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Biomechanical comparison of
five fixation methods in
minimally invasive hallux valgus
osteotomy: a three-dimensional
finite element analysis

Xiaomei Li, Lan Zhang, Jiandong Wang, Yongjun Wang,
Guangming Dai, Wei Jiang, Haoyan Zheng, Bo Feng* and
Weiqging Tian*

Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University,
Baotou, China

Objective: Although minimally invasive osteotomy for hallux valgus employs
a variety of internal fixation methods, systematic biomechanical evidence
evaluating the stability and strength of different fixation configurations is lacking.
This study aimed to quantitatively compare the biomechanical properties of five
internal fixation techniques using three-dimensional finite element analysis.

Methods: Based on CT data of the foot of an adult female patient with
moderate hallux valgus (HVA 27.6°, IMA 12.4°), a finite element model of the
post-osteotomy state was constructed. The following fixation schemes were
simulated: Group A: two 3.5 mm beveled metal screws; Group B: one 3.5 mm
beveled metal screw; Group C: two 2.0 mm Kirschner wires; Group D: one 3.5
mm beveled metal screw and one 2.0 mm Kirschner wire; Group E: three 2.0
mm Kirschner wires. Comparison parameters included the maximum equivalent
(Von-Mises) stress between the osteotomy fragment and the internal fixation,
the maximum displacement of the osteotomy fragments in the X, Y, and Z axes,
and the overall displacement of the internal fixation.

Results: Under the same load: 1. Maximum stress of the osteotomy fragment:
Group A (5.6824 MPa) < Group B < Group D < Group C < Group E (33.33 MPa);
2. Maximum stress of internal fixation: Group A (16.159 MPa) < Group
D < Group B < Group C < Group E (238.68 MPa, with significant stress
concentration); 3. Maximum displacement of the osteotomy fragment (X/Y/Z):
Group E (4.2035/2.8512/7.1309 mm) < Group D < Group A < Group C < Group
B (4.3251/3.2353/7.4102 mm); 4. Overall displacement of internal fixation: Group
B (7.5284 mm) < Group D < Group C < Group A < Group E (79256 mm).

Conclusion: 1. Two 3.5 mm beveled screws (Group A) are the optimal
configuration, combining low stress distribution (lowest stress on the osteotomy
fragment and internal fixation) with high stability (moderate displacement); 2.
Combined fixation (Group D) is a secondary option, but bone quality assessment
is required (Kirschner wire fixation carries the risk of loosening); 3. Three
Kirschner wires (Group E) are only suitable for low-load cases due to the risk
of high stress concentration (238.68 MPa).
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hallux valgus, minimally invasive surgery, internal fixation, three-dimensional finite
element method, biomechanics

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1701147
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1701147&domain=pdf&date_stamp=2025-11-04
mailto:bb0472111@aliyun.com
mailto:534742999@qq.com
https://doi.org/10.3389/fmed.2025.1701147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1701147/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Lietal.

1 Introduction

Hallux valgus (HV) is the most common three-dimensional
deformity of the human forefoot, characterized by progressive
first
metatarsophalangeal joint complex (1-3). This deformity not

