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Background: Postoperative sleep disturbance (PSD) is a common complication

following total knee arthroplasty (TKA), which negatively impacts patient

recovery. Despite the critical need for early detection and management, there is

limited research on predictive models for early PSD, particularly those integrating

machine learning (ML) techniques.

Objective: This study aimed to develop a predictive model for early PSD

following TKA using ML algorithms, identify key predictive factors, and provide

an interpretable model to guide clinical decision-making.

Methods: The study included 505 patients who underwent TKA. Clinical

data were collected at three stages: preoperatively, intraoperatively, and

postoperatively. Ten MLa models, including logistic regression, support vector

machine (SVM), and XGBoost, were trained and evaluated using a test set.

Performance metrics, including accuracy, sensitivity, specificity, and area under

the curve (AUC), were used to evaluate the efficacy of the models. Key features

influencing PSD were identified through SHapley Additive Explanations (SHAP)

analysis to enhance model interpretability.

Results: Gradient Boosting Machine (GBM) demonstrated the highest AUC

(0.906), accuracy (0.834), and sensitivity (0.879), establishing it as the optimal

model for predicting PSD. Key predictors identified included age, smoking,

living alone, living in the city, VAS 1 month postoperative, and anxiety 1 month

postoperative. SHAP analysis revealed that postoperative VAS and age were the

most influential factors in predicting PSD, with their impact varying based on

individual patient data.

Conclusion: The study developed a robust and interpretable ML model for

the early prediction of PSD following TKA. This model can aid in preoperative

risk stratification, facilitating personalized management strategies to improve

postoperative outcomes. Further validation in larger cohorts and diverse settings

is necessary to enhance its broader clinical applicability.
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Introduction 

Knee osteoarthritis (OA) is a common musculoskeletal 
disorder that causes significant pain and dysfunction (1). TKA 
is an eective treatment for end-stage knee OA, and its use 
is increasing due to the aging population and advancements in 
surgical techniques (2–4). TKA is highly eective in relieving pain, 
improving joint function, and enhancing quality of life; however, 
up to 20% of patients remain dissatisfied after the procedure (5–8). 
The etiology of patient dissatisfaction after TKA is multifactorial. 
Sleep disorders, particularly postoperative sleep disturbance (PSD), 
are increasingly recognized as common and detrimental to recovery 
after TKA (9). These disorders can negatively aect postoperative 
pain management, mental health, and overall recovery (10, 11). 

Postoperative sleep disturbance is a common but often 
underrecognized complication following surgical procedures. 
Studies suggest that the incidence of perioperative PSD in patients 
undergoing TKA may exceed 50% (12). PSD is characterized 
by diÿculty falling asleep, fragmented sleep, frequent nocturnal 
awakenings, and poor sleep quality (9). PSD not only causes patient 
dissatisfaction but also has significant negative consequences 
on postoperative recovery (13). PSD is strongly associated 
with worsened pain perception, complicating postoperative 
pain management and delaying recovery (14–16). Additionally, 
PSD is linked to increased levels of anxiety and depression, 
further hindering rehabilitation and prolonging recovery (17). 
Furthermore, poor sleep quality impairs immune function, 
delays wound healing, and increases the risk of postoperative 
complications, resulting in longer hospital stays and higher 
healthcare costs (18–20). 

Current research on PSD predictors primarily relies on 
traditional statistical approaches, particularly logistic regression 
(21). While valuable, these methods depend on pre-specified linear 
assumptions and struggle to capture the complex, non-linear 
interactions among numerous clinical, psychological, and social 
factors influencing postoperative sleep. This limitation necessitates 
analytical approaches that can automatically learn these complex 
patterns from data. ML has shown remarkable potential in this 
regard, revolutionizing predictive modeling across various medical 
specialties with its robust data processing capabilities and superior 
predictive performance (22, 23). Despite these advancements, 
however, the application of ML to PSD prediction following TKA 
remains underdeveloped, with a notable scarcity of dedicated 
models in the current literature. 

This study aims to address this critical research gap by 
developing and validating a comprehensive ML-based predictive 
model for PSD following TKA. Our investigation includes 
preoperative, intraoperative, and early postoperative clinical data 
to identify key predictive factors. A fundamental innovation of 
our approach is the integration of novel socio-environmental 
predictors, such as "living alone" and "urban residence," which 
have been largely overlooked in previous research despite their 
potentially significant impact on sleep quality during recovery. 
Through interpretability analysis, we identify key predictive 
factors for PSD occurrence. Our findings are expected to enable 
early identification of at-risk patients, support preoperative risk 
stratification, improve perioperative management, and ultimately 
facilitate personalized rehabilitation strategies after TKA. 

