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Background: The rising global demand for total knee arthroplasty (TKA)

has accelerated the shift toward ambulatory surgery, aimed at same-day

or next-day discharge. However, significant variability in discharge protocols

and high rates of delayed discharge in unselected patients challenge its

widespread implementation. This study develops an interpretable machine

learning framework to preemptively identify risk factors for delayed discharge

in ambulatory TKA.

Methods: This retrospective study analyzed data from 449 patients who

underwent ambulatory total knee arthroplasty between September 2021 and

June 2024. Fourteen machine learning models were developed and validated

using preoperative variables selected via LASSO and multivariate regression.

The dataset was split into training (70%) and validation (30%) sets, with

hyperparameter tuning performed through grid search and 5-fold cross-

validation. SHAP analysis was applied to interpret feature importance in

the optimal model.

Results: Analysis of 449 patients identified five key predictors—ejection fraction,

preoperative eGFR, preoperative ESR, diabetes mellitus, and Barthel Index—

via LASSO and multivariate regression. Among 14 machine learning models,

CATBoost exhibited optimal performance, with an AUC of 0.959 in training and

0.832 in validation, supported by high net benefit in decision curve analysis.

SHAP analysis identified EF and preoperative ESR as the most influential features,

confirmed risk directionality for low EF and low Barthel Index, and revealed

nuanced interactions, such as the inverse relationship of EF with risk, enhancing

model interpretability.

Conclusion: This study establishes that machine learning, particularly the

CATBoost model, effectively predicts delayed discharge in ambulatory total

knee arthroplasty using five key preoperative variables. SHAP analysis further

enhanced model interpretability by revealing feature interactions, such as

the modulating role of ejection fraction. These predictors enable improved
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risk stratification and personalized discharge planning, supporting optimized 

resource use and patient management. While limitations like single-center 

data require cautious interpretation, the findings highlight the potential of 

predictive analytics for clinical deployment. Further validation in diverse settings 

is warranted to translate these findings into clinical practice. 

KEYWORDS 

machine learning, SHAP, delayed discharge, ambulatory total knee arthroplasty, risk 
prediction, interpretable artificial intelligence, perioperative management 

1 Introduction 

Accelerated demographic aging has precipitated a marked 
increase in knee osteoarthritis (KOA), a progressive degenerative 
joint disease now aecting over 17% of adults aged ≥ 40 years 
(1). This condition, manifesting through chronic pain and 
functional decline, ranks among the primary disability drivers 
in elderly cohorts. Total knee arthroplasty (TKA) stands as 
the definitive surgical solution for end-stage KOA, restoring 
mobility globally. Projected demand surges—exemplified by 
3.48 million annual procedures anticipated in the US by 2030 
(1)—are amplified by aging populations and rising obesity. 
Contemporary research prioritizes three domains: surgical 
precision, anesthesia protocols, and postoperative management, 
collectively targeting shortened hospitalization with improved 
outcomes (2–4). Economic pressures further propel TKA’s 
migration to ambulatory centers for cost-eective high-volume 
delivery (2). 

Ambulatory (day-case) surgery entails admission-to-discharge 
within one calendar day. The International Association for 
Ambulatory Surgery (2003) mandates ≤ 24-h hospitalization 
excluding outpatient procedures (3). China’s protocol (2015) 
requires pre-admission assessments, permitting ≤ 48-h stays for 
medical necessity (4). 

No universal standard governs ambulatory TKA, 
with discharge timelines ranging from same-day (5–7) 
to 48-h (8, 9) periods, and some studies lacking formal 
criteria (10, 11). The US system exhibits reimbursement 
dichotomies: insurance classification dictates surgical 
categorization, wherein misclassification incurs penalties— 
prompting private insurers to adopt 48-h benchmarks 
(12). China’s extended recovery practices align with 
this 48-h threshold. 

Ambulatory TKA demonstrates non-inferior safety and 
superior patient satisfaction versus inpatient models (13–15), 
optimizing resource allocation via accelerated recovery, cost 
reduction, and enhanced bed turnover. While high-volume centers 
report 80–100% same-day discharge in curated cohorts (excluding 
comorbidities, elderly, and high-BMI patients) (16–18), real-world 
data reveals constrained applicability: a prospective multicenter 
study documented mere 15% same-day discharge among 557 
unselected candidates (19). This disparity necessitates identifying 
modifiable risk factors for discharge delays. 