forefoot dysfunction caused by deviation of the
only causes local pain, swelling, and difficulty wearing shoes
(with an incidence of 23-35% in the adult population), but also
increases the risk of secondary knee osteoarthritis due to gait
abnormalities (4-6). Studies indicate (7) that both open and
minimally invasive techniques are effective methods for correcting
deformities, with third-generation minimally invasive surgery
demonstrating potential advantages in improving the hallux valgus
angle (HVA). Existing surgical approaches encompass multiple
techniques, including percutaneous methods such as SERI,
Bosch, and Reverdin-Isham; traditional open osteotomies like
Scarf and Lapidus; and emerging intramedullary nail techniques.
Among these numerous options, minimally invasive chevron-
Akin (MICA) has become the mainstream surgical procedure
for mild to moderate HV (mild deformity: 15° < HVA < 20°
and/or 9° < IMA < 14°;moderate deformity: 20° < HVA < 40°
and/or 14° < IMA < 20°) due to its advantages of minimal
trauma and rapid recovery (8-10). Its core advantages include: 1.
Biomechanical adaptability: special instruments enable large-scale
translation of the metatarsal head ( > 5 mm), effectively correcting
the intermetatarsal angle (IMA) to the normal range ( < 9°)
(11, 12); 2. Advances in fixation technology: the third-generation
MICA technique uses double-screw fixation—the proximal screw
penetrates both cortices to lock the metatarsal head, and the distal
screw engages a single cortex, significantly reducing displacement
of the osteotomy end (13, 14); 3. Optimized surgical efficiency:
guide wire pre-placement reduces intraoperative fluoroscopy
frequency by approximately 40%, shortening the operation time.
However, the current controversial fixation schemes focus on
the following: 1. Doubts about the necessity of double screws:
cadaver studies have shown that the failure strength of a single 4.0
mm screw (250 N) is sufficient for daily walking (peak load 300
N), but there is a risk of displacement (0.269 mm), which may
affect early weight bearing (13, 15); 2. Limitations of alternative
solutions: Although Kirschner wire or screw-Kirschner wire
combined fixation is low-cost, the stress concentration of the
Kirschner wire is significant ( > 150 MPa), and there is a risk
of breakage. Although bandage fixation promotes secondary
healing by achieving micro-motion (0.022-0.269 mm) through the
“tendon-bone theory,” it requires frequent bandage changes (16); 3.
Applicability to special populations: In patients with osteoporosis,
Kirschner wire fixation is prone to loosening, and three Kirschner
wires are recommended only for low-load cases due to their high
risk of displacement (17). A current research bottleneck is the lack
of systematic biomechanical evaluation data for minimally invasive
fixation configurations, particularly quantitative comparisons of
the following key parameters: 1. Maximum equivalent stress at the
osteotomy site in different groups; 2. Stress distribution thresholds
for different fixation devices; and 3. Overall displacement of the
osteotomy fragment and internal fixation.

Thus, this study aimed to compare the biomechanical
properties of five internal fixation schemes (including double
screws, single screws, and a combination of Kirschner wires) in
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MICA osteotomy using high-precision finite element models. The
objective was to quantify: maximum equivalent stress (predicting
osteotomy fracture risk); overall internal fixation stiffness (assessing
implant fatigue risk); triaxial displacement of the osteotomy site
(assessing stability); and overall internal fixation displacement
(reflecting torsional performance). By clarifying the mechanical
properties and clinical indications of each scheme, this study will
provide a basis for individualized fixation decisions and minimize
the risk of metatarsal fracture and fixation failure (18-22).

2 Materials and methods

2.1 Study subjects

The model was constructed based on foot CT data from a
24-year-old female patient (height 158 cm; weight 52.5 kg) with
moderate HV in a non-weight-bearing state. CT scan parameters
included a slice thickness of 0.75 mm, a slice spacing of 0.75 mm, a
matrix size of 512 x 512 pixels (Philips 16-slice spiral CT), and 321
DICOM-format images. Based on weight-bearing anteroposterior
and lateral radiographs of the patient’s foot, the hallux valgus angle
(HVA) was 27.6° and the first and second metatarsal angles (IMA)
were 12.4°, meeting the clinical criteria for moderate deformity
(20° < HVA < 40° and/or 14° < IMA < 20°) (8, 23). Patients
were excluded from the study with a history of foot and ankle
surgery, trauma, or arthritis. The study was approved by the Ethics
Committee of Inner Mongolia Baogang Hospital (2024-MER-168).