Materials and methods 

Study design and patient selection 

This study was approved by the Institutional Review Board 
(IRB) of Tianjin Hospital (IRB 2024 Medical Ethics Review 102). 
All procedures involving human participants were conducted 
in accordance with the ethical standards established by the 
IRB and the Declaration of Helsinki. All participants signed 
informed consent forms, explicitly stating that their clinical 
data would be used for research and model development. 
Additionally, all data were de-identified during use to ensure 
patient privacy and security. 

This study included patients who underwent TKA at the 
Department of Joint Surgery, Tianjin Hospital, between May 2024 
and March 2025 for retrospective analysis. The Pittsburgh Sleep 
Quality Index (PSQI), a widely used self-assessment tool for sleep 
evaluation, reflects sleep status and quality over the past month. 
A total PSQI score above 5 indicates poor sleep quality (24). 
A previous study reported that the incidence of sleep disturbance 
at 4 weeks postoperatively was 31% (25). The follow-up period in 
this study was 1 month postoperatively, with the presence of PSD 
defined by a PSQI score greater than 5. 

Importantly, while the PSQI > 5 was used to define the 
presence of sleep disturbance, this threshold was not used as 
an inclusion criterion for the study. Instead, all patients who 
underwent TKA between May 2024 and March 2025 were included 
in the study regardless of their PSQI scores. Following the 
application of the exclusion criteria, 505 patients were included in 
the analysis, with 220 patients diagnosed with PSD (PSQI > 5) and 
285 patients not diagnosed with PSD (PSQI ≤ 5) (Figure 1). 

The inclusion criteria were: primary osteoarthritis in patients 
aged 50–80 years undergoing unilateral TKA. The exclusion 
criteria included: (1) patients with preoperative sleep disturbances 
(PSQI > 5), (2) severe cognitive or psychiatric disorders, (3) regular 
use of sleep aids during the perioperative period, (4) prior treatment 
with other systemic psychological interventions, and (5) >20% 
missing clinical data. 

Data collection and data preprocessing 

The majority of the data were derived from the electronic 
patient record (ePR) system at Tianjin Hospital and its associated 
Clinical Data Analysis and Reporting System (CDARS), with the 
remaining data obtained from postoperative follow-up. As this was 
a retrospective study, PSQI scores were collected as part of routine 
clinical care at preoperative visits and postoperative follow-ups, not 
prospectively assessed specifically for research purposes. Data with 
more than 20% missing values were excluded from the analysis 
(26). A total of 38 variables were analyzed, including demographic 
data (e.g., age, gender, smoking, alcohol consumption, medical 
history), laboratory results (e.g., WBC, HB, CR, TP), and 1-month 
postoperative follow-up data [e.g., visual analogue scale (VAS), 
WOMAC, anxiety levels]. These variables were selected based on 
clinical plausibility to form a comprehensive feature set for data-
driven prediction modeling of PSD. 
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FIGURE 1 

Patient enrollment flowchart. 

Patient-reported outcomes and functional measures, including 
the VAS for pain (27), the Self-Rating Anxiety Scale (SAS) (28), 
the Self-Rating Depression Scale (SDS) (29), the WOMAC score 
(30), and knee range of motion, were assessed and documented 
by experienced clinicians at four postoperative time points: days 
7, 14, 21, and 28 during routine follow-up visits. Assessments 
were conducted using standardized, validated tools. For analysis, 
the arithmetic mean of the four measurements was computed for 
each variable to obtain a representative “1-month postoperative” 
value. This approach was adopted to improve the reliability of 
the measurement by reducing the influence of daily fluctuations, 
thereby oering a more stable estimate of the patient’s typical state 
during the recovery period. An SAS score >50 indicated mild 
anxiety, and an SDS score >53 indicated mild depression (28, 29). 
These instruments were widely recognized and validated in clinical 
practice. This approach ensured data accuracy and reliability, with 
evaluations conducted by trained healthcare professionals. 

The subsequent data cleaning and preprocessing steps involved 
standardization and conversion of text descriptions into numerical 
values to ensure dataset quality and accuracy. Continuous variables 
were retained in their original form. Binary variables, such as 

gender, were coded (female = 0, male = 1). PSD patients were 
classified as “cases,” while non-PSD patients were classified as 
“controls,” with respective coding of 1 and 0. Missing data 
for continuous variables were imputed using the expectation-
maximization method. Missing values for binary variables were 
imputed using the mode (Supplementary Table 1). Only variables 
with missing data less than 20% were imputed, while large amounts 
of missing data were excluded during the patient selection phase 
(26). This approach ensured the model was developed with a 
complete, reliable dataset, without artificially inflating the sample 
size. The characteristics of the data were summarized in Table 1. 

