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Osteosarcoma is the most common primary malignant bone tumor in adolescents 
and young adults, marked by genomic instability and a high rate of lung metastasis. 
While surgery and intensive chemotherapy have improved survival for localized 
disease, outcomes for recurrent or metastatic cases remain poor, with limited 
progress in recent decades. In response, targeted therapies have emerged, focusing 
on key oncogenic pathways and tumor microenvironmental factors. Recent clinical 
studies have explored tyrosine kinase inhibitors (e.g., sorafenib, regorafenib), 
PI3K/Akt/mTOR inhibitors, angiogenesis modulators (e.g., apatinib), and immune 
checkpoint inhibitors. Although some agents achieve transient disease stabilization 
or partial responses, their overall efficacy is constrained by tumor heterogeneity, 
rapid resistance, and the lack of predictive biomarkers. Notably, combination 
regimens—such as VEGF and mTOR inhibition or TKI with immunotherapy—have 
shown promise in preclinical and early clinical trials. Future directions emphasize 
precision medicine approaches, including liquid biopsies and molecular profiling 
to guide therapy selection. Nanotechnology-based delivery systems are also 
under development to enhance tumor targeting and reduce systemic toxicity. 
However, the rarity of osteosarcoma, trial design limitations, and treatment-related 
toxicities remain critical barriers. This review synthesizes current evidence and 
underscores the need for biomarker-driven, multimodal strategies to overcome 
resistance and improve long-term outcomes in osteosarcoma management.
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1 Introduction

Osteosarcoma constitutes the most prevalent form of malignant bone tumor and 
predominantly affects children, adolescents, and young adults. This neoplasm accounts for 
approximately 20% of all primary bone malignancies (1, 2). It is characterized by aggressive 
growth, significant genomic instability, and a high propensity for pulmonary metastasis, which 
remains the leading cause of mortality (3, 4). Clinically, osteosarcoma exhibits considerable 
heterogeneity at both genetic and histopathological levels, complicating diagnosis, risk 
stratification, and response prediction (5). Emerging evidence associates this heterogeneity 
with the tumor microenvironment (TME), where variable immune infiltration and stromal 
interactions are central drivers of resistance (3, 5–7). The standard treatment for osteosarcoma 
typically involves surgical resection in conjunction with multi-agent chemotherapy regimens, 
including methotrexate, doxorubicin, cisplatin, and ifosfamide, which have been employed 
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since the 1980s. These interventions have increased survival rates for 
patients with localized disease to 60%–70%. However, individuals 
with recurrent, chemoresistant, or metastatic osteosarcoma continue 
to face poor long-term survival rates, which remain below 20% (8). 
Despite extensive research endeavors, overall survival rates have not 
markedly improved, highlighting the pressing need for innovative 
therapeutic strategies beyond traditional chemotherapy (9). Recent 
advancements in genetic and molecular research have elucidated 
critical pathways involved in osteosarcoma pathogenesis, such as the 
PI3K/Akt/mTOR axis, VEGF-mediated angiogenesis, and PD-1/
PD-L1 signaling. Furthermore, elements of the TME, including 
immune suppression and stromal support, significantly affect 
therapeutic response (10). These insights have propelled the 
development of targeted agents aimed at inhibiting tumor 
proliferation, disrupting angiogenesis, or enhancing antitumor 
immunity. Various classes of targeted therapies are currently under 
investigation for osteosarcoma. Tyrosine kinase inhibitors disrupt 
signaling pathways that promote tumor growth and angiogenesis. 
mTOR inhibitors impede intracellular growth and survival 
mechanisms. Antiangiogenic agents inhibit the tumor vasculature, 
while immune checkpoint inhibitors aim to enhance antitumor 
immune responses (11). Clinical studies have demonstrated that these 
agents can occasionally induce disease stabilization or partial 
responses; however, their efficacy is generally limited and transient, 
primarily due to the emergence of resistance and the absence of 
reliable predictive biomarkers (12). Ongoing research is focused on 
elucidating the impact of intratumoral and microenvironmental 
heterogeneity on therapeutic outcomes. Contemporary strategies 
include combination regimens, biomarker-driven patient selection, 
and the development of advanced drug delivery platforms to achieve 
more durable clinical benefits (13, 14). This review synthesizes recent 
clinical evidence on targeted therapies for osteosarcoma. It 
encompasses the main results from clinical trials, elucidates the 
rationale behind different treatment strategies, and discusses current 
challenges, particularly how genetic and environmental factors in 
tumors affect treatment response (15).

