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Quercetin alleviates
rifampicin-induced hepatocyte
injury by modulating the
Hippo-YAP signaling pathway

Weiwei Liu, Hui Li and Weimin Lu*

The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China

Objective: To investigate the protective effects of Quercetin, an antioxidant and
anti-apoptotic flavonoid, against rifampicin (RFP)-induced hepatocyte injury via
the Hippo-YAP signaling pathway.
Methods: A rifampicin-induced hepatocyte injury model was established using
HepaRG cells. HepaRG cells were divided into Control, RFP Model, Quercetin
(15 μM), and Verteporfin (YAP inhibitor) groups. Cell viability was assessed
by the CCK-8 assay, apoptosis by Annexin V/PI staining, and mitochondrial
membrane potential (MMP) by TMRE staining. YAP localization was evaluated by
immunofluorescence, and the expression of Hippo–YAP and apoptosis-related
genes was analyzed by Western blot and qRT-PCR.
Results: Quercetin significantly improved cell viability, reduced apoptosis,
and restored MMP in RFP-injured HepaRG cells. RFP activated the Hippo
pathway by upregulating MST1 and LATS1, increasing YAP phosphorylation,
and promoting apoptosis-related protein expression (Caspase-3, BAX), while
downregulating anti-apoptotic BCL-2. Quercetin reversed these effects by
inhibiting MST1/LATS1 activation, reducing YAP phosphorylation, and promoting
its nuclear translocation. The protective effects were partially attenuated by
Verteporfin, indicating Hippo–YAP pathway involvement.
Conclusion: Quercetin alleviates RFP-induced hepatocyte injury by suppressing
Hippo pathway kinases MST1 and LATS1, reducing YAP phosphorylation,
and enhancing YAP nuclear translocation, thereby improving MMP and
inhibiting apoptosis.
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1 Introduction

The liver, positioned between the absorption and systemic circulation systems,
plays a vital role in drug metabolism and elimination, making it highly susceptible
to drug-induced toxicity. Drug-induced liver injury (DILI), characterized by damage
to hepatocytes and other liver cells, poses a significant challenge in hepatology
(1). Worldwide, DILI is recognized as a major cause of acute liver failure (2,
3). Rifampicin (RFP), a commonly used first-line drug for tuberculosis, is known
to induce serious liver toxicity, including conditions such as cholestasis and
hyperbilirubinemia (4–6). Despite its efficacy, long-term RFP use often results in
hepatotoxicity characterized by hepatocyte apoptosis, oxidative stress, and mitochondrial
dysfunction (7, 8). RFP can disrupt hepatic lipid metabolism by upregulating genes
involved in fatty acid synthesis and uptake, including CD36, and by activating
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the pregnane × receptor, which subsequently increases the
expression of peroxisome proliferator-activated receptor-γ and
its downstream proteins such as perilipin-2, leading to hepatic
steatosis and liver dysfunction (8). Current therapeutic approaches,
such as hepatoprotective agents and antioxidants, have shown
limited efficacy and are often associated with adverse effects,
emphasizing the need for safer and more effective interventions (9).

Flavonoids, a diverse group of plant-derived polyphenols,
have attracted growing attention for their hepatoprotective
potential. Numerous studies have shown that flavonoids exert
antioxidant, anti-inflammatory, and anti-apoptotic effects in
models of DILI, helping to preserve mitochondrial function and
attenuate oxidative stress (10, 11). Among these compounds,
Quercetin—a dietary flavonoid abundant in onions, apples, and
tea—has been extensively studied for its broad biological activities,
including antioxidant, anticarcinogenic, anti-inflammatory, anti-
diabetic, and antimicrobial properties (12–14). In vitro and
in vivo studies have demonstrated that Quercetin and its
metabolites can inhibit xanthine oxidoreductase, regulate blood
uric acid levels, and modulate mitochondrial biogenesis, membrane
potential, and redox balance, ultimately influencing mitochondria-
dependent apoptosis (15–17). Quercetin is recognized as a
phytochemical that can modulate pathways associated with
mitochondrial biogenesis, mitochondrial membrane potential,
oxidative respiration and ATP anabolism, intra-mitochondrial
redox status, and subsequently, mitochondria-induced apoptosis
(18). The anti-cancer effects of Quercetin include its ability
to promote the loss of cell viability, apoptosis and autophagy
through the modulation of PI3K/Akt/mTOR, Wnt/β-catenin, and
MAPK/ERK1/2 pathways (19).

