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Background: Postoperative sleep disturbance (PSD) is a common complication
following total knee arthroplasty (TKA), which negatively impacts patient
recovery. Despite the critical need for early detection and management, there is
limited research on predictive models for early PSD, particularly those integrating
machine learning (ML) techniques.

Objective: This study aimed to develop a predictive model for early PSD
following TKA using ML algorithms, identify key predictive factors, and provide
an interpretable model to guide clinical decision-making.

Methods: The study included 505 patients who underwent TKA. Clinical
data were collected at three stages: preoperatively, intraoperatively, and
postoperatively. Ten MLa models, including logistic regression, support vector
machine (SVM), and XGBoost, were trained and evaluated using a test set.
Performance metrics, including accuracy, sensitivity, specificity, and area under
the curve (AUC), were used to evaluate the efficacy of the models. Key features
influencing PSD were identified through SHapley Additive Explanations (SHAP)
analysis to enhance model interpretability.

Results: Gradient Boosting Machine (GBM) demonstrated the highest AUC
(0.906), accuracy (0.834), and sensitivity (0.879), establishing it as the optimal
model for predicting PSD. Key predictors identified included age, smoking,
living alone, living in the city, VAS 1 month postoperative, and anxiety 1 month
postoperative. SHAP analysis revealed that postoperative VAS and age were the
most influential factors in predicting PSD, with their impact varying based on
individual patient data.

Conclusion: The study developed a robust and interpretable ML model for
the early prediction of PSD following TKA. This model can aid in preoperative
risk stratification, facilitating personalized management strategies to improve
postoperative outcomes. Further validation in larger cohorts and diverse settings
is necessary to enhance its broader clinical applicability.
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Introduction

Knee osteoarthritis (OA) is a common musculoskeletal
disorder that causes significant pain and dysfunction (1). TKA
is an effective treatment for end-stage knee OA, and its use
is increasing due to the aging population and advancements in
surgical techniques (2-4). TKA is highly effective in relieving pain,
improving joint function, and enhancing quality of life; however,
up to 20% of patients remain dissatisfied after the procedure (5-8).
The etiology of patient dissatisfaction after TKA is multifactorial.
Sleep disorders, particularly postoperative sleep disturbance (PSD),
are increasingly recognized as common and detrimental to recovery
after TKA (9). These disorders can negatively affect postoperative
pain management, mental health, and overall recovery (10, 11).

Postoperative sleep disturbance is a common but often
underrecognized complication following surgical procedures.
Studies suggest that the incidence of perioperative PSD in patients
undergoing TKA may exceed 50% (12). PSD is characterized
by difficulty falling asleep, fragmented sleep, frequent nocturnal
awakenings, and poor sleep quality (9). PSD not only causes patient
dissatisfaction but also has significant negative consequences
on postoperative recovery (13). PSD is strongly associated
with worsened pain perception, complicating postoperative
pain management and delaying recovery (14-16). Additionally,
PSD is linked to increased levels of anxiety and depression,
further hindering rehabilitation and prolonging recovery (17).
Furthermore, poor sleep quality impairs immune function,
delays wound healing, and increases the risk of postoperative
complications, resulting in longer hospital stays and higher
healthcare costs (18-20).

Current research on PSD predictors primarily relies on
traditional statistical approaches, particularly logistic regression
(21). While valuable, these methods depend on pre-specified linear
assumptions and struggle to capture the complex, non-linear
interactions among numerous clinical, psychological, and social
factors influencing postoperative sleep. This limitation necessitates
analytical approaches that can automatically learn these complex
patterns from data. ML has shown remarkable potential in this
regard, revolutionizing predictive modeling across various medical
specialties with its robust data processing capabilities and superior
predictive performance (22, 23). Despite these advancements,
however, the application of ML to PSD prediction following TKA
remains underdeveloped, with a notable scarcity of dedicated
models in the current literature.

This study aims to address this critical research gap by
developing and validating a comprehensive ML-based predictive
model for PSD following TKA. Our investigation includes
preoperative, intraoperative, and early postoperative clinical data
to identify key predictive factors. A fundamental innovation of
our approach is the integration of novel socio-environmental
predictors, such as "living alone" and "urban residence," which
have been largely overlooked in previous research despite their
potentially significant impact on sleep quality during recovery.
Through interpretability analysis, we identify key predictive
factors for PSD occurrence. Our findings are expected to enable
early identification of at-risk patients, support preoperative risk
stratification, improve perioperative management, and ultimately
facilitate personalized rehabilitation strategies after TKA.