Statistical analyses and model 
development 

This study began with data preparation and anonymization, 
followed by preliminary cleaning, which involved removing 
duplicates and imputing missing values. To develop the predictive 
model, all preprocessed variables were incorporated directly into 
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TABLE 1 Characteristics of the cohort. 

Variables Non-PSD PSD P-values 

Demographics 

Age (years) 71.2 ± 8.0 72.4 ± 4.9 0.023 

Sex, n (%) 0.821 

Female 196 151 

Male 88 70 

Smoking, n (%) 88 (30.8%) 79 (35.9%) 0.037 

Drinking, n (%) 65 (22.8%) 51 (23.2%) 0.921 

Diabetes, n (%) 116 (40.7%) 94 (42.7%) 0.430 

Hyperlipidemia, n (%) 109 (38.2%) 84 (38.1%) 0.988 

Hypertension, n (%) 110 (38.6%) 87 (39.5%) 0.828 

Complication, n (%) 96 (33.7%) 70 (31.8%) 0.658 

Live alone 28(9.8%) 53(24%) 0.013 

Live in the city 126(44.2%) 118(53.6%) 0.022 

Laboratory findings 

WBC (109/L) 5.95 ± 1.16 6.10 ± 0.29 0.055 

HB (g/L) 132.89 ± 11.99 133.11 ± 10.47 0.780 

Cr (mg/dL) 79.65 ± 15.72 80.20 ± 18.16 0.622 

TP (g/L) 69.91 ± 5.60 67.30 ± 3.00 0.347 

ALB (g/L) 36.63 ± 3.11 40.10 ± 3.24 0.940 

UA (µmol/L) 284.07 ± 80.72 285.60 ± 61.09 0.648 

D_dimer (mg/L) 0.27 ± 0.10 0.28 ± 0.11 0.302 

CRP (mg/L) 5.31 ± 2.90 5.35 ± 0.43 0.827 

HDL (mmol/L) 1.33 ± 0.17 1.78 ± 0.22 0.651 

LDL (mmol/L) 2.82 ± 0.56 2.77 ± 0.15 0.167 

TC (mmol/L) 4.39 ± 0.38 4.40 ± 0.50 0.656 

ALT (U/L) 32.55 ± 12.10 32.70 ± 11.66 0.883 

GLB (g/L) 24.97 ± 1.91 24.93 ± 2.10 0.821 

TB (mmol/L) 7.50 ± 2.13 7.53 ± 2.05 0.758 

APTT (s) 30.08 ± 2.33 29.91 ± 2.49 0.434 

PT (s) 12.45 ± 0.57 11.28 ± 0.62 0.974 

Clinical data 

Preoperative PSQI 4.44 ± 1.25 3.69 ± 1.31 0.035 

Preoperative anxiety 42.86 ± 7.94 42.18 ± 6.12 0.987 

Preoperative depression 48.10 ± 10.77 49.25 ± 5.64 0.149 

Preoperative VAS 7.07 ± 0.85 6.91 ± 1.17 0.076 

Preoperative Womac 173.79 ± 14.33 173.98 ± 8.59 0.872 

VAS 1 month postoperative 2.30 ± 0.54 2.46 ± 1.10 0.034 

Womac 1 month postoperative 46.03 ± 4.03 45.89 ± 2.92 0.558 

Anxiety 1 month postoperative 37.27 ± 4.78 38.32 ± 5.86 0.027 

Depression 1 month 

postoperative 

15.80 ± 2.99 15.94 ± 3.09 0.596 

One month postoperative knee 

range of motion 

101.05 ± 8.83 105.37 ± 6.18 0.041 

Bold values indicate statistically significant dierences with a p-value <0.05. Group 
comparisons were made using Student’s t-test for normally distributed continuous variables, 
Mann-Whitney U test for non-normally distributed continuous variables, and Chi-
square test for categorical variables, as detailed in the Section “Statistical analyses and 
model development”. 

a Least Absolute Shrinkage and Selection Operator (LASSO) 
model for training. 

Least Absolute Shrinkage and Selection Operator was chosen 
because it simultaneously performed feature selection and model 
fitting. The model applied L1 regularization, shrinking the 
coeÿcients of less important features to zero, thereby automatically 
identifying the most influential variables and preventing overfitting 
(31). This approach avoided biases associated with pre-selection 
filtering methods and allowed the model to capture complex 
multivariate relationships. 

