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Background: Knee osteoarthritis (KOA) is a progressive musculoskeletal disorder
and a leading cause of disability worldwide. Early and accurate diagnosis is
crucial for timely intervention; however, conventional manual grading using
radiographs is prone to variability. Artificial intelligence (Al)-based computer-
aided diagnostic (CAD) systems offer potential to improve detection and grading
accuracy.

Objective: This study aimed to develop and evaluate an Al-based diagnostic
grading system for KOA using X-ray imaging and transfer learning techniques,
with the goal of assisting clinicians and medical trainees in early and precise
diagnosis.

Methods: An experimental cross-sectional study was conducted using 301
radiographs (602 knee images) collected from the Social Security Teaching
Hospital, Lahore. The dataset included Kellgren—Lawrence (KL) grades 0—4, with
labeling based on pain observation and expert orthopedic assessment. Image
preprocessing involved binary thresholding, morphological operations, knee
isolation, normalization, and zero-padding. Transfer learning with DenseNet-121
served as the base network, augmented by convolutional and fully connected
layers. Performance was evaluated against other deep learning architectures
(DenseNet201, ResNet50, MobileNet) and classical machine learning algorithms
(SVM, decision tree, random forest). Metrics included accuracy, area under the
curve (AUC), precision, and recall.

Results: DenseNet-121 demonstrated the most robust performance among the
tested models, achieving an accuracy of 68.85%, an AUC of 85.67%, a precision
of 68.33%, and a recall of 67.21% on the independent test set. Comparative
models, including DenseNet201 and MobileNet, exhibited lower accuracies (~60
to 61%) and AUCs (~80 to 83%). Machine learning approaches underperformed,
with a maximum accuracy of 55.73%. The primary challenges included dataset
imbalance and the difficulty in distinguishing between grade 0 and grade 1 due
to overlapping radiographic features.

Conclusion: The proposed Al-based CAD system shows promise for supporting
KOA diagnosis and grading in clinical practice, particularly for training junior
clinicians and radiologists. Despite limitations of dataset imbalance and
restricted single-center data, transfer learning with DenseNet-121 achieved
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reliable performance. Future work should focus on expanding datasets to
encompass diverse populations, incorporating multimodal inputs, and validating
generalizability across various clinical settings. This approach highlights the
growing role of Al in musculoskeletal imaging and its potential to enhance early
disease detection and patient care.

KEYWORDS

computational imaging, healthcare Al, disease prediction, Al-based diagnosis, transfer
learning, computer-aided diagnostic system, radiology

1 Introduction

Osteoarthritis (OA) is a common chronic joint disease with
numerous risk factors (1, 2), often affecting weight-bearing joints (3,
4), particularly the knee (5). OA can impact individuals of all ages but
is more common in older adults, particularly in women (6). Symptoms
include knee pain, stiffness, and swelling, typically aggravated by
activity and relieved by rest or inactivity (7). OA in the knee (KOA)
can lead to joint deformity, discomfort, and functional impairment,
contributing to disability worldwide (8, 9). KOA is prevalent in
approximately 10% of adults over 65 (10), with factors like age, gender,
hormonal changes, genetics, obesity, excessive physical activities, and
injury contributing to its development. It is anticipated that by 2050,
approximately 1.3 billion people worldwide will be affected by it (11-
14). Early detection and treatment can help slow its progression and
improve the quality of life for older people.

Diagnosing and treating knee KOA is complex due to multiple
risk factors, and early detection remains challenging (15). Plain
radiographs are commonly used to evaluate features such as joint
space narrowing, osteophyte formation, and subchondral changes.
The Kellgren-Lawrence (KL) grading system, introduced in 1957 (16)
and later recognized by the WHO (17, 18), is the standard for
classifying OA severity from grade 0 (healthy) to grade 4 (severe).
However, studies measuring joint space width have shown inconsistent
results. To address these limitations, computer-aided methods using
machine learning (ML) offer a promising approach for automating
KOA severity assessment (19).

Over the last decade, several techniques for knee joint detection
and categorization by KL grade have been developed. Schiratti et al.
(20) conducted binary classification on knee MRI images, achieving
an Area Under the Curve (AUC) score of 72%. However, the study
primarily focused on predicting the current state of the disease rather
than forecasting future disease progression. This limitation restricts
the generalizability of the findings to long-term outcomes.
Moustakidis et al. (21) employed ML and Dense Neural Networks
(DNNgs) in their study. They trained the DNN model using data from
4,796 patients, achieving a binary accuracy rate of 79.6%, albeit lower
than what's typically expected in binary datasets. On the other hand,
Mahum et al. (22) employed hybrid features of CNN, along with Local
Binary Pattern (LBP) and CNN with Histogram of Oriented Gradient
(HOG), for feature extraction, and utilized a support vector machine
(SVM) for the classification task. Convolutional Neural Networks
(CNNs) have shown immense promise in computer-aided diagnosis
(CAD), sometimes achieving human-level performance (23-26).
Similarly, Leung et al. (27) used transfer learning techniques for the
classification. However, none of them separate the knee from single
X-rays. They all used preprocessed datasets, and the model performed
very well according to them.
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In this study, we present an end-to-end Al-based computer-aided
diagnostic (CAD) system for the automatic detection and severity
grading of knee osteoarthritis (KOA) from raw bilateral X-ray images.
KOA is a prevalent musculoskeletal condition that significantly
impacts knee function (28) and quality of life, yet its manual diagnosis
can be challenging, particularly for junior clinicians. To support
clinical evaluation, we developed a system with several key
contributions. First, we introduce a newly collected dataset comprising
602 knee images from 301 patients across five KL-grade classes—the
first of its kind from our clinical setting. Second, we designed an
automated pipeline for knee isolation from bilateral radiographs,
addressing a preprocessing step often neglected in previous studies.
Third, we implemented and compared multiple machine learning and
deep learning architectures, identifying a fine-tuned DenseNet-121
model as the most effective. This model, trained with data
augmentation to enhance robustness, demonstrates the feasibility of
utilizing Al to support radiologists and trainees in achieving more
consistent KOA severity assessments.