Frontiers in Medicine

10.3389/fmed.2025.1699842

Materials and methods

Study design and patient selection

This study was approved by the Institutional Review Board
(IRB) of Tianjin Hospital (IRB 2024 Medical Ethics Review 102).
All procedures involving human participants were conducted
in accordance with the ethical standards established by the
IRB and the Declaration of Helsinki. All participants signed
informed consent forms, explicitly stating that their clinical
data would be used for research and model development.
Additionally, all data were de-identified during use to ensure
patient privacy and security.

This study included patients who underwent TKA at the
Department of Joint Surgery, Tianjin Hospital, between May 2024
and March 2025 for retrospective analysis. The Pittsburgh Sleep
Quality Index (PSQI), a widely used self-assessment tool for sleep
evaluation, reflects sleep status and quality over the past month.
A total PSQI score above 5 indicates poor sleep quality (24).
A previous study reported that the incidence of sleep disturbance
at 4 weeks postoperatively was 31% (25). The follow-up period in
this study was 1 month postoperatively, with the presence of PSD
defined by a PSQI score greater than 5.

Importantly, while the PSQI > 5 was used to define the
presence of sleep disturbance, this threshold was not used as
an inclusion criterion for the study. Instead, all patients who
underwent TKA between May 2024 and March 2025 were included
in the study regardless of their PSQI scores. Following the
application of the exclusion criteria, 505 patients were included in
the analysis, with 220 patients diagnosed with PSD (PSQI > 5) and
285 patients not diagnosed with PSD (PSQI < 5) (Figure 1).

The inclusion criteria were: primary osteoarthritis in patients
aged 50-80 years undergoing unilateral TKA. The exclusion
criteria included: (1) patients with preoperative sleep disturbances
(PSQI > 5), (2) severe cognitive or psychiatric disorders, (3) regular
use of sleep aids during the perioperative period, (4) prior treatment
with other systemic psychological interventions, and (5) >20%
missing clinical data.

Data collection and data preprocessing

The majority of the data were derived from the electronic
patient record (ePR) system at Tianjin Hospital and its associated
Clinical Data Analysis and Reporting System (CDARS), with the
remaining data obtained from postoperative follow-up. As this was
a retrospective study, PSQI scores were collected as part of routine
clinical care at preoperative visits and postoperative follow-ups, not
prospectively assessed specifically for research purposes. Data with
more than 20% missing values were excluded from the analysis
(26). A total of 38 variables were analyzed, including demographic
data (e.g., age, gender, smoking, alcohol consumption, medical
history), laboratory results (e.g., WBC, HB, CR, TP), and 1-month
postoperative follow-up data [e.g., visual analogue scale (VAS),
WOMAUC, anxiety levels]. These variables were selected based on
clinical plausibility to form a comprehensive feature set for data-
driven prediction modeling of PSD.
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FIGURE 1

Patient enrollment flowchart.

Patient-reported outcomes and functional measures, including
the VAS for pain (27), the Self-Rating Anxiety Scale (SAS) (28),
the Self-Rating Depression Scale (SDS) (29), the WOMAC score
(30), and knee range of motion, were assessed and documented
by experienced clinicians at four postoperative time points: days
7, 14, 21, and 28 during routine follow-up visits. Assessments
were conducted using standardized, validated tools. For analysis,
the arithmetic mean of the four measurements was computed for
each variable to obtain a representative “l1-month postoperative”
value. This approach was adopted to improve the reliability of
the measurement by reducing the influence of daily fluctuations,
thereby offering a more stable estimate of the patient’s typical state
during the recovery period. An SAS score >50 indicated mild
anxiety, and an SDS score >53 indicated mild depression (28, 29).
These instruments were widely recognized and validated in clinical
practice. This approach ensured data accuracy and reliability, with
evaluations conducted by trained healthcare professionals.

The subsequent data cleaning and preprocessing steps involved
standardization and conversion of text descriptions into numerical
values to ensure dataset quality and accuracy. Continuous variables
were retained in their original form. Binary variables, such as
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gender, were coded (female = 0, male = 1). PSD patients were
classified as “cases,” while non-PSD patients were classified as
“controls,” with respective coding of 1 and 0. Missing data
for continuous variables were imputed using the expectation-
maximization method. Missing values for binary variables were
imputed using the mode (Supplementary Table 1). Only variables
with missing data less than 20% were imputed, while large amounts
of missing data were excluded during the patient selection phase
(26). This approach ensured the model was developed with a
complete, reliable dataset, without artificially inflating the sample
size. The characteristics of the data were summarized in Table 1.

