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Metabolic dysfunction-associated steatotic liver disease (MASLD), previously

referred to as non-alcoholic fatty liver disease (NAFLD), has become the

most common chronic liver disease globally, with its incidence rising annually.

MASLD is closely linked to metabolic syndrome and can progress from simple

steatosis to more severe stages, including non-alcoholic steatohepatitis, fibrosis,

cirrhosis, and hepatocellular carcinoma (HCC), affecting 13%–38.2% of cases.

Notably, in 40%–50% of patients, this progression occurs without cirrhosis. The

dysregulation of glucose and lipid metabolism is a fundamental pathological

mechanism in MASLD and its transition to HCC. Key factors include insulin

resistance, increased gluconeogenesis, impaired β-oxidation, oxidative stress,

and chronic inflammation, all of which contribute to a tumor-promoting

hepatic microenvironment. This review provides a comprehensive analysis of the

latest research on MASLD-related HCC, emphasizing disturbances in glucose

metabolism (such as disrupted hepatic insulin signaling, key enzymes like

G6Pase and PK, and miRNAs such as miR-22-3p that induce Warburg effects),

lipid imbalances (for example, upregulation of FASN/ACC and downregulation

of PPARα targets like CPT1A), and the crosstalk between various pathways

(including mTORC1, AMPK/ACC, FXR, and NF-κB/JNK). It also explores metabolic

regulators such as DKK3, FGF21, and O-GlcNAcylation, and examines the

role of the gut microbiota in modulating short-chain fatty acids, bile acids,

and NLRP3 inflammasome activation in disease progression. By integrating

the latest advancements in basic and clinical research, this article presents

a solid theoretical framework for early diagnosis, risk assessment, biomarker

development, and precision therapies. It also highlights promising therapeutic

targets, including PPARα agonists, mTOR inhibitors, FGF21 analogs, and

microbiota interventions, while proposing future directions in multi-omics and

personalized treatment strategies.
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1 Introduction 

Metabolic dysfunction-associated steatotic liver disease 
(MASLD), previously known as non-alcoholic fatty liver disease 
(NAFLD), represents a paradigm shift in nomenclature, as 
endorsed by the 2023 AASLD/EASL consensus (1). Unlike 
traditional NAFLD, which emphasized the exclusion of alcohol 
as an etiology, MASLD positively defines the condition by 
the presence of hepatic steatosis (≥ 5%) coupled with at least 
one cardiometabolic risk factor (e.g., obesity, type 2 diabetes, 
dyslipidemia), underscoring metabolic dysfunction as the primary 
driver (2). Pathophysiologically, this redefinition highlights insulin 
resistance and lipotoxicity as central mechanisms, distinguishing 
MASLD from broader NAFLD spectra that included non-
metabolic idiopathic steatosis. MASLD is now recognized as 
a major contributor to cirrhosis and hepatocellular carcinoma 
(HCC). The progression of this condition unfolds in several 
distinct stages, beginning with simple hepatic steatosis (NAFL), 
which can advance to non-alcoholic steatohepatitis (NASH) and 
may subsequently progress to liver fibrosis, cirrhosis, or eventually 
HCC (3). The Global Burden of Disease study has identified 
MASLD as a significant and rapidly growing risk factor for liver 
cancer, with notably higher incidence rates observed in younger 
individuals and males (4). In Western countries, MASLD has 
become the leading risk factor for hepatocellular carcinoma (5). 

The primary mechanisms underlying MASLD are closely 
linked to the dysregulation of glucose and lipid metabolism, 
encompassing insulin resistance, lipid accumulation, inflammatory 
responses, oxidative stress, and other related pathological processes 
(6, 7). Research indicates that excessive consumption of high-
fat and high-sugar diets is a major factor contributing to the 
development of MASLD. These dietary patterns promote abnormal 
fat accumulation in the liver, which in turn triggers the onset of 
chronic liver disease (8, 9). Moreover, the progression of MASLD is 
multifaceted, involving the interplay of various pathways, including 
metabolic dysregulation, liver inflammation, cell apoptosis, and 
fibrosis (10, 11). The pathological features of MASLD-related 
HCC are notably complex, presenting clinical and molecular 
characteristics that dier from those of conventional cirrhotic 
liver cancer. In patients with MASLD, around 40%–50% of HCC 
cases develop in the absence of apparent cirrhosis (12). This 
phenomenon presents considerable challenges to traditional HCC 
screening methods, which rely on the presence of liver cirrhosis. 
Research into the underlying mechanisms of MASLD-related HCC 
has revealed that these processes are closely linked to prolonged 
metabolic stress, including insulin resistance, hyperglycemia, 
lipotoxicity, oxidative stress, and chronic inflammation. Together, 
these factors create a hepatic microenvironment conducive to the 
development of liver cancer. 

Currently, eective treatment options for MASLD and 
its associated liver cancer are limited. Traditional approaches 
primarily focus on lifestyle modifications, including weight loss, 
dietary improvements, and increased physical activity, to help 
reduce the risk of disease development (13, 14). For patients 
already diagnosed with MASLD, regular monitoring and early 
screening are essential. Moreover, for individuals with NASH 
or those at high risk, personalized treatment strategies—such as 

pharmacological interventions to address insulin resistance or non-
invasive therapies to reduce lipotoxicity—are critical. A thorough 
understanding of the regulatory mechanisms governing glucose 
and lipid metabolism is therefore key to developing new 
therapeutic approaches. Researchers are increasingly investigating 
potential therapeutic targets, including AMP-activated protein 
kinase (AMPK), liver X receptor (LXR), and farnesoid X receptor 
(FXR), all of which play pivotal roles in regulating glucose and 
lipid metabolism as well as inflammatory responses (15, 16). For 
instance, the activation of AMPK is believed to reduce hepatic 
lipid accumulation and insulin resistance, thereby helping to 
slow the progression of MASLD (17). Additionally, modulating 
hepatic metabolic signaling pathways, such as enhancing metabolic 
parameters with sodium-glucose cotransporter type 2 (SGLT2) 
inhibitors, oers a promising new approach for the treatment of 
MASLD (18). 

In conclusion, as our understanding of the connection between 
MASLD and HCC advances, the medical community is actively 
seeking more eective treatment strategies to prevent liver cancer 
and slow disease progression. Future research will focus on 
elucidating the causal relationships between these conditions, 
developing novel biomarkers and diagnostic tools, and creating 
more targeted treatment approaches. Additionally, raising public 
health awareness and implementing supportive public health 
policies will be crucial to addressing this issue. Only through 
the integrated application of multidisciplinary knowledge and 
techniques can we more eectively tackle this global health 
challenge. This paper will focus on the role of glucose and 
lipid metabolism in MASLD-related liver cancer, systematically 
reviewing the latest research to provide a theoretical foundation 
for understanding MASLD and its progression, with the goal of 
oering valuable insights for future clinical treatment strategies. 

2 Dysregulation of glucose and lipid 
metabolism in MASLD-related 
hepatocellular carcinoma 

2.1 Central role of glucose and lipid 
metabolism 

The disruption of glucose and lipid metabolism is a key 
driver in the development of MASLD and its progression to 
HCC. This disruption encompasses several processes, including 
insulin resistance, increased gluconeogenesis, elevated fatty acid 
synthesis, impaired β-oxidation, oxidative stress, and inflammatory 
responses. These metabolic abnormalities are interconnected 
and work together to promote hepatic fat accumulation, 
inflammation, fibrosis, and the formation of a carcinogenic 
microenvironment, ultimately facilitating the progression from 
MASLD to NASH and HCC. 

Abnormal glucose metabolism in MASLD is mainly 
characterized by insulin resistance, increased gluconeogenesis, 
and impaired glucose utilization. Patients with MASLD typically 
display marked insulin resistance, which disrupts hepatic glucose 
metabolism and triggers systemic metabolic disturbances. This, 
in turn, exacerbates hepatic fat accumulation and inflammation 
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(19, 20). Increased gluconeogenesis leads to continuous glucose 
release from the liver, worsening hyperglycemia and, in turn, 
promoting fat accumulation, thereby establishing a vicious cycle. 
Additionally, disruptions in vitamin A metabolism also impact 
glucose metabolism. Vitamin A modulates glucose metabolism 
through retinoic acid-mediated transcriptional networks (21). 
In MASLD, the PNPLA3-I148M variant is linked to reduced 
serum retinol levels and elevated hepatic retinyl esters, indicating 
that an imbalance in vitamin A metabolism may contribute to 
disease progression. 

