future of Al in axSpA lies in its ability to assist in clinical
decision-making by integrating clinical, genomic, and treatment
response data. By continuing to enhance AT’s analytical capabilities,
the integration of multi-omics data will play a pivotal role in realizing
personalized and effective treatments for axSpA.

5.4 New targeted therapies and
immunomodulation strategies

The field of targeted therapy for axSpA is rapidly advancing,
especially in immunomodulatory treatments. With a deeper
understanding of the pathogenesis of axSpA, new targeted treatment
strategies and immunomodulatory methods are gradually entering
clinical practice. Currently, TNF-a inhibitors, IL-17 inhibitors, and
JAK inhibitors have shown significant clinical effects in the treatment
of axSpA, and more refined targeted drugs may emerge in the future
(73-75). Targeted drugs that focus on different immune pathways will
make axSpA treatment more personalized. Researchers are exploring
immunotolerance strategies (e.g., antibody-dependent cytotoxicity) to
modulate immune responses, thereby reducing abnormal activation
of the immune system in axSpA patients, alleviating symptoms, and
improving treatment efficacy. In the future, drug development will
increasingly focus on precisely targeting specific molecules and cell
subpopulations to enhance efficacy and reduce side effects. Drug
development will not only rely on basic research but also integrate
patients’ genomic and phenotypic information to create personalized
treatment plans.

5.5 Clinical translation challenges in
multi-omics integration

Despite significant progress in understanding axSpA through
multi-omics technologies, clinical application still faces several
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challenges. These include data heterogeneity, the lack of standardized
multi-omics integration protocols, and insufficient clinical validation
of identified biomarkers and therapeutic targets (11). To overcome
these challenges, several strategies should be considered:

Development of standardized methods for data preprocessing,
integration, and interpretation: These methods will enhance the
comparability of findings across different studies, making multi-omics
data more reliable for clinical decision-making (76, 77).

Large-scale, multi-center clinical studies: To validate the clinical
relevance of biomarkers and therapeutic targets identified through
multi-omics integration, large-scale, multi-center studies are crucial.
These studies will provide the necessary evidence to confirm the
robustness and applicability of findings across diverse
patient populations.

Collaborative data coordination and seamless integration:
Coordinating data from multiple sources is vital for the seamless
integration of clinical data, omics data, and patient metadata. This will
mitigate the challenges posed by data heterogeneity and enable more
accurate interpretation (78).

Al for data integration and analysis: Al, especially machine
learning and deep learning, provides powerful tools for handling large,
heterogeneous datasets. Al can optimize multi-omics data integration,
identify meaningful patterns, and predict clinical outcomes more
accurately, addressing issues such as data inconsistencies and missing
information (79, 80). However, the interpretability, potential biases,
and data privacy concerns of Al models must be carefully considered
to ensure fairness and transparency in clinical applications.

Rigorous clinical validation: Clinical validation is essential for any
potential biomarker or therapeutic target used in patient care.
Structured validation processes, including in vitro testing, animal
models, and extensive clinical trials, are crucial for confirming the
results of multi-omics studies and ensuring their practical applicability.

By focusing on these strategies, multi-omics research can advance
toward clinical translation, paving the way for more precise and
effective treatments for axSpA.

6 Conclusion

axSpA is a complex immune-mediated inflammatory disease
influenced by genetic, immune, and environmental factors. Although
significant progress has been made in axSpA treatment, challenges
remain in early diagnosis, personalized care, and long-term
management. The rapid development of multi-omics technologies has
provided new insights into disease mechanisms, and the integration
of these approaches is driving the shift toward precision medicine. By
integrating multi-omics data and utilizing Al for analysis, researchers
can more accurately identify biomarkers and immune pathways,
enabling the development of personalized treatment strategies. These
advancements not only deepen our understanding of the
pathophysiology of axSpA but also lay a solid foundation for the
development of targeted therapies and optimized treatment plans.
lack of
standardization, and difficulties in clinical translation continue to

However, challenges such as data heterogeneity,
hinder the widespread implementation of these technologies.
these

collaboration, data sharing, and further advancements in Al

Overcoming obstacles will require interdisciplinary
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technologies. As emerging tools such as single-cell omics and spatial
omics continue to evolve, the integration of multi-omics with
precision medicine will provide more effective and personalized
treatments for axSpA patients, significantly improving their quality
of life.

In summary, multi-omics research and precision medicine in
axSpA hold great potential. Ongoing technological innovation and
interdisciplinary collaboration will drive the clinical application of
precision medicine in axSpA, optimizing diagnosis and treatment
outcomes while improving long-term patient prognosis.
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Glossa ry Wnt - Wingless/integrated signaling pathway

axSpA - Axial spondyloarthritis LC-MS - Liquid chromatography-mass spectrometry
AI - Artificial intelligence GC-MS - Gas chromatography-mass spectrometry
GWAS - Genome-wide association study RNA-seq - RNA sequencing

PRS - Polygenic risk scores scRNA-seq - Single-cell RNA sequencing

HLA-B27 - Human leukocyte antigen B27 APCs - Antigen-presenting cells

IL - Interleukin PAMPs - Pathogen-associated molecular patterns

TNF-a - Tumor necrosis factor-alpha DAMPs - Damage-associated molecular patterns

TNFi - Tumor necrosis factor inhibitors
IFN-y - Interferon gamma

JAK - Janus kinase
Thl - T-helper 1

STAT - Signal transducer and activator of transcription
CD8+ T cells - Cluster of differentiation 8 positive T cells

ERAP1 - Endoplasmic reticulum aminopeptidase 1

JAK-STAT - Janus kinase-signal transducer and activator
NF-kB - Nuclear factor kappa B of transcription
PPI - Protein-protein interaction ILC3 - Innate lymphoid cells type 3
Th17 - T helper 17 cells vOT cells - Gamma delta T cells
Treg - Regulatory T cells AAU - Acute anterior uveitis
DKK-1 - Dickkopf-related protein 1 Wnt/fB-catenin - Wnt/B-catenin signaling pathway
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