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Osteosarcoma is the most common primary malignant bone tumor in adolescents
and young adults, marked by genomic instability and a high rate of lung metastasis.
While surgery and intensive chemotherapy have improved survival for localized
disease, outcomes for recurrent or metastatic cases remain poor, with limited
progress in recent decades. In response, targeted therapies have emerged, focusing
on key oncogenic pathways and tumor microenvironmental factors. Recent clinical
studies have explored tyrosine kinase inhibitors (e.g., sorafenib, regorafenib),
PIZK/Akt/mTOR inhibitors, angiogenesis modulators (e.g., apatinib), and immune
checkpoint inhibitors. Although some agents achieve transient disease stabilization
or partial responses, their overall efficacy is constrained by tumor heterogeneity,
rapid resistance, and the lack of predictive biomarkers. Notably, combination
regimens—such as VEGF and mTOR inhibition or TKI with immunotherapy—have
shown promise in preclinical and early clinical trials. Future directions emphasize
precision medicine approaches, including liquid biopsies and molecular profiling
to guide therapy selection. Nanotechnology-based delivery systems are also
under development to enhance tumor targeting and reduce systemic toxicity.
However, the rarity of osteosarcoma, trial design limitations, and treatment-related
toxicities remain critical barriers. This review synthesizes current evidence and
underscores the need for biomarker-driven, multimodal strategies to overcome
resistance and improve long-term outcomes in osteosarcoma management.
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1 Introduction

Osteosarcoma constitutes the most prevalent form of malignant bone tumor and
predominantly affects children, adolescents, and young adults. This neoplasm accounts for
approximately 20% of all primary bone malignancies (1, 2). It is characterized by aggressive
growth, significant genomic instability, and a high propensity for pulmonary metastasis, which
remains the leading cause of mortality (3, 4). Clinically, osteosarcoma exhibits considerable
heterogeneity at both genetic and histopathological levels, complicating diagnosis, risk
stratification, and response prediction (5). Emerging evidence associates this heterogeneity
with the tumor microenvironment (TME), where variable immune infiltration and stromal
interactions are central drivers of resistance (3, 5-7). The standard treatment for osteosarcoma
typically involves surgical resection in conjunction with multi-agent chemotherapy regimens,
including methotrexate, doxorubicin, cisplatin, and ifosfamide, which have been employed
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since the 1980s. These interventions have increased survival rates for
patients with localized disease to 60%-70%. However, individuals
with recurrent, chemoresistant, or metastatic osteosarcoma continue
to face poor long-term survival rates, which remain below 20% (8).
Despite extensive research endeavors, overall survival rates have not
markedly improved, highlighting the pressing need for innovative
therapeutic strategies beyond traditional chemotherapy (9). Recent
advancements in genetic and molecular research have elucidated
critical pathways involved in osteosarcoma pathogenesis, such as the
PI3K/Akt/mTOR axis, VEGF-mediated angiogenesis, and PD-1/
PD-L1 signaling. Furthermore, elements of the TME, including
immune suppression and stromal support, significantly affect
therapeutic response (10). These insights have propelled the
development of targeted agents aimed at inhibiting tumor
proliferation, disrupting angiogenesis, or enhancing antitumor
immunity. Various classes of targeted therapies are currently under
investigation for osteosarcoma. Tyrosine kinase inhibitors disrupt
signaling pathways that promote tumor growth and angiogenesis.
mTOR inhibitors impede intracellular growth and survival
mechanisms. Antiangiogenic agents inhibit the tumor vasculature,
while immune checkpoint inhibitors aim to enhance antitumor
immune responses (11). Clinical studies have demonstrated that these
agents can occasionally induce disease stabilization or partial
responses; however, their efficacy is generally limited and transient,
primarily due to the emergence of resistance and the absence of
reliable predictive biomarkers (12). Ongoing research is focused on
elucidating the impact of intratumoral and microenvironmental
heterogeneity on therapeutic outcomes. Contemporary strategies
include combination regimens, biomarker-driven patient selection,
and the development of advanced drug delivery platforms to achieve
more durable clinical benefits (13, 14). This review synthesizes recent
clinical evidence on targeted therapies for osteosarcoma. It
encompasses the main results from clinical trials, elucidates the
rationale behind different treatment strategies, and discusses current
challenges, particularly how genetic and environmental factors in
tumors affect treatment response (15).