Abnormal lipid metabolism in MASLD is characterized by 
increased hepatic fatty acid synthesis, impaired β-oxidation, and 
lipid accumulation. Under normal conditions, the liver converts 
fatty acids into energy through β-oxidation. However, in MASLD, 
this process is inhibited, resulting in fatty acid buildup and the 
development of hepatocellular steatosis (22). As MASLD progresses 
to NASH and liver fibrosis, fatty acid synthesis intensifies, further 
stressing the liver and promoting inflammation and fibrosis. These 
processes create a conducive environment for the development 
of liver cancer (23). In a diet-induced MASLD mouse model, 
increased hepatic triglyceride and cholesterol levels, along with 
heightened insulin resistance and inflammation, were closely linked 
to the development of HCC (24). 

Certain bioactive molecules play essential regulatory roles 
in glucose and lipid metabolism, as well as in liver cancer 
development. For example, Dickkopf-3 (DKK3) is significantly 
downregulated in the livers of MASLD patients and obese mice. 
Hepatocyte-specific overexpression of DKK3 improves insulin 
sensitivity, glucose tolerance, lipid metabolism, and suppresses 
inflammation, while DKK3 deficiency exacerbates pathological 
changes (25). Mechanistically, DKK3 inhibits the activation of the 
P38/JNK pathway by binding to apoptosis signal-regulating kinase 
1 (ASK1) (26). 

Disruption of glucose and lipid metabolism is a key factor in the 
pathogenesis of MASLD and its associated liver cancer. Through 
mechanisms such as insulin resistance, fat accumulation, oxidative 
stress, and inflammation, these metabolic abnormalities collectively 
contribute to liver damage and the creation of a carcinogenic 
microenvironment. Imbalances in vitamin A metabolism and 
alterations in the gut microbiome further aggravate this process. 
Interventions aimed at regulating glucose and lipid metabolism, 
including targeting key molecules like DKK3, may oer promising 
new therapeutic strategies for MASLD and related liver cancer. 

2.2 The link between glucose and lipid 
metabolism dysregulation and 
hepatocellular carcinoma development 

Abnormal glucose and lipid metabolism plays a critical 
role in the development of HCC, primarily by promoting cell 
proliferation, inhibiting apoptosis, and inducing genetic mutations. 
MASLD is recognized as a significant risk factor for HCC, with 
studies showing that 13%–38.2% of MASLD patients will develop 
HCC, especially in cases where the disease progresses to NASH 
(27). As MASLD progresses, dysregulation of lipid metabolism 
results in abnormal fat accumulation in the liver, which triggers 
inflammatory responses and apoptosis in cells, thereby promoting 

the proliferation and survival of cancer cells. Specifically, metabolic 
reprogramming allows tumor cells to thrive in hypoxic and 
nutrient-poor environments, using fatty acids as an energy source 
to fuel their rapid proliferation and growth (28, 29). 

Dysregulation of glucose and lipid metabolism induces 
oxidative stress and inflammatory responses, which are critical 
in the progression from MASLD to liver cancer. In the livers of 
MASLD patients, oxidative stress markers are elevated, correlating 
with lipid peroxidation and cellular damage (30, 31). Oxidative 
stress not only damages hepatocytes but also accelerates liver 
tissue fibrosis. Chronic inflammation, driven by fat accumulation, 
exacerbates hepatocyte injury and contributes to the formation of a 
tumor microenvironment, acting as a catalyst for both fibrosis and 
HCC (32). Additionally, alterations in the gut microbiota, through 
the modulation of short-chain fatty acid production, impact liver 
inflammation and immune responses, thereby contributing to the 
development of liver cancer. 

Furthermore, studies have shown that lipid metabolism 
disorders associated with MASLD are linked to the occurrence 
of genetic mutations. For instance, the activation of transcription 
factors such as E2F1 and E2F2 is closely associated with HCC 
development. These factors regulate fatty acid oxidation and 
synthesis, which in turn aect the metabolic state of hepatocytes, 
promoting the progression of HCC (6). Abnormal glucose and 
lipid metabolism not only impacts hepatocyte proliferation and 
apoptosis but also, by altering the liver’s microenvironment, 
promotes fibrosis, ultimately contributing to the development 
of HCC (33). 

In terms of metabolic reprogramming, tumor cells increase 
lipid synthesis and suppress fatty acid oxidation to acquire more 
energy and biosynthetic materials. This metabolic shift enables 
tumor cells to establish a microenvironment within the liver that 
supports their growth, thereby further accelerating the onset and 
progression of liver cancer (34). Understanding the role of glucose 
and lipid metabolism in HCC development is crucial, as it not only 
enhances our comprehension of the pathogenesis of liver cancer 
but also identifies potential targets for new therapeutic strategies. 
By intervening in these metabolic pathways, novel approaches for 
the prevention and treatment of liver cancer may be uncovered. 

3 The Role of glucose metabolism in 
MASLD-related hepatocellular 
carcinoma 

3.1 Abnormal hepatic insulin signaling 
pathway 

In MASLD and its associated HCC, abnormalities in the hepatic 
insulin signaling pathway play a crucial role in the dysregulation of 
glucose metabolism. Disruption of this pathway not only increases 
gluconeogenesis but also impairs glucose utilization (20, 35). Under 
normal physiological conditions, insulin activates its receptor 
to promote glucose uptake and storage in the liver, stimulates 
glycogen synthesis, and inhibits gluconeogenesis. However, in 
MASLD patients, the onset of insulin resistance diminishes 
the liver’s ability to respond to insulin, resulting in enhanced 
gluconeogenesis and elevated blood glucose levels (36). 
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Abnormalities in the insulin signaling pathway also disrupt 
lipid metabolism, promoting lipid synthesis and creating a 
harmful metabolic cycle. Studies have shown that in the state of 
insulin resistance, the liver continues to promote lipid synthesis 
while failing to adequately suppress gluconeogenesis, resulting in 
abnormal elevations in both blood glucose and blood lipids (37, 
38). This vicious cycle not only worsens MASLD but may also 
accelerate its progression to more severe stages, such as NASH 
and liver cancer. 

In-depth research into the hepatic insulin signaling pathway 
has revealed several molecular pathways involved in this process. 
One such pathway involves AMPK, a key metabolic regulator 
that plays a critical role in insulin signaling. Activation of AMPK 
enhances insulin sensitivity, inhibits hepatic lipid synthesis, and 
promotes fatty acid oxidation, thereby helping to mitigate the 
progression of MASLD (39). Additionally, vascular endothelial 
growth factor B (VEGFB) has been shown to improve insulin 
resistance and lipid metabolism by modulating the PI3K/AKT 
pathway (40). 

Abnormalities in the hepatic insulin signaling pathway not 
only disrupt glucose and lipid metabolism but are also closely 
linked to chronic low-grade inflammation, oxidative stress, and 
other mechanisms that drive the onset and progression of 
MASLD. As a result, targeting the insulin signaling pathway could 
represent a key therapeutic strategy for MASLD and its associated 
liver cancer. Enhancing the function of this pathway may help 
mitigate the progression of MASLD and reduce the risk of liver 
cancer development. 

3.2 Regulation of key enzymes and 
transporters 

In the study of MASLD-related HCC, the regulation of key 
enzymes and transporters is crucial for maintaining the balance 
of glucose and lipid metabolism. Alterations in the activity of 
key enzymes, such as hepatic glucose-6-phosphatase and pyruvate 
kinase, can directly impact hepatic glucose metabolism. For 
instance, glucose-6-phosphatase (G6Pase) plays a vital role in 
converting glucose-6-phosphate to glucose in the liver, a process 
central to gluconeogenesis. Research indicates that in MASLD, the 
expression of G6Pase may be upregulated, leading to increased 
hepatic gluconeogenesis and exacerbating hepatic fat accumulation 
(41, 42). In contrast, pyruvate kinase (PK), a key enzyme in 
glycolysis, when less active, drives a shift in metabolism toward 
fat synthesis, playing a crucial role in the pathological progression 
of MASLD. Furthermore, studies have shown that inhibiting 
PK activity can reduce hepatic fat accumulation, highlighting its 
potential therapeutic value in MASLD and liver cancer (43). 