Statistical analyses and model
development

This study began with data preparation and anonymization,
followed by preliminary cleaning, which involved removing
duplicates and imputing missing values. To develop the predictive
model, all preprocessed variables were incorporated directly into
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TABLE 1 Characteristics of the cohort.

Demographics

Age (years) 71.2+£8.0 724+49 0.023
Sex, 1 (%) 0.821
Female 196 151
Male 88 70

Smoking, 1 (%) 88 (30.8%) 79 (35.9%) 0.037

Drinking, 1 (%) 65 (22.8%) 51 (23.2%) 0.921

Diabetes, 1 (%) 116 (40.7%) 94 (42.7%) 0.430

Hyperlipidemia, 1 (%) 109 (38.2%) 84 (38.1%) 0.988

Hypertension, n (%) 110 (38.6%) 87 (39.5%) 0.828

Complication, 7 (%) 96 (33.7%) 70 (31.8%) 0.658

Live alone 28(9.8%) 53(24%) 0.013

Live in the city 126(44.2%) 118(53.6%) 0.022

Laboratory findings

WBC (10°/L) 595+ 1.16 6.10 £0.29 0.055

HB (g/L) 132.89 +£11.99  133.11 & 10.47 0.780

Cr (mg/dL) 79.65+15.72 | 80.20 & 18.16 0.622

TP (g/L) 69.91+5.60 | 67.30 & 3.00 0.347

ALB (g/L) 36.63+3.11 | 40.10+3.24 0.940

UA (pumol/L) 284.07 £ 80.72 | 285.60 £ 61.09 0.648

D_dimer (mg/L) 0.27 £0.10 0.28 £0.11 0.302

CRP (mg/L) 5.3142.90 5.354+0.43 0.827

HDL (mmol/L) 1.33 £0.17 1.78 £0.22 0.651

LDL (mmol/L) 2.82 £ 0.56 2.77 £0.15 0.167

TC (mmol/L) 4.39+£0.38 4.40 £ 0.50 0.656

ALT (U/L) 32,554 12.10 | 32.70 £ 11.66 0.883

GLB (g/L) 2497 +£191 | 24.93+2.10 0.821

TB (mmol/L) 7.50 £2.13 7.53 £2.05 0.758

APTT (s) 30.08 =233 | 29.91 4249 0.434

PT (s) 1245+£0.57 | 11.28 £0.62 0.974
Clinical data

Preoperative PSQI 4444125 3.69 & 1.31 0.035

Preoperative anxiety 42.86 £7.94 | 4218 £6.12 0.987

Preoperative depression 48.10 = 10.77 | 49.25 % 5.64 0.149

Preoperative VAS 7.07 £0.85 691+ 1.17 0.076

Preoperative Womac 173.79 4 14.33 | 173.98 4 8.59 0.872

VAS 1 month postoperative 2.30 +0.54 2.46 & 1.10 0.034

Womac 1 month postoperative | 46.03 +4.03 | 45.89 £2.92 0.558

Anxiety 1 month postoperative | 37.27 £4.78 | 38.32 £5.86 0.027

Depression 1 month 15.80+£2.99 | 15.94 4 3.09 0.596
postoperative

One month postoperative knee | 101.05 & 8.83 | 105.37 £ 6.18 0.041

range of motion

Bold values indicate statistically significant differences with a p-value <0.05. Group
comparisons were made using Student’s ¢-test for normally distributed continuous variables,
Mann-Whitney U test for non-normally distributed continuous variables, and Chi-
square test for categorical variables, as detailed in the Section “Statistical analyses and
model development”.
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a Least Absolute Shrinkage and Selection Operator (LASSO)
model for training.

Least Absolute Shrinkage and Selection Operator was chosen
because it simultaneously performed feature selection and model
fitting. The model applied L1 regularization, shrinking the
coefficients of less important features to zero, thereby automatically
identifying the most influential variables and preventing overfitting
(31). This approach avoided biases associated with pre-selection
filtering methods and allowed the model to capture complex
multivariate relationships.