Accurate disease prediction is of paramount importance in the
field of medicine, particularly when dealing with complex and
challenging datasets. We applied several approaches to a complex
labeled dataset, with the ultimate goal of improving KOA prediction.
This work can provide clinicians with more precise disease staging,
enabling earlier intervention for risk factors like disability and
functional impairment. Patients’ quality of life can be significantly
enhanced as a result. Caregivers often seek medical advice only after
the disease has progressed to late stages, highlighting the need for
early and precise diagnosis. This research addressed this challenge by
developing an automated computer-aided diagnostic system that
leverages Al tools and decision models. The major goal was to
accurately diagnose KOA at an early stage, potentially alleviating the
burden of this prevalent disorder and its related problems. The dataset,
obtained with permission from the Department of Orthopedic
Surgery and Traumatology at the Social Security Teaching Hospital,
Lahore, includes patients with KOA grades ranging from 0 to 4, where
0 represents normal cases without osteoarthritis, while grade 4
represents cases with severe osteoarthritis. The study employs Transfer
Learning (TL) techniques to extract Al-based markers, enabling the
automated prediction of the disease’s severity.

2 Materials and methods
2.1 Study design and setting

A retrospective cross-sectional study was conducted at the
Department of Orthopedic Surgery and Traumatology, Social

Security Teaching Hospital, Lahore, and the National University of
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Computer and Emerging Sciences (NUCES), Lahore, Pakistan. The
data was collected from the records of 1st October 2023-31st March
2024. The research conforms to the requirements recommended by
the STROBE initiative for cross-sectional studies. Experiments
related to AI models were conducted. Prior ethical approval was
taken from the Hospital. The retrospective clinical and X-ray data
were collected with informed consent from the patient. While
collecting the dataset, we adhered to the established ethical
standards. A total of 301 patient X-rays were utilized in this study,
resulting in the extraction of 602 knee images. Among these
patients, 18 had grade-0 (no disease), and 67 had grade-1 (doubtful
joint space narrowing, possible osteophytic lipping) based on
radiographic assessment by an orthopedic surgeon, using the
original Kellgren-Lawrence criteria (16). 105 had grade-2, 126 had
grade-3, and 86 had grade-4 knee conditions. Our dataset was
selected from the Social Security Teaching Hospital as it represents
a typical clinical population encompassing the full spectrum of
KOA severity from early to advanced stages. To prevent data
leakage, we ensured that all images from a single patient were
contained within either the training or test set, never split
between them.

2.2 Inclusion and exclusion criteria

To ensure the relevance and integrity of the research findings,
specific inclusion and exclusion criteria were applied in the selection
of participants for this study. The inclusion criteria encompassed
individuals aged between 40 and 80 years who reported experiencing
pain in one or both knees and had a documented history of persistent
knee pain for a minimum duration of 3 months. Patients who had
recently experienced trauma, had surgical operations around the knee
joint, or were diagnosed with knee septic arthritis or knee rheumatoid
arthritis were excluded from the research.

2.3 Dataset

The dataset comprised 2D X-ray images, classified into five
distinct categories. A senior orthopedic surgeon labeled the data for
the precise classification of the ground truth. With a total of 301
samples available in PNG format, each image included both knee
joints. The size of the dataset was found to be sufficient for the
experimentation. The gender distribution among patients is 162
females and 139 males. Considering population data, the collective
average age stands at 59.85 + 11.4 years. Patient age and gender details
are indicated by the data operator in the upper left corner of the X-ray
images. The dataset comprised five classes, where class 0 indicated the
absence of disease, while classes 1 through 4 represented the stages of
the disease, progressing from low to high, respectively.