On the other hand, intestinal gluconeogenesis (IGN) plays 
a significant role in regulating hepatic glucose metabolism. IGN 
refers to the glucose produced in the intestines following the 
absorption of specific nutrients, facilitated by an intestinal-
brain-liver neural signaling mechanism. Studies have shown 
that IGN can eectively prevent hepatic steatosis and mitigate 
the onset of MASLD by reducing hepatic fat synthesis and 
lipid influx. Specifically, transgenic mice with enhanced IGN 
exhibit a marked reduction in hepatic fat accumulation when 

fed high-calorie diets, a phenomenon closely linked to decreased 
hepatic inflammation and fibrosis (41, 44). Furthermore, the 
upregulation of IGN is closely linked to the balance between hepatic 
gluconeogenesis and lipogenesis, oering new potential targets for 
the treatment of MASLD. 

In conclusion, key enzymes (such as G6Pase and PK) and 
transporters are central to the regulation of glucose and lipid 
metabolism in MASLD, while intestinal gluconeogenesis presents 
a novel approach for regulating hepatic glucose metabolism. 
These findings oer a theoretical foundation for developing 
MASLD treatment strategies. Future research could focus on 
therapeutic interventions targeting these key enzymes and 
transporters to restore metabolic balance, thereby slowing the 
progression of MASLD. 

3.3 Mechanisms of miRNA regulation of 
glucose metabolism 

In the liver, miR-22-3p is a key regulator of glucose 
metabolism and plays a crucial role in the development of 
MASLD and liver cancer. Research has shown that miR-22-
3p is among the most abundant microRNAs (miRNAs) in 
the liver, with alterations in its expression closely linked to 
hepatic steatosis, insulin resistance, and cancer progression (45). 
Downregulation of miR-22-3p is frequently observed in liver 
cancer, suggesting its potential involvement in the pathophysiology 
of liver-related metabolic disorders. However, the precise role 
and mechanisms of miR-22-3p in the context of obesity and 
MASLD (metabolic-associated steatotic liver disease) remain 
unclear, warranting further investigation to elucidate its eects. 
In miR-22 knockout (miR-22KO) mice subjected to a high-fat 
diet to induce obesity, no significant symptoms were observed 
under normal conditions. However, under the high-fat diet 
challenge, miR-22KO mice exhibited marked glucose intolerance, 
fat accumulation, hepatomegaly, and hepatic steatosis. Further 
analysis revealed an upregulation of glycolytic and lipid uptake 
enzymes in the liver, highlighting the critical role of miR-22 in 
regulating hepatic metabolism. 

Furthermore, the expression of miR-22-3p in Huh7 liver cancer 
cells was found to be inversely related to its expression in non-
tumor tissues, displaying a distinct “Warburg eect,” characterized 
by increased glycolysis and suppressed mitochondrial respiration 
(46, 47). Specifically, this "Warburg eect" is achieved because 
miR-22-3p directly targets and suppresses the expression of key 
enzymes involved in the mitochondrial tricarboxylic acid (TCA) 
cycle and oxidative phosphorylation. This metabolic shift toward 
aerobic glycolysis, even in the presence of oxygen, provides rapidly 
proliferating cancer cells with not only ATP but also essential 
biosynthetic precursors for nucleotide and lipid synthesis, thereby 
fueling tumor growth and progression. This observation suggests 
that miR-22-3p may exert distinct regulatory eects under dierent 
physiological and pathological conditions, thereby influencing 
both hepatic metabolism and tumor development. These findings 
highlight the potential of miR-22-3p as a therapeutic target, 
especially in the treatment of obesity-associated MASLD and liver 
cancer, where altering its expression or function could oer novel 
therapeutic approaches for patients. 
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In conclusion, miR-22-3p plays a key role in regulating hepatic 
glucose metabolism, and its loss may contribute to the progression 
of obesity and MASLD, ultimately influencing the development 
of liver cancer. A deeper investigation into this mechanism 
will improve our understanding of the pathological processes 
underlying MASLD and hepatocellular carcinoma, oering new 
targets and strategies for therapeutic intervention. It is important 
to note that the regulatory functions of miRNAs such as miR-22-3p 
are not isolated; rather, they are integral components of the broader 
metabolic signaling network. They often serve as critical nodes that 
interact with other major pathways discussed in this reviewte to the 
progI3K/AKT and AMPK signaling cascades They often serve as 
critical nodes that interact wit(19). Understanding this interplay 
is essential for developing targeted therapies capable of restoring 
metabolic homeostasis. 

4 Lipid metabolism abnormalities 
and their role in MASLD-related 
hepatocellular carcinoma 

4.1 Imbalance between fatty acid 
synthesis and oxidation 

The imbalance between fatty acid synthesis and oxidation is a 
critical factor in the development of MASLD and its progression 
to associated HCC. This condition is often characterized by altered 
expression of key enzymes, including fatty acid synthase (FASN) 
and acetyl-CoA carboxylase (ACC). The upregulation of these 
enzymes enhances fatty acid synthesis in the liver, leading to 
excessive fatty acid accumulation. This accumulation can disrupt 
hepatocyte function and trigger inflammation, thereby accelerating 
the pathological progression of the disease (27, 48). Studies have 
demonstrated that in MASLD patients, the expression levels 
of FASN and ACC are markedly elevated, suggesting that the 
activation of the fatty acid synthesis pathway is closely linked to 
the pathophysiological changes associated with MASLD (49, 50). 
Moreover, the imbalance in fatty acid synthesis is closely linked 
to insulin resistance, inflammation, and liver fibrosis, all of which 
collectively contribute to the progression toward HCC (19). 

At the same time, impaired β-oxidation of fatty acids plays 
a crucial role in the progression of MASLD. Under normal 
conditions, fatty acids undergo β-oxidation in the mitochondria, 
generating energy for cellular functions. However, in MASLD 
patients, this process is frequently disrupted, resulting in the 
accumulation of fatty acids within hepatocytes. This accumulation 
further exacerbates hepatocyte damage and promotes apoptosis 
(28, 51). For instance, transcription factors like E2F1 and E2F2 
have been implicated in the metabolic reprogramming of fatty acids 
in MASLD-related HCC. Their elevated expression is inversely 
associated with the downregulation of enzymes involved in 
fatty acid β-oxidation, such as carnitine palmitoyltransferase 2 
(CPT2), highlighting their significant role in fatty acid metabolism 
(22). This metabolic reprogramming not only worsens the fatty 
accumulation in the liver but also facilitates the malignant 
transformation of hepatocytes. In addition, lipotoxicity arises from 
the imbalance in fatty acid synthesis/oxidation, where excess 

saturated free fatty acids induce hepatocyte damage via multiple 
interconnected pathways. Overloaded mitochondria generate ROS, 
triggering ER stress and unfolded protein response (UPR), 
which activates JNK-mediated apoptosis (52). Concurrently, 
diacylglycerol accumulation inhibits insulin signaling through PKC 
translocation, exacerbating hyperglycemia and ceramide synthesis; 
ceramides, in turn, activate NLRP3 inflammasome, amplifying 
inflammation and fibrosis. These lipotoxic cascades foster a 
protumorigenic microenvironment, promoting HCC via genomic 
instability and immune evasion. Targeting lipotoxicity (e.g., via 
SCD1 inhibition) thus oers dual benefits in halting MASLD 
progression and HCC oncogenesis. 

The imbalance between fatty acid synthesis and oxidation 
represents not only a key pathological change in the progression 
of MASLD but also serves as a biological foundation for its 
progression to HCC. Researchers are increasingly focused on 
developing interventions that target these metabolic pathways, 
aiming to oer new therapeutic strategies for MASLD and its 
associated complications. By gaining a deeper understanding of 
fatty acid metabolism in MASLD development, more eective 
preventive and therapeutic measures can be devised, ultimately 
improving patient outcomes and reducing the incidence of HCC. 