Candidate variables were initially screened using univariate
analysis (p < 0.05). The optimal regularization parameter (\)
was then determined through 10-fold cross-validation, applying
the “one standard error” rule (lambda.1se). This criterion selected
the most parsimonious model, where the performance was within
one standard error of the minimum binomial deviance, thereby
favoring model simplicity and robustness.

The dataset was randomly divided into a training set (70%)
and a test set (30%) based on common practices in predictive
modeling. While this approach was widely used, alternative
techniques such as bootstrapping or cross-validation could be
considered in future studies to further validate the robustness of
the model. The training set was used for model development and
hyperparameter optimization, whereas the independent test set was
reserved solely for the final evaluation of model performance. For
model development, we employed ten ML algorithms: Logistic
Regression, support vector machine (SVM), Gradient Boosting
Machine (GBM), Neural Networks, Random Forest, eXtreme
Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN),
AdaBoost, Light Gradient Boosting Machine (LightGBM), and
Categorical Boosting (CatBoost). These ten models were selected
to ensure comprehensive coverage of major, high-performing
machine learning families, including linear models, support vector
machines, tree-based ensembles, and boosting algorithms (32). This
approach guaranteed a robust and representative comparison of
state-of-the-art techniques applicable to structured clinical data.
While deep learning approaches were considered, they were not
adopted due to the moderately-sized dataset, which was suboptimal
for training complex deep networks, and our emphasis on model
interpretability for potential clinical use.

Each model was trained using 10-fold cross-validation to assess
performance, and hyperparameters were optimized using Bayesian
optimization to improve predictive accuracy. The performance
of all models was evaluated at each iteration using multiple
metrics: AUC, accuracy, sensitivity, specificity, and F1 scores.
AUC was prioritized as the primary evaluation metric because it
provides a more comprehensive measure of model discrimination,
especially in imbalanced datasets (33). AUC represents the area
under the curve plotting the true positive rate against the false
positive rate, reflecting the model’s predictive ability. The AUC
ranges from 0 to 1. Models with an AUC greater than 0.7 are
considered to exhibit good performance and clinical significance,
with an AUC of 1 representing perfect performance (34). For the
remaining metrics, values range from 0 to 1, with higher scores
indicating better performance. Given the imbalanced nature of the
classification task, AUC and balanced accuracy were emphasized
during performance evaluation. The average score across iterations
determined each model’s final performance. Among the ten models,
the one with the highest AUC was selected as the final model.
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To enhance the transparency and interpretability of the final
predictive model, both global and local interpretations were
incorporated. The global interpretation was presented using the
SHapley Additive Explanations (SHAP) summary plot, while local
interpretations were visualized with SHAP waterfall plots for
individual PSD cases following TKA (35, 36). According to the
SHAP legend, the larger the absolute value of a SHAP value
in the waterfall plot, the greater its impact on the prediction.
Furthermore, differences in performance for the same feature
across individuals, as shown in the single-sample waterfall plots,
may have arisen from individual variability, highlighting the
model’s ability to capture subject-specific differences. We then
compared the comprehensive performance metrics of the GBM
model across key patient subgroups, with particular focus on
socio-environmental predictors and gender distribution. Through
these subgroup analyses, we aimed to specifically assess potential
model bias and better understand the model’s applicability across
different patient demographics, thereby providing evidence for
its fairness and generalizability. Since different subgroups may
have experienced varying degrees of class imbalance which can
significantly impact model performance (37), we evaluated multiple
metrics including Accuracy, Sensitivity, Specificity, Precision, F1-
score, and the AUC to thoroughly assess the model’s performance
in these specific populations. The comprehensive analysis provided
valuable insights into model fairness and offered targeted data
support for personalized treatment strategies.

This study described the characteristics of various datasets
and conducted a series of statistical tests. For continuous
data, means and standard deviations were used for normally
distributed variables, while medians and interquartile ranges
were applied to non-normally distributed variables. Categorical
data were summarized using frequencies and proportions. Group
comparisons were made using the Student’s t-test for normally
distributed continuous variables, the Mann-Whitney U test for
non-normally distributed continuous variables, and the Chi-square
test for categorical variables. A two-tailed p-value of < 0.05 was
considered statistically significant. All statistical analyses and model
construction were performed using IBM SPSS Statistics (version
26.0) and R (version 4.4.2).