2 Current targeted therapeutic
approaches in osteosarcoma

Over the past decade, a variety of targeted therapeutic strategies
have been investigated in osteosarcoma, aiming to disrupt tumor
signaling, angiogenesis, and immune evasion. The most extensively
studied pharmacological agents include tyrosine kinase inhibitors
(TKIs), of the PI3K/Akt/mTOR pathway, and
angiogenesis modulators.

inhibitors

2.1 Tyrosine kinase inhibitors (TKls)

TKIs inhibit multiple receptor tyrosine kinases involved in the
growth, survival, and angiogenesis of osteosarcoma. Sorafenib, which
targets VEGFR, PDGFR, and RAF, has demonstrated modest
antitumor activity in heavily pretreated patients, primarily stabilizing
the disease in a subset of individuals (16). When administered in
combination with everolimus, it enhanced progression-free survival
compared to sorafenib alone, indicating the potential of dual pathway
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inhibition (17). Regorafenib has demonstrated more consistent
outcomes. In the SARC024 phase II trial, it significantly prolonged
progression-free survival compared to placebo in patients with
metastatic osteosarcoma (18), thereby establishing regorafenib as one
of the most clinically validated tyrosine kinase inhibitors (TKIs).
Cabozantinib, which targets MET and VEGFR2, has also shown
efficacy in patients with refractory disease, including those with
pulmonary metastases (19). Other TKIs, such as pazopanib and
cediranib, have been investigated, resulting in partial responses and
disease stabilization; however, durable results remain limited (20).
Collectively, these trials suggest that TKIs can provide temporary
disease control but are inhibited by tumor heterogeneity and the
development of resistance (21).

2.2 PI3K/Akt/mTOR pathway inhibitors

The PI3K/Akt/mTOR signaling pathway is often dysregulated in
osteosarcoma, facilitating cellular proliferation, survival, and
resistance to therapeutic agents (22). Everolimus, an mTOR inhibitor,
has been assessed both as a monotherapy and in combination with
sorafenib. While monotherapy offers limited advantages, combination
therapies have shown improved disease control. Preclinical
investigations indicate that dual inhibition of PI3K and mTOR may
circumvent adaptive resistance, especially in tumors characterized by
PTEN loss or PI3K mutations (23). However, the clinical application
of these findings is hindered by challenges related to toxicity and
efficacy. Current research endeavors are directed toward identifying
predictive biomarkers, such as activation profiles and genetic
alterations, to enhance patient selection (24). This reflects a shift
toward precision oncology in osteosarcoma.

2.3 Anti-Angiogenic agents

Angiogenesis is a key driver of osteosarcoma progression and
metastasis, rendering it a significant therapeutic target. Apatinib, a
VEGFR2 inhibitor, has demonstrated promising activity in advanced
osteosarcoma, including partial responses and prolonged disease
stabilization, in phase II studies (25). Similar, albeit modest, benefits
have been observed with pazopanib and cediranib (26). Resistance to
VEGEFR inhibition develops rapidly as tumors activate alternative
pro-angiogenic pathways or adopt invasive growth strategies (27). To
address this issue, angiogenesis inhibitors have been combined with
other therapeutic modalities, including checkpoint inhibitors. The
normalization of tumor vasculature through VEGFR blockade may
enhance immune cell infiltration, thereby potentially increasing the
efficacy of immunotherapy (28).

