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Background: Secreted Phosphoprotein 1 (SPP1), which encodes Osteopontin, 
a key member of the SIBLING family, is a multifunctional ECM glycoprotein 
and cytokine. Its interaction with collagen and other ECM components drives 
pathological remodeling across multiple diseases, yet a unified mechanistic 
framework remains elusive.
Objective: This review synthesizes current evidence on SPP1-mediated ECM 
dysregulation, focusing on collagen deposition, epithelial-mesenchymal 
transition (EMT), and fibrosis, with the goal of elucidating its role as a central 
pathological hub.
Methods: We synthesize the findings from multi-omics analyses (single-cell 
RNA sequencing, spatial transcriptomics), machine learning, and in vivo/in vitro 
experimental studies, aiming to elucidate the role of SPP1 (Osteopontin) in the 
dysregulation of the extracellular matrix (ECM) across various diseases via a 
systematic literature review (1990–2025).
Conclusion: SPP1 is a master regulator of pathological ECM dynamics, driven by 
conserved SPP1+ macrophage-ECM interactions. Targeting the SPP1-collagen 
axis may offer unified strategies for fibrosis and metastasis suppression. Future 
work should prioritize in vivo validation in osteoarthritis and clinical translation 
of SPP1-directed therapies.
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1 Introduction

Secreted Phosphoprotein 1 (SPP1), which encodes Osteopontin, is a member of the small 
integrin-binding ligand N-linked glycoprotein (SIBLING) family of secreted phosphoproteins 
that participate in bone mineralization (1). The SIBLING family consists of five secreted 
phosphoglycoproteins: secreted phosphoprotein 1 (SPP1), bone sialoprotein (BSP), dentin 
matrix protein-1 (DMP1), dentin sialophosphoprotein (DSPP), and matrix extracellular 
phosphoglycoprotein (MEPE) (2).

SPP1 was first cloned and sequenced by Kiefer et al. (3), revealing a conserved Arg-Gly-Asp 
(RGD) cell adhesion motif (4). Its mRNA is mainly expressed in osteocytes and the decidua 
during early stages pregnancy. Kohri et  al. (5, 6) demonstrated that Osteopontin, which 
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constitutes the urinary stone matrix, is upregulated in the renal distal 
tubules and actively participates in calcium oxalate stone formation. 
Subsequent research confirmed SPP1 expression in normal adult 
human and monkey kidneys, specifically localized to the distal 
convoluted and straight tubules in both the cortex and medulla (7). 
The authors further demonstrated the colocalization of SPP1 with 
MMPs in human eccrine sweat gland cells, mostly perinuclearly, a 
pattern consistent with SIBLING family members and their 
metalloproteinase counterparts; neither SPP1 nor MMPs was 
identified in the sweat gland stroma or monkey lacrimal gland 
structures. Shinohara et al. (8) discovered two translational initiation 
sites in mouse SPP1 mRNA, producing a full-length isoform 
(including a signal peptide) and a truncated isoform (devoid of signal 
peptide). These correspond to 75 kDa and 70 kDa proteins in dendritic 
cells, exhibiting different subcellular localizations: the full-length 
isoform is transported to secretory vesicles and the Golgi apparatus, 
while the short isoform is predominantly localizes in the cytoplasm (8).

The Osteopontin encoded by SPP1 promotes the adherence of 
osteoclasts to the calcified bone matrix, which is intricately associated 
with the dynamics of the extracellular matrix (ECM) (9). Osteopontin 
exhibits a strong affinity for the binding with hydroxyapatite. 
Additionally, the osteoclast vitronectin receptor is situated in the cell 
membrane. It may engage in binding with the SPP1 protein, which 
acts as a cytokine that stimulates the synthesis of IFN-γ and IL-12, 
which promotes EMT and ECM deposition. In particular, SPP1-
positive macrophages (SPP1+ macrophages) refer to a subset of 
macrophages characterized by increased expression of SPP1, identified 
through immunohistochemistry, flow cytometry, or single-cell RNA 
sequencing (10). SPP1+ macrophages are common in pathological 
microenvironments, including fibrosis and malignancies, and play a 

significant role in matrix remodeling (11). These macrophages 
produce large amounts of Osteopontin, which acts as matrix-
associated glycoprotein, involved in the dynamic regulation of the 
ECM by facilitating fibrotic deposition, and managing cell-matrix 
adhesion. In recent years, SPP1 and SPP1+ macrophages have garnered 
increasing attention in various disease settings. SPP1+ macrophages 
not only play a crucial role as tumor-associated macrophages (TAMs) 
within the tumor microenvironment (12–15) but also participate in 
physiological processes, such as aging (16), and in a wide range of 
non-cancerous diseases, including rheumatoid arthritis (17), 
neurodegeneration (18, 19), and fibrosis (20, 21). This perspective 
provides a theoretical foundation for a deeper understanding of the 
mechanisms by which SPP1 regulates ECM dynamics and its role in 
disease (22).