Recent evidence highlights the Hippo–YAP signaling pathway
as a central regulator of hepatocyte proliferation, apoptosis, and
tissue regeneration (20, 21). Within this pathway, Yes-associated
protein (YAP) acts as the principal downstream effector. When
phosphorylated by the MST/LATS kinase module in cooperation
with MOB1, YAP is sequestered in the cytoplasm or degraded
via β-Trcp-mediated ubiquitination. Conversely, when the Hippo
pathway is inactive, unphosphorylated YAP translocates into the
nucleus, binds to TEAD transcription factors (TEAD1–4), and
activates genes such as CTGF, Cyr61, Ccnd1, E2f1, and Birc5,
which are crucial for cell proliferation and tissue repair (22–
24). The activity of the Hippo–YAP signaling pathway changes
dynamically with the liver’s regenerative capacity. Elevated YAP
expression has been found to promote liver regeneration following
partial hepatectomy or toxic damage, while suppression of YAP
produces the opposite effect (25, 26). The dynamic activity of
this pathway has been shown to correlate with liver regenerative
potential—with YAP activation enhancing regeneration following
partial hepatectomy or toxic injury, and YAP inhibition exerting
the opposite effect.

Given Quercetin’s regulatory influence on multiple intracellular
signaling networks and its recognized hepatoprotective capacity, it
is plausible that Quercetin may exert part of its protective action
through modulation of the Hippo–YAP pathway. Nevertheless,
whether and how Quercetin influences YAP activation in
the context of RIF-induced hepatocyte injury has not yet
been elucidated. Therefore, this study aims to investigate the

role of the Hippo–YAP signaling axis in Quercetin-mediated
hepatoprotection, providing new insights into its molecular
mechanism against drug-induced liver damage.

2 Materials and methods

2.1 Cell culture and grouping

Human hepatic progenitor HepaRG cells (IM-H415) were
purchased from Xiamen Yimo Biotechnology Co., Ltd. These cells
possess the ability to differentiate into hepatocyte-like and biliary-
like cells, making them a widely accepted in vitro model for human
hepatocyte metabolism and drug-induced liver injury studies. The
cells were cultured in high-glucose DMEM medium (Gibco, USA)
supplemented with 10% fetal bovine serum (ExCell Bio, China)
and 1% penicillin-streptomycin solution (Beyotime, China). The
cells were maintained in an incubator (CI-150C, Suzhou Jiemei
Electronic Co., Ltd.) at 37 ◦C with 95% humidity and 5% CO2.
When cell density reached more than 80%, the cells were digested
with 0.25% trypsin (Gibco, USA) for 1 min, neutralized with
complete medium, resuspended, and subcultured.

The HepaRG cells were divided into four groups for the
experiments: (1) Control group: Cells were cultured in regular
DMEM medium without RFP or Quercetin; (2) Model group:
Cells were exposed to 25 μm RFP for 48 h to induce hepatocellular
injury (27); (3) Quercetin group: Cells were treated with 25 μm
RFP in combination with 15 μm Quercetin for 48 h in light-
protected conditions; (4) Verteporfin group: Cells were treated with
25 μM RFP in combination with 15 μM Quercetin and 2 μM YAP
inhibitor Verteporfin for 48 h in light-protected conditions (28).
By comparing the effects of Quercetin alone and in combination
with Verteporfin, we were able to determine whether YAP
activation contributes to Quercetin’s anti-apoptotic, thus clarifying
the pathway’s mechanistic role.

