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A SHAP-interpretable machine
learning framework for
predicting delayed discharge in
ambulatory total knee
arthroplasty: comparative
validation of 14 models

Jiabin Feng'?, Fei Yuan?, Pan Luo?, Rang Chen?, Binghu Jiang?,
Bin Li2, Fang Luo?, Li Sun'* and Bo Li*
!Department of Orthopaedic Surgery, Guizhou Provincial People’'s Hospital, Guiyang, Guizhou, China,

2College of Orthopedics and Traumatology, Guizhou University of Traditional Chinese Medicine,
Guiyang, Guizhou, China

Background: The rising global demand for total knee arthroplasty (TKA)
has accelerated the shift toward ambulatory surgery, aimed at same-day
or next-day discharge. However, significant variability in discharge protocols
and high rates of delayed discharge in unselected patients challenge its
widespread implementation. This study develops an interpretable machine
learning framework to preemptively identify risk factors for delayed discharge
in ambulatory TKA.

Methods: This retrospective study analyzed data from 449 patients who
underwent ambulatory total knee arthroplasty between September 2021 and
June 2024. Fourteen machine learning models were developed and validated
using preoperative variables selected via LASSO and multivariate regression.
The dataset was split into training (70%) and validation (30%) sets, with
hyperparameter tuning performed through grid search and 5-fold cross-
validation. SHAP analysis was applied to interpret feature importance in
the optimal model.

Results: Analysis of 449 patients identified five key predictors—ejection fraction,
preoperative eGFR, preoperative ESR, diabetes mellitus, and Barthel Index—
via LASSO and multivariate regression. Among 14 machine learning models,
CATBoost exhibited optimal performance, with an AUC of 0.959 in training and
0.832 in validation, supported by high net benefit in decision curve analysis.
SHAP analysis identified EF and preoperative ESR as the most influential features,
confirmed risk directionality for low EF and low Barthel Index, and revealed
nuanced interactions, such as the inverse relationship of EF with risk, enhancing
model interpretability.

Conclusion: This study establishes that machine learning, particularly the
CATBoost model, effectively predicts delayed discharge in ambulatory total
knee arthroplasty using five key preoperative variables. SHAP analysis further
enhanced model interpretability by revealing feature interactions, such as
the modulating role of ejection fraction. These predictors enable improved
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risk stratification and personalized discharge planning, supporting optimized
resource use and patient management. While limitations like single-center
data require cautious interpretation, the findings highlight the potential of
predictive analytics for clinical deployment. Further validation in diverse settings
is warranted to translate these findings into clinical practice.

KEYWORDS

machine learning, SHAP, delayed discharge, ambulatory total knee arthroplasty, risk
prediction, interpretable artificial intelligence, perioperative management

1 Introduction

Accelerated demographic aging has precipitated a marked
increase in knee osteoarthritis (KOA), a progressive degenerative
joint disease now affecting over 17% of adults aged > 40 years
(1). This condition, manifesting through chronic pain and
functional decline, ranks among the primary disability drivers
in elderly cohorts. Total knee arthroplasty (TKA) stands as
the definitive surgical solution for end-stage KOA, restoring
mobility globally. Projected demand surges—exemplified by
3.48 million annual procedures anticipated in the US by 2030
(1)—are amplified by aging populations and rising obesity.
Contemporary research prioritizes three domains: surgical
precision, anesthesia protocols, and postoperative management,
collectively targeting shortened hospitalization with improved
outcomes (2-4). Economic pressures further propel TKA’s
migration to ambulatory centers for cost-effective high-volume
delivery (2).

Ambulatory (day-case) surgery entails admission-to-discharge
within one calendar day. The International Association for
Ambulatory Surgery (2003) mandates < 24-h hospitalization
excluding outpatient procedures (3). China’s protocol (2015)
requires pre-admission assessments, permitting < 48-h stays for
medical necessity (4).
standard
timelines

No  universal governs ambulatory TKA,
(5-7)

to 48-h (8, 9) periods, and some studies lacking formal

with  discharge ranging from same-day

criteria (10, 11). The US system exhibits reimbursement

dichotomies:  insurance  classification  dictates  surgical
categorization, wherein misclassification incurs penalties—
prompting private insurers to adopt 48-h benchmarks
(12). Chinas extended recovery practices align with

this 48-h threshold.