SPP1 and the Osteopontin it encodes are crucial factors 
influencing ECM dynamics and play a significant role in tumor 
diseases, cardiovascular diseases, pulmonary diseases, chronic kidney 
disease, and osteoarthritis (23). It will be introduced in further detail 
below. The research process is shown in Figure 1.

2 Molecular architecture, function, 
and signaling of SPP1 (Osteopontin)

The SIBLING protein family is a class of evolutionarily conserved, 
structurally related ECM glycoproteins. SPP1 is one of the main 
members of this protein family and is involved in the deposition of the 
ECM and EMT mechanisms. Each SIBLING protein has a minimum 
of one “acidic, serine- and aspartic acid-rich motif ” (ASARM) and 
many Ser-x-Glu/pSer sequences that, upon phosphorylation, facilitate 

FIGURE 1

Flowchart of the systematic review process on the relationship between SPP1 (Osteopontin) and ECM.
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biomineralization and ECM deposition. Osteopontin functions by 
regulating the nucleation and development of hydroxyapatite crystals. 
The biological activities of Osteopontin are facilitated through 
interactions with cell surface integrins and the activation of certain 
MMPs, therefore coordinating a complicated relationship between 
cellular signaling and ECM remodeling in mineralized tissues (24).

The SPP1 is located in the 4q21-q25 region of chromosome 4, with 
genomic coordinates (GRCh38): 4:87,975,714–87,983,411 (25), as 
shown in Figure 2A. According to the Genecard database, SPP1 is a 
protein-coding gene. SPP1 is associated with various cancers, 
cardiovascular diseases, respiratory diseases, and kidney diseases. 
Related pathways include the integrin pathway and ERK signaling 
pathway. Gene Ontology (GO) annotations associated with this gene 
cover cytokine activity and ECM binding (26). SPP1 demonstrates 
significant evolutionary conservation among several species. The SPP1 
which encoding Osteopontin consists of seven exons featuring 
canonical splice sites. While genetic linkage studies initially linked the 
SPP1 locus to dentinogenesis imperfecta type II, further investigation 
ruled out coding sequence mutations within its exons as the direct 

cause of the disease (27). Research shows that SPP1 serves as a specific 
marker for a profibrotic macrophage subpopulation that expands 
dramatically in idiopathic pulmonary fibrosis (IPF). SPP1+ 
macrophages, characterized by co-expression of MERTK, promote 
fibrosis through Osteopontin deposition and aberrant repair 
processes, positioning SPP1 as a central mediator and potential 
therapeutic target in IPF (28).

Osteopontin, a multifunctional ECM protein, serves dual roles in 
bone remodeling by facilitating cell-matrix adhesion and in preventing 
pathological calcification. Baccarani believe that Osteopontin 
functions as a potent inhibitor of pathological calcification by 
localizing within elastic fibers of the aorta and skin, where it helps 
prevent mineral precipitation (29). Osteopontin expression is strongly 
and specifically induced by elevated extracellular phosphate levels, a 
product of alkaline phosphatase activity. Beck (30) found that 
Osteopontin expression is strongly and specifically induced by 
elevated extracellular phosphate levels, a product of alkaline 
phosphatase activity, elucidating the relationship between Osteopontin 
and phosphate. The molecular architecture of Osteopontin remains 

FIGURE 2

Domains within Homo sapiens protein SPP1 (OSTP_HUMAN, P10451). (A) Location of SPP1 on chromosome 4; (B) Schematic representation of SPP1; 
The red portion represents the signal peptide. The green portion represents the OSTEO domain. (C) AlphaFold Model of SPP1 (AF-P10451-F1), model 
confidence: dark blue: very high (pLDDT >90); light blue: confident (90 > pLDDT >70); yellow: low (70 > pLDDT >50); orange: very low (pLDDT <50), 
AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
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incompletely elucidated; however, its fundamental composition 
includes a signal peptide and an OSTEO domain., as shown in 
Figures 2B,C and Tables 1, 2.

SPP1 (Osteopontin), an essential stromal cell factor, facilitates 
EMT mechanism and ECM remodeling via many molecular signaling 
pathways. Osteopontin is predominantly secreted by a distinct SPP1+ 
macrophage subset located inside the disease microenvironment, and 
its mode of action commences post-secretion. Secreted Osteopontin 
then undergoes ligand-receptor interactions with integrins (such as 
ITGAV/ITGB1) and CD44 on the surfaces of target cells, such as 
fibroblasts, epithelial cells, and vascular smooth muscle cells. This 
binding triggers signaling by the ERM protein family or 
phosphorylated FAK-Src signaling. Downstream signaling converges 
on pro-fibrotic and pro-inflammatory pathways, including the 
TGF-β1/Smads, PI3K/AKT, and NF-κB axes. The TGF-β1/Smads 
pathway is a major driver of the fibrotic response and influences ECM 
dynamics, while the PI3K/AKT pathway promotes cellular activity, 
metabolic reprogramming, and the synthesis of specific proteins. 
These downstream pathways are extensively interconnected, forming 
a highly integrated and collaborative network. For example, the 
synergistic relationship between NF-κB and the TGF-β1/Smads 
pathways exists. Proinflammatory NF-κB signaling can enhance the 
TGF-β1-driven fibrotic response, while TGF-β1 itself can activate the 
NF-κB pathway in a non-canonical manner. The integration of these 
signals ultimately leads to the nuclear translocation of key 
transcription factors (such as NF-κB, the Smads complex, and 
β-catenin), which synergistically bind to the promoter regions of SPP1 
and ECM-related genes. This transcriptional reprogramming induces 
physiological changes such as EMT mechanism, ECM remodeling, 
and myofibroblast activation, establishing a pathological positive 
feedback loop. The signaling mechanism of SPP1 (Osteopontin) is 
shown in Figure 3.