Candidate variables were initially screened using univariate 
analysis (p < 0.05). The optimal regularization parameter (λ) 
was then determined through 10-fold cross-validation, applying 
the “one standard error” rule (lambda.1se). This criterion selected 
the most parsimonious model, where the performance was within 
one standard error of the minimum binomial deviance, thereby 
favoring model simplicity and robustness. 

The dataset was randomly divided into a training set (70%) 
and a test set (30%) based on common practices in predictive 
modeling. While this approach was widely used, alternative 
techniques such as bootstrapping or cross-validation could be 
considered in future studies to further validate the robustness of 
the model. The training set was used for model development and 
hyperparameter optimization, whereas the independent test set was 
reserved solely for the final evaluation of model performance. For 
model development, we employed ten ML algorithms: Logistic 
Regression, support vector machine (SVM), Gradient Boosting 
Machine (GBM), Neural Networks, Random Forest, eXtreme 
Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), 
AdaBoost, Light Gradient Boosting Machine (LightGBM), and 
Categorical Boosting (CatBoost). These ten models were selected 
to ensure comprehensive coverage of major, high-performing 
machine learning families, including linear models, support vector 
machines, tree-based ensembles, and boosting algorithms (32). This 
approach guaranteed a robust and representative comparison of 
state-of-the-art techniques applicable to structured clinical data. 
While deep learning approaches were considered, they were not 
adopted due to the moderately-sized dataset, which was suboptimal 
for training complex deep networks, and our emphasis on model 
interpretability for potential clinical use. 

Each model was trained using 10-fold cross-validation to assess 
performance, and hyperparameters were optimized using Bayesian 
optimization to improve predictive accuracy. The performance 
of all models was evaluated at each iteration using multiple 
metrics: AUC, accuracy, sensitivity, specificity, and F1 scores. 
AUC was prioritized as the primary evaluation metric because it 
provides a more comprehensive measure of model discrimination, 
especially in imbalanced datasets (33). AUC represents the area 
under the curve plotting the true positive rate against the false 
positive rate, reflecting the model’s predictive ability. The AUC 
ranges from 0 to 1. Models with an AUC greater than 0.7 are 
considered to exhibit good performance and clinical significance, 
with an AUC of 1 representing perfect performance (34). For the 
remaining metrics, values range from 0 to 1, with higher scores 
indicating better performance. Given the imbalanced nature of the 
classification task, AUC and balanced accuracy were emphasized 
during performance evaluation. The average score across iterations 
determined each model’s final performance. Among the ten models, 
the one with the highest AUC was selected as the final model. 
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To enhance the transparency and interpretability of the final 
predictive model, both global and local interpretations were 
incorporated. The global interpretation was presented using the 
SHapley Additive Explanations (SHAP) summary plot, while local 
interpretations were visualized with SHAP waterfall plots for 
individual PSD cases following TKA (35, 36). According to the 
SHAP legend, the larger the absolute value of a SHAP value 
in the waterfall plot, the greater its impact on the prediction. 
Furthermore, dierences in performance for the same feature 
across individuals, as shown in the single-sample waterfall plots, 
may have arisen from individual variability, highlighting the 
model’s ability to capture subject-specific dierences. We then 
compared the comprehensive performance metrics of the GBM 
model across key patient subgroups, with particular focus on 
socio-environmental predictors and gender distribution. Through 
these subgroup analyses, we aimed to specifically assess potential 
model bias and better understand the model’s applicability across 
dierent patient demographics, thereby providing evidence for 
its fairness and generalizability. Since dierent subgroups may 
have experienced varying degrees of class imbalance which can 
significantly impact model performance (37), we evaluated multiple 
metrics including Accuracy, Sensitivity, Specificity, Precision, F1-
score, and the AUC to thoroughly assess the model’s performance 
in these specific populations. The comprehensive analysis provided 
valuable insights into model fairness and oered targeted data 
support for personalized treatment strategies. 

This study described the characteristics of various datasets 
and conducted a series of statistical tests. For continuous 
data, means and standard deviations were used for normally 
distributed variables, while medians and interquartile ranges 
were applied to non-normally distributed variables. Categorical 
data were summarized using frequencies and proportions. Group 
comparisons were made using the Student’s t-test for normally 
distributed continuous variables, the Mann-Whitney U test for 
non-normally distributed continuous variables, and the Chi-square 
test for categorical variables. A two-tailed p-value of < 0.05 was 
considered statistically significant. All statistical analyses and model 
construction were performed using IBM SPSS Statistics (version 
26.0) and R (version 4.4.2). 