Ambulatory TKA demonstrates non-inferior safety and
superior patient satisfaction versus inpatient models (13-15),
optimizing resource allocation via accelerated recovery, cost
reduction, and enhanced bed turnover. While high-volume centers
report 80-100% same-day discharge in curated cohorts (excluding
comorbidities, elderly, and high-BMI patients) (16-18), real-world
data reveals constrained applicability: a prospective multicenter
study documented mere 15% same-day discharge among 557
unselected candidates (19). This disparity necessitates identifying
modifiable risk factors for discharge delays.
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2 Materials and methods

2.1 Data source, patient selection, and
ethical considerations

This study retrospectively collected and analyzed medical
records of all patients undergoing ambulatory Total knee
arthroplasty at Guizhou Provincial People’s Hospital between
September 2021 and June 2024. All surgical procedures were
performed by the same operating surgeon. Patients were included
if they met the following criteria: 1. availability of complete medical
records required for the study, and 2. having undergone same-day
unilateral total knee arthroplasty. Patients were excluded if they had
undergone simultaneous bilateral total knee arthroplasty during the
same operative session.

Based on these criteria, 449 patients were identified for model
development, categorized by hospitalization time into an on-time
discharge group (< 48 h) and a delayed discharge group (> 48 h).
This study was reviewed and approved by the Ethics Committee
of [Guizhou Provincial People’s Hospital] (approval number: Lun-
Shen-KeYan-2024-186), in accordance with the Declaration of
Helsinki. All participants provided informed consent. As this was
a retrospective analysis, it was not registered as a clinical trial.
Patient data underwent compliant de-identification procedures to
ensure privacy protection, with only anonymized information used.
A flowchart illustrating the enrollment of the study population is
shown in Figure 1.

2.2 Input variables and data processing

As predictors, data were collected from the electronic medical
record system of Guizhou Provincial People’s Hospital for all
cases meeting the predefined inclusion and exclusion criteria,
utilizing standardized forms to record variables categorized into
six domains: sociodemographics (Gender, Age, Occupation, BMI,
Educational Attainment), admission metrics (Body Temperature,
Pulse Rate, Systolic Blood Pressure, Diastolic Blood Pressure,
Barthel Index), medical history (Smoking Status, Alcohol Use,
Hypertension, Diabetes Mellitus, Osteoporosis, Emphysema,
pneumonia, History of Cerebral Infarction, Coronary Artery
Disease), preoperative tests [Ejection Fractions (EF), Preop-Hb,
Preop-PLT, Preop-CRP, Preop-eGFR, Preop-Alb, Preop-ESR],

frontiersin.org


https://doi.org/10.3389/fmed.2025.1714792
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Feng et al.

459 day-case knee arthroplasty patients
(Sep 2021-Jun 2024)
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I 449 patients included |

6 cases: Inaccessible medical records
3 cases: Revision arthroplasty
1 case: Simultaneous bilateral arthroplasty

Data Preprocessing
Discarded: HbA1c(n=66), IL-6(n=84)
Imputed(mean): CRP(n=17), ESR(n=7)

Random stratified split (7:3) |

V

l

Training Set (n=315)
On-time discharge: 196 cases
Delayed discharge: 119 cases

Validation Set (n=134)
On-time discharge: 83 cases
Delayed discharge: 51 cases

Variable Selection:
LASSO (A-1se criteria)

Variable Selection:

Univariate (p<0.1) — Multivariate Model

)

RandomForest, GradientBoosting,
PLSModel, BoostingMethod, NeuralNet,
AdaptiveBoosting, XGBoost, CATBoost

SVM_Kernel,
BayesMethod, DiscriminantModel,

LogisticModel, NeighborMethod,
Lasso,

FIGURE 1
Patient enrollment flowchart and cohort construction.

knee-specific factors (Disease Duration, Knee Flexion Angle,
Knee Extension Deficit, Contralateral Arthroplasty History, Knee
Deformity, Resting VAS Score, Mobility Aid Requirement), and
surgical parameters [American Society of Anesthesiologists (ASA),
Surgical Laterality, Anesthesia Type]; for missing value handling,
cases were excluded if the outcome variable (length of stay, LOS)
was missing or if multiple covariates exhibited simultaneous
missingness, while variables missing completely at random with
low missingness rates were imputed using mean values for
continuous data or mode for categorical data, and those with high
missingness rates were discarded entirely.