Each sample included two separate knees, labeled separately;
therefore, an additional preprocessing step was used to ensure accurate
label prediction for each knee. Our approach involved algorithmically
separating the knees within the images before model input. Given the
varying sizes of the dataset images, our preprocessing pipeline
encompassed resizing, cropping, and padding operations. These steps
were integrated into the preprocessing methodology outlined in the
section below of this study.
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2.4 Proposed work

In the outlined methodology, the X-ray images inherently featured
two knees. To isolate each knee, image-processing steps were
implemented to handle the pipeline. Initially, pixel intensities were
enhanced through sharpening. After that, a binary thresholding
technique was employed to eliminate background pixels. Following
that, a morphological opening operation was used to successfully
separate the prominently highlighted area, which largely corresponded
to the knee region due to the predominance of bone structures in the
X-rays. Another thresholding step was then performed to determine
the start and end columns of each knee. Padding was done after the
images were normalized. These processed images were then utilized
for model training purposes. Two significant challenges were
addressed in this study. The first challenge entailed dealing with an
unbalanced dataset, while the second involved constructing an equal
number of image slices for each patient. The visual representation of
our approach is shown in Figure 1, which illustrates each step of the
methodology. Further elaboration on each step can be found in the
subsequent subsections. The following sections provide comprehensive
insights into the pre-processing procedures and the specific details
concerning the networK’s architecture.

2.5 Data samples

This section provides a brief overview of the dataset’s composition
and variety. Some samples from the dataset are displayed, offering a
visual depiction of X-rays with varying grades. With images that show
different levels of illness progression, these samples demonstrate the
dataset’s heterogeneity. These samples give readers a first sense of the
intricacy of the dataset, laying the groundwork for the subsequent
approaches and conclusions described in the study. The samples are
shown in Figure 2.

2.6 Image preprocessing and knee isolation

The primary challenge in utilizing the bilateral knee X-rays was
the need to isolate individual knees for classification. We developed
an automated image-processing pipeline for this purpose, with the
overall workflow illustrated in Figure 1.

1. Resizing and Color Conversion: All original images (see
samples in Figure 2) were first resized to a uniform dimension
of 224 x 224 pixels and converted to grayscale.

2. Knee Segmentation via Thresholding and Morphology:
We employed binary thresholding using the OTSU algorithm
to create a mask separating the radiopaque bone structures
(foreground) from the background. A morphological opening
operation was then applied to this mask to remove small noise
artifacts and disconnected pixels. In cases where thresholding
yielded suboptimal segmentation, a pixel correction strategy
was used, replacing rows of identical pixel values with zeros.
The results of these steps are visualized in Figure 3.

3. Knee Detection and Cropping: The processed morphological
image was analyzed column-wise to detect the start and end
points of each knee joint by identifying columns with non-zero
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pixel values. This process was repeated to capture both knees,
which were then cropped into individual images.

4. Post-processing for Model Input: The cropped knee images,
which were of variable sizes, underwent two final steps:

o Zero-Padding: To standardize dimensions without distorting
the aspect ratio, zero-padding was applied to the sides of the
cropped slices. Examples of the final padded knee slices are
shown in Figure 4.

« Normalization: Pixel intensities were normalized to a [0, 1]
range by dividing by 255 to stabilize and accelerate the model
training process.

The code for preprocessing is given in'. The final, processed
dataset of individual knee images was then split for model
development, as detailed in Figure 5.

2.7 Splitting of data and augmentation

Following the completion of the pre-processing procedures, the
dataset was divided into three separate sets: train, test, and validation.
This partitioning was achieved via a two-step approach. Initially, 80%
of the data was allocated for model training, with the remaining 20%
(61 samples) designated for testing. In the subsequent phase, the
training dataset underwent augmentation through rotation, zoom,
and affine transformation techniques. Images were randomly rotated
within a range of +30 degrees to introduce rotational invariance.
Zoom augmentation was applied by scaling images with a random
factor between 0.8 and 1.2, enabling the model to handle variations in
object size and perspective better. Additionally, affine transformations
were employed, incorporating horizontal flipping, random shifts up
to 10% of the image dimensions, scaling within the same 0.8-1.2
range, and shear angles up to +20 degrees. Figure 6 shows the resulting
images after applying different augmentation techniques to a sample
image. The complete code for data augmentation is also given in .
These parameters were chosen to increase dataset variability without
distorting critical anatomical features relevant to KL grading. This
augmented training dataset was further divided into 90% training and

1 https://drive.google.com/drive/folders/1Hbz5q0P7GS6e4sOB7LklbJ
vwD75qLTHI
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10% validation. The number of training samples after data
augmentation and testing sample (with no augmentation) per class is
depicted in Figure 5.

2.8 Network architecture

The main components used in the architecture are discussed in
the following subsections. The model architecture consisted of
pre-trained 2D convolutional layers followed by additional layers.
Figure 7 represents the visual representation of the model.

2.8.1 Architecture block

The network architecture of the proposed model is shown in
Figure 7. It contained an initial layer of 2D convolution with an
activation of the Rectified Linear Unit (ReLU) function, which
converts the images to a shape of 224, 224, 3: from 224, 224, 1 so that
the images can be fed into the transfer learning (TL) model of
DenseNet121 (29). DenseNet121 is a pre-trained model on a large
dataset containing weights that are useful in the training process.