2.2 Research methods

2.2.1 Foot 3D model construction process

Image Segmentation and Preliminary Modeling: DICOM-
format CT data were imported into Mimics 21.0 (Materialise).
A preliminary 3D foot model (STL format) was generated using
threshold segmentation, region-growing, and bone/skin extraction.
Surface Optimization and Anatomical Assembly: The STL file was
imported into Geomagic 2021 for surface fitting and noise removal
(accuracy < 0.1 mm). The optimized model was imported into
SolidWorks 2022, where 30 bones (including the tibia and fibula,
7 tarsal bones, 5 metatarsal bones, 14 phalanges, and 2 sesamoid
bones) and articular cartilage simulation (0.5 mm thickness) were
completed. A skin soft tissue layer (2 mm thickness) and a rigid
ground support surface were added to simulate a non-weight-
bearing standing position (see Figure 1).

2.2.2 Material properties

To better simulate the foot and avoid stress concentration,
all solid parts were discretized into tetrahedral elements. The
mesh sizes of bones and skin soft tissues, ground support and
osteotomy blocks, and internal fixation were set to 3, 4, and
0.70 mm, respectively. In addition, local refinement was performed
to adapt to the geometry of the contact area. The properties
of biomaterials are critical parameters in finite element analysis.
According to relevant literature (24), the material properties used
in this study are represented by two parameters: elastic modulus
(E) and Poisson’s ratio (v) (see Table 1).
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(A)

FIGURE 1

Construction of a finite element model of hallux valgus. (A) Preliminary 3D model of the foot. (B) Solidification of the 3D model. (C) Accurate surface
(tibia as an example). (D) Skeletal assembly. (E) Simulated foot stationary on the ground.

(D)

TABLE 1 Mechanical properties of physiological structures and internal fixation implants in the finite element model.

Parameters Model materials
Cortical Articular Skin and soft | Oblique metal Kirschner Ground
tissue screw wire support
Elastic modulus (E) 7,300 10 115 200,000 187,500 17,000
Poisson’s ratio (v) 0.30 0.40 0.49 0.33 0.33 0.40

2.2.3 Internal fixation design

Five fixation models were constructed (see Figures 2, 3):

Group A: Two 3.5 mm beveled metal screws (bicortical
locking);

Group B: Single 3.5 mm beveled metal screw (single-point
fixation);

Group C: Two 2.0 mm Kirschner wires (elastic fixation);

Group D: One 3.5 mm beveled screw and one 2.0-mm
Kirschner wire (combined fixation);

Group E: Three 2.0 mm Kirschner wires (low-stiffness fixation).

Implantation specifications:
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Standardized entry point: Medial to the base of the first
metatarsal, penetrating the cortex according to the “in-out-in”
principle;

Directional control: Parallel to the long axis of the metatarsal
in the sagittal plane, and < 10° angle with the second metatarsal in
the coronal plane.

2.2.4 Boundary conditions and load settings

Static neutral position simulation (see Figure 4):

Constraints: The skin bottom surface and the upper surface of
the tibia/fibula were fully constrained;
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(A)

(B)

FIGURE 2

(A) 3D model before hallux valgus surgery. (B) 3D model after hallux valgus surgery.

The upper surface of the talus was constrained in rotational
freedom (simulating the neutral ankle position);

Load application (25):

Ground reaction force: 262.5 N (50% of the patient’s body
weight) applied vertically upward;

Achilles tendon load: 131.25 N (50% of the total load,
simulating Achilles tendon tension during stance) applied vertically
upward to the posterior end of the calcaneus.

2.2.5 Biomechanical evaluation indicators

Fracture risk was assessed by the maximum equivalent stress of
the osteotomy fragment, and fracture risk of the internal fixation
was assessed by the maximum equivalent stress of the internal
fixation device. The stability of the internal fixation system was
assessed by maximum displacement of the osteotomy fragment
in the X, Y, and Z axes and overall displacement of the internal
fixation device.

Frontiers in Medicine

3 Results

Under the aforementioned loading conditions, the maximum
equivalent stresses of the osteotomy fragment and internal fixation,
the maximum displacements of the osteotomy fragment in the X,
Y, and Z directions, and the overall displacement of the internal
fixation were calculated (see Table 2 and Figure 5).