2.4 Immune checkpoint inhibitors

Osteosarcoma is renowned for its immunogenic characteristics;
however, clinical trials involving immune checkpoint inhibitors have
predominantly yielded unsatisfactory results. Pembrolizumab, an
anti-PD-1 antibody, was evaluated in patients with relapsed and
refractory osteosarcoma, yet exhibited limited efficacy, with most
patients experiencing disease progression (29). The obstacles to
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achieving success include an immunosuppressive TME, a low tumor
mutational burden, and the absence of biomarkers to identify
potential responders (11). Current research is investigating
combination strategies, such as the integration of tyrosine kinase
inhibitors (TKIs) with checkpoint inhibitors, chemotherapy, or
radiotherapy, to enhance immune activation. Preclinical studies
suggest that TKIs, such as regorafenib, may facilitate vascular
remodeling to improve T-cell infiltration (30). Furthermore, insights
into the TME, including immune suppression and microbial
heterogeneity, propose novel strategies for sensitizing tumors to
checkpoint blockade (31, 32). Furthermore, anti-angiogenic drugs
may contribute to the therapeutic management of osteosarcoma by
Table 1
summarizes a comprehensive overview of targeted therapies and

targeting additional molecular pathways (Figure 1).

immune checkpoint inhibitors in cases of relapsed or advanced
osteosarcoma, detailing drug targets, trial phases, patient populations,
clinical outcomes, and key references.

3 Emerging strategies and future
directions

Targeted therapies offer certain advantages in the management of
osteosarcoma; however, sustained responses remain infrequent due to
intratumoral heterogeneity, redundant signaling pathways, and

10.3389/fmed.2025.1699287

mechanisms of immune evasion. To enhance clinical outcomes,
emerging strategies focus on combination therapies, biomarker-
guided treatment selection, and the development of novel drug
delivery systems.

3.1 Rational combination therapies

Monotherapies utilizing TKIs, angiogenesis inhibitors, or
immune checkpoint inhibitors typically result in transient responses.
Rational combinations aim to target multiple pathways. For example,
the combination of sorafenib with everolimus has demonstrated
superior progression-free survival compared to sorafenib alone,
underscoring the value of dual blockade (37). Similarly, the
combination of regorafenib with PD-1 inhibitors is under
investigation to enhance immune activation by remodeling the tumor
vasculature and facilitating T-cell infiltration (30). Preclinical
evidence also supports the combination of mTOR inhibitors with
chemotherapy, as the suppression of survival pathways enhances
chemosensitivity (38). Radiotherapy combined with checkpoint
blockade has been proposed to induce immunogenic cell death,
thereby potentiating immune responses (39). These examples
collectively demonstrate that effective treatment may necessitate the
coordinated targeting of both oncogenic signaling and immune
evasion pathways (40).
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TABLE 1 Selected clinical trials of targeted agents and immune checkpoint inhibitors in relapsed or advanced osteosarcoma.

Targets

Setting/patient
population

Outcome/findings

10.3389/fmed.2025.1699287

References

VEGEFR, PDGFR, Relapsed/metastatic Stable disease in subset; Liu et al. (33)
Sorafenib 1I
RAF osteosarcoma modest activity
Relapsed/metastatic Improved PFS vs. Flaherty et al.(34)
Sorafenib VEGFR 1I
osteosarcoma monotherapy
VEGEFR, FGFR, RET, Advanced/metastatic Significant PFS benefit vs. Davis et al. (18)
Regorafenib 1II (SARC024)
KIT osteosarcoma placebo
Refractory osteosarcoma Promising activity; Ruiz-Morales and Heng (19)
Cabozantinib MET, VEGFR2 I
(lung) manageable safety
Partial responses; disease Tian et al. (35)
Apatinib VEGFR2 1I Advanced osteosarcoma
control
Relapsed/refractory Minimal efficacy; immune | Al Hadidi and Lee (36)
Pembrolizumab PD-1 1I
osteosarcoma evasion

3.2 Biomarker-guided and precision
oncology approaches

The lack of predictive biomarkers constitutes a notable limitation
of this study. Potential candidates, including PTEN loss, PI3K
mutations, VEGF expression, and PD-L1 status, have yet to
be validated for routine application (41). New methodologies are
emerging in this field. Liquid biopsy and ctDNA profiling offer real-
time monitoring of clonal evolution and therapeutic resistance (42,
43). Systems-level approaches, such as dynamic network biomarkers
applied in thyroid and breast cancers, may capture early molecular
shifts predictive of response and could be adapted for osteosarcoma
(44). Additionally, heterogeneity in the TME, including immune and
microbial diversity, represents a rich source of biomarkers linking
stromal biology to therapeutic outcomes (45). These strategies align
osteosarcoma research with broader precision-oncology initiatives
(46, 47).