In TL, the pre-trained model is typically referred to as the base
model. The model was implemented using TensorFlow and the Keras
library. The base DenseNet-121 architecture, pre-trained on ImageNet,
was used without freezing any layers, allowing for full fine-tuning on
our medical image dataset (30). This approach enables the model to
adapt its low-level feature extractors (e.g., edge and texture detectors)
to the specific characteristics of X-ray images. The custom
classification head was trained from scratch. We employed the Adam
optimizer for its adaptive learning rate capabilities and used a reduced
learning rate to facilitate stable fine-tuning. A learning rate scheduler
and early stopping were implemented to prevent overfitting and
optimize training time. To mitigate overfitting, we applied L2 weight
regularization (1 = 1 x e™*) to the kernel weights of all fully connected
layers, combined with Dropout (rate = 0.3) after each hidden layer
activation. The architecture diagram of the proposed model is shown
in Figure 7. The summary of the model layers and trainable/
non-trainable parameters is shown in Table 1.

2.9 2D-convolutional layer

The 2D convolutional layer is a crucial component of
convolutional neural networks (CNNs) that excels in extracting spatial

frontiersin.org
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characteristics from input images (31). In the forward pass, the
convolution procedure consists of sliding a small filter over the input
image, computing element-wise products between filter weights and
corresponding image pixels, and summing these products to create a
feature map as defined in Equation 1. This method catches local
patterns and identifies pertinent characteristics. The backward pass,
also known as backpropagation, calculates gradients with respect to
the loss function as represented by Equations 2, 3; enabling the
network to adjust its training parameters accordingly.

M-IN-1
Yij = z zxi+m, j+n-Wm.n+b (1)

m=0n=0

Where, y; ; is the output feature map value at the position (i,j ) M
and N represent the filter dimensions, W is the weight at position
(m,n) and b is the bias term.
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LSy W @

= 7~Xi+m.j+n (3)

Where, H and W are the height and width of the output feature
map. 0X;; represents the gradient loss relative to the output
feature map.

2.10 Fully connected layer

In a neural network, a fully connected (FC) layer connects
every node from the previous layer to each node in the current

frontiersin.org
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Architecture diagram of proposed work.

layer (32). This layer performs a linear transformation on the
input, followed by the application of an activation function. The
equation for the FC (33) layer is represented as shown in
Equation 4.

y=f(2Wx+b) (4)

Where x is the input vector, W is the weight matrix, b is
the bias vector, f is the activation function, and y is the output
vector.

2.11 Evaluation metrics
The performance of the proposed model was evaluated using

various metrics. To benchmark the model’s effectiveness, we employed
four commonly used evaluation metrics: accuracy, area under the

Frontiers in Medicine

curve (AUQC), recall, and precision. These metrics are widely used to
assess the performance of classification models.

2.11.1 Accuracy
In this study, five classes were used for classification, and categorical
accuracy was employed to evaluate the model’s accuracy. Equation 5
represents a mathematical representation of the accuracy (32) metric.
TP+TN

Accuracy =———————— (5)
TP+TN + FP+FN

Where TP, FP, TN, and FN stand for True Positive, False Positive,
True Negative, and False Negative, respectively.

2.11.2 Area under curve

The Area Under the Curve (AUC) evaluation metric was also used
to measure the model’s performance. The mathematical representation
of AUC is depicted in Equation 6 (34, 35).
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TABLE 1 Summary of the proposed model.

Layer Input Output Parameters

shape shape

(None, 224, (None, 224,
Input layer 0

224, 1) 224, 1)
Convolutional (None, 224, (None, 224, 3
layer 224,1) 224, 3)
DenseNet121 (None, 224, (None, 7, 7,

7,037,504

(BaseNet) 224, 3) 1,024)

(None, 7, 7,
Flatten (None, 50,176) 0

1,024)

(None,
FC_1 (None, 128) 6,422,656

50,176)
Activation (ReLU) (None, 128) (None, 128) 0
FC_2 (None, 128) (None, 64) 8,256
Activation (ReLU) (None, 64) (None, 64) 0
FC_3 (None, 64) (None, 16) 1,040
Activation (ReLU) (None, 16) (None, 16) 0
FC_4 (None, 16) (None, 5) 85
Activation

(None, 128) (None, 128) 0
(SoftMax)
Total parameters 13,469,571
Trainable

13,385,923
parameters
Non-trainable

83,648
parameters

1 -1
AUC:JOTPR(FPR (t))dt 6)

Where, TPR is the true positive rate, FPR is the false positive rate,
FPR™!and is the inverse function of the FPR at threshold ¢. The AUC
value ranges between 0 and 1, with higher values indicating
better performance.

2.11.3 Recall

In this study, recall was used in conjunction with other evaluation
metrics. Also referred to as sensitivity or the true positive rate, recall
measures the model’s ability to identify positive instances accurately.
It is calculated as the ratio of true positive predictions to the total
number of actual positive samples. The formula for recall (33, 36) is
shown in Equation 7.

Recall = T—P (7)
TP+ FN

2.11.4 Precision
Precision (33, 37, 38), also known as specificity, was calculated to
assess the proportion of true positive predictions made by the model
relative to all positive predictions. The mathematical formula for
precision is provided in Equation 8.
TP

Precision=——— (8)
TP+ FP
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2.11.5 Categorical cross-entropy loss

Categorical Cross-Entropy (CCE) (39) loss was used to measure
the difference between the model’s predicted output and the actual
target values. The formula for categorical cross-entropy loss is
provided in Equation 9.