2 Materials and methods 

2.1 Data source, patient selection, and 
ethical considerations 

This study retrospectively collected and analyzed medical 
records of all patients undergoing ambulatory Total knee 
arthroplasty at Guizhou Provincial People’s Hospital between 
September 2021 and June 2024. All surgical procedures were 
performed by the same operating surgeon. Patients were included 
if they met the following criteria: 1. availability of complete medical 
records required for the study, and 2. having undergone same-day 
unilateral total knee arthroplasty. Patients were excluded if they had 
undergone simultaneous bilateral total knee arthroplasty during the 
same operative session. 

Based on these criteria, 449 patients were identified for model 
development, categorized by hospitalization time into an on-time 
discharge group (≤ 48 h) and a delayed discharge group (> 48 h). 
This study was reviewed and approved by the Ethics Committee 
of [Guizhou Provincial People’s Hospital] (approval number: Lun-
Shen-KeYan-2024-186), in accordance with the Declaration of 
Helsinki. All participants provided informed consent. As this was 
a retrospective analysis, it was not registered as a clinical trial. 
Patient data underwent compliant de-identification procedures to 
ensure privacy protection, with only anonymized information used. 
A flowchart illustrating the enrollment of the study population is 
shown in Figure 1. 

2.2 Input variables and data processing 

As predictors, data were collected from the electronic medical 
record system of Guizhou Provincial People’s Hospital for all 
cases meeting the predefined inclusion and exclusion criteria, 
utilizing standardized forms to record variables categorized into 
six domains: sociodemographics (Gender, Age, Occupation, BMI, 
Educational Attainment), admission metrics (Body Temperature, 
Pulse Rate, Systolic Blood Pressure, Diastolic Blood Pressure, 
Barthel Index), medical history (Smoking Status, Alcohol Use, 
Hypertension, Diabetes Mellitus, Osteoporosis, Emphysema, 
pneumonia, History of Cerebral Infarction, Coronary Artery 
Disease), preoperative tests [Ejection Fractions (EF), Preop-Hb, 
Preop-PLT, Preop-CRP, Preop-eGFR, Preop-Alb, Preop-ESR], 
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FIGURE 1 

Patient enrollment flowchart and cohort construction. 

knee-specific factors (Disease Duration, Knee Flexion Angle, 
Knee Extension Deficit, Contralateral Arthroplasty History, Knee 
Deformity, Resting VAS Score, Mobility Aid Requirement), and 
surgical parameters [American Society of Anesthesiologists (ASA), 
Surgical Laterality, Anesthesia Type]; for missing value handling, 
cases were excluded if the outcome variable (length of stay, LOS) 
was missing or if multiple covariates exhibited simultaneous 
missingness, while variables missing completely at random with 
low missingness rates were imputed using mean values for 
continuous data or mode for categorical data, and those with high 
missingness rates were discarded entirely. 

2.3 Quality control 

To maintain processing integrity, a staged workflow segregated 
data entry, de-identification, and analysis among independent 
researchers, implementing standardized protocols where: dual-
track recording was executed by competency-certified personnel 
using structured electronic forms; comprehensive cross-validation 
minimized entry discrepancies; a 20% random subset underwent 
auditing for accuracy verification; and anonymized datasets 
were processed through chain-of-custody protocols for blinded 
statistical analysis. 

2.4 Statistical analysis 

All data analyses were conducted in R version 4.4.3 (20) using 
the compareGroups package. Continuous variables with normal 

distribution were expressed as mean ± standard deviation (SD), 
while non-normally distributed variables were summarized as 
median with interquartile range [Median (Q1, Q3)]. Categorical 
variables were presented as counts and percentages [n (%)]. 
Between-group comparisons employed: independent t-tests for 
normally distributed continuous data; Wilcoxon Rank-Sum tests 
for non-normally distributed continuous variables; chi-square tests 
for unordered categorical data; and Mann-Whitney U tests for 
ordered categorical variables. A uniform significance threshold of 
α = 0.05 was applied for all inferential tests. 