Results

Cohort characteristics

This study included 505 patients, of whom 220 were diagnosed
with PSD and 285 were classified as normal. The prevalence
of PSD in our cohort was 43.6%. This finding aligns with the
established literature, highlighting the substantial burden of this
complication in the postoperative period (12). Among the total
patient population, 347 (68.7%) were female, and 158 (31.3%) were
male. The mean age of the patients was 71.7 £ 6.9 years, with a
mean BMI of 22.4 & 4.4. A total of 167 patients had a history of
smoking, and 116 patients had a history of alcohol consumption.
Among comorbidities, diabetes mellitus was the most common,
affecting 210 patients (41.6%), followed by hypertension in 197
patients (39.0%) and hyperlipidemia in 193 patients (38.2%).
Regarding patient residence, 81 patients (16.0%) lived alone, and
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244 patients (48.3%) lived in the city. The baseline demographics,
along with the results of univariate and multivariate analyses, are
presented in Table 1.

Predictors screened by LASSO regression

Using PSD as the dependent variable, LASSO regression with
10-fold cross-validation identified six key predictors from the initial
candidate variables: smoking, age, VAS 1 month postoperative,
anxiety 1 month postoperative, living alone, and living in the
city (Figures 2A, B). These findings highlight the key risk factors
associated with the development of PSD in post-TKA patients,
which can assist in clinical decision-making and guide targeted
interventions.

Model performance

The performance of ten ML models was evaluated on the test
set, with AUC values ranging from 0.666 to 0.906. Among these
models, the Logistic model demonstrated the lowest AUC, while
the GBM model achieved the highest AUC, indicating superior
discriminative ability. In terms of accuracy, the Logistic model
had the lowest value at 0.675, while the XGBoost model achieved
the highest accuracy at 0.874. For sensitivity, the AdaBoost model
scored the lowest at 0.576. The GBM and Random Forest models
achieved the highest sensitivity score of 0.879. For specificity,
the LightGBM model performed best, achieving a specificity of
0.906. For precision, the LightGBM model achieved the highest
score of 0.864. For the F1 score, the Logistic model scored the
lowest at 0.647, while the Random Forest model achieved the
highest score at 0.853. Overall, the GBM model demonstrated the
best discriminative ability among all ten models and performed
consistently and reliably during 10-fold cross-validation. Therefore,
the GBM model was selected as the final prediction model (Figure 3
and Table 2).

Feature importance

SHapley Additive Explanations summary plots offered a global
interpretation of model decisions, visualizing the importance of
each feature (Figures 4, 5). This analysis confirmed the importance
of the six LASSO-selected predictors and further quantified their
effects. The model identified VAS 1 month postoperative and
age as the most influential factors, followed by anxiety 1 month
postoperative, living alone, urban residence, and smoking. Overall,
all identified predictors were risk factors for PSD post-TKA.

We provided two localized SHAP waterfall plots for individual
patients to illustrate patient-level interpretations of the final model
predictions (Figures 6, 7). Figure 6 shows the 28th TKA patient
in our cohort. In this case, VAS 1 month postoperative (2.6)
was the most significant risk factor, followed by anxiety 1 month
postoperative (38) and living alone. Not smoking and not living in
the city were the most important protective factors. Figure 7 shows
the 35th TKA patient in our cohort. In this case, VAS 1 month
postoperative (2.9) was the most significant risk factor, followed by
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(A) Least Absolute Shrinkage and Selection Operator (LASSO) coefficient path plot: This plot shows how the coefficients of different features change
as the lambda value increases in a LASSO regression model. As lambda increases, the coefficients of less important features are progressively
compressed toward zero. Features that reach zero early contribute less to the model, while those that remain non-zero for a longer period are more
influential, indicating their greater relevance in the prediction task. The plot helps in visualizing which features are selected and retained in the model
as regularization strength increases. (B) Cross-validation curve for LASSO regression: The plot illustrates the binomial deviance (model error) as a
function of log (lambda) in a LASSO regression model. The solid curve represents the mean binomial deviance, and the shaded area between the
dashed lines indicates the range of one standard deviation above and below the mean. The optimal value of log (lambda) is determined where the
error is minimized, corresponding to the lowest deviance, as indicated by the vertical dashed lines. This curve aids in selecting the best regularization

parameter for minimizing model error.

anxiety 1 month postoperative (39), living alone, and living in the
city. Not smoking was the most important protective factor.