3.1 Maximum equivalent stress of the
osteotomy fragment

The maximum equivalent stress of the osteotomy fragment
in Group E (33.33 MPa) was significantly higher than that in
Groups A-D (Group A: 5.6824 MPa, Group B: 5.9929 MPa,
Group C: 6.8197 MPa, and Group D: 6.2728 MPa). This indicates
that the osteotomy fragment in Group E was subjected to
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FIGURE 3
(A) Schematic diagram of the model. (B) Two 3.5 mm beveled metal screws. (C) One 3.5 mm beveled metal screw. (D) Two 2.0 mm Kirschner wires.
(E) One 3.5 mm beveled metal screw and one 2.0 mm Kirschner wire. (F) Three 2.0 mm Kirschner wires.

significantly higher mechanical loads under internal fixation,
potentially increasing the risk of fragment fracture (see Figure 6).

3.2 Maximum equivalent stress of
internal fixation

The maximum equivalent stress of the internal fixation in
Group E (238.68 MPa) also far exceeded that of the other
groups (Group A: 16.159 MPa, Group B: 17.512 MPa, Group C:
21.415 MPa, and Group D: 17.496 MPa). This suggests that the
internal fixation in Group E was subjected to higher stress, making
it more susceptible to failures such as fatigue and fracture. Among

Frontiers in Medicine

Groups A-D, the maximum equivalent stress at the interface of the
osteotomy fragment and internal fixation in Group C was slightly
higher, suggesting that mechanical transmission or the internal
fixation material and structure differed from those in the other
groups, resulting in a change in stress distribution (see Figure 7).

3.3 Osteotomy fragment maximum

displacement in the X, Y, and Z directions

X-axis displacement: The values for each group were similar
(Group A: 4.3118 mm, Group B: 4.3251 mm, Group C: 4.3125 mm,
Group D: 4.3064 mm, Group E: 4.2035 mm). This indicates that in
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FIGURE 4

Loading conditions of the model. (A) Schematic diagram of overall foot loading. (B) Schematic diagram of local foot loading (including internal
fixation).

TABLE 2 Finite element analysis of different internal fixation treatments in minimally invasive osteotomy.

Observation indicators

Maximum Maximum Maximum displacement of osteotomy Overall
equivalent stress in | equivalent stress fragment (mm) displacement of
the osteotomy in the internal the internal
fragment (MPa) fixation (MPa) fixation (mm)
X-axis Y-axis Z-axis

Group A 5.6824 16.159 43118 3.2189 7.3794 7.7718

Group B 59929 17.512 43251 3.2353 7.4102 7.5284

Group C 6.8197 21.415 43125 3.2209 7.3847 7.7435

Group D 6.2728 17.496 4.3064 3.2102 7.3706 7.7292

Group E 33.33 238.68 4.2035 2.8512 7.1309 7.9256
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Finite element analysis of different internal fixation treatments in minimally invasive osteotomy. Invasive osteotomy. (A) Maximum equivalent stress
in the osteotomy fragment (MPa). (B) Maximum equivalent stress in the internal fixation (MPa). (C) Maximum displacement of the osteotomy

fragment (mm). (D) Overall displacement of the internal fixation (mm).

the X direction, the different internal fixations had little difference
in their restraining effect on the osteotomy fragment, and the
overall displacement patterns were similar.

Y-axis displacement: Group E (2.8512 mm) was lower than
Groups A-D (Group A: 3.2189 mm, Group B: 3.2353 mm, Group
C: 3.2209 mm, Group D: 3.2102 mm), possibly because the high
stress concentration in Group E’s internal fixation constrained
the Y-axis movement of the osteotomy fragment. The Y-axis
displacement between Groups A-D fluctuated slightly, indicating
similar mechanisms for internal fixation to regulate displacement
in this direction.

Z-axis displacement: The values differed slightly between the
groups (Group A: 7.3794 mm, Group B: 7.4102 mm, Group C:
7.3847 mm, Group D: 7.3706 mm, Group E: 7.1309 mm), indicating
that under different internal fixations, the Z-axis displacement
of the osteotomy fragment was limited by the influence of
internal fixation, and the overall displacement trend was relatively
consistent (see Figure 8).