2.3 Quality control

To maintain processing integrity, a staged workflow segregated
data entry, de-identification, and analysis among independent
researchers, implementing standardized protocols where: dual-
track recording was executed by competency-certified personnel
using structured electronic forms; comprehensive cross-validation
minimized entry discrepancies; a 20% random subset underwent
auditing for accuracy verification; and anonymized datasets
were processed through chain-of-custody protocols for blinded
statistical analysis.

2.4 Statistical analysis

All data analyses were conducted in R version 4.4.3 (20) using
the compareGroups package. Continuous variables with normal
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distribution were expressed as mean =+ standard deviation (SD),
while non-normally distributed variables were summarized as
median with interquartile range [Median (Q1, Q3)]. Categorical
variables were presented as counts and percentages [n (%)].
Between-group comparisons employed: independent t-tests for
normally distributed continuous data; Wilcoxon Rank-Sum tests
for non-normally distributed continuous variables; chi-square tests
for unordered categorical data; and Mann-Whitney U tests for
ordered categorical variables. A uniform significance threshold of
a = 0.05 was applied for all inferential tests.

2.5 Model development and validation

The variable selection process was conducted through a
sequential, two-step approach to ensure both robustness and
interpretability. First, least absolute shrinkage and selection
operator (LASSO) regression with the 1SE lambda criterion
was applied to preliminarily screen variables, enhancing
model sparsity and reducing overfitting. Second, variables
retained from the LASSO screening were further analyzed using
univariate logistic regression, with those significant at p < 0.1
included in a subsequent multivariate logistic regression model.
A relaxed alpha level (p < 0.1) was intentionally chosen for the
univariate and multivariate regression stages to adopt a more
conservative approach to feature selection, thereby reducing
the risk of excluding potentially relevant predictors prior to
machine learning modeling. Finally, variables that remained
statistically significant (p < 0.1) in the multivariate model
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were selected as the final set of predictors for all subsequent
model construction.

Fourteen machine learning algorithms—RandomForest,
GradientBoosting, SVM_Kernel, LogisticModel, NeighborMethod,
PLSModel, BoostingMethod, NeuralNet, BayesMethod,
DiscriminantModel, Lasso, AdaptiveBoosting, XGBoost,
and  CATBoost—were implemented.  The
dataset was partitioned into training (70%) and independent
validation (30%) subsets.

Hyperparameter optimization was performed using grid search

subsequently

with 5-fold repeated cross-validation. Model performance was
evaluated based on metrics derived from confusion matrices
(sensitivity, specificity, accuracy, PPV, NPV, Fl-score, Youden’s
index), area under the ROC curve (AUC), and residual analysis.
Visualization included performance metric tables, line plots, ROC
curves, forest plots for AUC comparisons, and residual plots.

2.6 Feature importance

SHapley Additive exPlanation (SHAP) analysis quantified
predictor contributions using game-theoretic principles (21),
resolving AIs “black-box” limitation through individualized
feature-deviation decomposition; for the optimal model,
interpretability was enhanced by generating three specialized
visualizations: feature dependence plots examining non-linear
predictor-outcome relationships, SHAP beeswarm plots revealing
individual prediction distributions clustered by feature impact,
and ranked feature importance barplots prioritizing clinically

dominant variables.

3 Results

3.1 Subject selection and data processing

Ten patients were excluded per predefined criteria, resulting in
449 ambulatory knee arthroplasty candidates randomly allocated
to training (n = 315) and validation (n = 134) sets at 7:3 ratio
(Figure 1). Variables with critical missingness [glycated hemoglobin
(HbAlc): n = 66; interleukin-6: n = 84] were discarded, while
continuous covariates (preoperative CRP: n = 17; ESR: n = 7)
underwent mean imputation.

3.2 Baseline characteristics

Table 1 demonstrated that
differences (p < 0.05) were observed between the on-time
discharge (< 48 h) and delayed discharge (> 48 h) cohorts in terms
of EFE, knee flexion angle, knee extension deficit, preoperative CRP,

Supplementary significant

preoperative eGFR, preoperative ESR, pulse rate, diabetes mellitus,
and Barthel Index.

A comparative analysis of the training and validation sets
revealed that, except for diastolic blood pressure, which exhibited
a significant difference between the two sets (p = 0.034), no
significant differences were observed for the remaining covariates
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and outcome stratifications (p > 0.05), confirming the successful
randomization and reliability of the model.