2 Current targeted therapeutic 
approaches in osteosarcoma

Over the past decade, a variety of targeted therapeutic strategies 
have been investigated in osteosarcoma, aiming to disrupt tumor 
signaling, angiogenesis, and immune evasion. The most extensively 
studied pharmacological agents include tyrosine kinase inhibitors 
(TKIs), inhibitors of the PI3K/Akt/mTOR pathway, and 
angiogenesis modulators.

2.1 Tyrosine kinase inhibitors (TKIs)

TKIs inhibit multiple receptor tyrosine kinases involved in the 
growth, survival, and angiogenesis of osteosarcoma. Sorafenib, which 
targets VEGFR, PDGFR, and RAF, has demonstrated modest 
antitumor activity in heavily pretreated patients, primarily stabilizing 
the disease in a subset of individuals (16). When administered in 
combination with everolimus, it enhanced progression-free survival 
compared to sorafenib alone, indicating the potential of dual pathway 

inhibition (17). Regorafenib has demonstrated more consistent 
outcomes. In the SARC024 phase II trial, it significantly prolonged 
progression-free survival compared to placebo in patients with 
metastatic osteosarcoma (18), thereby establishing regorafenib as one 
of the most clinically validated tyrosine kinase inhibitors (TKIs). 
Cabozantinib, which targets MET and VEGFR2, has also shown 
efficacy in patients with refractory disease, including those with 
pulmonary metastases (19). Other TKIs, such as pazopanib and 
cediranib, have been investigated, resulting in partial responses and 
disease stabilization; however, durable results remain limited (20). 
Collectively, these trials suggest that TKIs can provide temporary 
disease control but are inhibited by tumor heterogeneity and the 
development of resistance (21).

2.2 PI3K/Akt/mTOR pathway inhibitors

The PI3K/Akt/mTOR signaling pathway is often dysregulated in 
osteosarcoma, facilitating cellular proliferation, survival, and 
resistance to therapeutic agents (22). Everolimus, an mTOR inhibitor, 
has been assessed both as a monotherapy and in combination with 
sorafenib. While monotherapy offers limited advantages, combination 
therapies have shown improved disease control. Preclinical 
investigations indicate that dual inhibition of PI3K and mTOR may 
circumvent adaptive resistance, especially in tumors characterized by 
PTEN loss or PI3K mutations (23). However, the clinical application 
of these findings is hindered by challenges related to toxicity and 
efficacy. Current research endeavors are directed toward identifying 
predictive biomarkers, such as activation profiles and genetic 
alterations, to enhance patient selection (24). This reflects a shift 
toward precision oncology in osteosarcoma.

2.3 Anti-Angiogenic agents

Angiogenesis is a key driver of osteosarcoma progression and 
metastasis, rendering it a significant therapeutic target. Apatinib, a 
VEGFR2 inhibitor, has demonstrated promising activity in advanced 
osteosarcoma, including partial responses and prolonged disease 
stabilization, in phase II studies (25). Similar, albeit modest, benefits 
have been observed with pazopanib and cediranib (26). Resistance to 
VEGFR inhibition develops rapidly as tumors activate alternative 
pro-angiogenic pathways or adopt invasive growth strategies (27). To 
address this issue, angiogenesis inhibitors have been combined with 
other therapeutic modalities, including checkpoint inhibitors. The 
normalization of tumor vasculature through VEGFR blockade may 
enhance immune cell infiltration, thereby potentially increasing the 
efficacy of immunotherapy (28).