3.4 Overall displacement of internal
fixation

The overall displacement of the internal fixation in Groups A-
D ranged from 7.5284 mm to 7.7718 mm (Group A: 7.7718 mm,
Group B: 7.5284 mm, Group C: 7.7435 mm, and Group D:
7.7292 mm). These values are similar, indicating that the overall
stability of the internal fixation in these four groups was similar,
and they performed similarly in maintaining their position and
transmitting mechanical loads. The overall displacement of the
internal fixation in Group E was 7.9256 mm. Although not
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significantly different from Groups A-D, combined with its high-
stress performance, Group E’s internal fixation still has some ability
to control displacement under high loads. However, due to stress
concentration, long-term stability may be affected (see Figure 9).

4 Discussion

HV is a common foot deformity in clinical practice. MICA has
attracted significant attention due to its minimal trauma and rapid
recovery (26, 27). In minimally invasive osteotomy, the optimal
fixation scheme is influenced by the choice of internal fixation by
orthopedic surgeons (16, 28, 29). Therefore, this study compared
the stability, stress distribution, and displacement characteristics
of five different internal fixation methods using three-dimensional
finite element analysis on an adult female patient with moderate
hallux valgus, aiming to provide a more scientific and rational basis
for selecting internal fixation options.

In this study, Group A (bicortical screw fixation) demonstrated
the best biomechanical properties. As shown in Table 2
the maximum equivalent stresses of the
osteotomy fragment and internal fixation were 5.6824 and
16.159 MPa, respectively (5.9929 MPa/17.512 MPa in Group B,
6.8197 MPa/21.415 MPa in Group C, 6.2728 MPa/17.496 MPa in
Group D, and 33.33 MPa/238.68 MPa in Group E), all of which
were the lowest among the five groups. Furthermore, the triaxial

and Figure 5,

maximum displacements of the osteotomy fragment were 4.3118,
3.2189, and 7.3794 mm, respectively, and the overall displacement
of the internal fixation was 7.7718 mm, all within reasonable
ranges. These results suggest that bicortical screw fixation can
evenly distribute vertical and horizontal shear forces across
the first metatarsal cortex through multidirectional constraint,
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FIGURE 6

Maximum equivalent stress of osteotomy fragments in five groups under the same load. (A) Two 3.5 mm beveled metal screws. (B) One 3.5 mm
beveled metal screw. (C) Two 2.0 mm Kirschner wires. (D) One 3.5 mm beveled metal screw and one 2.0 mm Kirschner wire. (E) Three 2.0 mm

Kirschner wires.

avoiding stress concentration at a single fixation point. This
reduces micromotion at the osteotomy site and reduces the risk
of osteotomy fragment refracture and internal fixation loosening
and fracture. Selven and Lewis also confirmed this finding: in
minimally invasive osteotomy, bicortical fixation provides superior
biomechanical stability compared to intramedullary nail fixation,
which is consistent with the results of this study. According to
Figures 6, 7, the bicortical screw fixation in Group A demonstrated
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superiority in providing strong anti-rotational stability, which can
effectively resist the shear force, torsional force and axial force
encountered by the foot under weight-bearing conditions after
surgery . In addition, bicortical screw fixation promotes close
alignment of the osteotomy fragments and increases the contact
area between the bone fragments, which not only promotes the
formation of callus but also accelerates the process of bone healing.
Therefore, bicortical screw fixation not only improves surgical
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FIGURE 7
Maximum equivalent stress of internal fixation in five groups under the same load. (A) Two 3.5 mm beveled metal screws. (B) One 3.5 mm beveled
metal screw. (C) Two 2.0 mm Kirschner wires. (D) One 3.5 mm beveled metal screw and one 2.0 mm Kirschner wire. (E) Three 2.0 mm Kirschner
wires.

stability, but also helps to shorten the patient’s recovery time and
improve the patient’s quality of life. The conclusion of Ferreira et al.
after a 2-year follow-up further supports this finding. They found
that screw fixation in minimally invasive Chevron-Akin surgery
can effectively correct HV and improve clinical and radiographic
parameters . In summary, the bicortical screw fixation scheme in
Group A, with its excellent stability, adaptability, and long-term
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reliability, meets fixation requirements, effectively promotes foot
function recovery, and significantly reduces the risk of recurrence.
In addition to Group A, other groups also demonstrated good
biomechanical properties, such as Group D.