Subgroup analysis

We conducted a detailed subgroup analysis of the final GBM
model to evaluate its fairness and generalizability, focusing on
social environment and gender factors (Table 3). The model
demonstrated strong and consistent predictive performance across
most subgroups, with AUC values consistently above 0.88 in
gender-based (male/female) and urban residence subgroups.
However, performance showed variability in the “living alone”
subgroup (N = 81). This fluctuation is likely due to the small
sample size in this subgroup, which limited the model’s ability to
identify stable patterns, combined with a disproportionately high
percentage of PSD patients (65.4%), which exacerbated the impact
of class imbalance on model stability. These findings suggest that
while the model performs reliably overall, caution is warranted
when applying it to patients living alone. Future validation with
larger sample sizes is necessary to confirm these results.

Discussion

This study aims to develop an ML-based model for predicting
PSD in patients following TKA. A key innovation of our study is
the integration of ten different machine learning models, which
offer a multidimensional and comprehensive analytical framework
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to predict and identify the main risk factors for postoperative
sleep disorders. Using machine learning models, we identify two
socio-environmental factors—living alone and living in the city—as
predictors for the first time, factors that have not received adequate
attention in the existing literature. In addition to these two newly
identified factors, our study further confirms the importance of
clinical factors, such as VAS scores, anxiety symptoms, and age,
in predicting PSD.

Discovery of innovative
socio-environmental factors

This study is the first to highlight the significant role of
two factors—living alone and living in the city—in predicting
PSD. Patients living alone lack care and assistance from family
members after surgery, presenting additional challenges during
their recovery. The absence of family support, particularly during
the postoperative recovery period, often makes it difficult for
these patients to manage pain, perform daily activities, and access
necessary psychological support (38, 40, 41). Patients living alone
are more likely to feel isolated and anxious, and this emotional
burden may exacerbate their sleep disorders (39, 42-45). Therefore,
living alone is not only a sociological factor but also reflects the
vulnerability of patients’ quality of life and postoperative recovery.

Patients living in urban areas are exposed to a range of
environmental stressors, including noise pollution, light pollution,
and air pollution (46-48). These environmental factors can
affect patients’ sleep quality in several ways, particularly during
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== Xgboost (AUC=0.881,95%C1:0.819-0.942)
== KNN (AUC=0.820,95%C1:0.754—0.887)
== Adaboost (AUC=0.858,95%CI:0.810—0.906)
== LightGBM (AUC=0.891,95%C1:0.835-0.947)
== CatBoost (AUC=0.903,95%C1:0.855-0.952)
0.00
0.00 0.25 0.50 0.75 1.00
1-specificity
FIGURE 3
Performance of ten machine learning models on a test set.

TABLE 2 Performance metrics of different machine learning models for predicting PSD.

Logistic 0.675 0.682 0.671 0.616 0.647
SVM 0.689 0.727 0.659 0.623 0.671
GBM 0.834 0.879 0.8 0.773 0.823

Neural Network 0.808 0.697 0.894 0.836 0.76
Random Forest 0.868 0.879 0.859 0.829 0.853

Xgboost 0.874 0.712 0.871 0.652 0.832

KNN 0.768 0.788 0.753 0.712 0.748
Adaboost 0.815 0.576 0.775 0.717 0.731
LightGBM 0.848 0.773 0.906 0.864 0.816
CatBoost 0.828 0.773 0.871 0.823 0.797

the postoperative recovery phase (49, 50). Higher noise levels
and light pollution in urban areas may decrease sleep quality,
disrupt biological clocks and sleep cycles, and increase the risk
of PSD (51-54). Additionally, air pollution and the urban heat
island effect may slow the recovery process and increase the

incidence of postoperative complications (55, 56). Therefore, the

Frontiers in Medicine

living environment plays a significant moderating role in the
development of PSD after TKA.

The findings of these social and environmental factors
highlight that social support and environmental conditions are
just as important as medical treatment during postoperative

recovery. Therefore, these factors should be considered when
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FIGURE 4

This plot displays a SHAP summary bar chart, ranking each predictor’s average importance in the model's predictions in descending order. SHAP
values represent the contribution of each feature to the model's prediction. Larger SHAP values indicate a higher impact of the feature on the
prediction, while smaller values suggest a lesser influence. From the plot, it is evident that postoperative VAS score 1 month after surgery has the
largest impact on the model's predictions, followed by Age, postoperative anxiety 1 month after surgery, and other features. This plot provides a
visual understanding of the relative importance of different features in PSD, helping to identify key factors driving the model's output.