Results 

Cohort characteristics 

This study included 505 patients, of whom 220 were diagnosed 
with PSD and 285 were classified as normal. The prevalence 
of PSD in our cohort was 43.6%. This finding aligns with the 
established literature, highlighting the substantial burden of this 
complication in the postoperative period (12). Among the total 
patient population, 347 (68.7%) were female, and 158 (31.3%) were 
male. The mean age of the patients was 71.7 ± 6.9 years, with a 
mean BMI of 22.4 ± 4.4. A total of 167 patients had a history of 
smoking, and 116 patients had a history of alcohol consumption. 
Among comorbidities, diabetes mellitus was the most common, 
aecting 210 patients (41.6%), followed by hypertension in 197 
patients (39.0%) and hyperlipidemia in 193 patients (38.2%). 
Regarding patient residence, 81 patients (16.0%) lived alone, and 

244 patients (48.3%) lived in the city. The baseline demographics, 
along with the results of univariate and multivariate analyses, are 
presented in Table 1. 

Predictors screened by LASSO regression 

Using PSD as the dependent variable, LASSO regression with 
10-fold cross-validation identified six key predictors from the initial 
candidate variables: smoking, age, VAS 1 month postoperative, 
anxiety 1 month postoperative, living alone, and living in the 
city (Figures 2A, B). These findings highlight the key risk factors 
associated with the development of PSD in post-TKA patients, 
which can assist in clinical decision-making and guide targeted 
interventions. 

Model performance 

The performance of ten ML models was evaluated on the test 
set, with AUC values ranging from 0.666 to 0.906. Among these 
models, the Logistic model demonstrated the lowest AUC, while 
the GBM model achieved the highest AUC, indicating superior 
discriminative ability. In terms of accuracy, the Logistic model 
had the lowest value at 0.675, while the XGBoost model achieved 
the highest accuracy at 0.874. For sensitivity, the AdaBoost model 
scored the lowest at 0.576. The GBM and Random Forest models 
achieved the highest sensitivity score of 0.879. For specificity, 
the LightGBM model performed best, achieving a specificity of 
0.906. For precision, the LightGBM model achieved the highest 
score of 0.864. For the F1 score, the Logistic model scored the 
lowest at 0.647, while the Random Forest model achieved the 
highest score at 0.853. Overall, the GBM model demonstrated the 
best discriminative ability among all ten models and performed 
consistently and reliably during 10-fold cross-validation. Therefore, 
the GBM model was selected as the final prediction model (Figure 3 
and Table 2). 

Feature importance 

SHapley Additive Explanations summary plots oered a global 
interpretation of model decisions, visualizing the importance of 
each feature (Figures 4, 5). This analysis confirmed the importance 
of the six LASSO-selected predictors and further quantified their 
eects. The model identified VAS 1 month postoperative and 
age as the most influential factors, followed by anxiety 1 month 
postoperative, living alone, urban residence, and smoking. Overall, 
all identified predictors were risk factors for PSD post-TKA. 

We provided two localized SHAP waterfall plots for individual 
patients to illustrate patient-level interpretations of the final model 
predictions (Figures 6, 7). Figure 6 shows the 28th TKA patient 
in our cohort. In this case, VAS 1 month postoperative (2.6) 
was the most significant risk factor, followed by anxiety 1 month 
postoperative (38) and living alone. Not smoking and not living in 
the city were the most important protective factors. Figure 7 shows 
the 35th TKA patient in our cohort. In this case, VAS 1 month 
postoperative (2.9) was the most significant risk factor, followed by 
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FIGURE 2 

(A) Least Absolute Shrinkage and Selection Operator (LASSO) coefficient path plot: This plot shows how the coefficients of different features change 
as the lambda value increases in a LASSO regression model. As lambda increases, the coefficients of less important features are progressively 
compressed toward zero. Features that reach zero early contribute less to the model, while those that remain non-zero for a longer period are more 
influential, indicating their greater relevance in the prediction task. The plot helps in visualizing which features are selected and retained in the model 
as regularization strength increases. (B) Cross-validation curve for LASSO regression: The plot illustrates the binomial deviance (model error) as a 
function of log (lambda) in a LASSO regression model. The solid curve represents the mean binomial deviance, and the shaded area between the 
dashed lines indicates the range of one standard deviation above and below the mean. The optimal value of log (lambda) is determined where the 
error is minimized, corresponding to the lowest deviance, as indicated by the vertical dashed lines. This curve aids in selecting the best regularization 
parameter for minimizing model error. 

anxiety 1 month postoperative (39), living alone, and living in the 
city. Not smoking was the most important protective factor. 