C o~
L(y.y)==2 yixlogy; ©)

i=1

Where, y is the true label, y is the predicted probability (ranging
from 0 to 1), and C is the number of classes in the dataset.

3 Experimentation and results

The tests in this study were carried out on a server with specific
hardware: 64GB of RAM, a 5GB NVIDIA QUADRO P2000
Graphics Processing Unit (GPU), and a 256GB Hard Disk. To
evaluate the model’s performance, the test set was created by
splitting the dataset before augmentation and training. Using
various metrics ensures that the model is robust and reliable from
multiple perspectives. When we combine all of these outcomes,
we can see how successfully the model was trained. Other
variables, such as loss and overfitting, also play a role in this
process.

Several experiments were conducted on the dataset, involving two
distinct preprocessing approaches. Initially, the model was trained
using images of separated knees, while the second approach involved
adding annotation boxes to these images. In both cases, transfer
learning techniques were employed, incorporating hyperparameter
tuning and regularization strategies to enhance performance. Various
scenarios were explored to address concerns of overfitting and
underfitting. Grade-0 and grade-1 X-ray views were identical;
however, they were assigned different labels based on patient-reported
pain in the knee. In cases where patients experience pain and the
X-ray appears normal, they are categorized as grade-1. Conversely,
when there was no pain and the X-ray was normal, it was classified as
grade-0, serving as the ground truth label. This intricacy contributed
to the challenge of training the dataset. Due to the unsatisfactory
results of the object detection trials, testing on this dataset was
discontinued. Further details of these experiments are elaborated
upon in the subsequent section.

3.1 Proposed model

Table 2 presents the results of the tests conducted. Each test
experiment contained a different architecture or a change in the
optimizer. The “Model” column displays information about the
transfer learning models used as BaseNet, and the “FC layers” column
indicates the number of fully connected layers employed after the
BaseNet. The further columns represent the testing values of loss,
accuracy, AUC, precision, and recall scores for the given experiment.

The proposed model was compared with other state-of-the-art
models. Other networks performed well on most of the datasets used,
utilizing their trained weights. There are several famous network
ResNet-V2, MobileNet,

architectures, including DenseNet,
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TABLE 2 Proposed 3D model test results.

10.3389/fmed.2025.1707588

Model FC layers Parameters Loss Precision% Recall%

1 ResNet50-V2 3 36.41 m 2.8311 54.10 79.91 55.93 54.10

2 ResNet50 3 36.44 m 3.7643 60.66 83.03 60 59.02
Inception-

3 ResNetV2 3 56.807 m 33459 55.37 80.70 58.77 55.37

4 DenseNet201 4 24355 m 22322 60.66 80.92 60.66 60.66

5 MobileNet 3 9.66 m 2.1614 60.66 83.65 61.02 59.02

6 DenseNet121 3 10.26 m 22285 57.38 81.44 56.67 55.74

7 DenseNet121 3 13.46 m 2382 68.85 85.67 68.33 67.21

TABLE 3 ML algorithms results and description of parameters.

Sr. Algorithm Accuracy%  Details
No
1 Decision tree 50.81 Criterion = entropy
L2 penalty = 0.5,
2 SVM 54.09
decision function = ovo
Criterion = entropy,
3 Random forest 55.73
n-estimator = 500

MobileNet-V2, VGG16, VGG19, EfficientNet, and many others. There
are other machine learning approaches, such as SVM, random forest,
decision tree, and several others. We mentioned most of our
experimental results, which achieved accuracies near the highest ones.

3.2 Machine learning approaches

Machine Learning (ML) is the traditional approach. Algorithms
in ML, such as SVM, Random Forest, and Decision Trees, are powerful
tools that enable computers to learn patterns and make predictions
from data. SVM aims to find the best boundary between different
classes, maximizing the margin between them. Random Forest
combines multiple decision trees to make more accurate predictions
by reducing overfitting. Decision Trees work by making a series of
if-else decisions based on features to arrive at an outcome. These
algorithms excel in various tasks like classification, regression, and
anomaly detection. By learning from historical data, they can
generalize and make predictions on new, unseen data, making them
invaluable for a wide range of real-world applications.

The preprocessed images transformed 1D vectors, enabling them
to be compatible with various machine-learning algorithms. Further,
these 1D vectors were normalized using standard scaling to enhance
algorithm compatibility. The performance evaluation of these
algorithms is outlined in Table 3.

3.3 Evaluation metric comparison

By employing the accuracy formulas specified in the accuracy
section, a comparison of accuracy was conducted across different
models. Most of the approaches achieved training accuracies
surpassing 90% and validation accuracies over 80%. To prevent data
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leakage issues, the validation set was derived from the augmented
dataset, while the test set was separated from the original dataset.
Among the models, the top three testing accuracies were observed
with DenseNet201, MobileNet, and DenseNet121 as the Basenet. In
Figure 8, graphs illustrating training and validation curves displayed
accuracy values across epochs. In Figure 8, DenseNet201 exhibited a
training accuracy of 97.79% and a validation accuracy of 93.59%. In
comparison, MobileNet and DenseNet-121 achieved training
accuracies of 95.89 and 95.93%, respectively, as shown in Figures 8b,c,
accompanied by validation accuracies of 85.85% for both.