0.1 0.2

mean(|SHAP value|)

0.3

developing postoperative interventions to ensure a more
personalized care strategy.

Validation of clinical factors and the
benefits of machine learning models

Besides the two innovative factors—living alone and living in
the city—our study also confirmed the role of traditional clinical
factors in predicting postoperative sleep disorders. For example,
the VAS score (postoperative pain score) is a significant risk factor
for PSD. High VAS scores are associated with poorly managed
postoperative pain, and persistent pain not only affects sleep quality
but may also impact mood and recovery (57-60). Therefore,
managing postoperative pain is crucial to reducing the risk of PSD.

Additionally, postoperative anxiety scores are identified as
significant predictors. Postoperative anxiety exacerbates patients’
pain perception and affects their psychological state, thereby
increasing the incidence of sleep disorders. Our study finds that
anxiety symptoms are strongly associated with sleep disorders,
indicating the need for effective management of anxiety symptoms
in postoperative patients to reduce the risk of sleep disorders.

Age is another known influencing factor, as patients
physiological conditions and rehabilitation capacity change
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with age. Older patients are at higher risk for comorbidities, such
as hypertension and diabetes, which increase the incidence of
postoperative sleep disorders (61-63). Our findings confirm the
importance of age in postoperative sleep disorders and suggest that
elderly patients require special attention for postoperative care
and sleep health.

Applications and benefits of machine
learning models

Another innovation in this study is the use of ten machine
learning models to analyze the data, including Logistic Regression,
SVM, GBM, and Random Forest. Compared to traditional
statistical methods, ML handles non-linear relationships and
extracts key factors from complex multidimensional data. Through
the comparative evaluation of these models, we identify the GBM
as the best performer, with high accuracy and sensitivity.

Our research highlights the significant potential of ML in
medical prediction, particularly for complex health issues like
PSD. By integrating various ML algorithms, we can accurately
identify high-risk patients for PSD and offer personalized clinical
intervention recommendations. For instance, using our model,
clinicians can identify high-risk patients early and implement
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This SHAP summary plot visualizes the influence of key features on the GBM model's prediction of PSD. Positive SHAP values indicate an increase in
the predicted risk for PSD, whereas negative SHAP values suggest a decrease in risk. For continuous features (e.g., VAS 1 month after surgery, Age,
Anxiety 1 month after surgery), feature values are color-coded from yellow (low) to purple (high). Generally, higher feature values correspond to a
stronger influence on the model's prediction, with higher VAS scores and Age increasing the predicted risk for PSD. For categorical features (e.g., live
alone, Live in the city, smoke), the presence of the feature is represented by yellow (high), and the absence by purple (low), indicating their influence
on the predicted outcome. Features with higher SHAP values have a more substantial impact on the model's output, highlighting their importance in

appropriate management strategies, such as pain control, anxiety
management, and adjustments to the living environment.

Clinical application and deployment

The findings of this study have significant implications for
clinical practice. The predictive model can be integrated into
the preoperative assessment process for TKA patients. By using
readily available clinical and social data, clinicians can identify
patients at high risk for PSD prior to surgery, enabling proactive
and personalized management strategies. For example, high-risk
patients can be referred to prehabilitation programs focused on
pain and anxiety management and offered counseling on sleep
hygiene. Postoperatively, these patients can be monitored more
closely, and non-pharmacological interventions (e.g., minimizing
nighttime disruptions, cognitive behavioral therapy for insomnia)
can be started early.

Importantly, our model identifies modifiable risk factors, such
as postoperative VAS and anxiety, suggesting that PSD is a largely
preventable complication. The model should not be viewed as a
deterministic prognosis but as a tool for risk stratification that

Frontiers in Medicine

identifies specific areas for intervention. By effectively managing
pain and addressing anxiety during the perioperative period, the
incidence and severity of PSD can be significantly reduced. This
model represents a shift from reactive treatment to proactive
prevention, providing a pathway for improving postoperative
care and outcomes.

Although the ML model shows promise, its successful
deployment in clinical practice requires several key considerations.
First, the model must be integrated into existing clinical workflows
and decision-making systems to facilitate its use by healthcare
professionals. Training and adaptation to various clinical settings
are essential for effective use.

From a technical standpoint, the model should be scalable and
capable of processing large volumes of patient data in real-time
without excessive computational requirements. It is also crucial to
validate the model across various hospitals and patient populations
to ensure its generalizability and applicability.