4.2 Regulatory role of PPARα and its 
target genes in lipid metabolism 

Peroxisome proliferator-activated receptor alpha (PPARα) is a 
key regulator of lipid metabolism, primarily influencing fatty acid 
oxidation and inflammatory responses. It is highly expressed in 
the liver, where it plays a crucial role in the uptake, esterification, 
and transport of fatty acids, as well as regulating the expression 
of genes involved in lipoprotein metabolism (53). Studies have 
demonstrated that PPARα enhances fatty acid β-oxidation by 
activating target genes, such as carnitine palmitoyltransferase 1A 
(CPT1A) and peroxisomal acyl-CoA oxidase 1 (ACOX1), thereby 
helping to maintain lipid homeostasis (54, 55). Additionally, 
PPARα plays a role in inhibiting hepatic inflammation, reducing 
liver fibrosis, and preventing hepatic steatosis, thereby mitigating 
the progression of MASLD and NASH (56). The role of PPARα in 
MASLD and NASH is particularly significant. Its agonists, such as 
fenofibrate, have been shown to notably improve lipid metabolism 
and reduce hepatic inflammation (57). 

Clinical trials have highlighted the potential of PPARα agonists 
in reducing lipid levels and improving liver function, particularly 
in the treatment of MASLD and NASH (58, 59). However, 
the expression and activity of PPARα decrease as MASLD and 
NASH progress, likely due to impaired fatty acid metabolism and 
heightened hepatic inflammation (60). The use of PPARα agonists 
in treating MASLD and NASH has spurred extensive research. 
Several PPARα agonists are currently undergoing clinical trials, 
demonstrating eectiveness in reducing liver fat accumulation and 
improving liver function. For instance, some novel PPARα agonists 
notably enhance the expression of genes related to fatty acid 
oxidation in the liver, reduce hepatic inflammation, and improve 
the metabolic status of patients (61). These studies provide a crucial 
theoretical basis for considering PPARα as a potential therapeutic 
target for MASLD and NASH. Future research may further 
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clarify its role in other metabolic disorders. Recent clinical data 
further support the applicability of PPARα agonists. For example, 
lanifibranor, a pan-PPAR agonist, has advanced to Phase 3 trials (as 
of 2025), showing significant reductions in liver fat (up to 45%), 
fibrosis improvement, and enhanced insulin sensitivity in MASH 
patients (62). However, challenges include mild gastrointestinal 
side eects and the need for long-term monitoring of eÿcacy in 
HCC prevention. Real-world evidence from post-marketing studies 
of fenofibrate indicates sustained lipid-lowering eects but variable 
fibrosis resolution, emphasizing the importance of combination 
therapies for optimal outcomes (63). 

In conclusion, PPARα plays a key regulatory role in lipid 
metabolism, and its agonists hold significant therapeutic potential 
for MASLD and NASH. Future research is anticipated to oer new 
insights and evidence to support the development of more eective 
treatment strategies. 

4.3 Crosstalk between glucose and lipid 
metabolism and the critical signaling 
pathway 

4.3.1 mTOR signaling pathway 
mTORC1 (mechanistic target of rapamycin complex 1), a 

specific complex of mTOR, plays a pivotal role in regulating 
glucose and lipid metabolism. It governs critical processes such 
as fatty acid synthesis, glycolysis, and amino acid metabolism. 
By modulating energy balance through pathways like the AMPK 
signaling pathway, mTORC1 influences hepatocyte metabolism. 
In MASLD and liver cancer, the activation of mTORC1 is linked 
to increased lipid accumulation and inflammation. Elevated fatty 
acid levels activate mTORC1, which in turn promotes lipid 
synthesis and glucose metabolism, driving the progression of 
MASLD (64). In liver cancer, mTORC1 activation promotes 
cell proliferation, inhibits apoptosis, and triggers metabolic 
reprogramming, thereby supporting tumorigenesis (65). mTORC1 
regulates key downstream eectors, such as S6K1 and 4E-
BP1, which promote hepatocyte growth and support tumor cell 
survival (66). 

Excessive activation of mTORC1 profoundly alters cellular 
metabolism, driving hepatocyte proliferation and facilitating the 
development of MASLD-related liver cancer. In MASLD, elevated 
fatty acid levels activate mTORC1, enhancing lipid synthesis and 
cell proliferation while suppressing apoptosis, thereby accelerating 
the progression of liver cancer (67). mTORC1 activation also 
upregulates genes such as sterol regulatory element binding factor 
1 (SREBF1) and fatty acid synthase (FASN), thereby promoting 
lipid accumulation and hepatocyte growth (68). argeting mTORC1 
with inhibitors such as rapamycin has demonstrated potential in 
reducing liver cancer cell proliferation and survival, particularly 
in models of MASLD-associated liver cancer (69). This suggests 
that inhibiting mTORC1 could provide innovative therapeutic 
approaches for treating both MASLD and liver cancer. 

4.3.2 AMPK/ACC signaling pathway 
The AMPK/ACC pathway has garnered significant attention 

in studies of HCC associated with MASLD. As a key regulator 
of cellular energy balance, AMPK plays a critical role in liver 

cancer development by influencing lipid metabolism, glycolysis, 
and the cell cycle (70). Activation of AMPK inhibits acetyl-CoA 
carboxylase (ACC), thereby reducing fatty acid synthesis and 
promoting fatty acid oxidation, which oers protective eects 
in MASLD (71). Increased expression of sebum protein P (SeP) 
in MASLD promotes lipid accumulation via the AMPK/ACC 
pathway. Inhibiting SeP can reduce triglyceride accumulation, 
presenting a potential novel target for diagnosis and treatment 
(72). Additionally, 5-aminobutyric acid (5-ALA) activates AMPK, 
highlighting its essential role in regulating lipid metabolism in a 
high-fat diet-induced mouse model (73). 

Dysregulated lipid metabolism is a key factor in the 
development of liver cancer. FASN has been shown to promote 
colorectal cancer cell proliferation and metastasis through the 
AMPK/mTOR pathway, a mechanism that may also be relevant 
to liver cancer (74). Furthermore, CD147 reprograms fatty acid 
metabolism in liver cancer cells through the Akt/mTOR/SREBP1c 
and P38/PPARα pathways, further underscoring the critical role 
of lipid metabolism in liver cancer (75). In conclusion, the 
AMPK/ACC pathway plays a crucial role in regulating lipid 
metabolism and provides new insights into the diagnosis and 
treatment of MASLD-related liver cancer. Further investigation of 
this pathway and its molecular mechanisms could pave the way for 
more eective strategies in preventing and treating MASLD and 
associated liver cancers. 

4.3.3 FXR signaling pathway 
Farnesoid X receptor (FXR), a nuclear receptor that primarily 

regulates bile acid metabolism and plays a key role in lipid and 
glucose metabolism, is essential in the pathophysiology of MASLD-
related liver cancer. Dysregulation of FXR in both MASLD and 
HCC may contribute to disease progression and worsening (76). 
FXR agonists, such as Obeticholic Acid (OCA), have demonstrated 
therapeutic potential in treating NASH by improving fibrosis and 
potentially delaying the progression to cirrhosis. However, side 
eects, including alterations in atherosclerotic lipid profiles, may 
necessitate adjunctive therapy with statins (77, 78). 

The role of FXR in the gut-liver axis has been extensively 
studied, with intestinal microbiota dysbiosis identified as a factor 
in the progression of both MASLD and HCC. FXR regulates bile 
acid metabolism and maintains gut microbiota balance, influencing 
intestinal permeability and immune activation, which may, in turn, 
aect MASLD progression (79). Combined regulation of FXR with 
other targets, such as soluble epoxide hydrolase (sEH), has shown 
enhanced therapeutic eects in NASH, particularly in terms of 
anti-inflammatory and anti-fibrotic outcomes (80). In conclusion, 
the regulatory mechanisms of FXR and its involvement in the 
gut-liver axis oer significant clinical and research potential for 
the prevention and treatment of MASLD and HCC, particularly 
through multi-target therapeutic approaches. 