3.3 Strategy and initial screening via lasso

regression

To select optimal predictors for subsequent machine
learning model construction, a two-stage strategy combining
Lasso regression and stepwise univariate-multivariate logistic
regression was adopted. Lasso regression was first applied to
filter candidate variables, leveraging penalization to mitigate
multicollinearity and overfitting. Results are presented in
Figures 2A,B: Figure 2A (coefficient path plot) tracks coeflicient
changes as the regularization parameter () decreases (variables
with coefficients shrunk to zero were excluded), while Figure 2B
(10-fold cross-validation [CV] curve) marks A\pjn (minimum
CV error) and g (within 1 standard error of A\min). For model
parsimony and robustness, hijse was selected as the optimal
), retaining 5 variables with non-zero coefficients for further
selection.

3.4 Further selection via stepwise logistic
regression

The 5 Lasso-retained variables underwent univariate logistic
regression; those with P < 0.1 (to avoid missing potential
predictors) were included in stepwise multivariate logistic
regression (using the same P < 0.1 threshold for forward
selection). All 5 variables passed both selection steps, confirming
their independent predictive relevance. Detailed results—including
the odds ratio (OR) with 95% confidence interval (95% CI)
and P-value—are summarized in Supplementary Table 2, with
associations visualized in Figure 2C (forest plot). These findings
confirm the 5 variables—EF, preoperative eGFR, preoperative ESR,
diabetes mellitus, and Barthel Index—are suitable for inclusion in
subsequent machine learning model construction.

3.5 Comparative model performance and
CATBoost superiority

Hyperparameter optimization via grid search significantly
enhanced model performance across all algorithms. The optimal
hyperparameter combinations for each model, determined through
five-fold cross-validation based on AUC, are summarized in
Supplementary Table 3.

All evaluated machine learning models demonstrated robust
predictive performance for the target outcome. Among them,
tree-based ensemble methods—particularly CATBoost—exhibited
superior discriminative ability and generalizability. In the training
set, CATBoost achieved the highest AUC (0.959; 95% CIL
0.938-0.980), followed by BoostingMethod (AUC = 0.904) and
RandomForest (AUC = 0.893). The forest plots illustrating AUC
values across training and validation sets (Figures 3C,D) visually
underscore the consistency of these results. This performance
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FIGURE 2
Variable selection via Lasso regression (A,B) and final predictor forest plot

was well maintained in the validation set, where CATBoost also
led with an AUC of 0.832, indicating excellent generalization
with minimal overfitting. The ROC curves (Figures 3E,F) further
confirmed its strong classification capability, with curves closest to
the top-left corner in both datasets. Traditional methods such as
Logistic Regression (AUCtest = 0.627) and PLS (AUCtest = 0.622)
underperformed relative to ensemble models. The AUC heatmap
(Figure 3G) visually emphasized the consistent advantage of tree-
based algorithms, with CATBoost showing the highest average
AUC. Beyond discrimination, CATBoost also exhibited well-
balanced sensitivity (0.608) and specificity (0.892), along with the
highest Youden’s index (0.499), supporting its clinical utility.

The line plots for sensitivity, specificity, and Youden’s index
in training and validation sets (Figures 3A,B) provide a dynamic
view of these metrics across thresholds. Decision curve analysis
(Figures 4A,B) demonstrated that CATBoost provided superior
clinical utility across a wide range of risk thresholds, yielding
higher net benefits compared to other models in both training
and validation sets. Residual analysis revealed that CATBoost
maintained intermediate performance in prediction consistency.
The inverse residual cumulative distribution Plot (Figures 4C,D)
and residual box plot (Figures 4E,F) showed that CATBoost
achieved reasonable prediction error distribution, neither the
best nor the worst among all models, but with acceptable
error characteristics for clinical application. Overall, CATBoost
demonstrated the best combination of discriminative performance,
clinical utility, and generalization capability, making it the optimal
model for this prediction task despite its intermediate performance
in residual analysis.