2.2 Cell viability assay

The cell viability of HepaRG cells was evaluated using the Cell
Counting Kit-8 (CCK-8, Beyotime, China). Cells were seeded into
96-well plates at a density of 2,000 cells per well and incubated at
37 ◦C with 5% CO2 for 6 h to allow attachment. Cells were then
treated with 25 μm RFP for 48 h to establish a liver injury model,
followed by exposure to Quercetin at varying concentrations (2.5,
5, 10, 15, and 20 μm) for an additional 48 h. 10 μl of CCK-8
reagent was added to each well, and absorbance at 450 nm was
measured using a microplate reader (Thermo Scientific, Multiskan
FC). The optimal Quercetin concentration (15 μm), determined
from preliminary experiments, was used in subsequent assays for
the experimental groups.

2.3 Flow cytometry

Logarithmic-phase HepaRG cells were seeded into 6-well plates
at a density of 1 × 106 cells per well and cultured at 37 ◦C with 5%
CO2. Once cells adhered, treatments were applied according to the

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1707248
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1707248

experimental grouping. Following treatment, cells were harvested,
washed twice with PBS, and resuspended in 1× Annexin V Binding
Buffer at 1 × 106 cells/ml. A 100 μl aliquot was incubated with 5 μl
Annexin V-FITC and 5 μl PI in the dark at room temperature for
15 min, followed by the addition of 400 μl Binding Buffer. Samples
were analyzed within 1 h using a flow cytometer (Attune NxT,
Thermo Fisher, USA). Early (Annexin V+/PI−) and late (Annexin
V+/PI+) apoptotic cells were quantified using the instrument’s
analysis software.

2.4 Western blot

After treatment, HepaRG cells were lysed in RIPA buffer
containing PMSF (Beyotime, China). Lysates were centrifuged at
12,000 ×g for 15 min at 4 ◦C, and the supernatants were collected.
Protein concentrations were determined using a BCA assay kit
(NCM Biotech, China). Equal amounts of protein were mixed
with 5× SDS loading buffer, boiled for 5 min, separated on 10%
SDS-PAGE gels, and transferred onto PVDF membranes (Sigma-
Aldrich, USA). Membranes were blocked with 5% skim milk in
TBST for 1 h at room temperature, then incubated overnight at 4 ◦C
with primary antibodies against Phospho-YAP (Ser127) (#13008,
CST, 1:1000), YAP (#4912, CST, 1:1000), LATS1 (#3477, CST,
1:1000), MST1 (#3682, CST, 1:1000), Caspase-3 (#ab32351, Abcam,
1:1000; recognizes both the pro-form and the p17 cleaved form
of human Caspase-3), Bcl-2 (#15071, CST, 1:1000), Bax (#2772,
CST, 1:1000), and GAPDH (#2118, CST, 1:1000). After three TBST
washes (10 min each), membranes were incubated with HRP-
conjugated secondary antibodies (anti-rabbit or anti-mouse, Bioss,
China; 1:20,000) for 1 h at room temperature. Protein bands were
visualized using an ECL kit (NCM Biotech, China) and imaged
with a chemiluminescence detection system (JP-K6000, Jiapeng,
China). Band intensities were quantified using ImageJ, and protein
expression levels were normalized to GAPDH.

2.5 Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from HepaRG cells using the
Cell/Tissue Total RNA Isolation Kit V2 (RC112, Vazyme, China)
according to the manufacturer’s instructions. The concentration
and purity of the extracted RNA were determined using a Nano-600
micro-spectrophotometer (Shanghai Jiapeng Technology, China).
Subsequently, 1 μg of total RNA was reverse-transcribed into
cDNA using the HiScript III 1st Strand cDNA Synthesis Kit
(R312, Vazyme, China). Quantitative real-time PCR (qRT-PCR)
was performed with Taq Pro Universal SYBR qPCR Master Mix
(Q712, Vazyme, China) using 2 μL of cDNA template per 20 μl
reaction. Amplification was carried out on a CFX96 Touch Real-
Time PCR System (Bio-Rad, USA) under the following thermal
cycling conditions: an initial denaturation at 95 ◦C for 30 s,
followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 10 s. A melting
curve analysis was conducted at the end of the amplification
program (95 ◦C for 15 s, 65 ◦C for 60 s). Relative mRNA expression
levels were calculated using the 2−��Ct method, with GAPDH

TABLE 1 Primer sequences.