3 Relationship between SPP1 
(Osteopontin) and ECM dynamics in 
tumor growth and metastasis

According to the 2025 Cancer Statistics report published by the 
American Cancer Society, data from the US national cancer registry 
and demographic analyses indicate a continuing rise in the overall 
cancer burden, with an estimated 2,041,910 new cancer cases 
projected in 2025 (31). Notably, the following cancer types exhibit 
significantly high incidence rates: lung cancer, colorectal cancer, 
pancreatic ductal adenocarcinoma, gastric cancer, breast cancer, head 
and neck squamous cell carcinoma, prostate cancer, and hepatocellular 
carcinoma. Extensive independent studies have demonstrated that 
SPP1, as an oncogene, promotes the progression of these malignancies, 
particularly through its role in mediating pathological remodeling of 
the ECM across these cancer types. Table 3 illustrates the function of 
SPP1 in tumor growth and metastasis.

Rouanne et al. (32) demonstrated through clinical cohort analysis 
that elevated serum levels of SPP1, an ECM protein, significantly 
correlate with tumor progression in non-small cell lung cancer 
(NSCLC). Their data revealed that each 50 ng/mL increase in serum 
SPP1 was associated with a 69% higher risk of metastasis (HR 1.69, 
95% CI 1.12–2.56, p = 0.01) and 95% increased mortality risk (HR 
1.95, 95% CI 1.15–3.32, p = 0.01), suggesting SPP1-mediated ECM 

dysregulation may drive malignant progression. Gómez de Segura 
et  al. (33) demonstrated through integrated clinical and in  vitro 
analyses that decreased expression of microfibril-associated 
glycoprotein-1 (MAGP-1, encoded by MFAP2 gene) in obesity-
associated colon cancer leads to dysregulated TGF-β1 signaling and 
subsequent upregulation of SPP1. Their work revealed that SPP1-
mediated ECM remodeling promotes collagen VI (COL6A3) and 
decorin (DCN) deposition, creating a fibrotic tumor 
microenvironment that physically excludes cytotoxic T lymphocytes 
(CTLs) and contributes to immune evasion. This study provides 
mechanistic insight into how metabolic dysregulation in obesity drives 
tumor progression through the SPP1-ECM axis (33). Through 
scRNA-seq analysis of liver tissues from Microsatellite stable 
metastatic-type metastatic colorectal cancer (MSS-mCRC), normal 
liver tissues, and PBMCs, Sathe et  al. (34) revealed that SPP1+ 
macrophages in the metastatic tumor microenvironment (TME) 
secrete SPP1, which binds to integrin receptors (ITGAV/ITGB1) on 
cancer-associated fibroblasts (CAFs). This interaction activates CAFs 
to produce excessive collagen, ECM glycoproteins (e.g., FN1), and 
remodeling enzymes (e.g., MMPs, LOXL2), driving aberrant ECM 
deposition. The resulting dense ECM promotes MSS-mCRC 
progression and therapy resistance by impairing CD8+ T cell 
infiltration, increasing matrix stiffness to facilitate invasive metastasis, 
and inducing angiogenesis (34). Evan et al. demonstrated that SPP1 
primarily promotes ECM deposition and EMT by orchestrating the 
crosstalk between TAMs and myofibroblastic cancer-associated 
fibroblasts (myCAFs). This interaction fosters an immunosuppressive 
tumor microenvironment (TME), ultimately driving the progression 
of pancreatic ductal adenocarcinoma (PDAC) (13). Thus, SPP1 
emerges as a central regulator of tumor malignancy by orchestrating 
pathogenic ECM remodeling. Su et al. uncovered the heterogeneity of 
the tumor immune microenvironment (TiME) in gastric cancer (GC) 
patients with different mismatch repair (MMR) statuses. Their study 
highlights that the proficient MMR (pMMR) TiME is characterized 
by hypoxia, pro-angiogenic signaling, and ECM remodeling, driven 
by the presence of GC2 cells, SPP1+ macrophages, FAP + fibroblasts, 
and E2 endothelial cells. These findings are critical for developing 
targeted immunotherapies tailored to pMMR GC patients (35). By 
integrating single-cell transcriptomics, spatial multi-omics, and 
functional validation, Lu et  al. elucidated a hypoxia-mediated 
immunosuppressive axis in triple-negative breast cancer (TNBC), 
wherein SPP1+ macrophages orchestrate tumor progression through 

TABLE 1  Confidently predicted domains, repeats, motifs and features.