2.5 Model development and validation 

The variable selection process was conducted through a 
sequential, two-step approach to ensure both robustness and 
interpretability. First, least absolute shrinkage and selection 
operator (LASSO) regression with the 1SE lambda criterion 
was applied to preliminarily screen variables, enhancing 
model sparsity and reducing overfitting. Second, variables 
retained from the LASSO screening were further analyzed using 
univariate logistic regression, with those significant at p < 0.1 
included in a subsequent multivariate logistic regression model. 
A relaxed alpha level (p < 0.1) was intentionally chosen for the 
univariate and multivariate regression stages to adopt a more 
conservative approach to feature selection, thereby reducing 
the risk of excluding potentially relevant predictors prior to 
machine learning modeling. Finally, variables that remained 
statistically significant (p < 0.1) in the multivariate model 
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were selected as the final set of predictors for all subsequent 
model construction. 

Fourteen machine learning algorithms—RandomForest, 
GradientBoosting, SVM_Kernel, LogisticModel, NeighborMethod, 
PLSModel, BoostingMethod, NeuralNet, BayesMethod, 
DiscriminantModel, Lasso, AdaptiveBoosting, XGBoost, 
and CATBoost—were subsequently implemented. The 
dataset was partitioned into training (70%) and independent 
validation (30%) subsets. 

Hyperparameter optimization was performed using grid search 
with 5-fold repeated cross-validation. Model performance was 
evaluated based on metrics derived from confusion matrices 
(sensitivity, specificity, accuracy, PPV, NPV, F1-score, Youden’s 
index), area under the ROC curve (AUC), and residual analysis. 
Visualization included performance metric tables, line plots, ROC 
curves, forest plots for AUC comparisons, and residual plots. 

2.6 Feature importance 

SHapley Additive exPlanation (SHAP) analysis quantified 
predictor contributions using game-theoretic principles (21), 
resolving AI’s “black-box” limitation through individualized 
feature-deviation decomposition; for the optimal model, 
interpretability was enhanced by generating three specialized 
visualizations: feature dependence plots examining non-linear 
predictor-outcome relationships, SHAP beeswarm plots revealing 
individual prediction distributions clustered by feature impact, 
and ranked feature importance barplots prioritizing clinically 
dominant variables. 

3 Results 

3.1 Subject selection and data processing 

Ten patients were excluded per predefined criteria, resulting in 
449 ambulatory knee arthroplasty candidates randomly allocated 
to training (n = 315) and validation (n = 134) sets at 7:3 ratio 
(Figure 1). Variables with critical missingness [glycated hemoglobin 
(HbA1c): n = 66; interleukin-6: n = 84] were discarded, while 
continuous covariates (preoperative CRP: n = 17; ESR: n = 7) 
underwent mean imputation. 

3.2 Baseline characteristics 

Supplementary Table 1 demonstrated that significant 
dierences (p < 0.05) were observed between the on-time 
discharge (≤ 48 h) and delayed discharge (> 48 h) cohorts in terms 
of EF, knee flexion angle, knee extension deficit, preoperative CRP, 
preoperative eGFR, preoperative ESR, pulse rate, diabetes mellitus, 
and Barthel Index. 

A comparative analysis of the training and validation sets 
revealed that, except for diastolic blood pressure, which exhibited 
a significant dierence between the two sets (p = 0.034), no 
significant dierences were observed for the remaining covariates 

and outcome stratifications (p > 0.05), confirming the successful 
randomization and reliability of the model. 

3.3 Strategy and initial screening via lasso 
regression 

To select optimal predictors for subsequent machine 
learning model construction, a two-stage strategy combining 
Lasso regression and stepwise univariate-multivariate logistic 
regression was adopted. Lasso regression was first applied to 
filter candidate variables, leveraging penalization to mitigate 
multicollinearity and overfitting. Results are presented in 
Figures 2A,B: Figure 2A (coeÿcient path plot) tracks coeÿcient 
changes as the regularization parameter (λ) decreases (variables 
with coeÿcients shrunk to zero were excluded), while Figure 2B 
(10-fold cross-validation [CV] curve) marks λmin (minimum 
CV error) and λ1se (within 1 standard error of λmin). For model 
parsimony and robustness, λ1se was selected as the optimal 
λ, retaining 5 variables with non-zero coeÿcients for further 
selection. 