Subgroup analysis 

We conducted a detailed subgroup analysis of the final GBM 
model to evaluate its fairness and generalizability, focusing on 
social environment and gender factors (Table 3). The model 
demonstrated strong and consistent predictive performance across 
most subgroups, with AUC values consistently above 0.88 in 
gender-based (male/female) and urban residence subgroups. 
However, performance showed variability in the “living alone” 
subgroup (N = 81). This fluctuation is likely due to the small 
sample size in this subgroup, which limited the model’s ability to 
identify stable patterns, combined with a disproportionately high 
percentage of PSD patients (65.4%), which exacerbated the impact 
of class imbalance on model stability. These findings suggest that 
while the model performs reliably overall, caution is warranted 
when applying it to patients living alone. Future validation with 
larger sample sizes is necessary to confirm these results. 

Discussion 

This study aims to develop an ML-based model for predicting 
PSD in patients following TKA. A key innovation of our study is 
the integration of ten dierent machine learning models, which 
oer a multidimensional and comprehensive analytical framework 

to predict and identify the main risk factors for postoperative 
sleep disorders. Using machine learning models, we identify two 
socio-environmental factors—living alone and living in the city—as 
predictors for the first time, factors that have not received adequate 
attention in the existing literature. In addition to these two newly 
identified factors, our study further confirms the importance of 
clinical factors, such as VAS scores, anxiety symptoms, and age, 
in predicting PSD. 

Discovery of innovative 
socio-environmental factors 

This study is the first to highlight the significant role of 
two factors—living alone and living in the city—in predicting 
PSD. Patients living alone lack care and assistance from family 
members after surgery, presenting additional challenges during 
their recovery. The absence of family support, particularly during 
the postoperative recovery period, often makes it diÿcult for 
these patients to manage pain, perform daily activities, and access 
necessary psychological support (38, 40, 41). Patients living alone 
are more likely to feel isolated and anxious, and this emotional 
burden may exacerbate their sleep disorders (39, 42–45). Therefore, 
living alone is not only a sociological factor but also reflects the 
vulnerability of patients’ quality of life and postoperative recovery. 

Patients living in urban areas are exposed to a range of 
environmental stressors, including noise pollution, light pollution, 
and air pollution (46–48). These environmental factors can 
aect patients’ sleep quality in several ways, particularly during 
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FIGURE 3 

Performance of ten machine learning models on a test set. 

TABLE 2 Performance metrics of different machine learning models for predicting PSD. 

Model Accuracy Sensitivity Specificity Precision F1 

Logistic 0.675 0.682 0.671 0.616 0.647 

SVM 0.689 0.727 0.659 0.623 0.671 

GBM 0.834 0.879 0.8 0.773 0.823 

Neural Network 0.808 0.697 0.894 0.836 0.76 

Random Forest 0.868 0.879 0.859 0.829 0.853 

Xgboost 0.874 0.712 0.871 0.652 0.832 

KNN 0.768 0.788 0.753 0.712 0.748 

Adaboost 0.815 0.576 0.775 0.717 0.731 

LightGBM 0.848 0.773 0.906 0.864 0.816 

CatBoost 0.828 0.773 0.871 0.823 0.797 

the postoperative recovery phase (49, 50). Higher noise levels 

and light pollution in urban areas may decrease sleep quality, 

disrupt biological clocks and sleep cycles, and increase the risk 

of PSD (51–54). Additionally, air pollution and the urban heat 

island eect may slow the recovery process and increase the 

incidence of postoperative complications (55, 56). Therefore, the 

living environment plays a significant moderating role in the 

development of PSD after TKA. 

The findings of these social and environmental factors 

highlight that social support and environmental conditions are 

just as important as medical treatment during postoperative 

recovery. Therefore, these factors should be considered when 
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FIGURE 4 

This plot displays a SHAP summary bar chart, ranking each predictor’s average importance in the model’s predictions in descending order. SHAP 
values represent the contribution of each feature to the model’s prediction. Larger SHAP values indicate a higher impact of the feature on the 
prediction, while smaller values suggest a lesser influence. From the plot, it is evident that postoperative VAS score 1 month after surgery has the 
largest impact on the model’s predictions, followed by Age, postoperative anxiety 1 month after surgery, and other features. This plot provides a 
visual understanding of the relative importance of different features in PSD, helping to identify key factors driving the model’s output. 

developing postoperative interventions to ensure a more 
personalized care strategy. 