3.3 Novel drug delivery platforms

The systemic delivery of targeted drugs is impeded by poor

bioavailability, toxicity, and limited tumor penetration.
Nanotechnology-based carriers have been developed to address these
challenges. Liposomal formulations, polymeric nanoparticles, and
bone-targeted delivery systems can enhance drug accumulation in
tumors while reducing systemic side effects (48, 49). For instance,
encapsulating TKIs, such as sorafenib, in nanoparticles improves
pharmacokinetics and safety, whereas nanocarrier delivery of
checkpoint inhibitors enhances immune cell infiltration and activity.
Multifunctional ~ platforms that co-deliver cytotoxic and
immunomodulatory agents are also being tested, offering a route to
address tumor growth and immune suppression simultaneously

(50, 51).

3.4 Future clinical directions

The convergence of molecular oncology, immunotherapy, and
nanotechnology suggests that osteosarcoma therapy will increasingly
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rely on multimodal approaches. Adaptive trial designs, such as basket
and umbrella trials, have the potential to incorporate real-time molecular
profiling to enhance the allocation of therapies (52). Additionally, the
integration of biomarkers derived from the TME, including immune
signatures, exosomal profiles, and microbial heterogeneity, may improve
patient selection (53). To overcome the current survival plateau, it is
imperative to foster collaboration among oncologists, molecular
biologists, bioengineers, and computational scientists to translate
laboratory advancements into sustainable clinical outcomes effectively.
Emerging therapeutic approaches, such as gene therapy and oncolytic
virotherapy, are currently under investigation. Despite significant
advancements, the prognosis for osteosarcoma, particularly in cases
involving metastasis, remains poor. This underscores the urgent need for
continued research and the development of innovative therapeutic
strategies to enhance patient outcomes (54) (Figure 2).

4 Challenges and limitations

Despite notable progress in the clinical exploration of targeted
therapies, their effectiveness in the treatment of osteosarcoma remains
limited by several fundamental challenges. These challenges stem not
only from the biological complexities inherent to the disease but also
from issues related to trial design, biomarker availability, and
safety considerations.

4.1 Tumor heterogeneity and genomic
complexity

Osteosarcoma is characterized by significant genomic instability,
including chromothripsis, structural rearrangements, and extensive
copy-number alterations (55). This instability contributes to
considerable intratumoral heterogeneity, with subclones possessing
distinct oncogenic drivers co-existing within the same tumor. Such
diversity results in highly variable therapeutic responses, thereby
complicating the development of standardized treatment protocols
(56). Unlike tumors driven by recurrent “trunk” mutations (e.g.,
EGFR in lung cancer), osteosarcoma lacks consistent and targetable
mutations. A network of signaling redundancies that enable tumor
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cells to circumvent the inhibition of a single pathway characterizes the
disease. This complexity poses a challenge to the application of a
“one-size-fits-all” therapeutic model and underscores the necessity for
biomarker-guided precision strategies (57).

4.2 Development of drug resistance

Resistance to targeted therapies continues to pose a significant
clinical challenge. Both intrinsic resistance, which exists before treatment,
and acquired resistance, which develops during therapy, have been
documented. These resistance mechanisms encompass compensatory
activation of parallel signaling pathways, epigenetic reprogramming, and
alterations in the TME (58). For instance, while VEGFR inhibition with
agents such as apatinib or sorafenib may initially suppress angiogenesis,
tumors can rapidly adapt by upregulating alternative pro-angiogenic
factors or adopting invasive growth patterns (59). Drug efflux
transporters and metabolic reprogramming contribute to this resistance.
Additionally, the immunosuppressive microenvironment, characterized
by regulatory T cells, myeloid-derived suppressor cells, and tumor-
associated macrophages, can undermine the effectiveness of checkpoint
inhibitors (60). The elucidation of these resistance mechanisms highlights
the imperative for employing combination regimens and interventions
that specifically target the microenvironment.