3.6 Detailed evaluation and clinical
applicability of CATBoost

Building upon its overall superiority, the optimal model,
CATBoost, demonstrated robust performance across multiple
evaluation metrics in both training and validation sets. The
confusion matrices (Figures 5A,B) revealed strong predictive
accuracy, with CATBoost achieving 88.9% accuracy in the training
set and 78.4% in the validation set. These results indicate a
well-generalized model with minimal overfitting. Decision curve
analysis (Figures 5C,D) further affirmed the clinical utility of
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CATBoost, showing substantially higher net benefit across a
wide range of risk thresholds compared to alternative strategies
(“treat all” or “treat none”) and other models. This suggests
that predictions from CATBoost are clinically actionable and
can effectively support decision-making in practical settings.
Calibration curves (Figures 5E,F) indicated that the predicted
probabilities by CATBoost aligned well with observed outcomes,
particularly in the training set. While some modest miscalibration
was observed in the validation set—reflecting the common
challenge of maintaining perfect probability alignment in external
data—the overall performance remained clinically acceptable.
Together, these results reinforce that CATBoost not only achieved
high predictive performance (AUCtrain = 0.959, AUCtest = 0.832),
but also demonstrated robust clinical utility and reliability,
supporting its use as a promising tool for predicting delayed
discharge in ambulatory TKA in clinical contexts.

3.7 SHAP analysis reveals model
interpretability and key feature
relationships

Based on the SHAP analysis in Figure 6, key interpretability
insights are elucidated. Figure 6A identifies EF and Preop-ESR as
the most influential features. Figure 6B confirms risk directionality,
demonstrating that progressively lower EF values and lower
Barthel Index scores are associated with higher risk (positive
SHAP values). Figure 6C reveals nuanced feature interactions: EF
exhibits an inverse relationship with delayed discharge risk, where
steadily higher EF values are generally associated with reduced
risk; however, when Preop-ESR is high, an increase in EF may
slightly elevate risk probability, though the interaction effect is
minimal. Conversely, elevated Preop-ESR coupled with higher EF
significantly decreases overall risk. The interaction between Preop-
eGFR and EF is negligible. Barthel Index is inversely associated
with risk, with values exceeding 90 conferring a protective effect,
and its interaction with EF on risk probability is limited. The
presence of Diabetes mellitus substantially increases risk, and
this effect is amplified at higher EF values. Figure 6D provides
a local explanation for sample #9, illustrating how each feature
shifts the prediction from the base value. Absence of Diabetes
Mellitus (—0.0658) and Barthel Index = 100 (—0.4) reduce risk,
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Model performance metrics (A,B,E,F), AUC comparisons (C,D), and summary heatmap (G).

while EF = 61 (+ 0.811), Preop-ESR = 34 (+ 0.563), and Preop-
eGFR = 76 (+ 0.29) increase it, resulting in a final prediction of
0.658 (exceeding the 0.50 threshold).

4 Discussion

4.1 Model development and validation
with CATBoost superiority

We developed and validated multiple machine learning
models to predict delayed discharge in ambulatory TKA patients,
employing a rigorous variable selection process via stepwise
logistic regression. This approach confirmed the independent
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predictive relevance of five key variables—EF, preoperative eGFR,
preoperative ESR, diabetes mellitus, and Barthel Index—which
were subsequently used in model construction. Hyperparameter
optimization via grid search enhanced performance across all
algorithms, with tree-based ensemble methods, particularly
CATBoost, demonstrating superior discriminative ability and
generalizability. CATBoost achieved the highest AUC in both
training (AUC = 0.959) and validation sets (AUC = 0.832),
indicating robust generalization compared to alternatives
like Logistic Regression (AUC 0.627), which exhibited
substantial underfitting.

This performance can be contextualized against existing
prediction tools for similar outcomes. For instance, a study by
Turcotte et al. (22) utilizing traditional multiple logistic regression
to predict discharge timing in TKA reported an AUC of 0.773.
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Our CATBoost model’s discriminative ability (AUC = 0.832)
compares favorably, underscoring the potential advantage of
machine learning approaches in capturing complex, non-linear
relationships for this clinical task.

Beyond performance metrics, a key advancement of our
framework is its inherent interpretability. Decision curve analysis
further affirmed CATBoost’s clinical utility, yielding higher net
benefits across a wide risk threshold range (e.g., 0.1-0.8), while
residual and calibration analyses supported its reliability for clinical
deployment. Crucially, and unlike traditional regression models,
our SHAP analysis provided model interpretability, identifying
EF and preoperative ESR as the most influential features and
confirming risk directionality consistent with clinical expectations.
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This provides clinicians not only with a predictive tool but also
with actionable insights into individual patient risk factors for
personalized care planning.