Validation of clinical factors and the 
benefits of machine learning models 

Besides the two innovative factors—living alone and living in 
the city—our study also confirmed the role of traditional clinical 
factors in predicting postoperative sleep disorders. For example, 
the VAS score (postoperative pain score) is a significant risk factor 
for PSD. High VAS scores are associated with poorly managed 
postoperative pain, and persistent pain not only aects sleep quality 
but may also impact mood and recovery (57–60). Therefore, 
managing postoperative pain is crucial to reducing the risk of PSD. 

Additionally, postoperative anxiety scores are identified as 
significant predictors. Postoperative anxiety exacerbates patients’ 
pain perception and aects their psychological state, thereby 
increasing the incidence of sleep disorders. Our study finds that 
anxiety symptoms are strongly associated with sleep disorders, 
indicating the need for eective management of anxiety symptoms 
in postoperative patients to reduce the risk of sleep disorders. 

Age is another known influencing factor, as patients’ 
physiological conditions and rehabilitation capacity change 

with age. Older patients are at higher risk for comorbidities, such 
as hypertension and diabetes, which increase the incidence of 
postoperative sleep disorders (61–63). Our findings confirm the 
importance of age in postoperative sleep disorders and suggest that 
elderly patients require special attention for postoperative care 
and sleep health. 

Applications and benefits of machine 
learning models 

Another innovation in this study is the use of ten machine 
learning models to analyze the data, including Logistic Regression, 
SVM, GBM, and Random Forest. Compared to traditional 
statistical methods, ML handles non-linear relationships and 
extracts key factors from complex multidimensional data. Through 
the comparative evaluation of these models, we identify the GBM 
as the best performer, with high accuracy and sensitivity. 

Our research highlights the significant potential of ML in 
medical prediction, particularly for complex health issues like 
PSD. By integrating various ML algorithms, we can accurately 
identify high-risk patients for PSD and oer personalized clinical 
intervention recommendations. For instance, using our model, 
clinicians can identify high-risk patients early and implement 
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FIGURE 5 

This SHAP summary plot visualizes the influence of key features on the GBM model’s prediction of PSD. Positive SHAP values indicate an increase in 
the predicted risk for PSD, whereas negative SHAP values suggest a decrease in risk. For continuous features (e.g., VAS 1 month after surgery, Age, 
Anxiety 1 month after surgery), feature values are color-coded from yellow (low) to purple (high). Generally, higher feature values correspond to a 
stronger influence on the model’s prediction, with higher VAS scores and Age increasing the predicted risk for PSD. For categorical features (e.g., live 
alone, Live in the city, smoke), the presence of the feature is represented by yellow (high), and the absence by purple (low), indicating their influence 
on the predicted outcome. Features with higher SHAP values have a more substantial impact on the model’s output, highlighting their importance in 
predicting PSD. 

appropriate management strategies, such as pain control, anxiety 
management, and adjustments to the living environment. 

Clinical application and deployment 

The findings of this study have significant implications for 
clinical practice. The predictive model can be integrated into 
the preoperative assessment process for TKA patients. By using 
readily available clinical and social data, clinicians can identify 
patients at high risk for PSD prior to surgery, enabling proactive 
and personalized management strategies. For example, high-risk 
patients can be referred to prehabilitation programs focused on 
pain and anxiety management and oered counseling on sleep 
hygiene. Postoperatively, these patients can be monitored more 
closely, and non-pharmacological interventions (e.g., minimizing 
nighttime disruptions, cognitive behavioral therapy for insomnia) 
can be started early. 

Importantly, our model identifies modifiable risk factors, such 
as postoperative VAS and anxiety, suggesting that PSD is a largely 
preventable complication. The model should not be viewed as a 
deterministic prognosis but as a tool for risk stratification that 

identifies specific areas for intervention. By eectively managing 
pain and addressing anxiety during the perioperative period, the 
incidence and severity of PSD can be significantly reduced. This 
model represents a shift from reactive treatment to proactive 
prevention, providing a pathway for improving postoperative 
care and outcomes. 

Although the ML model shows promise, its successful 
deployment in clinical practice requires several key considerations. 
First, the model must be integrated into existing clinical workflows 
and decision-making systems to facilitate its use by healthcare 
professionals. Training and adaptation to various clinical settings 
are essential for eective use. 

From a technical standpoint, the model should be scalable and 
capable of processing large volumes of patient data in real-time 
without excessive computational requirements. It is also crucial to 
validate the model across various hospitals and patient populations 
to ensure its generalizability and applicability. 