3.4 Further selection via stepwise logistic 
regression 

The 5 Lasso-retained variables underwent univariate logistic 
regression; those with P < 0.1 (to avoid missing potential 
predictors) were included in stepwise multivariate logistic 
regression (using the same P < 0.1 threshold for forward 
selection). All 5 variables passed both selection steps, confirming 
their independent predictive relevance. Detailed results—including 
the odds ratio (OR) with 95% confidence interval (95% CI) 
and P-value—are summarized in Supplementary Table 2, with 
associations visualized in Figure 2C (forest plot). These findings 
confirm the 5 variables—EF, preoperative eGFR, preoperative ESR, 
diabetes mellitus, and Barthel Index—are suitable for inclusion in 
subsequent machine learning model construction. 

3.5 Comparative model performance and 
CATBoost superiority 

Hyperparameter optimization via grid search significantly 
enhanced model performance across all algorithms. The optimal 
hyperparameter combinations for each model, determined through 
five-fold cross-validation based on AUC, are summarized in 
Supplementary Table 3. 

All evaluated machine learning models demonstrated robust 
predictive performance for the target outcome. Among them, 
tree-based ensemble methods—particularly CATBoost—exhibited 
superior discriminative ability and generalizability. In the training 
set, CATBoost achieved the highest AUC (0.959; 95% CI: 
0.938–0.980), followed by BoostingMethod (AUC = 0.904) and 
RandomForest (AUC = 0.893). The forest plots illustrating AUC 
values across training and validation sets (Figures 3C,D) visually 
underscore the consistency of these results. This performance 
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FIGURE 2 

Variable selection via Lasso regression (A,B) and final predictor forest plot (C). 

was well maintained in the validation set, where CATBoost also 
led with an AUC of 0.832, indicating excellent generalization 
with minimal overfitting. The ROC curves (Figures 3E,F) further 
confirmed its strong classification capability, with curves closest to 
the top-left corner in both datasets. Traditional methods such as 
Logistic Regression (AUCtest = 0.627) and PLS (AUCtest = 0.622) 
underperformed relative to ensemble models. The AUC heatmap 
(Figure 3G) visually emphasized the consistent advantage of tree-
based algorithms, with CATBoost showing the highest average 
AUC. Beyond discrimination, CATBoost also exhibited well-
balanced sensitivity (0.608) and specificity (0.892), along with the 
highest Youden’s index (0.499), supporting its clinical utility. 

The line plots for sensitivity, specificity, and Youden’s index 
in training and validation sets (Figures 3A,B) provide a dynamic 
view of these metrics across thresholds. Decision curve analysis 
(Figures 4A,B) demonstrated that CATBoost provided superior 
clinical utility across a wide range of risk thresholds, yielding 
higher net benefits compared to other models in both training 
and validation sets. Residual analysis revealed that CATBoost 
maintained intermediate performance in prediction consistency. 
The inverse residual cumulative distribution Plot (Figures 4C,D) 
and residual box plot (Figures 4E,F) showed that CATBoost 
achieved reasonable prediction error distribution, neither the 
best nor the worst among all models, but with acceptable 
error characteristics for clinical application. Overall, CATBoost 
demonstrated the best combination of discriminative performance, 
clinical utility, and generalization capability, making it the optimal 
model for this prediction task despite its intermediate performance 
in residual analysis. 

3.6 Detailed evaluation and clinical 
applicability of CATBoost 

Building upon its overall superiority, the optimal model, 
CATBoost, demonstrated robust performance across multiple 
evaluation metrics in both training and validation sets. The 
confusion matrices (Figures 5A,B) revealed strong predictive 
accuracy, with CATBoost achieving 88.9% accuracy in the training 
set and 78.4% in the validation set. These results indicate a 
well-generalized model with minimal overfitting. Decision curve 
analysis (Figures 5C,D) further aÿrmed the clinical utility of 

CATBoost, showing substantially higher net benefit across a 
wide range of risk thresholds compared to alternative strategies 
(“treat all” or “treat none”) and other models. This suggests 
that predictions from CATBoost are clinically actionable and 
can eectively support decision-making in practical settings. 
Calibration curves (Figures 5E,F) indicated that the predicted 
probabilities by CATBoost aligned well with observed outcomes, 
particularly in the training set. While some modest miscalibration 
was observed in the validation set—reflecting the common 
challenge of maintaining perfect probability alignment in external 
data—the overall performance remained clinically acceptable. 
Together, these results reinforce that CATBoost not only achieved 
high predictive performance (AUCtrain = 0.959, AUCtest = 0.832), 
but also demonstrated robust clinical utility and reliability, 
supporting its use as a promising tool for predicting delayed 
discharge in ambulatory TKA in clinical contexts. 