4.2 Predictors of delayed discharge
following ambulatory total knee
arthroplasty

In the context of ambulatory TKA, a lower EE even within
the normal range, is a significant risk factor for failing to achieve
same-day or next-day discharge. It is critical to note that this
association represents a gradient of risk and does not imply
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that most patients had an abnormal EF. A lower EF is a key
predictor of underlying cardiac vulnerability, often necessitating
further preoperative evaluation (23). This vulnerability is clinically
manifested as a higher propensity for complications that preclude
early discharge. Patients with conditions associated with impaired
cardiac function, such as congestive heart failure (CHF), have been
consistently shown to experience significantly longer hospital stays
(24, 25) and a greater overall burden of postoperative morbidity,
including cardiac and thromboembolic events (26). Specifically,
the presence of CHF substantially increases the risk of major
complications occurring beyond 24 h postoperatively, directly
impacting the feasibility of short-stay protocols (27). Therefore,
preoperative identification of a lower EF serves as a crucial
indicator for enhanced perioperative risk stratification and patient
counseling, highlighting the need for individualized care plans in
ambulatory TKA settings. SHAP analysis reinforced this inverse
relationship, showing that low EF values correlate with higher
risk, and revealed nuanced interactions, e.g., elevated EF generally
reduces risk, but when combined with high preoperative ESR, it
may slightly increase risk probability, though the effect is minimal.

The association between prolonged LOS and a history of
diabetes is well-established. Patients with diabetes undergoing
surgery frequently experience insulin resistance and sustained
hyperglycemia, which risk of postoperative
complications and contribute to extended hospitalization (28,
29). Shohat et al. (30) further demonstrated that postoperative
glycemic variability independently predicts longer hospital stays.

elevate the

In a large retrospective analysis of 210,075 same-day total knee
arthroplasty procedures, Johnson et al. (31) identified diabetes
mellitus as a significant predictor of failure to discharge within
24 hours. SHAP analysis substantiated this finding, indicating that
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diabetes substantially increases risk, with the effect amplified at
higher EF values, underscoring its role as a key modifiable factor.

Preoperative renal dysfunction, indicated by a reduced
estimated glomerular filtration rate (eGFR), significantly predicts
failure to achieve same-day discharge after ambulatory TKA. In
elderly patients, age-related decline in renal function impairs
the clearance of anesthetic and perioperative medications. This
pharmacokinetic alteration prolongs drug exposure, increasing
the risk of adverse effects such as postoperative nausea and
vomiting, sedation, or delirium, which may delay functional
recovery and discharge readiness (32). Moreover, patients with
chronic kidney disease (CKD), particularly those with an eGFR
below 30 mL/min/1.73 m?, face substantially higher risks of
systemic complications, including cardiovascular events, infection,
and need for transfusion, all of which contribute to extended
hospitalization (33-35). Even moderate reductions in eGFR
(e.g., < 60 mL/min/1.73 m?) have been associated with prolonged
LOS and increased morbidity after joint arthroplasty (33).
Therefore, integrating preoperative eGFR assessment into patient
selection protocols for ambulatory TKA is essential to identify high-
risk individuals, optimize medication management, and reduce
the likelihood of discharge delays. SHAP analysis confirmed that
lower eGFR values increase risk, though its interaction with EF was
negligible, supporting eGFR as an independent predictor.

An elevated preoperative ESR is significantly associated with
prolonged LOS following TKA. This relationship stems from
ESRs role as a marker of systemic inflammation, where a
high preoperative level indicates a greater baseline inflammatory
burden, often linked to more severe joint disease and potentially
slower postoperative recovery (36). The physiological response
to TKA involves a sharp rise in ESR postoperatively, which
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resolves slowly, contributing to delayed functional milestones
(37-39). Additionally, elevated ESR may raise clinical concern
for complications like periprosthetic joint infection, necessitating
extended observation (38, 40, 41). Recent evidence from an
enhanced recovery after surgery (ERAS) model further confirms
that a preoperative ESR > 15 mm/h independently predicts
increased LOS, reinforcing its utility as a prognostic factor (42).
SHAP analysis highlighted ESR’s critical role, characterized by a
threshold effect, and showed that elevated ESR coupled with higher
EF significantly decreases overall risk, emphasizing the importance
of feature interactions in risk stratification.