Genes Primer sequences (5′3′)
YAP Forward: CCCTCGTTTTGCCATGAACC

Reverse: GTTGCTGCTGGTTGGAGTTG

LATS1 Forward: ATCAGCAGCGTCTACATCGT

Reverse: AAACACCAAGCAAACAGATGAT

MST1 Forward: TGTGCACTGAGGGACTGTTG

Reverse: AGAGACACGCGTGAAGACAG

Caspase-3 Forward: TGCTATTGTGAGGCGGTTGT

Reverse: TCACGGCCTGGGATTTCAAG

Bcl-2 Forward: GAACTGGGGGAGGATTGTGG

Reverse: CCGTACAGTTCCACAAAGGC

Bax Forward: GAGCAGCCCAGAGGCG

Reverse: TGAGACACTCGCTCAGCTTC

GAPDH Forward: AATGGGCAGCCGTTAGGAAA

Reverse: GCGCCCAATACGACCAAATC

serving as the internal reference. The primer sequences used for
qRT-PCR are listed in Table 1.

2.6 Mitochondrial membrane potential

Mitochondrial membrane potential (MMP) was evaluated
using tetramethylrhodamine ethyl ester (TMRE) staining (C2001S,
Beyotime, China). After treatment according to the experimental
groups, cells were washed once with PBS and incubated with
1 ml TMRE working solution at 37 ◦C with 5% CO2 for
30 min. Following incubation, cells were washed twice with pre-
warmed PBS and replenished with 2 ml of complete medium.
TMRE fluorescence was observed using a fluorescence microscope
(BZ-H4XD, Keyence, Japan) at excitation/emission wavelengths
of 550/575 nm. Fluorescence intensity was semi-quantitatively
analyzed using ImageJ, and MMP changes were expressed as
relative TMRE fluorescence intensity.

2.7 Immunofluorescence (IF)

After treatment according to the experimental groups, cells
were washed with PBS and fixed with 4% paraformaldehyde
(Sigma-Aldrich, USA) for 10 min at room temperature. Cells were
then permeabilized with 0.25% Triton X-100 (Beyotime, China)
for 10 min, washed, and blocked with 10% goat serum (Biosharp,
China) for 1 h. The samples were incubated overnight at 4 ◦C
with a primary antibody directly conjugated to Alexa Fluor

R©

488 (Rabbit Recombinant Monoclonal YAP1 antibody, ab225441,
Abcam; 1:200), which specifically binds to human and mouse YAP
and is suitable for ICC/IF. No secondary antibody was applied to
avoid duplication of fluorophore labeling. After washing, nuclei
were counterstained with DAPI (5 μg/ml, Thermo Fisher, USA)
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for 10 min. Coverslips were mounted with PBS, and fluorescence
images were captured using a confocal laser scanning microscope
(Leica CTSSP8, Leica Microsystems, Germany).

2.8 Statistics analysis

Data were analyzed and visualized using GraphPad Prism
9 (Version 9.5.1) and ImageJ software, with figure assembly
performed in Adobe Illustrator (2023). All results are expressed
as mean ± standard deviation (mean ± SD). One-way ANOVA
followed by Tukey’s post-hoc test was applied for multiple group
comparisons for Type I error. Statistical significance was defined as
P < 0.05 (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). All experiments
were independently repeated at least three times to ensure the
reliability and reproducibility of the results.