3.7 SHAP analysis reveals model 
interpretability and key feature 
relationships 

Based on the SHAP analysis in Figure 6, key interpretability 
insights are elucidated. Figure 6A identifies EF and Preop-ESR as 
the most influential features. Figure 6B confirms risk directionality, 
demonstrating that progressively lower EF values and lower 
Barthel Index scores are associated with higher risk (positive 
SHAP values). Figure 6C reveals nuanced feature interactions: EF 
exhibits an inverse relationship with delayed discharge risk, where 
steadily higher EF values are generally associated with reduced 
risk; however, when Preop-ESR is high, an increase in EF may 
slightly elevate risk probability, though the interaction eect is 
minimal. Conversely, elevated Preop-ESR coupled with higher EF 
significantly decreases overall risk. The interaction between Preop-
eGFR and EF is negligible. Barthel Index is inversely associated 
with risk, with values exceeding 90 conferring a protective eect, 
and its interaction with EF on risk probability is limited. The 
presence of Diabetes mellitus substantially increases risk, and 
this eect is amplified at higher EF values. Figure 6D provides 
a local explanation for sample #9, illustrating how each feature 
shifts the prediction from the base value. Absence of Diabetes 
Mellitus (−0.0658) and Barthel Index = 100 (−0.4) reduce risk, 
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FIGURE 3 

Model performance metrics (A,B,E,F), AUC comparisons (C,D), and summary heatmap (G). 

while EF = 61 (+ 0.811), Preop-ESR = 34 (+ 0.563), and Preop-
eGFR = 76 (+ 0.29) increase it, resulting in a final prediction of 
0.658 (exceeding the 0.50 threshold). 

4 Discussion 

4.1 Model development and validation 
with CATBoost superiority 

We developed and validated multiple machine learning 
models to predict delayed discharge in ambulatory TKA patients, 
employing a rigorous variable selection process via stepwise 
logistic regression. This approach confirmed the independent 

predictive relevance of five key variables—EF, preoperative eGFR, 
preoperative ESR, diabetes mellitus, and Barthel Index—which 
were subsequently used in model construction. Hyperparameter 
optimization via grid search enhanced performance across all 
algorithms, with tree-based ensemble methods, particularly 
CATBoost, demonstrating superior discriminative ability and 
generalizability. CATBoost achieved the highest AUC in both 
training (AUC = 0.959) and validation sets (AUC = 0.832), 
indicating robust generalization compared to alternatives 
like Logistic Regression (AUC = 0.627), which exhibited 
substantial underfitting. 

This performance can be contextualized against existing 
prediction tools for similar outcomes. For instance, a study by 
Turcotte et al. (22) utilizing traditional multiple logistic regression 
to predict discharge timing in TKA reported an AUC of 0.773. 
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FIGURE 4 

Decision curve analysis (A,B) and residual analysis (C–F) across all models. 

Our CATBoost model’s discriminative ability (AUC = 0.832) 
compares favorably, underscoring the potential advantage of 
machine learning approaches in capturing complex, non-linear 
relationships for this clinical task. 

Beyond performance metrics, a key advancement of our 
framework is its inherent interpretability. Decision curve analysis 
further aÿrmed CATBoost’s clinical utility, yielding higher net 
benefits across a wide risk threshold range (e.g., 0.1–0.8), while 
residual and calibration analyses supported its reliability for clinical 
deployment. Crucially, and unlike traditional regression models, 
our SHAP analysis provided model interpretability, identifying 
EF and preoperative ESR as the most influential features and 
confirming risk directionality consistent with clinical expectations. 

This provides clinicians not only with a predictive tool but also 
with actionable insights into individual patient risk factors for 
personalized care planning. 