Group D (one 3.5 mm cortical screw combined with one
2.0 mm Kirschner wire) is an effective alternative to Group A,

showing the second-highest equivalent stress of osteotomy blocks
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FIGURE 8

wires.

Maximum displacement of osteotomy fragments in five groups under the same load. (A) Two 3.5 mm beveled metal screws. (B) One 3.5 mm beveled
metal screw. (C) Two 2.0 mm Kirschner wires. (D) One 3.5 mm beveled metal screw and one 2.0 mm Kirschner wire. (E) Three 2.0 mm Kirschner

and internal fixation after Group A. The results of this study
showed that the biomechanical properties of Group B (single 3.5
mm cortical screw fixation) were slightly inferior to those of Group
A, while the mechanical properties of Group D complemented
those of Group A. The core of this result lies in the synergistic
mechanical effect of “screw + Kirschner wire”: the 3.5 mm screw
mainly provides the ability to resist vertical loads, while the 2.0 mm
Kirschner wire supplements the ability to resist horizontal shear

and torsional loads. This combination not only retains the rigid

Frontiers in Medicine

support advantage of screw fixation, but also reduces damage to the
surrounding trabeculae by reducing the number of screw implants,
achieving a balance between stability and minimal invasiveness. In
addition, Jung, H.G.’s study showed that in proximal metatarsal
osteotomy, the combined use of Kirschner wire and screw fixation
(KWS group) can significantly improve fixation stability and reduce
the risk of postoperative deformity recurrence compared with
the use of Kirschner wire fixation alone (KW group) . However,

for patients with osteoporosis, there is a risk of Kirschner wires
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FIGURE 9

Overall displacement of internal fixation in five groups under the same load. (A) Two 3.5 mm beveled metal screws. (B) One 3.5 mm beveled metal
screw. (C) Two 2.0 mm Kirschner wires. (D) One 3.5 mm beveled metal screw and one 2.0 mm Kirschner wire. (E) Three 2.0 mm Kirschner wires.

being dislodged, so it is important to pay attention to the patient’s
bone condition during clinical use, which was also confirmed
by Hayashi’s study . While the bone displacement difference
between Groups A and D (less than 0.2 mm) appears statistically
insignificant, such minor variations may carry clinical significance
regarding long-term stability and bone union quality. Even subtle
movements of 0.1-0.2 mm under sustained physiological loads can
indirectly influence healing duration and patients’ confidence in
early weight-bearing through effects on initial callus formation and
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remodeling processes, although their direct impact may be less
pronounced compared to the biocompatibility of internal fixation
methods and surgical techniques themselves . It is worth noting that
although the biomechanical properties of Groups A and D were
better, the finite element analysis results of Group E (fixed with
three Kirschner wires) suggested a worst-case fixation method that
requires special attention.

The results of Group E showed a paradoxical feature—high
stability and high fracture risk coexist. Although the maximum
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displacement of its osteotomy fragment was the smallest among
all groups, showing strong immediate stability, the maximum
equivalent stress of its osteotomy fragment and internal fixation
was significantly higher than that of other groups, 5.8 times and
14.7 times that of Group A, respectively, indicating severe stress
concentration. The underlying biomechanical mechanism for this
“low-displacement, high-stress” paradox lies in the rigid frame
formed by the three Kirschner wires, which effectively restricts
macroscopic displacement of the bone fragment under initial
loading but simultaneously alters the normal load transmission
pathway. The transverse Kirschner wire crossing the first and
second metatarsals creates a significant “lever fulcrum,” preventing
effective dispersion of the load along the longitudinal axis of the first
metatarsal. This leads to extreme stress concentration (238.68 MPa)
at the interfaces between the Kirschner wires and bone holes, as
well as at the osteotomy site . Highly consistent with clinically
observed failure modes such as Kirschner wire breakage, bone
resorption, and fixation loosening. Under high-cycle cyclic loading,
this stress concentration area is highly prone to initiating metal
fatigue microcracks and causing local resorption of surrounding
bone tissue, ultimately manifesting as radiographic loosening or
clinical fixation failure.