Name Start End E-value

Signal peptide 1 16 N/A

OSTEO-domain 17 314 1.21e-187

TABLE 2  Features NOT shown in the diagram.

Name Start End E-value Reason

Pfam: 

Osteopontin
21 314 2.6e-161 Overlap

Low complexity 81 131 N/A Overlap

Low complexity 272 282 N/A Overlap
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dual secretion of SPP1 and TGF-β1. These cytokines directly program 
stromal fibroblasts to differentiate into ECM-producing CAFs 
(ecmCAFs), which in turn drive pathological ECM remodeling 
featuring excessive collagen deposition and stromal fibrosis (36). 
Through integrative bioinformatics analysis of multiple datasets 
(GSE6791, GSE29330, GSE58911), Cheon et al. identified SPP1 as a 
hub gene significantly upregulated in head and neck squamous cell 
carcinoma (HNSCC). Their study demonstrated that SPP1 expression 
is directly associated with functional enrichment of ECM organization 
and degradation processes. Clinically, elevated SPP1 expression 
correlated with advanced tumor grade, progressive clinical stage, and 
poor prognosis in HNSCC patients (37). Pang et al. established SPP1 
as a pivotal molecular nexus linking ECM remodeling to metastatic 
castration-resistant progression in prostate cancer (mCRPC). Their 
integrative multi-omics and organoid approach revealed that SPP1 
orchestrates a feedforward loop: it not only activates Androgen 
receptor (AR) signaling to promote therapy resistance but also directly 
mediates ECM reorganization through collagen crosslinking and 
fibronectin assembly. This dual functionality creates a permissive 
microenvironment for metastatic dissemination, positioning 
SPP1-ECM crosstalk as a promising therapeutic target in mCRPC 
(38). Similarly, the role of SPP1 in prostate cancer has been confirmed 
in several other studies (39–41). Based on molecular subtyping of the 
ECM in the TCGA-LIHC cohort, SPP1 was identified as a core gene 
for constructing an ECM-related prognostic model in hepatocellular 

carcinoma (HCC). High SPP1 expression marked pathological ECM 
remodeling features and was significantly associated with advanced 
histological grade, resistance to immunotherapy, and poor prognosis. 
These findings provide a mechanistic rationale for targeting the 
SPP1-ECM axis to reprogram the immunosuppressive tumor 
microenvironment in HCC (42). In summary, SPP1 acts as a pivotal 
oncogenic driver by orchestrating pathological remodeling of the 
ECM during tumorigenesis and progression across multiple 
malignancies. Cross-cancer analyses demonstrate that SPP1-mediated 
collagen deposition, stromal fibrosis, and integrin-dependent ECM 
receptor signaling collectively fuel metastatic dissemination and 
therapy resistance.

4 Relationship between SPP1 
(Osteopontin) and ECM dynamics in 
cardiovascular disease

Cardiovascular disease (CVD) is the leading cause of death 
worldwide, accounting for approximately 18.5 million deaths (9.6 
million men and 8.9 million women), or about one-third of all deaths 
globally (43). CVD is also the leading cause of death in China, 
accounting for nearly 4 million deaths, highlighting its enormous 
disease burden and risk of premature death, which is on the rise year 
by year (44). Numerous studies suggest that SPP1 may contribute to 

FIGURE 3

SPP1 (Osteopontin) secreted by SPP1+ macrophages orchestrate a downstream signaling network that converges to drive pathological ECM 
remodeling and EMT mechanism in target cells. By Figdraw.
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the development and progression of cardiovascular diseases, including 
atherosclerosis, abdominal aortic aneurysm, dilated cardiomyopathy 
with heart failure, thoracic aortic dissection, and myocardial 
infarction, via the EMT pathway. Table 4 illustrates the function of 
SPP1 in Cardiovascular Disease.

Single-cell and spatial analyses revealed a significant interaction 
between SPP1+ macrophages and ITLN1+ foam cells, mediated by the 
SPP1-CD44 ligand-receptor axes, which accelerates arterial lipid 
accumulation and EMT transformation, which is necessary to 
develop effective immunotherapeutic strategies against 

TABLE 3  The function of SPP1 in tumor growth and metastasis.