4.3.4 NF-κB/JNK signaling pathway 
The NF-κB pathway plays a pivotal role in liver cancer 

progression, with its activation associated with an unfavorable 
prognosis and stem cell-like traits (81). Dysregulated NF-κB 
activation is linked to a range of inflammatory diseases and 
cancers, positioning it as a promising target for therapeutic 
intervention (82). In MASLD-associated HCC, NF-κB 
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activation drives tumor progression and is closely linked 
to hepatic fibrosis. Natural compounds that modulate this 
pathway have demonstrated potential in reducing fibrosis 
and in the development of novel anti-fibrotic therapies (83). 
Furthermore, the non-classical NF-κB pathway plays a critical 
role in the regulation of liver diseases, with small molecule 
inhibitors emerging as promising candidates for managing liver 
injury (84). 

The JNK pathway is also essential in HCC, impacting 
cell death, proliferation, and carcinogenesis. Studies indicate 
a cross-regulation between the JNK and NF-κB pathways, 
which may aect tumor progression by modulating cellular 
survival and apoptosis (85). JNK activation is associated 
with oxidative stress and mitochondrial dysfunction, driving 
hepatocyte apoptosis in cancer cells (86). In the treatment of 
MASLD-related liver cancer, targeting the NF-κB and JNK 
pathways may provide therapeutic benefits. Certain natural 
products and compounds have shown potential in inhibiting 
liver cancer cell proliferation and migration by suppressing these 
pathways (87, 88). Moreover, microRNAs like miR-26b enhance 
chemotherapy sensitivity by inhibiting NF-κB, oering promising 
new therapeutic strategies (89). In conclusion, the JNK and NF-κB 
pathways are crucial in MASLD-related liver cancer, representing 
promising targets for the development of novel diagnostic and 
therapeutic approaches. 

5 Metabolic regulatory factors and 
their role in MASLD-Related 
hepatocellular carcinoma 

5.1 Fibroblast growth factor 21 

Fibroblast growth factor 21 (FGF21) is a hormone-like protein 
predominantly produced in the liver and adipose tissue, playing 
a key role in regulating glucose and lipid metabolism. Recent 
studies have shown that FGF21 enhances insulin sensitivity and 
reduces hepatic fat accumulation, oering protective eects against 
MASLD and its progression to HCC (90). FGF21 regulates 
lipid metabolism by inhibiting lipogenesis and enhancing insulin 
sensitivity in the liver, thereby improving its lipid profile (91). 
During MASLD progression, FGF21 expression levels are often 
linked to disease severity. A deficiency in FGF21 worsens 
conditions that promote liver tumorigenesis, thereby increasing the 
risk of HCC (92). 

Clinical research has established a connection between 
genetic variations in FGF21 and patients’ dietary patterns as 
well as addictive behaviors, including smoking and alcohol 
consumption. This highlights the gene’s significant role in 
metabolic disorders (90). Moreover, FGF21 analogs, including 
Pegbelfermin, are being explored as potential treatments 
for MASLD and NASH. These compounds have shown 
promise in enhancing liver metabolic health, with clinical 
trials demonstrating favorable safety and eÿcacy profiles 
(93). The role of FGF21 as a biomarker in MASLD and 
HCC is gaining increasing recognition. Elevated serum levels 

of FGF21 are now regarded as a key indicator of MASLD, 
reflecting metabolic disturbances that occur throughout 
the disease progression (94). Studies have also shown that 
the upregulation of FGF21 is linked to the progression of 
various cancers, including breast cancer. This suggests that 
FGF21 may contribute to tumor growth within the tumor 
microenvironment (95). Thus, FGF21 not only holds promise 
as a potential biomarker for MASLD but may also serve as a 
therapeutic target for cancers like HCC. Clinical applicability 
of FGF21 analogs has been demonstrated in recent Phase 2 
trials (2023-2025). Pegozafermin reduced liver fat by 27%–42% 
and improved fibrosis in MASH patients, with good tolerability 
but potential injection-site reactions (96). Efruxifermin showed 
eÿcacy in compensated cirrhosis due to MASH, resolving 
steatohepatitis in 41% of cases, though long-term HCC prevention 
data are limited (97). Challenges include variable patient 
responses and the need for combination with other agents 
for enhanced eÿcacy. 

While research on FGF21 continues to evolve, current 
findings oer solid theoretical support for its potential 
use in treating MASLD and HCC. Future studies should 
prioritize the clinical application of FGF21 and its analogs, 
investigating their mechanisms across various stages of 
MASLD and HCC to inform the development of more eective 
therapeutic strategies. 

5.2 O-GlcNAc modification and its 
metabolic regulatory functions 

O-GlcNAc modification is a crucial post-translational 
modification that regulates cellular metabolic processes by 
detecting changes in nutrient levels through UDP-GlcNAc, 
which is derived from the hexosamine biosynthesis pathway 
(HBP). This modification is integral to the development of 
various diseases, particularly metabolic disorders such as 
diabetes, cancer, and neurodegenerative diseases, where its 
dysregulation is recognized as a key driver of disease progression 
(98, 99). In response to acute stress, O-GlcNAc modification 
is rapidly upregulated, boosting cellular stress resistance and 
promoting survival (100). Studies have demonstrated that 
O-GlcNAcylation regulates enzymes involved in lipid metabolism, 
such as FASN, thereby supporting tumor growth and survival 
(101, 102). 

In MASLD, dysregulated O-GlcNAcylation is linked to 
hepatic lipid accumulation, insulin resistance, and the progression 
of liver cancer (103, 104). O-GlcNAcylation also modulates 
insulin signaling, impacting insulin secretion and β-cell function 
(105). O-GlcNAc transferase (OGT), the key enzyme regulating 
this modification, plays a pivotal role in the progression of 
MASLD, particularly in modulating mitochondrial function 
and oxidative stress (106). Inhibiting OGT has demonstrated 
potential in enhancing mitochondrial function, reducing 
lipid accumulation, and alleviating inflammation, positioning 
OGT as a promising therapeutic target for MASLD (103). In 
conclusion, O-GlcNAc modification, regulated by OGT, plays 
a crucial role in metabolic diseases like MASLD. Targeting 
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OGT may provide innovative therapeutic approaches for 
these conditions. 

6 Gut microbiota and glucose-lipid 
metabolism interactions 
inmasld-related hepatocellular 
carcinoma 

6.1 Impact of gut microbiota dysbiosis on 
liver metabolism 

Alterations in the composition of the gut microbiota are 
closely associated with liver glucose and lipid metabolism, as 
well as inflammatory responses. Recent studies have underscored 
the crucial role of the gut microbiota in the pathogenesis 
of MASLD, particularly in the regulation of hepatic lipid 
metabolism and inflammation. Dysbiosis, or microbial imbalance, 
triggers inflammation, which is recognized as a key factor in 
the progression of MASLD. When the intestinal barrier is 
compromised, harmful substances such as bacterial endotoxins 
can enter the bloodstream, leading to hepatic inflammation 
and metabolic disturbances (107). Studies indicates that the gut 
microbiota, through its metabolic byproducts such as short-
chain fatty acids and bile acids, plays a key role in regulating 
hepatic lipid metabolism and immune responses. This, in turn, 
influences hepatocyte function, impacting lipid accumulation and 
inflammatory processes (108). 

Alterations in specific gut microbiota, such as an elevated 
abundance of Desulfovibrio, have been associated with the 
progression of MASLD. Desulfovibrio is a bacterium known for 
metabolizing sulfur compounds, and its metabolic byproducts 
may modulate liver lipid metabolism and inflammatory processes, 
thereby contributing to the development of MASLD (109). 
As a prominent sulfate-reducing bacterium, an overgrowth 
of Desulfovibrio leads to excessive production of hydrogen 
sulfide (H2S). At high concentrations, H2S can exert cytotoxic 
eects, impairing the integrity of the intestinal epithelial barrier 
and increasing its permeability. This ’leaky gut’ phenomenon 
facilitates the translocation of bacterial endotoxins into the 
portal circulation, directly fueling hepatic inflammation. 
Furthermore, dysbiosis is closely linked to other components 
of metabolic syndrome, including insulin resistance, all of 
which contribute to abnormal hepatic fat accumulation and 
hepatocyte damage (110). In the management of MASLD, 
modulation of the gut microbiota has garnered significant 
interest. Strategies such as probiotics, prebiotics, and fecal 
microbiota transplantation are recognized as eective in 
enhancing gut microbiota balance and mitigating liver 
inflammation and fat accumulation (111). These studies 
oer valuable insights into the prevention and treatment of 
MASLD, highlighting the essential role of the gut microbiota in 
liver metabolism. 