Utilizing the equations outlined in the AUC section, a
comprehensive analysis was conducted to compare the AUC across
various models using distinct BaseNet configurations. The visual
depiction in Figure 9 of the training and validation curves over epochs
provides a comprehensive insight into the models’ progress,
highlighting their respective AUC values. The training Area Under the
Curve (AUC) figures were notably high, registering at 99.97, 99.92,
and 99.90% for DenseNet201, MobileNet, and DenseNet-121, in
Figures 9a—c, respectively. Correspondingly, validation AUC values
reached 98.30, 97.19, and 96.69% for the respective models. This
affirmation of high AUC values signifies the models’ strong predictive
capabilities and robust learning representations, suggesting their
potential for accurate classification tasks.

An extensive evaluation of recall was undertaken, involving
diverse models. The visualization of training and validation curves in
Figure 10, across successive epochs, effectively portrays the models’
learning trajectories and their corresponding recall values. Among the
models examined, including DenseNet-201, MobileNet, and
DenseNet-121, distinct recall trends emerged. In Figure 10,
DenseNet201 exhibited a training recall of 97.28% and a validation
recall of 93.42%. In contrast, MobileNet demonstrated training and
validation recalls of 95.65 and 85.54%, respectively, as shown in
Figure 10. For DenseNet-121, the training recall stood at 95.48%,
while the validation recall was registered at 85.85%, as shown in
Figure 10. These recall values provided valuable insights into the
models’ capacity to correctly identify positive instances, thereby
contributing to a nuanced understanding of their performance
dynamics within classification tasks.

An in-depth assessment of precision was conducted,
encompassing diverse models with varied base network configurations.
Visualizing training and validation curves across multiple epochs
effectively illustrated the models’ learning trajectories alongside their
corresponding precision values in Figure 11. In this context,
DenseNet201, MobileNet, and DenseNetl121 exhibited distinct
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AUC of trained models with (a) DenseNet201, (b) MobileNet and (c) DenseNet121 as BaseNet.
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Recall of trained models with (a) DenseNet201, (b) MobileNet and (c) DenseNet121 as BaseNet.
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Precision of trained models with (a) DenseNet201, (b) MobileNet and (c) DenseNet121 as BaseNet.
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precision trends. Specifically, DenseNet201 achieved a training
precision of 97.98% and a corresponding validation precision of
93.74%, as shown in Figure 11. For MobileNet, the training and
validation precisions were 95.98 and 85.80%, respectively, as depicted
in Figure 11. In the case of DenseNet121, a training precision of
96.21% was recorded, accompanied by a validation precision of
86.65% as shown in Figure 11. These precision values provided key
insights into the models’ ability to make accurate positive predictions,
thereby shedding light on their performance dynamics across
classification tasks.

A comprehensive analysis was conducted to compare the loss
across different models utilizing distinct basenet configurations.
Graphs depicting training and validation curves over successive
epochs effectively conveyed the models’ learning progress in Figure 12,
accompanied by their corresponding loss values. Among the models,
DenseNet201, MobileNet, and DenseNet121 demonstrated varying
loss figures. Specifically, DenseNet201 demonstrated a training loss of
0.1090 and a validation loss of 0.3383, whereas MobileNet showed
training and validation losses of 0.1953 and 0.7102, as illustrated in
Figure 12. DenseNet121 recorded a training loss of 0.8255 and a
validation loss of 1.3024, as shown in Figure 12. These diverse loss
values reflected the models’ convergence and performance
characteristics, ultimately contributing to the understanding of their
efficacy in addressing classification tasks.

3.4 Evaluation

The training and validation evaluations of the proposed model
have been detailed in the preceding sections. Below are the testing
accuracies of several additional models, providing a comprehensive
breakdown of our experimental results. Essential details concerning
the test set are provided in Table 2. Under the “Model” column,
BaseNet names are listed, while the “FC Layer” count enumerates the
number of fully connected layers utilized to post the BaseNet. The
“Parameters” column indicates the total parameters (trainable &
non-trainable) within each model. Notably, in the case of DenseNet121
at the 6th entry, although 3FC layers were employed, the units within
these layers underwent modification. Significantly, the 7th entry
corresponds to the proposed model, as featured in Figure 7. This table
serves as a comprehensive reference, outlining the key characteristics
and configurations of the experimented models.
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4 Discussion

Our study demonstrates that a transfer learning approach based
on DenseNet-121 can effectively grade knee osteoarthritis from X-ray
images with a clinically useful level of accuracy (68.85%). A key
differentiator of our method was the automated isolation of individual
knees from bilateral X-rays, a crucial preprocessing step that moves
beyond using pre-segmented public datasets. Despite challenges such
as class imbalance and the subtle radiographic differences between KL
grades 0 and 1, our model outperformed both other deep learning
architectures and traditional machine learning algorithms.