2.4 Immune checkpoint inhibitors

Osteosarcoma is renowned for its immunogenic characteristics; 
however, clinical trials involving immune checkpoint inhibitors have 
predominantly yielded unsatisfactory results. Pembrolizumab, an 
anti–PD–1 antibody, was evaluated in patients with relapsed and 
refractory osteosarcoma, yet exhibited limited efficacy, with most 
patients experiencing disease progression (29). The obstacles to 
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achieving success include an immunosuppressive TME, a low tumor 
mutational burden, and the absence of biomarkers to identify 
potential responders (11). Current research is investigating 
combination strategies, such as the integration of tyrosine kinase 
inhibitors (TKIs) with checkpoint inhibitors, chemotherapy, or 
radiotherapy, to enhance immune activation. Preclinical studies 
suggest that TKIs, such as regorafenib, may facilitate vascular 
remodeling to improve T-cell infiltration (30). Furthermore, insights 
into the TME, including immune suppression and microbial 
heterogeneity, propose novel strategies for sensitizing tumors to 
checkpoint blockade (31, 32). Furthermore, anti-angiogenic drugs 
may contribute to the therapeutic management of osteosarcoma by 
targeting additional molecular pathways (Figure  1). Table  1 
summarizes a comprehensive overview of targeted therapies and 
immune checkpoint inhibitors in cases of relapsed or advanced 
osteosarcoma, detailing drug targets, trial phases, patient populations, 
clinical outcomes, and key references.

3 Emerging strategies and future 
directions

Targeted therapies offer certain advantages in the management of 
osteosarcoma; however, sustained responses remain infrequent due to 
intratumoral heterogeneity, redundant signaling pathways, and 

mechanisms of immune evasion. To enhance clinical outcomes, 
emerging strategies focus on combination therapies, biomarker-
guided treatment selection, and the development of novel drug 
delivery systems.

3.1 Rational combination therapies

Monotherapies utilizing TKIs, angiogenesis inhibitors, or 
immune checkpoint inhibitors typically result in transient responses. 
Rational combinations aim to target multiple pathways. For example, 
the combination of sorafenib with everolimus has demonstrated 
superior progression-free survival compared to sorafenib alone, 
underscoring the value of dual blockade (37). Similarly, the 
combination of regorafenib with PD-1 inhibitors is under 
investigation to enhance immune activation by remodeling the tumor 
vasculature and facilitating T-cell infiltration (30). Preclinical 
evidence also supports the combination of mTOR inhibitors with 
chemotherapy, as the suppression of survival pathways enhances 
chemosensitivity (38). Radiotherapy combined with checkpoint 
blockade has been proposed to induce immunogenic cell death, 
thereby potentiating immune responses (39). These examples 
collectively demonstrate that effective treatment may necessitate the 
coordinated targeting of both oncogenic signaling and immune 
evasion pathways (40).

FIGURE 1

Mechanistic insights into the osteosarcoma targeted anti-angiogenesis therapy. Reproduced from “Mechanistic insights into the OS targeted anti-
angiogenesis therapy” by Liu et al. (33), licensed under CC BY 4.0.
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3.2 Biomarker-guided and precision 
oncology approaches

The lack of predictive biomarkers constitutes a notable limitation 
of this study. Potential candidates, including PTEN loss, PI3K 
mutations, VEGF expression, and PD-L1 status, have yet to 
be  validated for routine application (41). New methodologies are 
emerging in this field. Liquid biopsy and ctDNA profiling offer real-
time monitoring of clonal evolution and therapeutic resistance (42, 
43). Systems-level approaches, such as dynamic network biomarkers 
applied in thyroid and breast cancers, may capture early molecular 
shifts predictive of response and could be adapted for osteosarcoma 
(44). Additionally, heterogeneity in the TME, including immune and 
microbial diversity, represents a rich source of biomarkers linking 
stromal biology to therapeutic outcomes (45). These strategies align 
osteosarcoma research with broader precision-oncology initiatives 
(46, 47).

3.3 Novel drug delivery platforms

The systemic delivery of targeted drugs is impeded by poor 
bioavailability, toxicity, and limited tumor penetration. 
Nanotechnology-based carriers have been developed to address these 
challenges. Liposomal formulations, polymeric nanoparticles, and 
bone-targeted delivery systems can enhance drug accumulation in 
tumors while reducing systemic side effects (48, 49). For instance, 
encapsulating TKIs, such as sorafenib, in nanoparticles improves 
pharmacokinetics and safety, whereas nanocarrier delivery of 
checkpoint inhibitors enhances immune cell infiltration and activity. 
Multifunctional platforms that co-deliver cytotoxic and 
immunomodulatory agents are also being tested, offering a route to 
address tumor growth and immune suppression simultaneously 
(50, 51).