4.2 Predictors of delayed discharge 
following ambulatory total knee 
arthroplasty 

In the context of ambulatory TKA, a lower EF, even within 
the normal range, is a significant risk factor for failing to achieve 
same-day or next-day discharge. It is critical to note that this 
association represents a gradient of risk and does not imply 
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FIGURE 5 

CATBoost model evaluation: confusion matrices (A,B), decision curves (C,D), and calibration plots (E,F). 

that most patients had an abnormal EF. A lower EF is a key 
predictor of underlying cardiac vulnerability, often necessitating 
further preoperative evaluation (23). This vulnerability is clinically 
manifested as a higher propensity for complications that preclude 
early discharge. Patients with conditions associated with impaired 
cardiac function, such as congestive heart failure (CHF), have been 
consistently shown to experience significantly longer hospital stays 
(24, 25) and a greater overall burden of postoperative morbidity, 
including cardiac and thromboembolic events (26). Specifically, 
the presence of CHF substantially increases the risk of major 
complications occurring beyond 24 h postoperatively, directly 
impacting the feasibility of short-stay protocols (27). Therefore, 
preoperative identification of a lower EF serves as a crucial 
indicator for enhanced perioperative risk stratification and patient 
counseling, highlighting the need for individualized care plans in 
ambulatory TKA settings. SHAP analysis reinforced this inverse 
relationship, showing that low EF values correlate with higher 
risk, and revealed nuanced interactions, e.g., elevated EF generally 
reduces risk, but when combined with high preoperative ESR, it 
may slightly increase risk probability, though the eect is minimal. 

The association between prolonged LOS and a history of 
diabetes is well-established. Patients with diabetes undergoing 
surgery frequently experience insulin resistance and sustained 
hyperglycemia, which elevate the risk of postoperative 
complications and contribute to extended hospitalization (28, 
29). Shohat et al. (30) further demonstrated that postoperative 
glycemic variability independently predicts longer hospital stays. 
In a large retrospective analysis of 210,075 same-day total knee 
arthroplasty procedures, Johnson et al. (31) identified diabetes 
mellitus as a significant predictor of failure to discharge within 
24 hours. SHAP analysis substantiated this finding, indicating that 

diabetes substantially increases risk, with the eect amplified at 
higher EF values, underscoring its role as a key modifiable factor. 

Preoperative renal dysfunction, indicated by a reduced 
estimated glomerular filtration rate (eGFR), significantly predicts 
failure to achieve same-day discharge after ambulatory TKA. In 
elderly patients, age-related decline in renal function impairs 
the clearance of anesthetic and perioperative medications. This 
pharmacokinetic alteration prolongs drug exposure, increasing 
the risk of adverse eects such as postoperative nausea and 
vomiting, sedation, or delirium, which may delay functional 
recovery and discharge readiness (32). Moreover, patients with 
chronic kidney disease (CKD), particularly those with an eGFR 
below 30 mL/min/1.73 m2 , face substantially higher risks of 
systemic complications, including cardiovascular events, infection, 
and need for transfusion, all of which contribute to extended 
hospitalization (33–35). Even moderate reductions in eGFR 
(e.g., < 60 mL/min/1.73 m2) have been associated with prolonged 
LOS and increased morbidity after joint arthroplasty (33). 
Therefore, integrating preoperative eGFR assessment into patient 
selection protocols for ambulatory TKA is essential to identify high-
risk individuals, optimize medication management, and reduce 
the likelihood of discharge delays. SHAP analysis confirmed that 
lower eGFR values increase risk, though its interaction with EF was 
negligible, supporting eGFR as an independent predictor. 

An elevated preoperative ESR is significantly associated with 
prolonged LOS following TKA. This relationship stems from 
ESR’s role as a marker of systemic inflammation, where a 
high preoperative level indicates a greater baseline inflammatory 
burden, often linked to more severe joint disease and potentially 
slower postoperative recovery (36). The physiological response 
to TKA involves a sharp rise in ESR postoperatively, which 
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FIGURE 6 

SHAP analysis for model interpretability: feature importance (A), dependence plots (B), interaction effects (C), and a local explanation (D). 

resolves slowly, contributing to delayed functional milestones 
(37–39). Additionally, elevated ESR may raise clinical concern 
for complications like periprosthetic joint infection, necessitating 
extended observation (38, 40, 41). Recent evidence from an 
enhanced recovery after surgery (ERAS) model further confirms 
that a preoperative ESR > 15 mm/h independently predicts 
increased LOS, reinforcing its utility as a prognostic factor (42). 
SHAP analysis highlighted ESR’s critical role, characterized by a 
threshold eect, and showed that elevated ESR coupled with higher 
EF significantly decreases overall risk, emphasizing the importance 
of feature interactions in risk stratification. 