Our proposed DenseNet-121 model achieved the best
performance (68.85% accuracy), likely due to its efficient feature reuse
and gradient flow, which is beneficial for training on smaller datasets.
In contrast, larger models like DenseNet201 may have overfitted,
while shallower models like MobileNet lacked the representational
capacity. The key novelty of our work lies not only in this comparative
analysis but also in developing an end-to-end pipeline that starts with
raw bilateral X-rays, addressing the clinically relevant task of
automatic knee isolation—a step often bypassed in studies using
pre-curated, single-knee datasets.

Dataset size and balance also strongly influence results. While
large, multi-thousand-sample repositories enable deeper models to
generalize effectively, our dataset of 602 knees was relatively small and
imbalanced, particularly between grades 0 and 1. This overlap in
radiographic appearance makes classification inherently difficult and
contributes to reduced performance for some architectures.
Preprocessing strategies further affected outcomes. Previous studies
often employed curated datasets with manually segmented knees,
which simplifies the classification task. By contrast, our automated
knee isolation pipeline introduced real-world variability, including
zero-padding and normalization, which makes the approach more
clinically relevant but also slightly more error-prone compared to
pre-segmented datasets. Although confidence intervals, statistical
significance testing, and k-fold cross-validation were not performed
due to dataset constraints, these analyses are planned for future work as
the dataset is expanded.

Finally, differences in imaging modalities should be considered.
MRI-based studies generally outperform X-ray-based studies in
detecting early KOA, as MRI provides detailed cartilage-level
information that X-rays cannot capture. This explains why AUC
values reported in MRI studies often exceed 90%, whereas our
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X-ray-based approach achieved a strong but lower AUC of 85.67%.
Collectively, these factors underscore that model performance is
shaped not only by the choice of architecture but also by the nature of
the dataset, preprocessing pipeline, and imaging modality.

Together, these findings highlight that model performance in
KOA diagnosis is not solely determined by architecture but is
significantly shaped by dataset characteristics, preprocessing
approaches, and modality-specific features.

The novelty of this study lies in several aspects that distinguish it
from existing work on KOA diagnosis. First, we developed an automated
image-processing pipeline for knee isolation from bilateral radiographs,
a step often overlooked in prior studies that relied on pre-segmented or
manually curated datasets. By automating this process, our approach
brings Al-based diagnosis closer to real-world clinical applicability,
where radiographs are rarely preprocessed. Second, we curated a new
dataset comprising 602 knee images from 301 patients at the Social
Security Teaching Hospital, Lahore, representing one of the first such
collections from Pakistan. This dataset adds valuable diversity to the
global research landscape and provides a benchmark for populations
that have been underrepresented in KOA studies. Third, we carried out
a systematic comparative evaluation of both classical machine learning
algorithms and several deep learning architectures, identifying
DenseNet-121 as the most effective in this challenging setting.
Importantly, our dataset included a clinically challenging cohort where
KL-0 cases were not healthy, asymptomatic controls, but rather
symptomatic patients with normal X-rays. This design makes the
classification task more complex but also more clinically realistic, as it
mirrors the diagnostic challenges faced by practitioners. Together, these
contributions highlight the originality of our work and its potential to
advance Al-based diagnostic tools for KOA.

An important consideration in our study is the potential for
spectrum bias. Our inclusion criteria required participants to have
persistent knee pain. Consequently, our ‘KL-0’ group represents a
challenging cohort of symptomatic controls—patients with pain but
than healthy,
asymptomatic individuals. This likely contributed to the models

no radiographic abnormalities—rather truly
difficulty in distinguishing between KL-0 and KL-1 grades, as the
defining clinical symptom (pain) was present in both groups, leaving
only subtle radiographic clues for the model to learn.

Two factors primarily constrained the model’s performance. First,
the fundamental clinical challenge of distinguishing between KL grade
0 (no pain, normal X-ray) and grade 1 (presence of pain, normal
X-ray) based solely on radiographic features led to predictable
misclassifications. Second, the necessary use of zero-padding to
standardize image sizes after knee isolation may have introduced a
background bias, a trade-off against the benefits of our automated
segmentation pipeline.

Several prior studies have explored KOA classification with both
machine learning and deep learning approaches, reporting varying
performance depending on dataset size, preprocessing, and imaging
modality. Abdullah et al. (40) proposed a deep learning approach
using ResNet50 trained on a much larger dataset of 3,172 knee X-rays.
Their model achieved higher accuracy than ours; however, their
dataset was pre-curated and balanced, whereas our dataset of 602
knees was collected directly from a clinical setting and included
symptomatic KL-0 cases. This distinction makes our classification task
inherently more challenging but also more reflective of real-world
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diagnostic conditions. Ahmed et al. (41) explored segmentation
techniques with both traditional ML and DL, highlighting the benefits
of multimodal data integration for improving performance. While
their work demonstrates the value of data enrichment, our pipeline
focused on automatic segmentation of raw bilateral radiographs,
offering a pathway toward clinical applicability where such pre-curated
data are not readily available.