Gene Disease Expression Study type Sample References

SPP1

Lung cancer (NSCLC) ↑ In vivo Human patients (32)

Colon cancer ↑ In vivo and in vitro
Human patients and 

Human cell (HT-29)
(33)

Colorectal cancer ↑
In vivo studies integrating 

bioinformatics
Human patients (34)

Pancreatic ductal 

Adenocarcinoma (PDAC)
↑

Bioinformatics-led in vivo 

studies
Human patients (13)

Gastric cancer (GC) ↑
Bioinformatics-led in vivo 

studies
Human patients (35)

Triple-negative breast cancer 

(TNBC)
↑

In vivo, in vitro, and 

bioinformatics
Human patients (36)

Head and neck squamous 

cell carcinoma (HNSCC)
↑

Bioinformatics and clinical 

validation
Human patients (37)

Prostate cancer ↑
In vivo, in vitro, and 

bioinformatics

Human patients and 

Human cell 

(Organoids)

(38)

Human patients and 

murine models
(39)

Human patients, animal 

cell, and animal models
(40)

Human patients (41)

Hepatocellular carcinoma 

(HCC)
↑ Bioinformatics

Human patient 

genomic and clinical 

data

(42)

TABLE 4  The function of SPP1 in cardiovascular disease.

Gene Disease Expression Study type Sample References

SPP1

Atherosclerosis (AS) ↑

In vivo mechanism studies 

based on multi-omics 

integration

Human patients (45)

Human patient 

genomic data
(46)

Abdominal aortic aneurysm 

(AAA)
↑ In vivo and in vitro

Human patients and 

murine models
(47)

Murine models, animal 

cells, and primary 

human cells

(48)

Dilated cardiomyopathy 

with heart failure (DCM-

HF)

↑

In vivo (Clinical sample-

driven multi-omics 

research)

Human patients (49)

Aortic dissection (TAD) ↑ In vivo and in vitro
Murine models and 

primary murine cells
(50)

Myocardial infarction (MI) ↑ Bioinformatics
Human patient 

genomics data
(51)
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atherosclerosis (AS) (45). LASSO regression and SVM-REF also 
verified the pivotal role of SPP1 in atherosclerosis (46). Markus et al. 
found that platelets play a key role in promoting the formation of 
abdominal aortic aneurysm (AAA) by regulating inflammation and 
degrading the ECM. Platelets are responsible for upregulating the 
expression of the SPP1 gene in macrophages and aortic tissue, which 
triggers inflammation and remodeling, while promoting platelet 
adhesion and migration to the abdominal aortic wall and intraluminal 
thrombus (ILT) (47). It was found that SPP1 is upregulated in 
vascular smooth muscle cells (VSMCs) induced by Di-(2-ethylhexyl) 
phthalate (DEHP), and its phenotypic switch is significantly 
accelerated, indicating that M1 macrophage polarization and VSMC 
phenotypic switch can exacerbate the progression of AAA, which also 
involves the EMT process (48). Furthermore, A study analyzed the 
expression levels of cardiovascular-related proteins in patients with 
dilated cardiomyopathy with heart failure (DCM-HF) (n = 20) and 
healthy controls (Normal) (n = 18). Using Olink proteomics analysis, 
five key proteins, including SPP1, were identified and validated in 
human serum samples via ELISA, indicating that SPP1 is equally 
important in DCM-HF and may be involved in the EMT mechanism 
of the disease (49). Similarly, Suwei et al. established a thoracic aortic 
dissection (TAD) mouse model by perfusing angiotensin (Ang) II 
into mice administered β-aminopropionitrile. Through mouse 
experiments, they confirmed that upregulation of SPP1 is a key sign 
of the pathological phenotype transition of aortic smooth muscle 
cells from a contractile state to a synthetic state, and IGFBP3 can 
directly inhibit this process, thereby maintaining vascular 
homeostasis (50). Finally, GEO database analysis showed that SPP1, 
as a biomarker for myocardial infarction (MI), participated in 
fibroblast proliferation and myocardial remodeling, and was also 
involved in the EMT mechanism (51). In summary, SPP1 coordinates 
immune cell interactions, drives cell phenotypic transformation, and 
promotes pathological tissue remodeling, thereby affecting ECM 
dynamics and becoming a common pathogenic factor in the 
progression of multiple cardiovascular diseases.

5 Relationship between SPP1 
(Osteopontin) and ECM dynamics in 
pulmonary disease

Data from the Worldwide Burden of Disease Study indicate that 
chronic respiratory disorders (CRDs) pose a significant global health 
challenge. Annually, they result in the deaths of 4.4 million individuals 
and impact approximately 468 million people. From 1990 to 2021, the 
age-standardized prevalence rate decreased by 1.01%, whereas it 
increased by 0.20% during the pandemic from 2019 to 2021, exhibiting 
significant regional disparities in risk factors (52). Numerous studies 
indicate that SPP1-mediated ECM remodeling and EMT mechanisms 
are the primary determinants in the onset of several chronic lung 
diseases, including pulmonary fibrosis, silicosis, sarcoidosis, and 
chronic airway diseases. Table 5 illustrates the function of SPP1 in 
Pulmonary Disease.