3.4 Future clinical directions

The convergence of molecular oncology, immunotherapy, and 
nanotechnology suggests that osteosarcoma therapy will increasingly 

rely on multimodal approaches. Adaptive trial designs, such as basket 
and umbrella trials, have the potential to incorporate real-time molecular 
profiling to enhance the allocation of therapies (52). Additionally, the 
integration of biomarkers derived from the TME, including immune 
signatures, exosomal profiles, and microbial heterogeneity, may improve 
patient selection (53). To overcome the current survival plateau, it is 
imperative to foster collaboration among oncologists, molecular 
biologists, bioengineers, and computational scientists to translate 
laboratory advancements into sustainable clinical outcomes effectively. 
Emerging therapeutic approaches, such as gene therapy and oncolytic 
virotherapy, are currently under investigation. Despite significant 
advancements, the prognosis for osteosarcoma, particularly in cases 
involving metastasis, remains poor. This underscores the urgent need for 
continued research and the development of innovative therapeutic 
strategies to enhance patient outcomes (54) (Figure 2).

4 Challenges and limitations

Despite notable progress in the clinical exploration of targeted 
therapies, their effectiveness in the treatment of osteosarcoma remains 
limited by several fundamental challenges. These challenges stem not 
only from the biological complexities inherent to the disease but also 
from issues related to trial design, biomarker availability, and 
safety considerations.

4.1 Tumor heterogeneity and genomic 
complexity

Osteosarcoma is characterized by significant genomic instability, 
including chromothripsis, structural rearrangements, and extensive 
copy-number alterations (55). This instability contributes to 
considerable intratumoral heterogeneity, with subclones possessing 
distinct oncogenic drivers co-existing within the same tumor. Such 
diversity results in highly variable therapeutic responses, thereby 
complicating the development of standardized treatment protocols 
(56). Unlike tumors driven by recurrent “trunk” mutations (e.g., 
EGFR in lung cancer), osteosarcoma lacks consistent and targetable 
mutations. A network of signaling redundancies that enable tumor 

TABLE 1  Selected clinical trials of targeted agents and immune checkpoint inhibitors in relapsed or advanced osteosarcoma.

Drug Targets Phase Setting/patient 
population

Outcome/findings References

Sorafenib
VEGFR, PDGFR, 

RAF
II

Relapsed/metastatic 

osteosarcoma

Stable disease in subset; 

modest activity

Liu et al. (33)

Sorafenib VEGFR II
Relapsed/metastatic 

osteosarcoma

Improved PFS vs. 

monotherapy

Flaherty et al.(34)

Regorafenib
VEGFR, FGFR, RET, 

KIT
II (SARC024)

Advanced/metastatic 

osteosarcoma

Significant PFS benefit vs. 

placebo

Davis et al. (18)

Cabozantinib MET, VEGFR2 II
Refractory osteosarcoma 

(lung)

Promising activity; 

manageable safety

Ruiz-Morales and Heng (19)

Apatinib VEGFR2 II Advanced osteosarcoma
Partial responses; disease 

control

Tian et al. (35)

Pembrolizumab PD-1 II
Relapsed/refractory 

osteosarcoma

Minimal efficacy; immune 

evasion

Al Hadidi and Lee (36)
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cells to circumvent the inhibition of a single pathway characterizes the 
disease. This complexity poses a challenge to the application of a 
“one-size-fits-all” therapeutic model and underscores the necessity for 
biomarker-guided precision strategies (57).

4.2 Development of drug resistance

Resistance to targeted therapies continues to pose a significant 
clinical challenge. Both intrinsic resistance, which exists before treatment, 
and acquired resistance, which develops during therapy, have been 
documented. These resistance mechanisms encompass compensatory 
activation of parallel signaling pathways, epigenetic reprogramming, and 
alterations in the TME (58). For instance, while VEGFR inhibition with 
agents such as apatinib or sorafenib may initially suppress angiogenesis, 
tumors can rapidly adapt by upregulating alternative pro-angiogenic 
factors or adopting invasive growth patterns (59). Drug efflux 
transporters and metabolic reprogramming contribute to this resistance. 
Additionally, the immunosuppressive microenvironment, characterized 
by regulatory T cells, myeloid-derived suppressor cells, and tumor-
associated macrophages, can undermine the effectiveness of checkpoint 
inhibitors (60). The elucidation of these resistance mechanisms highlights 
the imperative for employing combination regimens and interventions 
that specifically target the microenvironment.