Ashinsky et al. (42) reported 75% accuracy usinga WND-CHRM
model on a small MRI dataset of only 68 subjects. Their use of
cartilage maps provided rich soft-tissue detail, which is not available
in radiographs, explaining their higher performance despite the small
sample size. Yeoh et al. (43), in a review of 74 studies, emphasized that
many reported high accuracies rely on curated datasets or 3D CNNG,
but also noted the challenges in translating such methods into routine
clinical practice. Similarly, Olsson et al. (44) achieved an AUC of 80%
using the ResNet model. However, their study did not systematically
compare multiple architectures as we did, and their dataset was larger
and less clinically ambiguous than ours. Thomas et al. (45), who
utilized DenseNet for KOA classification, reported an accuracy of
60%, which is lower than our best accuracy of 68.85%. However, their
study lacked a comparative evaluation and omitted computational
considerations.

Our selection of DenseNet-121 was deliberate for several key
reasons relevant to KOA classification: (1) Its dense connectivity
pattern promotes feature reuse, which is crucial when training data is
limited, as in our medical imaging context; (2) The model’s efficient
parameter use reduces overfitting risk compared to similarly deep
architectures; (3) The strong performance on ImageNet suggests
robust feature extraction capabilities that transfer well to radiographic
texture analysis. While we acknowledge that ablation studies would
provide more definitive evidence, our comprehensive comparison
against multiple architectures (Table 2) demonstrates DenseNet-121’s
superior empirical performance for this specific task. From a
deployment perspective, despite its depth, the DenseNet-121 model
maintained inference time averaged at 0.15 s per knee image, making
real-time batch processing feasible in clinical workflows on our test
hardware (NVIDIA QUADRO P2000).

Although our model achieved an accuracy of 68.85%, it represents
a strong proof of concept for an automated grading pipeline. This level
of performance is not sufficient for the system to be adopted as an
independent diagnostic tool in clinical practice. Instead, the present
study should be viewed as developing an auxiliary computer-aided
diagnostic system, designed to complement rather than replace
clinical expertise. Note that Early diagnosis of KOA is critical because
treatment options become increasingly limited and invasive as the
disease progresses. In advanced stages, surgical interventions such as
high tibial osteotomy combined with chronic distraction tissue
regeneration and computer-assisted external fixation have been
explored to correct severe joint deformities (46). In this capacity, the
model can serve as a decision-support tool, offering consistent
preliminary grading that may help junior radiologists and medical
trainees reduce interpretation variability and improve confidence in
early diagnosis. With further development—including the expansion
of dataset size, mitigation of class imbalance, and integration of
multimodal data such as MRI and clinical history—the system’s
performance may approach the reliability required for standalone
diagnostic use.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1707588
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Shahid et al.

5 Conclusion

This study presented an end-to-end, Al-based CAD system for
grading Knee Osteoarthritis from raw bilateral X-ray images. Our key
contribution is the development of a fully automated pipeline that
segments individual knees—a crucial step for precise analysis—before
classification. Through a comprehensive comparative analysis,
we demonstrated that a transfer learning approach using DenseNet-
121 is the most effective, achieving a test accuracy of 68.85% and an
AUC of 85.67% on a challenging, five-class, imbalanced dataset. While
this performance is a promising proof of concept, it highlights the
complexity of fine-grained KOA grading and the difficulty in
distinguishing early disease stages. This system shows potential as a
valuable assistive tool for training and standardizing assessments,
paving the way for more accessible and consistent KOA diagnosis.

6 Limitation

Although our approach showed some potential, this study has
several limitations. Firstly, despite its diversity, the dataset utilized may
still lack coverage of particular demographic groups. Additionally, the
dataset was imbalanced, which could impact the model’s performance
and reliability. Secondly, the model’s performance may vary with
different X-ray imaging equipment and settings, which should
be considered for real-world applications. Lastly, the model’s ability to
generalize to other medical image analysis tasks beyond KOA
classification remained unexplored and should be a subject of
future investigation.

Additionally, k-fold cross-validation was not applied due to dataset
constraints, as repeated partitioning risked class depletion in minority
grades. Future work will incorporate stratified k-fold validation and
external dataset testing to assess generalizability across institutions.

7 Future work

The imbalanced dataset, with a disproportionately low number of
KL-0 cases compared to KL-1, is a main concern in this study. This
imbalance inevitably impacts robustness and generalizability,
particularly in distinguishing early KOA stages. While our results
demonstrate the feasibility of automated KOA grading in a real-world
clinical cohort, future work should address class imbalance through
strategies such as oversampling, class-weighted loss functions, or
synthetic data augmentation. Future work could explore advanced deep
learning architectures and ensemble techniques to bolster results further
and address nuanced challenges in KOA detection. The dataset’s
diversity is a strength; however, expanding it to include more
demographics and imaging scenarios would further enhance
generalization.

For future work, explainable AI (XAI) techniques, such as Grad-CAM
and layer-wise relevance propagation, can be incorporated to enhance
model interpretability. These visual explanations will help identify the
specific radiographic regions that influence model predictions, providing
clinicians and radiologists with greater confidence in the systems
decision-making process. Incorporating such interpretability tools will
also support clinical validation and facilitate integration of Al-assisted
diagnosis into real-world medical workflows.
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