3 Results

3.1 Quercetin improved MMP and inhibited
RFP-induced apoptosis in HepaRG cells

The CCK-8 assay revealed that Quercetin enhanced HepaRG
cell viability in a concentration-dependent manner, reaching its
maximum effect at 15 μm, which was selected for subsequent
experiments (Figure 1A). Quercetin significantly restored
RFP-induced reductions in cell viability (P < 0.001), while
the addition of Verteporfin slightly weakened this effect but
still maintained higher viability than the Model group (P <

0.001) (Figure 1B). Flow cytometry analysis demonstrated that
Quercetin markedly reduced RFP-induced apoptosis (P < 0.001),
whereas Verteporfin partially reversed this protection (Figure 1C).
Moreover, MMP decreased significantly following RFP treatment
but was restored by Quercetin, with Verteporfin again diminishing
this recovery effect (Figure 1D). Together, these results indicate that
Quercetin alleviates RFP-induced cytotoxicity and mitochondrial
dysfunction, effects that are partially dependent on YAP activity.

3.2 Quercetin promoted YAP nuclear
translocation and alleviated RFP-induced
HepaRG cell injury by regulating the
hippo-YAP pathway

Immunofluorescence analysis revealed that RFP treatment
caused YAP to remain mainly in the cytoplasm (Red arrows), while
Quercetin promoted its nuclear translocation (Yellow arrows);
co-treatment with Verteporfin reversed this effect (Figure 2A).
Western blot results showed that RFP increased p-YAP, LATS1,
MST1, total Caspase-3, and BAX levels while decreasing YAP
and BCL-2, suggesting activation of the Hippo pathway and
induction of apoptotic signaling. Quercetin treatment reversed
these trends by reducing p-YAP and pro-apoptosis proteins
and elevating YAP and BCL-2 levels, whereas Verteporfin
weakened this protective response (Figure 2B). qRT-qPCR analysis
confirmed these findings, showing similar transcriptional changes

(Figure 2C). Overall, Quercetin mitigated RFP-induced HepaRG
cell injury by suppressing YAP phosphorylation, promoting
its nuclear translocation, and modulating Hippo-YAP–related
apoptotic signaling. However, as only total Caspase-3 was assessed,
the apoptotic response should be interpreted cautiously. Future
studies incorporating cleaved Caspase-3 or cleaved PARP detection
will help strengthen apoptosis validation.

4 Discussion

This study reveals the mechanism by which Quercetin alleviates
RFP-induced HepaRG cell injury through the activation of the
Hippo-YAP signaling pathway. The findings demonstrate that
RFP significantly activates the Hippo pathway by promoting
YAP phosphorylation, inhibiting its nuclear translocation, and
upregulating the expression of pro-apoptotic proteins Caspase-3
and BAX while downregulating the anti-apoptotic protein BCL-
2. These changes, along with the disruption of mitochondrial
membrane potential, collectively lead to apoptosis. Quercetin,
by contrast, reduces YAP phosphorylation, promotes its nuclear
translocation, suppresses the overactivation of upstream kinases
LATS1 and MST1, and restores cell viability, showcasing its
multifaceted protective mechanisms.

Previous studies have established that RFP, a widely used
first-line anti-tuberculosis drug, is associated with hepatotoxicity
during long-term use, commonly referred to as DILI. The
hepatotoxicity manifests as hepatocyte apoptosis, oxidative stress,
and mitochondrial dysfunction (4–8). RFP has been shown to
induce oxidative stress and activate the mitochondrial apoptotic
pathway by triggering Caspase-3 activation, ultimately leading
to hepatocyte death (29). The Hippo-YAP signaling pathway,
recognized as a critical regulator of cell proliferation, apoptosis, and
regeneration, has gained increasing attention for its role in liver
diseases (30, 31). For example, overactivation of upstream kinases
MST1/2 and LATS1/2 in the Hippo pathway has been reported
to suppress YAP nuclear translocation, thereby accelerating
apoptosis and tissue injury (32). This study corroborates these
findings in a RFP-induced liver injury model. IF staining results
showed that RFP treatment led to YAP predominantly localizing
in the cytoplasm of HepaRG cells, indicating its impaired
nuclear translocation. Western Blot and qRT-PCR results further
confirmed that this cytoplasmic localization was associated with
a significant increase in YAP phosphorylation levels, along with
enhanced expression of upstream kinases MST1 and LATS1. These
findings suggest that RFP-induced liver injury is mediated, at least
in part, through the dysregulation of the Hippo-YAP signaling
pathway, providing a mechanistic foundation for understanding
RFP-induced hepatocyte damage.