In conclusion, dysbiosis of the gut microbiota aects liver 
metabolic function and plays a critical role in the progression of 
MASLD by modulating inflammatory responses. Future research 

should focus on uncovering the underlying mechanisms of gut 
microbiota regulation and its potential therapeutic applications 
in preventing and treating MASLD, providing new strategies for 
clinical management. 

6.2 Gut-liver axis mechanisms and 
regulation of metabolites 

The gut-liver axis describes the bidirectional communication 
between the gut and liver, where metabolites produced by 
the gut microbiota regulate liver metabolism and immune 
function. Recent studies highlight the significant roles of 
metabolites, including short-chain fatty acids (SCFAs) and 
bile acids, in this process. SCFAs, produced through the 
fermentation of dietary fibers by gut microbiota, not only 
supply energy to intestinal cells but also impact liver health 
by modulating lipid metabolism and inflammatory responses 
(112). SCFAs can activate GLP-1 (glucagon-like peptide-1) 
receptors, which stimulates insulin secretion and enhances 
insulin sensitivity, thereby helping to reduce the risk of hepatic 
fat accumulation (113). Similarly, bile acids, as key signaling 
molecules between the liver and gut, regulate lipid metabolism 
by influencing hepatic metabolic functions through feedback 
mechanisms (114). Dysregulation of bile acids is strongly 
linked to the development of MASLD, with research indicating 
that impaired bile acid metabolism in the liver may worsen 
fatty liver disease. 

Additionally, the integrity of the gut barrier is essential 
for the proper functioning of the gut-liver axis. When the 
intestinal barrier is compromised, endotoxins like gut-derived 
lipopolysaccharides (LPS) can enter the bloodstream, triggering 
chronic inflammation in the liver and accelerating the progression 
of fatty liver disease (115). Studies have demonstrated that 
when the gut barrier is compromised, bacterial components 
such as LPS can reach the liver, where they activate immune 
cells and trigger excessive inflammatory responses (116, 117). 
Specifically, this activation is mediated primarily through the 
recognition of LPS by Toll-like receptor 4 (TLR4) expressed 
on hepatic macrophages (Kuper cells). This binding initiates 
a downstream signaling cascade that potently activates the 
NF-κB and JNK pathways, leading to the transcription and 
release of pro-inflammatory cytokines like TNF-α and IL-6. This 
chronic, low-grade inflammation is a key driver of hepatocyte 
injury, insulin resistance, and the progression from simple 
steatosis to NASH and fibrosis, potentially progressing to liver 
cancer over time. 

Regulating the mechanisms of the gut-liver axis and its 
metabolites presents promising new avenues for treating 
MASLD and its associated liver cancer. Modifying the microbial 
community, strengthening gut barrier integrity, and utilizing 
metabolites such as SCFAs and bile acids may reduce liver 
inflammation, improve metabolic function, and contribute 
significantly to preventing and managing MASLD and its 
progression. These findings provide a crucial theoretical 
framework and practical direction for future clinical research 
and drug development. 
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6.3 The potential of gut microbiota 
intervention in improving metabolic 
disorders 

Intervening with the gut microbiota holds considerable 
promise for the prevention and treatment of MASLD and 
its associated HCC. Recent studies have highlighted the close 
connection between changes in the gut microbiota and metabolic 
disorders, demonstrating their significant role in the onset and 
progression of MASLD. Interventions such as probiotics, dietary 
polysaccharides, and specific medications (e.g., Semaglutide) can 
eectively regulate the gut microbiota, thereby improving the 
metabolic status in MASLD. For instance, probiotics can enhance 
gut barrier function and modulate immune responses, potentially 
reducing liver inflammation and steatosis (118). Additionally, the 
consumption of dietary polysaccharides supports the growth of 
beneficial gut microbiota, leading to the production of SCFAs, 
which enhance insulin sensitivity and regulate hepatic lipid 
metabolism (119). 

Semaglutide, a GLP-1 receptor agonist, has been investigated 
for its potential to improve the metabolic status of MASLD 
patients. It exerts its eects by regulating appetite, enhancing 
insulin secretion, and inhibiting hepatic glucose production, while 
also modulating the gut microbiota composition, promoting a 
more favorable metabolic profile (120). Studies have shown that 
Semaglutide treatment leads to a significant increase in gut 
microbiota diversity, with a notable rise in beneficial bacterial 
populations, further highlighting its potential for metabolic 

regulation. Modulating the gut microbiota not only helps 
improve metabolic disorders in MASLD but also prevents its 
progression to liver cancer. The progression of MASLD is closely 
associated with gut dysbiosis, inflammation, and alterations in 
the hepatic microenvironment. Through metabolites such as 
SCFAs and bile acids, the gut microbiota influences hepatic 
lipid metabolism and inflammation, playing a crucial role in 
maintaining liver health (121). Therefore, interventions targeting 
the gut microbiota, including probiotics, dietary polysaccharides, 
and pharmacological treatments, may provide novel strategies 
for the prevention and treatment of MASLD-related liver 
cancer. Moreover, studies have demonstrated that the interaction 
between the gut microbiota and inflammatory pathways, such 
as the NLRP3 inflammasome, plays a crucial role in MASLD 
and its progression. Modulating the gut microbiota may help 
reduce intestinal permeability and suppress inflammation, thereby 
alleviating liver damage and lowering the risk of liver cancer 
(122). Future research should focus on how gut microbiota 
interventions can enhance the metabolic status of MASLD patients 
and reduce the risk of liver cancer. Successfully implementing 
these interventions could oer valuable insights for the clinical 
management of MASLD and play a pivotal role in preventing and 
treating liver cancer. 

To clarify the complex interactions between dysregulation of 
glucose and lipid metabolism, inflammatory pathways, and gut 
microbiota in the progression of MASLD-HCC, Table 1 oers a 
detailed summary of the key mechanisms and their roles in disease 
pathogenesis 

TABLE 1 Key mechanisms of glucose and lipid metabolism dysregulation in non-alcoholic fatty liver disease-hepatocellular carcinoma (NAFLD-HCC). 

Mechanism/process Description Role in NAFLD-HCC progression References 

Insulin resistance and abnormal 
glucose metabolism 

Involves enhanced gluconeogenesis, 
impaired glucose utilization, and 

disrupted insulin signaling (e.g., via 

AMPK pathway). Leads to hyperglycemia 

and vicious cycle with lipid accumulation. 

Promotes hepatic steatosis, inflammation, 
fibrosis, and carcinogenic 

microenvironment; key in NAFL to NASH 

transition without cirrhosis in ∼40%–50% 

cases. 

(6, 7, 19, 20, 35–39) 

Lipid accumulation and imbalanced 

fatty acid synthesis/oxidation 

Upregulation of enzymes like FASN and 

ACC; impaired β-oxidation (e.g., 
suppressed CPT2). Involves metabolic 

reprogramming and oxidative stress. 

Drives steatosis, lipotoxicity, cell 
apoptosis, and tumor cell survival in 

hypoxic environments; linked to genetic 

mutations (e.g., E2F1/E2F2 activation). 

(22, 23, 27–31, 48–51) 

Key signaling pathways (e.g., 
mTORC1, AMPK/ACC, FXR, 
NF-κB/JNK) 

mTORC1 promotes lipid synthesis and 

proliferation; AMPK inhibits ACC to 

reduce fatty acid synthesis; FXR regulates 
bile acids and gut-liver axis; NF-κB/JNK 

drives inflammation and apoptosis. 