Clinically, the high-stress pattern in Group E aligns with
documented complications of multi-K-wire fixation. Pin tract
infection remains prevalent, with approximately 7% of hand and
wrist fracture patients requiring oral antibiotics, early pin removal,
or reoperation due to infection . Although generally manageable,
these infections pose a tangible clinical burden. The transverse
placement of K-wires between the first and second metatarsals risks
injuring intermetatarsal ligaments and neurovascular structures,
while potentially restricting physiological micromotion of the first
ray. Additionally, as with any fixation in this region, both K-wires
and screws carry a risk of joint penetration, which may lead to
persistent pain, cartilage damage, and functional impairment .
When combined with the significant stress concentration observed
in our finite element analysis, these clinical findings strongly
suggest that multi-K-wire configurations should be reserved for
carefully selected low-demand cases where potential benefits clearly
outweigh the documented risks.

This study has several limitations that should be considered
when interpreting the results. First, the findings are derived from a
single finite element model based on one patient’s anatomy. While
this allows for a controlled comparison of fixation methods, it limits
the generalizability of the absolute values to a broader population
with varying bone quality and anatomical morphologies. The
model aimed to replicate the mechanical environment following
osteotomy and fixation, and the comparative trends observed are
informative, but the results require validation against multi-patient
models or experimental data. Second, the model was constructed
from non-weight-bearing CT scan data. This choice was made
to obtain precise bony geometry without the confounding effects
of soft tissue deformation and positional changes under load,
which is a common approach in foundational finite element
studies of the foot. However, this means the model does not
capture the functional joint alignments and contact conditions
under physiological loading, potentially influencing the simulated
stress distribution and displacement outcomes. Future models
incorporating weight-bearing CT or simulated load-deformation
relationships could enhance physiological relevance. Third, the
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simulation employed a static load condition representing a portion
of the body weight during single-leg stance. While this provides
a standardized basis for comparing fixation constructs, it does
not account for the dynamic, multi-directional loads (e.g., shear,
torsion, cyclic fatigue) experienced during gait. Consequently,
the model might underestimate the peak stresses and potential
failure risks associated with long-term cyclic loading. Finally, this
biomechanical study provides evidence on the stability and strength
of different fixation configurations but does not constitute clinical
evidence of superiority. The generalizability of these finite element
results to other surgical techniques that include Akin osteotomy
may be limited . Future research should build on this foundation
by incorporating dynamic gait simulations, conducting cadaveric
experiments for validation, and pursuing long-term clinical follow-
up studies to correlate biomechanical properties with patient
outcomes. This will provide more comprehensive and reliable
theoretical support and practical guidance for minimally invasive
surgery for HV, provide more personalized treatment for patients,
and promote postoperative functional recovery and improved
quality of life.

5 Conclusion

The choice of internal fixation for minimally invasive
hallux valgus osteotomy requires comprehensive consideration
of biomechanical stability, surgical trauma, individual patient
conditions, and medical costs. This finite element analysis,
based on a single patient-specific model, provides quantitative
biomechanical insights but cannot be directly generalized to all
patient populations. Within the context of this computational
model, double screw fixation (Group A) demonstrated favorable
biomechanical performance, while combined fixation (Group
D) emerged as a potential alternative. Kirschner wire fixation,
particularly the three-wire configuration (Group E), exhibited high
stress concentration and should be applied with strict adherence
to specific clinical indications. The findings indicate relative trends
in stability and stress among the fixation methods rather than
establishing definitive clinical superiority.
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