The Barthel Index (BI), a widely used instrument for assessing 
functional independence, has been consistently demonstrated as 
a significant risk factor for prolonged LOS following TKA. In a 
retrospective analysis of 353 patients, a lower Modified BI score 
at admission was directly associated with an extended LOS in 
the female subgroup, emphasizing its predictive value for delayed 
discharge in this population (43). This relationship was further 
corroborated by a large-scale study involving 5,831 patients across 
multiple institutions, which identified the BI as a statistically 
significant influencer of LOS (p < 0.001) through multivariate 
regression analysis, indicating that poorer preoperative functional 
status correlates with longer hospitalization durations (43). 

Collectively, these findings underscore the utility of the BI in 
preoperative risk assessment to identify individuals susceptible to 
extended LOS, thereby aiding in the optimization of discharge 
planning and healthcare resource management. SHAP analysis 
validated the inverse association between BI and risk, with values 
exceeding 90 conferring a protective eect, and indicated limited 
interaction with EF, reinforcing BI’s standalone predictive value. 

4.3 Clinical implications and distinction 
of predictors 

A key implication of our findings is the distinction between 
modifiable and non-modifiable predictors, which directs distinct 
clinical actions. Among the factors identified, the Barthel Index 
and a history of diabetes represent potentially modifiable risk 
factors. The functional status captured by the Barthel Index may 
be improved through targeted prehabilitation programs prior to 
surgery. Similarly, glycemic control in patients with diabetes can 
be optimized perioperatively. These modifiable factors should be 
the primary focus for interventions aimed at reducing the risk 
of delayed discharge. In contrast, ejection fraction, preoperative 
eGFR, and elevated ESR are largely non-modifiable patient 
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characteristics that serve as excellent tools for risk stratification. 
They are invaluable for preoperative identification of high-
risk patients, allowing for enhanced counseling, optimized 
perioperative management (e.g., medication dosing in renal 
impairment), and eÿcient resource allocation within the 
ambulatory pathway, even if the factors themselves cannot be 
changed. This distinction enables clinicians to separate patients 
who may benefit from preoperative optimization from those for 
whom advanced care planning is the most appropriate strategy. 

4.4 Limitations and cautious 
interpretation 

Several limitations should be considered when interpreting 
our findings. First, while machine learning approaches such 
as SHAP can reveal robust associations between variables and 
outcomes, they do not establish causality. For instance, the 
relationship between diabetes and delayed discharge may reflect 
residual confounding from unmeasured variables (e.g., peripheral 
neuropathy or subclinical cardiovascular disease) rather than direct 
causation. Second, the exclusion of certain clinically relevant 
variables — such as glycated hemoglobin (HbA1c) due to high 
rates of missingness — may have limited the comprehensiveness 
of our metabolic risk profiling. Finally, the single-center design 
and moderate sample size (n = 449) may aect the generalizability 
of our model, as institutional-specific protocols and perioperative 
practices could influence discharge outcomes independently of 
patient-level factors. 

4.5 Future research directions 

Future work should prioritize multi-center validation cohorts 
(> 2,000 cases) to assess portability, followed by the development 
of a clinically deployable tool (e.g., a standalone web application 
or an integrated EHR plug-in) that calculates a real-time risk score 
using the five featured variables to alert clinicians at the point of 
care. Prospective trials integrating SHAP-based scores into clinical 
workflows, and causal mediation analyses to disentangle feature 
eects. Despite limitations, our integration of machine learning 
with functional biomarkers represents a step toward personalized 
discharge optimization in ambulatory TKA. 

5 Conclusion 

In summary, this study demonstrates that machine learning 
models, particularly CATBoost, can eectively predict delayed 
discharge following ambulatory total knee arthroplasty by 
leveraging five key preoperative variables: ejection fraction, 
diabetes status, estimated glomerular filtration rate, erythrocyte 
sedimentation rate, and Barthel Index. These factors collectively 
provide a robust framework for identifying high-risk patients, 
enabling targeted preoperative optimization and individualized 
discharge planning. SHAP analysis enhanced model interpretability 
by elucidating feature interactions, such as the modulating role of 
EF, which strengthen the clinical credibility of the model. While 

limitations such as single-center data and associative inferences 
require cautious interpretation, our findings underscore the 
potential of integrating predictive analytics into clinical practice 
to enhance resource allocation and patient outcomes in short-stay 
arthroplasty protocols. Future eorts should focus on external 
validation and prospective implementation to translate these 
insights into actionable care pathways. 
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