While this study offers significant innovative value, several
limitations should be considered to contextualize the findings
and guide future research. First, the single-center, retrospective
design, while providing a robust initial dataset, may limit the
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FIGURE 6

A local SHAP waterfall plot for the 28th TKA patient. This plot
illustrates the contribution of each feature to the final prediction for
the postoperative sleep disorder model. The length of each bar
represents the impact of each feature on the prediction, with red
bars indicating a decrease in predicted probability and yellow bars
indicating an increase. For this specific patient, the VAS 1 month
postoperative value has the greatest negative impact, followed by
anxiety 1 month postoperative. Living alone, non-smoking, and not
living in cities are important protective factors, all of which
contribute to the model’s output. This example demonstrates how
the model's prediction is shaped by different factors, emphasizing
the importance of VAS, anxiety, and living alone in influencing the
patient’s risk prediction.

generalizability of our model to other healthcare settings and
patient populations. This design also carries an inherent risk
of unmeasured confounders. Therefore, external validation in
multi-center, prospective cohorts is a necessary next step. Second,
the predictive scope of our model is limited by the variables
available in our dataset. While we include a range of clinical
and socio-environmental factors, other potentially influential
variables, such as genetic predispositions, detailed psychosocial
characteristics, and environmental factors, are not accounted
for. Furthermore, the lack of long-term follow-up data beyond

GBM
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FIGURE 7

A local SHAP waterfall plot for the 35th TKA patient’s prediction.
This plot illustrates the contribution of each feature to the final
prediction in the postoperative sleep disorder model. The length of
each bar represents the impact of each feature on the prediction,
with red bars indicating a decrease in predicted probability and
yellow bars indicating an increase. For this specific patient, the VAS
1 month postoperative value has the greatest negative impact,
followed by anxiety 1 month postoperative, living alone, living in the
city, and age. Non-smoking is an important protective factor, all of
which contribute to the model's output. This example highlights
how VAS, anxiety, and smoking influence the model’s prediction of
the patient’s risk for postoperative sleep disorders.

1 month limits our understanding of the model’s ability to
predict persistent sleep disturbances. Future studies incorporating
these omitted factors and longer-term outcomes are crucial for
enhancing the model’s comprehensiveness and clinical relevance.
Finally, in terms of model evaluation, our analysis primarily
focuses on discriminative performance (the ability to distinguish
between PSD and non-PSD patients). We do not formally assess
model calibration, which measures the accuracy of predicted risk
probabilities. As calibration is a key metric for evaluating the
clinical usefulness of a predictive model, investigating it remains

TABLE 3 Performance of the final GBM model across different patient subgroups.

Subgroup Accuracy Sensitivity Specificity Precision
Live in the city
Yes 0.910 0.840 0.885 0.805 0.780 0.829
No 0.901 0.828 0.873 0.802 0.766 0.816
Live alone
Yes 0.870 0.790 0.820 0.770 0.740 0.778
No 0.912 0.842 0.885 0.810 0.782 0.883
Gender
Female 0.902 0.831 0.875 0.798 0.770 0.819
Male 0.911 0.839 0.884 0.805 0.781 0.829
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an important area for future work. Additionally, despite our
efforts to conduct subgroup analyses, potential biases arising from
imbalances in sociodemographic factors may persist, affecting
model performance. Further validation in larger and more
diverse populations is recommended to ensure fairness and
generalizability.

Conclusion

This study developed a ML-based model for predicting PSD
in patients following TKA. By analyzing factors such as age,
smoking history, VAS score, and anxiety score, we identified key
predictors of PSD. The GBM model showed the best predictive
efficacy, with high accuracy and sensitivity. We further enhanced
the model’s interpretability using SHAP methodology, enabling
clinicians to visualize the specific contribution of each factor
to the prediction, facilitating preoperative risk stratification and
personalized interventions.

Additionally, our study identified two socio-environmental
factors—living alone and living in the city—that have not
been sufficiently explored in the literature. Patients living alone
face greater postoperative challenges due to lack of family
support, while those living in urban areas are more exposed to
environmental stressors, such as noise and light pollution, which
exacerbate the risk of PSD. These findings offer new insights for
clinical interventions, emphasizing the importance of social and
environmental factors in postoperative care.

Future studies should validate this model across diverse
populations, expand its applicability, and incorporate
additional factors such as genetic background and long-
term follow-up data to enhance its predictive ability and

clinical value.
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