4.3 Lack of predictive biomarkers

A significant limitation in the field of osteosarcoma research is the
absence of validated predictive biomarkers. Although various markers,
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including PTEN loss, PI3K mutations, VEGF overexpression, and
PD-L1 status, have been investigated, none have been standardized for
clinical decision-making (61). This gap impedes the ability to identify
patients who are most likely to benefit from specific therapies,
resulting in inconsistent and often unsatisfactory outcomes. Recent
investigations into dynamic network biomarkers have demonstrated
potential in detecting early molecular changes predictive of
therapeutic response. Furthermore, the application of liquid biopsies
and circulating tumor DNA (ctDNA) as real-time monitoring tools
presents an opportunity to observe clonal evolution and emerging
resistance during treatment (44). Nevertheless, these methodologies
remain predominantly experimental and necessitate validation in
larger, multicenter cohorts.

4.4 Limitations of clinical trials

The rarity of osteosarcoma poses considerable challenges in the
design and implementation of rigorous clinical trials for its treatment.
Most studies are single-arm phase II trials with limited patient
enrollment, which restricts their statistical power and generalizability
(62). Cross-trial comparisons are further complicated by variations in
eligibility criteria, treatment protocols, and endpoints (63).
Additionally, traditional trial endpoints, such as progression-free
survival, may not adequately reflect the benefits of targeted or
immunotherapeutic agents, especially when stable disease, rather than
tumor reduction, is the primary outcome (64). Adaptive trial designs
and international collaborative consortia are urgently needed to
address these limitations and accelerate the translation of promising
therapies into clinical practice.
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4.5 Safety and toxicity concerns

While targeted therapies are generally perceived as more selective
than cytotoxic chemotherapy, they are not without associated
toxicities. Tyrosine kinase inhibitors (TKIs), such as regorafenib and
cabozantinib, are linked to hypertension, hand-foot syndrome,
gastrointestinal disturbances, and fatigue, often necessitating dose
reduction or treatment discontinuation (65). Similarly, angiogenesis
inhibitors can induce vascular complications, including bleeding and
thrombosis. Although immune checkpoint inhibitors are typically well
tolerated, they may result in immune-related adverse events, such as
colitis, pneumonitis, endocrinopathies, and hepatitis. The toxicities
associated with treatment are particularly concerning in pediatric and
adolescent patients, who constitute the majority of osteosarcoma cases
(66). Effective management of these adverse events necessitates
multidisciplinary expertise and meticulous monitoring, which may
restrict their widespread implementation in resource-limited settings.
The challenges highlighted emphasize the complexity of advancing
targeted therapies for osteosarcoma. Addressing these challenges
requires a deeper understanding of the disease’s biology, the
identification of reliable biomarkers, the development of innovative
clinical trial designs, and the enhancement of strategies to manage
treatment-related toxicities. Collaborative efforts across these domains
are essential to improving the efficacy of targeted interventions for this
rare and aggressive malignancy (67).

5 Conclusion

Osteosarcoma remains one of the most challenging malignancies
to manage in pediatric and adolescent populations. Although surgery
and chemotherapy constitute the standard treatments, survival rates
for relapsed or metastatic cases have not significantly improved in
recent decades. The introduction of targeted agents, such as tyrosine
kinase inhibitors, mTOR inhibitors, angiogenesis modulators, and
immune checkpoint inhibitors, has expanded therapeutic options
and demonstrated disease stabilization in certain patients. However,
these benefits are constrained by tumor heterogeneity, the rapid
emergence of resistance, a lack of predictive biomarkers, and
complexities in clinical trial design. Furthermore, treatment-related
toxicities present substantial challenges, particularly for younger
patients. Current evidence underscores both the potential and the
limitations of targeted therapies for osteosarcoma, highlighting the
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