Quercetin, due to its natural origin and multiple biological
properties, is considered a potential hepatoprotective agent (12).
In models of metabolic dysfunction-associated steatotic liver
disease (MASLD) and acrylamide-induced liver injury, Quercetin
has demonstrated significant antioxidant and anti-apoptotic
effects (12, 33). Moreover, the role of Quercetin in oxidative
stress-related diseases has been extensively studied, with evidence
showing that it protects hepatocyte function by inhibiting the
generation of reactive oxygen species (ROS) (34, 35). However,
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FIGURE 1

Quercetin improved mitochondrial membrane potential (MMP) and inhibited Rifampicin (RFP)-Induced apoptosis in HepaRG Cells. (A) CCK-8
experiment to determine the optimal Quercetin concentration for enhancing HepaRG cell viability (n = 6). (B) CCK-8 assay to assess the protective
effect of Quercetin (15 μm) on cell viability in RFP (25 μm)-treated HepaRG cells. Verteporfin (2 μm) was used to inhibit YAP (n = 6). (C) Flow
cytometry scatter plots and quantification of apoptosis rates of Annexin V/PI staining (n = 3). (D) The mitochondrial membrane potential was assessed
using tetramethylrhodamine ethyl ester (TMRE) and quantification of relative fluorescence intensity (n = 3). Scale bars: 100 μm. Data are mean ± SD.
*P < 0.05, **P < 0.01, ***P < 0.001. One-way ANOVA followed by Tukey’s post-hoc test was applied for multiple group comparisons for Type I error.

most studies have focused on the antioxidant or anti-inflammatory
effects of Quercetin. In this study, Western Blot and qRT-PCR
analyses revealed that Quercetin significantly reduced YAP
phosphorylation levels by suppressing the expression of MST1
and LATS1. Immunofluorescence demonstrated that Quercetin
promoted YAP nuclear translocation, restoring its functional
activity in the nucleus. Furthermore, Quercetin was shown to
restore the expression of the anti-apoptotic gene BCL-2 while
suppressing the expression of pro-apoptotic genes BAX and
Caspase-3, thereby alleviating apoptosis in RFP-induced HepaRG
cells. Annexin V/PI double staining via flow cytometry confirmed
that RFP significantly induced both early and late apoptosis in
HepaRG cells, while Quercetin markedly inhibited apoptosis.
Notably, the addition of the YAP inhibitor Verteporfin resulted in
a significant increase in apoptosis rates, highlighting the critical
role of YAP in Quercetin-mediated anti-apoptotic effects. These

findings support the hypothesis that Quercetin inhibits apoptotic
signaling cascades by suppressing Hippo pathway activity,
thereby enabling YAP nuclear translocation and downstream
survival signals, suggesting that YAP nuclear translocation may
directly influence cell survival by regulating the expression of
apoptosis-related genes.

Mitochondrial dysfunction resulting from stress is a
key mechanism underlying DILI (36, 37). In this study,
TMRE staining revealed that RFP significantly decreased
mitochondrial membrane potential, while Quercetin effectively
restored this parameter. This suggests that Quercetin
may stabilize mitochondrial function by reducing ROS-
induced mitochondrial pathway activation. Additionally, the
inhibitory effect of Quercetin on LATS1/MST1 may indirectly
contribute to the recovery of mitochondrial function. Future
studies could further explore the interaction between the
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FIGURE 2