Facilitates metabolic reprogramming, 
chronic inflammation, fibrosis, and HCC 

development; crosstalk exacerbates 
oxidative stress and gut dysbiosis eects. 

(64–68, 70–72, 74–76, 81–86) 

miRNA regulation (e.g., miR-22-3p) 
and post-translational modifications 
(e.g., O-GlcNAc) 

miR-22-3p downregulation enhances 
glycolysis (Warburg eect); O-GlcNAc 

senses nutrients, regulates FASN and 

insulin signaling. 

Exacerbates glucose intolerance, steatosis, 
and tumor growth; promotes insulin 

resistance and mitochondrial dysfunction 

in NAFLD progression. 

(45–47, 98–106) 

Gut microbiota dysbiosis and 

metabolites (e.g., SCFAs, bile acids) 
Imbalance (e.g., increased Desulfovibrio) 
leads to barrier dysfunction, LPS 

translocation; metabolites like SCFAs 
influence insulin sensitivity and 

inflammation via gut-liver axis. 

Induces hepatic inflammation, lipid 

deposition, and immune dysregulation; 
accelerates NAFLD to HCC via NLRP3 

inflammasome and bile acid 

dysregulation. 

(107–110, 112–117, 121, 122) 
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7 Clinical interventions and future 
prospects for glucose and lipid 
metabolism in masld-related 
hepatocellular carcinoma 

7.1 Current drugs and progress in clinical 
trials 

Metabolic dysfunction associated steatotic liver disease is the 
most prevalent chronic liver disease worldwide and is strongly 
linked to metabolic syndrome, making it a significant public 
health concern. While no specific drugs have been approved for 
MASLD treatment, advancements have been made in developing 
therapies that target its underlying pathological mechanisms. 
PPARα agonists, which regulate lipid and glucose metabolism, 
have shown promising results in clinical trials by significantly 
reducing liver fat content and improving liver function (123). 
GLP-1 receptor agonists, such as Semaglutide, eectively reduce 
liver fat accumulation and metabolic disturbances by enhancing 
insulin sensitivity and promoting weight loss (124). FGF21 analogs 
regulate energy and lipid metabolism, helping to reduce liver 
fat and improve insulin resistance. Clinical trials have shown 
good tolerability and safety, though the long-term eÿcacy is still 
being evaluated (125). In addition, inhibitors targeting the NLRP3 
inflammasome help reduce liver inflammation and fibrosis, oering 
a promising new approach for MASLD treatment. 

Recent updates bolster these agents’ profiles: Resmetirom 
(THR-β agonist) achieved FDA approval in 2024, with MAESTRO-
NASH Phase 3 data confirming 26% NASH resolution and fibrosis 
reduction, though limitations include pruritus (15% incidence) 
and understudied HCC endpoints (126). Semaglutide’s ESSENCE 
phase 3 trial (72-week interim, AASLD 2024) showed 62.9% MASH 

resolution without fibrosis worsening (vs. 34.1% placebo; EDP 
28.9%, P < 0.0001) and 37.0% fibrosis improvement without 
MASH progression (vs. 22.5%; EDP 14.5%, P < 0.0001), via GLP-1 
metabolic/inflammatory eects and 10.5% weight loss, with 30%– 
40% liver enzyme/fibrosis marker reductions; GI AEs increased 
(nausea 36%, diarrhea 27%), and modest fibrosis gains highlight 
combo therapy potential (127). Lanifibranor’s NATIVE phase 2b 
trial (24-week data, 2024) yielded broad CMH improvements 
in MASH patients via pan-PPAR agonism, including 26% TG 
reduction (AMD −0.5 mmol/L), 0.5% HbA1c lowering, hs-
CRP drops (−2.2 mg/L), and DBP decreases (−3.9 mmHg), 
with adiponectin surges (> 4-fold in 80%) correlating to 
histological MASH resolution (49%) and fibrosis regression (34%), 
independent of average 2.5 kg weight gain (128). 

Given the limited eÿcacy of single-target drugs, multi-target 
combination therapies have emerged as a key area of research. 
For example, combining GLP-1 receptor agonists with SGLT2 
inhibitors yields a synergistic eect, enhancing metabolic indicators 
and promoting liver health (129). This combined approach aims to 
improve treatment outcomes by addressing multiple pathological 
mechanisms, including metabolic regulation and inflammation. 
As our understanding of the underlying mechanisms of MASLD 
deepens, drug development targeting multiple pathways will 
be crucial for future therapies, providing more comprehensive 
treatment options for patients. 

Although preclinical studies have shown promising results, 
translating these findings into clinical benefits remains a challenge. 
For instance, the SCD1 inhibitor Aramchol is currently being 
assessed in Phase III clinical trials for NASH and liver fibrosis, 
including the ARMOR study (130). As of mid-2025, however, no 
Phase III clinical trial results have been published for MASLD-
related HCC patient subgroups, underscoring the critical need for 
focused clinical research in this specific population (131, 132). In 
the future, the development of novel drugs is expected to advance 

TABLE 2 Emerging therapeutic targets and interventions for glucose and lipid metabolism in non-alcoholic fatty liver disease-hepatocellular 
carcinoma (NAFLD-HCC). 

Target/intervention Description Potential benefits and evidence References 

Target/intervention description potential 
benefits and evidence references PPARα 

agonists (e.g., fenofibrate) 

Nuclear receptor promoting fatty acid 

β-oxidation via CPT1A/ACOX1; inhibits 
inflammation and fibrosis. 

Reduces steatosis, improves lipid metabolism, and 

prevents NASH progression; clinical trials show 

lipid-lowering and anti-fibrotic eects. 

(52–62, 123) 

FGF21 analogs (e.g., Pegbelfermin) Hormone enhancing insulin sensitivity and 

reducing hepatic fat; regulates lipid metabolism 

and acts as biomarker. 

Alleviates NAFLD severity, improves metabolic 

health; Phase II trials demonstrate safety, reduced 

steatosis, and potential HCC prevention. 

(90–97, 125) 

GLP-1 receptor agonists (e.g., 
Semaglutide) 

Promotes insulin secretion, weight loss; 
modulates gut microbiota and SCFAs 
production. 

Improves insulin resistance, reduces liver 

fat/inflammation; reshapes microbiota for better 

gut-liver axis function; synergistic in combination 

therapies. 

(120, 124, 129) 

mTORC1 inhibitors (e.g., rapamycin) and 

AMPK activators (e.g., 5-ALA) 
mTORC1 inhibition reduces lipid synthesis and 

proliferation; AMPK activation inhibits ACC, 
promotes oxidation. 

Restricts HCC growth, ameliorates 
steatosis/inflammation; preclinical models show 

reduced tumor progression in NAFLD contexts. 

(69, 73, 74, 136) 

Gut microbiota modulation (e.g., 
probiotics, prebiotics, FMT) 

Targets dysbiosis via polysaccharides or drugs; 
enhances barrier integrity and metabolite 

production (SCFAs, bile acids). 

Alleviates inflammation, improves metabolic 

disorders; prevents NAFLD-HCC progression; 
emerging for adjunct therapy with FXR agonists. 

(111, 118, 119, 121, 122, 126) 

Gene/miRNA editing and multi-omics 
approaches 

CRISPR-Cas9 for genes like AKT1; miRNA 

interventions; integrates 
metabolomics/transcriptomics for biomarkers. 

Enables personalized targeting of metabolic 

heterogeneity; identifies HCC risk in NAFLD; 
future for precision diagnostics/therapies. 

(133–135, 137–139) 
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into clinical trials, oering new hope for the treatment of MASLD 
and its associated complications, such as HCC. 