Single-cell analysis verified that monocyte-derived interstitial 
macrophages (Mo-IMs) exhibit a pro-fibrotic phenotype in the 
initial stages of pulmonary fibrosis and engage with fibroblasts via 
the SPP1 signaling pathway, facilitating EMT and ECM deposition, 

thereby advancing disease progression (53). Conversely, knockdown 
of SPP1 expression inhibits macrophage-induced EMT in epithelial 
cells and fibroblasts. In vivo treatment with an SPP1 inhibitor 
enhances lung function and ameliorates idiopathic pulmonary 
fibrosis (IPF). Inhibiting SPP1 expression in  vivo effectively 
mitigates the progression of IPF, suggesting that SPP1  in 
macrophages may be a potential therapeutic target for IPF (54). 
Furthermore, SPP1+ macrophages demonstrate a conserved 
matrisome-associated macrophage (MAM) polarization in multi-
organ fibrosis, particularly in pulmonary and liver fibrosis, directly 
facilitating fibrosis via ECM remodeling and metabolic 
reprogramming, thereby uncovering novel targets for cross-tissue 
intervention (55). Integrated multi-omics analyses of COVID-19-
associated Rapid pulmonary fibrosis (RPF) patients and murine 
models reveal that CD163+ macrophages drive rapid pulmonary 
fibrosis progression via SPP1 secretion, identifying the 
CD163+-SPP1 axis as a potential therapeutic target (56). Tao et al. 
(57) identified a unique stress-induced epithelial subset (C0) that 
enhances immunological crosstalk, activates EMT pathways, 
increases ECM deposition, and facilitates tissue remodeling in 
silica-induced lung damage via the SPP1-CD44 signaling pathway. 
Therefore, SPP1, as a common molecular hub connecting immune 
cells, epithelial cells and ECM remodeling, plays a core role in the 
process of pulmonary fibrosis driven by different causes. SPP1 is 
raised in the blood and granulomatous tissue of individuals with 
sarcoidosis, elucidating the EMT pathway in disease development 
(58, 59). Research indicates that single-nucleotide polymorphisms 
(SNPs) in the SPP1 gene are strongly associated with susceptibility 
to pulmonary lesions in sarcoidosis, which also encompasses the 
EMT pathway (60). In chronic obstructive pulmonary disease 
(COPD), SPP1 expression is markedly increased, particularly in 
airway cells and antigen-presenting cells of patients with 
emphysema. This elevation facilitates Th1/Th17-mediated 
inflammation and Th2-mediated inflammatory responses, promotes 
neutrophil recruitment, and leads to MMP9-dependent tissue 
destruction (61, 62). SPP1 expression is increased in serum, 
sputum, and bronchial tissue in asthma, correlating with disease 
severity, late-onset asthma, and airway remodeling (63). It can 
promote Th2 inflammation, smooth muscle proliferation, and 
collagen deposition through pathways such as PI3K/AKT, thus 
exacerbating the disease (64, 65), while also exhibiting anti-
inflammatory properties at specific stages. In a house dust mite 
(HDM) induced allergic asthma mouse model, SPP1/Osteopontin 
was shown to significantly enhance the host’s ability to defend 
against Streptococcus pneumoniae infection by inhibiting airway 
inflammatory cell infiltration, alleviating tissue damage, and 
reducing proinflammatory cytokine levels, as manifested by a 
significant reduction in bacterial load in alveolar lavage fluid and 
lung tissue (66). Furthermore, Samitas (67) found that SPP1/
Osteopontin plays a critical role in the modulation of allergic 
asthma by preserving the homeostasis of the gut-lung axis. Its 
deficiency leads to increased airway inflammation, which is 
associated with gut barrier dysfunction, microbiota dysbiosis, and 
the PD-1/PD-L1-mediated disruption of the Treg/Th17 balance, as 
evidenced by fecal microbiota transplantation and pathway analysis. 
Therefore, SPP1 plays a dual role in enabling ECM remodeling and 
EMT processes in asthma and COPD. In summary, SPP1 constitutes 
a common core pathogenic mechanism of various chronic lung 
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TABLE 5  The function of SPP1 in pulmonary disease.

Gene Disease Expression Study type Sample References

SPP1

Idiopathic pulmonary fibrosis (IPF) ↑ In vivo, in vitro, and bioinformatics

Murine models and murine cells (53)

Human patients, in vitro cell models, 

and animal model
(54)

Multi-organ fibrosis ↑
Bioinformatics research based on 

multi-omics integration
Human patients and murine models (55)

COVID-19-associated Rapid 

pulmonary fibrosis
↑ In vivo, in vitro, and bioinformatics

Human patients, murine models, and 

in vitro cell models
(56)

Silica-induced lung injury. ↑
Bioinformatics research on spatial 

omics integration
Murine models and murine cells (57)

Sarcoidosis ↑ In vivo, in vitro, and bioinformatics

Human patients and human cells (58)

Human patients and in vitro cell 

models
(59)

Human patients (60)

Chronic obstructive pulmonary 

disease (COPD)
↑ In vivo and in vitro

Human patients and murine models (61)

Human patients (62)

Asthma

↑ In vivo and bioinformatics

Human patients (63)

Human patients and murine models (64)

Human patients (65)

↓ In vivo and bioinformatics
Human patients and murine models (66)

Murine models and murine cells (67)
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diseases by driving ECM remodeling, EMT and immune 
inflammation regulation.