4.3 Lack of predictive biomarkers

A significant limitation in the field of osteosarcoma research is the 
absence of validated predictive biomarkers. Although various markers, 

including PTEN loss, PI3K mutations, VEGF overexpression, and 
PD-L1 status, have been investigated, none have been standardized for 
clinical decision-making (61). This gap impedes the ability to identify 
patients who are most likely to benefit from specific therapies, 
resulting in inconsistent and often unsatisfactory outcomes. Recent 
investigations into dynamic network biomarkers have demonstrated 
potential in detecting early molecular changes predictive of 
therapeutic response. Furthermore, the application of liquid biopsies 
and circulating tumor DNA (ctDNA) as real-time monitoring tools 
presents an opportunity to observe clonal evolution and emerging 
resistance during treatment (44). Nevertheless, these methodologies 
remain predominantly experimental and necessitate validation in 
larger, multicenter cohorts.

4.4 Limitations of clinical trials

The rarity of osteosarcoma poses considerable challenges in the 
design and implementation of rigorous clinical trials for its treatment. 
Most studies are single-arm phase II trials with limited patient 
enrollment, which restricts their statistical power and generalizability 
(62). Cross-trial comparisons are further complicated by variations in 
eligibility criteria, treatment protocols, and endpoints (63). 
Additionally, traditional trial endpoints, such as progression-free 
survival, may not adequately reflect the benefits of targeted or 
immunotherapeutic agents, especially when stable disease, rather than 
tumor reduction, is the primary outcome (64). Adaptive trial designs 
and international collaborative consortia are urgently needed to 
address these limitations and accelerate the translation of promising 
therapies into clinical practice.

FIGURE 2

Roadmap of emerging targeted therapeutic strategies for osteosarcoma. Reproduced from “Current advancement in therapies for the treatment of 
osteosarcoma” by Morya et al. (54), licensed under CC BY-NC-ND 4.0.
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4.5 Safety and toxicity concerns

While targeted therapies are generally perceived as more selective 
than cytotoxic chemotherapy, they are not without associated 
toxicities. Tyrosine kinase inhibitors (TKIs), such as regorafenib and 
cabozantinib, are linked to hypertension, hand–foot syndrome, 
gastrointestinal disturbances, and fatigue, often necessitating dose 
reduction or treatment discontinuation (65). Similarly, angiogenesis 
inhibitors can induce vascular complications, including bleeding and 
thrombosis. Although immune checkpoint inhibitors are typically well 
tolerated, they may result in immune-related adverse events, such as 
colitis, pneumonitis, endocrinopathies, and hepatitis. The toxicities 
associated with treatment are particularly concerning in pediatric and 
adolescent patients, who constitute the majority of osteosarcoma cases 
(66). Effective management of these adverse events necessitates 
multidisciplinary expertise and meticulous monitoring, which may 
restrict their widespread implementation in resource-limited settings. 
The challenges highlighted emphasize the complexity of advancing 
targeted therapies for osteosarcoma. Addressing these challenges 
requires a deeper understanding of the disease’s biology, the 
identification of reliable biomarkers, the development of innovative 
clinical trial designs, and the enhancement of strategies to manage 
treatment-related toxicities. Collaborative efforts across these domains 
are essential to improving the efficacy of targeted interventions for this 
rare and aggressive malignancy (67).

5 Conclusion

Osteosarcoma remains one of the most challenging malignancies 
to manage in pediatric and adolescent populations. Although surgery 
and chemotherapy constitute the standard treatments, survival rates 
for relapsed or metastatic cases have not significantly improved in 
recent decades. The introduction of targeted agents, such as tyrosine 
kinase inhibitors, mTOR inhibitors, angiogenesis modulators, and 
immune checkpoint inhibitors, has expanded therapeutic options 
and demonstrated disease stabilization in certain patients. However, 
these benefits are constrained by tumor heterogeneity, the rapid 
emergence of resistance, a lack of predictive biomarkers, and 
complexities in clinical trial design. Furthermore, treatment-related 
toxicities present substantial challenges, particularly for younger 
patients. Current evidence underscores both the potential and the 
limitations of targeted therapies for osteosarcoma, highlighting the 

need for innovative strategies that incorporate tumor biology and 
microenvironmental factors.
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