While this study oers significant innovative value, several 
limitations should be considered to contextualize the findings 
and guide future research. First, the single-center, retrospective 
design, while providing a robust initial dataset, may limit the 
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FIGURE 6 

A local SHAP waterfall plot for the 28th TKA patient. This plot 
illustrates the contribution of each feature to the final prediction for 
the postoperative sleep disorder model. The length of each bar 
represents the impact of each feature on the prediction, with red 
bars indicating a decrease in predicted probability and yellow bars 
indicating an increase. For this specific patient, the VAS 1 month 
postoperative value has the greatest negative impact, followed by 
anxiety 1 month postoperative. Living alone, non-smoking, and not 
living in cities are important protective factors, all of which 
contribute to the model’s output. This example demonstrates how 
the model’s prediction is shaped by different factors, emphasizing 
the importance of VAS, anxiety, and living alone in influencing the 
patient’s risk prediction. 

generalizability of our model to other healthcare settings and 
patient populations. This design also carries an inherent risk 
of unmeasured confounders. Therefore, external validation in 
multi-center, prospective cohorts is a necessary next step. Second, 
the predictive scope of our model is limited by the variables 
available in our dataset. While we include a range of clinical 
and socio-environmental factors, other potentially influential 
variables, such as genetic predispositions, detailed psychosocial 
characteristics, and environmental factors, are not accounted 
for. Furthermore, the lack of long-term follow-up data beyond 

FIGURE 7 

A local SHAP waterfall plot for the 35th TKA patient’s prediction. 
This plot illustrates the contribution of each feature to the final 
prediction in the postoperative sleep disorder model. The length of 
each bar represents the impact of each feature on the prediction, 
with red bars indicating a decrease in predicted probability and 
yellow bars indicating an increase. For this specific patient, the VAS 
1 month postoperative value has the greatest negative impact, 
followed by anxiety 1 month postoperative, living alone, living in the 
city, and age. Non-smoking is an important protective factor, all of 
which contribute to the model’s output. This example highlights 
how VAS, anxiety, and smoking influence the model’s prediction of 
the patient’s risk for postoperative sleep disorders. 

1 month limits our understanding of the model’s ability to 
predict persistent sleep disturbances. Future studies incorporating 
these omitted factors and longer-term outcomes are crucial for 
enhancing the model’s comprehensiveness and clinical relevance. 
Finally, in terms of model evaluation, our analysis primarily 
focuses on discriminative performance (the ability to distinguish 
between PSD and non-PSD patients). We do not formally assess 
model calibration, which measures the accuracy of predicted risk 
probabilities. As calibration is a key metric for evaluating the 
clinical usefulness of a predictive model, investigating it remains 

TABLE 3 Performance of the final GBM model across different patient subgroups. 

Subgroup AUC Accuracy Sensitivity Specificity Precision F1 

Live in the city 

Yes 0.910 0.840 0.885 0.805 0.780 0.829 

No 0.901 0.828 0.873 0.802 0.766 0.816 

Live alone 

Yes 0.870 0.790 0.820 0.770 0.740 0.778 

No 0.912 0.842 0.885 0.810 0.782 0.883 

Gender 

Female 0.902 0.831 0.875 0.798 0.770 0.819 

Male 0.911 0.839 0.884 0.805 0.781 0.829 
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an important area for future work. Additionally, despite our 
eorts to conduct subgroup analyses, potential biases arising from 
imbalances in sociodemographic factors may persist, aecting 
model performance. Further validation in larger and more 
diverse populations is recommended to ensure fairness and 
generalizability. 

Conclusion 

This study developed a ML-based model for predicting PSD 
in patients following TKA. By analyzing factors such as age, 
smoking history, VAS score, and anxiety score, we identified key 
predictors of PSD. The GBM model showed the best predictive 
eÿcacy, with high accuracy and sensitivity. We further enhanced 
the model’s interpretability using SHAP methodology, enabling 
clinicians to visualize the specific contribution of each factor 
to the prediction, facilitating preoperative risk stratification and 
personalized interventions. 

Additionally, our study identified two socio-environmental 
factors—living alone and living in the city—that have not 
been suÿciently explored in the literature. Patients living alone 
face greater postoperative challenges due to lack of family 
support, while those living in urban areas are more exposed to 
environmental stressors, such as noise and light pollution, which 
exacerbate the risk of PSD. These findings oer new insights for 
clinical interventions, emphasizing the importance of social and 
environmental factors in postoperative care. 

Future studies should validate this model across diverse 
populations, expand its applicability, and incorporate 
additional factors such as genetic background and long-
term follow-up data to enhance its predictive ability and 
clinical value. 
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