The Barthel Index (BI), a widely used instrument for assessing
functional independence, has been consistently demonstrated as
a significant risk factor for prolonged LOS following TKA. In a
retrospective analysis of 353 patients, a lower Modified BI score
at admission was directly associated with an extended LOS in
the female subgroup, emphasizing its predictive value for delayed
discharge in this population (43). This relationship was further
corroborated by a large-scale study involving 5,831 patients across
multiple institutions, which identified the BI as a statistically
significant influencer of LOS (p < 0.001) through multivariate
regression analysis, indicating that poorer preoperative functional
status correlates with longer hospitalization durations (43).

Frontiers in Medicine

Collectively, these findings underscore the utility of the BI in
preoperative risk assessment to identify individuals susceptible to
extended LOS, thereby aiding in the optimization of discharge
planning and healthcare resource management. SHAP analysis
validated the inverse association between BI and risk, with values
exceeding 90 conferring a protective effect, and indicated limited
interaction with EF reinforcing BI's standalone predictive value.

4.3 Clinical implications and distinction
of predictors

A key implication of our findings is the distinction between
modifiable and non-modifiable predictors, which directs distinct
clinical actions. Among the factors identified, the Barthel Index
and a history of diabetes represent potentially modifiable risk
factors. The functional status captured by the Barthel Index may
be improved through targeted prehabilitation programs prior to
surgery. Similarly, glycemic control in patients with diabetes can
be optimized perioperatively. These modifiable factors should be
the primary focus for interventions aimed at reducing the risk
of delayed discharge. In contrast, ejection fraction, preoperative
eGFR, and elevated ESR are largely non-modifiable patient
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characteristics that serve as excellent tools for risk stratification.
They are invaluable for preoperative identification of high-
risk patients, allowing for enhanced counseling, optimized
perioperative management (e.g., medication dosing in renal
impairment), and efficient resource allocation within the
ambulatory pathway, even if the factors themselves cannot be
changed. This distinction enables clinicians to separate patients
who may benefit from preoperative optimization from those for

whom advanced care planning is the most appropriate strategy.

4.4 Limitations and cautious
interpretation

Several limitations should be considered when interpreting
our findings. First, while machine learning approaches such
as SHAP can reveal robust associations between variables and
outcomes, they do not establish causality. For instance, the
relationship between diabetes and delayed discharge may reflect
residual confounding from unmeasured variables (e.g., peripheral
neuropathy or subclinical cardiovascular disease) rather than direct
causation. Second, the exclusion of certain clinically relevant
variables — such as glycated hemoglobin (HbAlc) due to high
rates of missingness — may have limited the comprehensiveness
of our metabolic risk profiling. Finally, the single-center design
and moderate sample size (n = 449) may affect the generalizability
of our model, as institutional-specific protocols and perioperative
practices could influence discharge outcomes independently of
patient-level factors.

4.5 Future research directions

Future work should prioritize multi-center validation cohorts
(> 2,000 cases) to assess portability, followed by the development
of a clinically deployable tool (e.g., a standalone web application
or an integrated EHR plug-in) that calculates a real-time risk score
using the five featured variables to alert clinicians at the point of
care. Prospective trials integrating SHAP-based scores into clinical
workflows, and causal mediation analyses to disentangle feature
effects. Despite limitations, our integration of machine learning
with functional biomarkers represents a step toward personalized
discharge optimization in ambulatory TKA.

5 Conclusion

In summary, this study demonstrates that machine learning
models, particularly CATBoost, can effectively predict delayed
discharge following ambulatory total knee arthroplasty by
leveraging five key preoperative variables: ejection fraction,
diabetes status, estimated glomerular filtration rate, erythrocyte
sedimentation rate, and Barthel Index. These factors collectively
provide a robust framework for identifying high-risk patients,
enabling targeted preoperative optimization and individualized
discharge planning. SHAP analysis enhanced model interpretability
by elucidating feature interactions, such as the modulating role of
EE which strengthen the clinical credibility of the model. While
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limitations such as single-center data and associative inferences
require cautious interpretation, our findings underscore the
potential of integrating predictive analytics into clinical practice
to enhance resource allocation and patient outcomes in short-stay
arthroplasty protocols. Future efforts should focus on external
validation and prospective implementation to translate these
insights into actionable care pathways.
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