Quercetin alleviates RFP-induced HepaRG cell damage by regulating the Hippo-YAP pathway. (A) Immunofluorescence staining for YAP (green) and
nuclei (DAPI, blue) was performed on HepaRG cells. Red arrows indicate strong green fluorescence in the cytoplasm, while yellow arrows mark its
accumulation in the nuclei. the Scale bars: 100 μm. (B) Western Blot analysis of key proteins in the Hippo-YAP pathway and apoptosis-related
proteins, including p-YAP, YAP, LATS1, MST1, total Caspase-3, BCL-2, and BAX. Quantification of relative protein expression normalized to GAPDH is
shown below. (C) qRT-PCR analysis of the mRNA expression levels of Hippo-YAP pathway and apoptosis-related genes, including YAP, LATS1, MST1,
Caspase-3, BCL-2, and BAX. Verteporfin (2 μm) co-treated with Quercetin (15 μm). NS, no significance. **P < 0.01, ***P < 0.001, n = 3. One-way
ANOVA followed by Tukey’s post-hoc test was applied for multiple group comparisons for Type I error.
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Hippo-YAP pathway and mitochondrial stability to clarify
these mechanisms.

This study provides novel insights into the mechanisms
by which Quercetin mitigates rifampicin-induced hepatocyte
injury, specifically through activation of the Hippo-YAP
signaling pathway. While prior studies have established
Quercetin’s hepatoprotective effects and the role of YAP in
liver regeneration, this work is the first to link Quercetin’s anti-
apoptotic and mitochondrial protective actions to Hippo-YAP
pathway modulation in the context of rifampicin toxicity. The
experimental design, combining pharmacological inhibition
of YAP (Verteporfin) with functional assays, strengthens the
mechanistic evidence for Quercetin’s therapeutic potential.
Clinically, these findings suggest that Quercetin, as a natural
and low-toxicity compound, could serve as an adjunct
therapy to mitigate rifampicin-associated liver injury during
tuberculosis treatment.

Despite revealing the significant role of Quercetin in mitigating
DILI through the regulation of the Hippo-YAP pathway, this
study has certain limitations. First, while the HepaRG cell model
closely mimics human hepatocyte physiology, the findings require
validation in vivo systems to confirm Quercetin’s efficacy and
safety. Second, the Hippo-YAP pathway’s complexity and crosstalk
with other signaling pathways, such as Wnt or PI3K/Akt, were
not fully explored. Third, this study relied on pharmacological
YAP inhibition using Verteporfin, which may involve off-target
effects. Future work should include a Verteporfin-only control
group and adopt genetic approaches (e.g., siRNA/shRNA-mediated
YAP silencing) to enhance mechanistic specificity. Moreover,
employing YAP agonists such as XMU-MP-1 could provide
bidirectional validation of the Hippo-YAP pathway’s role in
Quercetin’s hepatoprotective effects. Fourth, growing evidence
suggests that Quercetin also influences autophagic processes, which
are closely linked to hepatic protection and cellular stress responses
(15, 33, 34). Exploring the interaction between Quercetin-induced
autophagy and the Hippo-YAP pathway may provide valuable
insights into the broader regulatory mechanisms underlying its
hepatoprotective effects and represent a promising direction for
future research. Additionally, it remains unclear whether Hippo-
YAP activation is a specific response to rifampicin-induced injury
or a general hepatocyte stress mechanism, the specific mechanism
by which Quercetin regulates this pathway still requires further
experimental verification. Finally, as a multi-target compound,
Quercetin’s effects may vary in complex pathological contexts,
necessitating advanced tools like single-cell sequencing to dissect
its context-dependent actions.

5 Conclusion

This study provides the first evidence that Quercetin alleviates
RFP-induced HepaRG cell injury by modulating the Hippo-
YAP signaling pathway. Specifically, Quercetin suppressed the
activation of the upstream kinases MST1 and LATS1, reduced YAP
phosphorylation, and promoted its nuclear translocation, thereby
attenuating apoptosis and improve mitochondrial membrane
potential. These findings offer novel theoretical insights into the

hepatoprotective mechanisms of Quercetin and suggest promising
strategies for developing new treatments for DILI. Future research
should incorporate in vivo studies to further investigate the
interactions between Quercetin and upstream and downstream
factors of the Hippo-YAP pathway, as well as its crosstalk with
other signaling pathways, to establish a solid foundation for
clinical applications.
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