7.2 Emerging therapeutic targets and 
technologies 

Gene editing and miRNA interventions have emerged as 
promising approaches for treating MASLD and HCC. Technologies 
such as CRISPR-Cas9 enable precise modification of genes linked 
to MASLD and HCC, facilitating the identification of pathogenic 
genes and the development of personalized treatments. Targeting 
key genes, such as AKT1, has demonstrated potential in improving 
lipid metabolism and inhibiting tumor growth in MASLD-related 
liver cancer (133). Additionally, miRNAs are crucial in regulating 
lipid metabolism, inflammation, and fibrosis. Targeting specific 

miRNAs may provide new therapeutic avenues for treating MASLD 
and HCC (134). O-GlcNAc modification, which impacts metabolic 
pathways, is also being investigated for its role in liver metabolic 
disorders and its potential contribution to the development 
of MASLD (135). Furthermore, mTORC1 inhibitors are being 
investigated for their potential to improve lipid metabolism 
and reduce liver inflammation in MASLD. Inhibiting mTORC1 
has shown promise in preventing the progression of MASLD 
to HCC by mitigating lipid accumulation and inflammation 
(136). However, challenges such as potential side eects and the 
complexity of the mTORC1 pathway persist. Further research 
is required to develop more targeted treatments that modulate 
mTORC1, ensuring a balance between eÿcacy and safety in 
clinical settings. 

In conclusion, the integration of gene editing, miRNA 
intervention, O-GlcNAc modification regulation, and mTORC1 

FIGURE 1 

Mechanistic pathway of metabolic dysfunction-associated steatotic liver disease (MASLD) progression to hepatocellular carcinoma (HCC). This 
diagram illustrates the metabolic and molecular mechanisms driving the progression from MASLD to HCC. The liver is depicted centrally, with 
surrounding quadrants representing key processes: (1) Metabolic Input (left) highlights dietary and physiological inputs; (2) Core Pathway 
Interactions (upper right) shows signaling pathways; and (3) Tumor Microenvironment (lower right) depicts the tumor-supportive environment. Key 
elements include: high carbohydrate intake and cholesterol promoting SREBP-1c/ChREBP and VLDL secretion, respectively, exacerbated by insulin 
resistance and hepatic gluconeogenesis leading to MASLD; AMP-activatedproteinkinase (AMPK) as an upstream regulator phosphorylating and 
inhibiting ACC; farnesoid X receptor (FXR) and PPARα regulating lipid metabolism via SHP and CPT1-mediated β-oxidation, while mTORC1 activates 
S6K1/4E-BP1 and SREBP-1c, enhancing lipid droplet formation and inflammation through JNK-NF-κB; and the Warburg effect driving glycolysis and 
lactate accumulation, fostering HCC cell growth, fibrosis, and an immunosuppressive microenvironment with M2 macrophages and suppressed 
CD8+ T cells. Gut microbiota dysbiosis alters the pool of short-chainfattyacids (SCFAs) and bile acids, which activates JNK-NF-κB to amplify 
inflammation and/or fibrosis. Red arrow lines indicate promotion or enhancement (e.g., activation of pathways or processes), while blue arrow lines 
denote inhibition (e.g., suppression of immune responses or pathways). 
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inhibition presents promising new strategies for treating MASLD 
and HCC. Ongoing research will refine these approaches, opening 
up new possibilities for clinical management. 

7.3 Future research directions 

Understanding the roles of these networks in the progression 
of MASLD and HCC requires a comprehensive analysis using 
advanced technologies such as metabolomics, transcriptomics, 
and single-cell RNA sequencing. These approaches can provide 
insights into how glucose-lipid metabolism influences hepatocyte 
biology and tumorigenesis (137). Personalized treatment strategies 
will be essential moving forward, as MASLD and liver cancer 
patients display considerable heterogeneity in metabolic profiles, 
genetics, and lifestyle. Integrating genomics and epigenetics can 
help identify genetic susceptibilities linked to MASLD, allowing for 
personalized prevention and treatment plans tailored to high-risk 
individuals (138). Additionally, designing interventions tailored to 
metabolic states—such as diet, exercise, and pharmacotherapy— 
will open up new avenues for managing MASLD. Integrating multi-
omics is crucial for uncovering the metabolic heterogeneity of 
MASLD and its progression to liver cancer. Combining data from 
genomics, transcriptomics, metabolomics, and proteomics can help 
identify novel biomarkers for precision diagnosis and treatment. 
Additionally, exploring interactions between hepatocytes and their 
microenvironment, including immune and stellate cells, will shed 
light on their roles in the progression of MASLD and HCC (139). 

To advance the field, future research should address key 
questions and prioritize targeted proposals. These include: (1) 
Biomarker-Guided Therapy: Can baseline serum FGF21 levels or 
circulating miR-22-3p expression profiles predict patient responses 
to metabolic therapies, enabling personalized treatment? This 
could involve clinical trials evaluating FGF21 as a biomarker 
for MASLD severity, guiding analog dosing to prevent HCC in 
high-risk patients, and using miR-22-3p for stratifying those with 
metabolic reprogramming to enable targeted miRNA therapies 
in glycolytic-dominant HCC. (2) Non-invasive Risk Stratification: 
How can multi-omics data—integrating genomics, metabolomics, 
and gut microbiome signatures—develop robust algorithms to 
stratify MASLD patients by HCC risk, optimizing surveillance? 
Specific queries, such as whether FGF21/miR-22-3p panels improve 
early HCC detection in MASLD cohorts, provide a roadmap for 
validation. (3) Causal Mechanisms of the Gut-Liver Axis: What 
are the roles of microbial-derived metabolites (e.g., bile acids 
or SCFAs) in hepatocyte transformation, and can interventions 
like engineered probiotics or postbiotics modify these pathways 
to prevent HCC? Finally, as the interactions between gut 
microbiota and host metabolism receive increasing attention, 
Table 2 summarizes emerging therapeutic targets and interventions 
for MASLD-HCC, emphasizing their potential to modulate glucose 
and lipid metabolism and reduce inflammation. 

8 Conclusion 

In conclusion, studies on MASLD-related liver cancer is 
advancing rapidly, revealing the complex interactions between 

glucose-lipid metabolism disturbances, key regulatory factors, 
and the gut microbiota. These insights are crucial not only for 
deepening our understanding of the disease’s pathophysiology 
but also for developing novel therapeutic approaches. Figure 1 
presents a succinct visual overview of these mechanisms, showing 
how metabolic disruptions initiate MASLD, how core pathway 
interactions intensify inflammation and lipid accumulation, 
and how the tumor microenvironment contributes to HCC 
development. The pivotal role of metabolic dysregulation in driving 
liver fat accumulation, hepatocellular carcinoma formation, and 
disease progression emphasizes the importance of comprehensive 
strategies for treatment and prevention. Targeting key molecules 
such as PPARα, FGF21, miRNAs, and O-GlcNAc modification 
holds promise for therapeutic interventions, positioning metabolic 
regulation as a central strategy for innovative treatments. 

Furthermore, the impact of the gut microbiota on liver 
metabolism and disease progression represents a promising area 
of research, indicating that modulating the microbiome could 
serve as a valuable complement to conventional therapies. Gaining 
a deeper understanding of the bidirectional interaction between 
the liver and the gut microbiome will be crucial for developing 
more eective intervention strategies. Additionally, the emergence 
of precision medicine, fueled by the integration of genomic, 
metabolic, and microbiome data, will facilitate the tailoring of 
treatments to individual patient profiles, ultimately improving 
therapeutic outcomes. 

Despite significant advancements, challenges persist in 
translating these findings into clinical practice, especially regarding 
early diagnosis and personalized treatment. Current limitations 
include therapeutic safety concerns, such as pruritus and adverse 
lipid changes with FXR agonists like obeticholic acid, and 
uncertainties in long-term eÿcacy for emerging drugs like FGF21 
analogs, which show short-term fibrosis reductions but require 
extended trials to confirm HCC prevention. Gaps also exist in 
addressing patient heterogeneity and comorbidities, which may 
reduce treatment responses and complicate real-world application. 
Future research should prioritize exploring the complexities of 
glucose-lipid metabolic networks, their interactions with the 
gut microbiota, and their roles in the progression of MASLD 
and liver cancer. By leveraging multi-omics technologies and 
deepening our understanding of underlying mechanisms, it will 
be possible to identify novel biomarkers for early detection, 
predict disease progression, and develop more eective, tailored 
treatment strategies. Ultimately, integrating these insights oers 
great potential for improving patient outcomes and quality 
of life, providing a comprehensive approach to managing 
MASLD-related liver cancer. 
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