6 Relationship between SPP1 
(Osteopontin) and ECM dynamics in 
kidney disease

The Lancet Global Burden of Disease Study indicates that chronic 
kidney disease (CKD) impacts over 700 million individuals globally 
(prevalence rate 9.1%), ranks as the 12th greatest cause of mortality 
(constituting 4.6% of global deaths), and represents a significant threat 
to human health (68). SPP1 affects the occurrence, development, and 
prognosis of CKD by affecting ECM dynamics, and is also important 
in the process of acute kidney injury to chronic kidney disease (AKI-
CKD) transformation. Table  6 illustrates the function of SPP1  in 
Kidney Disease. Table  6 illustrates the function of SPP1  in 
Kidney Disease.

CKD is defined as a syndrome marked by a sustained reduction 
in glomerular filtration rate lasting at least three months, accompanied 
by tubular atrophy, interstitial fibrosis, and advancing systemic 
complications. The pathological progression is influenced by 
epigenetic regulation and intercellular vesicle signaling. Research 
indicates that circulating small extracellular vesicles (sEVs) originating 
from CKD promote pathological calcification of vascular smooth 
muscle cells (VSMCs) by depleting protective miRNAs, which in turn 
releases the inhibition of VEGFA signaling, marked by a significant 
upregulation of genes such as SPP1 (69). An additional investigation 
revealed the significant function of SPP1  in modulating ECM 
dynamics in chronic kidney disease, accompanied by sarcopenia. In 
animal experiments on CKD, increased secretion of SPP1 by the 
kidneys, which circulates to skeletal muscle, directly activating the 
expression of the muscle atrophy marker Murf-1 and promoting 
smaller myotubes. Pharmacological inhibition of SPP1 in  vivo 
significantly increases the weight of the gastrocnemius and tibialis 
anterior muscles, improves the atrophy phenotype, and reprograms 
the muscle transcriptome, thereby confirming SPP1 as the central 
pathogenic factor and therapeutic target in the CKD-muscle axis (70). 
Another study involving the European CKD population genome 
confirmed that genetic variation upstream of the SPP1 influences the 
progression of CKD by directly regulating Osteopontin expression 

levels. This mechanism has been validated through rare variant 
aggregation analysis and multi-level cross-cohort assessments (71). 
Furthermore, SPP1 is integral to the progression from acute kidney 
injury to chronic kidney disease (AKI-CKD). Research in single-cell 
transcriptomics has identified SPP1 as a crucial hub molecule in 
polyploid cells during the transition from acute kidney injury to 
chronic kidney disease, involving the EMT mechanism. In vivo gene 
deletion of SPP1 enhances renal fibrosis via influencing ECM 
dynamics, substantiating the targeting of SPP1 to impede the 
advancement of renal fibrosis (72). A related study confirmed that in 
NF-κB deficient mouse models, the expression of the key inflammatory 
factor SPP1  in proximal tubule cells (FR-PTCs) was significantly 
reduced, resulting in decreased pathological damage associated with 
AKI-CKD (73). This establishes a molecular foundation for the 
inhibition of SPP1 and other NF-κB effector molecules to impede the 
advancement of AKI-CKD. In summary, SPP1 establishes its core 
position in CKD and AKI-CKD transformation by driving ECM 
remodeling and affecting ECM dynamics, and is a highly potential 
pleiotropic therapeutic target.

7 Relationship between SPP1 
(Osteopontin) and ECM dynamics in 
osteoarthritis

Osteoarthritis (OA) is a very debilitating chronic joint disorder 
marked by the progressive deterioration of articular cartilage, synovial 
inflammation, and remodeling of subchondral bone. The pathogenic 
process is influenced by an imbalance of mechanical stress, 
immunological metabolic abnormalities, and hereditary variables. The 
China OA Disease Burden Study (1990–2021) revealed that the 
age-standardized incidence rate (ASIR), prevalence rate (ASPR), and 
disability-adjusted life rate (ASDR) showed a continuous upward 
trend, and are predicted to continue to rise by 2050 (74). Table 7 
illustrates the function of SPP1 in OA.

He et al. discovered through multi-omics integrated analysis and 
machine learning that SPP1 serves as a pivotal immunological 
metabolic hub gene in OA progression, instigating the aberrant 
activation of EMT-related pathways. PCR verification indicated 
considerable overexpression, and the predictive model developed as 
a key marker may effectively distinguish OA subtypes (75). Another 

TABLE 6  The function of SPP1 in kidney disease.

Gene Disease Expression Study type Sample References

SPP1

Chronic kidney disease 

(CKD)
↑

In vivo, in vitro, and 

bioinformatics

Human patients, 

murine models, and 

animal cells

(69)

Murine models and 

murine cell line 

(C2C12)

(70)

Human patients (71)

Acute kidney injury to 

chronic kidney disease 

(AKI-CKD)

↑ In vivo and bioinformatics

Murine models and 

murine cells
(72)

Murine models and 

murine cells
(73)
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study utilizing a simulated microgravity model of the human 
meniscus discovered that mechanical unloading of the knee articular 
cartilage initiates the inflammation-calcification cascade by 
specifically upregulating SPP1 expression in chondrocytes, 
highlighting its sex-specific regulatory role as a central factor in the 
perception of mechanical stress and subsequent pathological 
transformation (76). Similarly, Yang et al. found that SPP1, as a core 
molecule of OA, drives EMT by synergizing with the IL-17/TNF 
inflammatory pathway, providing a new intervention framework for 
targeting SPP1 to regulate OA immune metabolism (77). 
Unfortunately, most studies on the role of SPP1 in osteoarthritis are 
based on bioinformatics analysis, with few in  vivo experiments. 
We look forward to subsequent researchers conducting more in vivo 
studies to provide more evidence that SPP1 affects osteoarthritis 
through ECM dynamics. Therefore, SPP1, as a hub molecule 
connecting mechanical stress, inflammatory signals and ECM 
remodeling, plays a core role in the progression of osteoarthritis, but 
its precise mechanism requires additional validation through 
in vivo research.

8 Conclusion

SPP1 (Osteopontin) serves as a principal regulator of aberrant 
ECM remodeling and is prevalent in numerous conditions, 
including cancer, cardiovascular illness, pulmonary disease, 
chronic renal disease, and osteoarthritis. SPP1+ macrophages are 
pivotal biological agents of ECM dysregulation, facilitating 
collagen deposition, fibroblast activation, immunological 
modulation, and EMT. Targeting SPP1 and its interactions with 
ECM components presents a possible therapeutic approach to 
alleviate fibrosis, immunological evasion, and tissue dysfunction. 
Future research should concentrate on verifying these pathways 
in  vivo, particularly in osteoarthritis, and enhancing the 
therapeutic use of SPP1-targeted medicines.
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Glossary

AKI-CKD - Acute Kidney Injury to Chronic Kidney Disease

Ang II - Angiotensin II

AR - Androgen Receptor

AS - Atherosclerosis

ASARM - Acidic, Serine- and Aspartic acid-Rich Motif

AAA - Abdominal Aortic Aneurysm

CAFs - Cancer-Associated Fibroblasts

CKD - Chronic Kidney Disease

COPD - Chronic Obstructive Pulmonary Disease

CRDs - Chronic Respiratory Diseases

CTLs - Cytotoxic T Lymphocytes

CVD - Cardiovascular Disease

DCM-HF - Dilated Cardiomyopathy with Heart Failure

DEHP - Di-(2-ethylhexyl) Phthalate

ECM - Extracellular Matrix

ecmCAFs - ECM-producing Cancer-Associated Fibroblasts

EMT - Epithelial-Mesenchymal Transition

GC - Gastric Cancer

GO - Gene Ontology

HCC - Hepatocellular Carcinoma

HDM - House Dust Mite

HNSCC - Head and Neck Squamous Cell Carcinoma

IFN-γ - Interferon-gamma

IL - Interleukin

ILT - Intraluminal Thrombus

IPF - Idiopathic Pulmonary Fibrosis

MAM - Matrisome-Associated Macrophage

MI - Myocardial Infarction

MMPs - Matrix Metalloproteinases

Mo-IMs - Monocyte-derived Interstitial Macrophages

mCRPC - metastatic Castration-Resistant Prostate Cancer

MSS-mCRC - Microsatellite Stable metastatic-type metastatic 
Colorectal Cancer

myCAFs - myofibroblastic Cancer-Associated Fibroblasts

NF-κB - Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B Cells

NSCLC - Non-Small Cell Lung Cancer

OA - Osteoarthritis

PDAC - Pancreatic Ductal Adenocarcinoma

RPF - Rapid Pulmonary Fibrosis

RGD - Arg-Gly-Asp

scRNA-seq - Single-Cell RNA Sequencing

sEVs - Small Extracellular Vesicles

SIBLING - Small Integrin-Binding Ligand N-linked Glycoprotein

SNPs - Single-Nucleotide Polymorphisms

SPP1 - Secreted Phosphoprotein 1

TAD - Thoracic Aortic Dissection

TAMs - Tumor-Associated Macrophages

TGF-β1 - Transforming Growth Factor Beta 1

Th1 - T-helper 1

Th17 - T-helper 17 cells

TiME - Tumor Immune Microenvironment

TNBC - Triple-Negative Breast Cancer

TME - Tumor Microenvironment

VSMCs - Vascular Smooth Muscle Cells
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