
Frontiers in Medicine 01 frontiersin.org

Risk prediction models for 
extubation failure in critically ill 
patients on mechanical 
ventilation: a systematic review
Xiang Zeng ‡, Xiao Juan Chen ‡, Ping Lai , Jie Chen , 
Zhoujing Chen  and Xiyu Qi *†

Chongqing JiangJin District Hospital of Chinese Medicine, Chongqing, China

Background: Failure to extubate successfully from mechanical ventilation is 
a critical event associated with poor prognosis in ICU patients, significantly 
prolonging hospital stays and increasing mortality rates. It is widely accepted in 
academic circles that developing prediction models for extubation failure can 
facilitate precise extubation decisions. Despite the rapid proliferation of relevant 
prediction models, their methodological quality and bedside applicability remain 
ambiguous.
Objective: This study aims to outline the predictive factors associated with the 
risk of extubation failure in patients undergoing mechanical ventilation in the 
Intensive Care Unit (ICU) and to summarize the existing predictive models.
Methods: We searched the China National Knowledge Infrastructure (CNKI), 
Wanfang Database, VIP Database, China Biomedical Database, PubMed, 
Embase, Web of Science, and Cochrane Library. We included both prospective 
and retrospective studies that developed or validated risk prediction models for 
extubation failure in patients undergoing mechanical ventilation in the ICU. The 
Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess 
the bias and applicability of the models.
Results: This analysis includes 14 studies. Frequency analysis of the predictors 
revealed that there are 15 predictors that appeared at least twice, among 
which mechanical ventilation duration, GCS score, APACHE II score, age, and 
hemoglobin were the most common predictors. From the perspective of the 
models, only 2 studies conducted both internal and external validation, 3 studies 
ultimately employed machine learning, while 11 studies utilized traditional 
modeling methods. However, we found that many studies faced issues such as 
insufficient sample sizes, missing crucial methodological information, and all 
models being rated as having a high risk of bias.
Conclusion: Most published predictive models lack methodological rigor, leading 
to a heightened risk of bias. Future research should prioritize the enhancement 
of methodological rigor and the external validation of risk prediction models for 
extubation failure in ICU patients receiving mechanical ventilation. Additionally, 
it is essential to emphasize adherence to scientific methods and transparent 
reporting to improve the accuracy and generalizability of research findings.
Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
recorddashboard, Registration number:CRD420251124371.
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1 Introduction

The Intensive Care Unit (ICU) is a department that focuses on the 
centralized treatment of critically ill patients (1). Due to the critical 
condition of severely ill patients, their ability to maintain spontaneous 
breathing is significantly diminished. When patients exhibit respiratory 
insufficiency, there is a risk of hypoxia, or they may have already shown 
signs of hypoxia; thus, mechanical ventilation treatment becomes 
necessary (2). Mechanical ventilation (MV) is one of the standard life 
support technologies in the ICU, with approximately 50% of ICU 
patients requiring MV (3). However, prolonged mechanical ventilation 
can lead to complications in patients, including Ventilator Associated 
Pneumonia (VAP), (4) barotrauma (5), airway injuries (6), and catheter-
associated pressure injuries (7). During the treatment period, as the 
patient’s condition improves and respiratory function gradually returns 
to normal, the demand for mechanical ventilation support stabilizes and 
begins to decrease. Considering discontinuing mechanical ventilation 
and proceeding with extubation as early as possible is necessary.

Extubation, the gradual withdrawal of mechanical ventilation 
support, is a critical process through which critically ill patients regain 
their ability to breathe spontaneously and are liberated from the 
ventilator (8). This phase is essential for patients transitioning out of the 
intensive care unit. Extubation failure is the patient’s inability to sustain 
spontaneous breathing following extubation from the ventilator. This 
condition necessitates reconnection to the ventilator or occurs when 
spontaneous breathing lasts less than 48 h without ventilator support, 
requiring interventions such as non-invasive ventilation, high-flow 
oxygen therapy, re-intubation, terminal extubation, or tracheostomy (9). 
The offline process consists of three steps: offline screening, procedures, 
and extubation (10). The expert group of the Critical Care Medicine 
Branch of the Chinese Medical Association emphasizes in the “Clinical 
Application Guidelines for Mechanical Ventilation” that when the causes 
of respiratory failure in ICU patients are effectively controlled or 
improved, we should conduct weaning therapy as early as possible to 
achieve optimal therapeutic effects and prognosis (11). Determining the 
optimal timing for withdrawing mechanical ventilation is crucial in 
treatment. An appropriate extubation moment prevents unnecessary 
medical resource consumption and helps alleviate the financial burden 
on patients’ families. Related research reports that 5–30% of ICU patients 
experience weaning failure (12). Inappropriately delaying weaning from 
mechanical ventilation may increase the risk of complications such as 
pneumonia or ventilator-associated lung injury in patients on mechanical 
ventilation (13). This risk leads to increased medical costs and prolonged 
hospital stays for patients and may significantly elevate the overall 
mortality risk (14). Although successful extubation is an important goal 
in ICU treatment, an overly aggressive weaning process may lead to 
inadequate oxygen supply, respiratory muscle fatigue, and incomplete 
recovery of airway protective functions, which may increase the risk of 
extubation failure (15). It is noteworthy that extubation failure is not the 
result of a single pathological process, but rather the consequence of the 
combined effects of abnormalities across multiple systems, including the 
respiratory system (e.g., respiratory muscle fatigue, airway secretion 
retention) (16), the cardiovascular system (e.g., left ventricular overload) 
(17), neuromuscular function (e.g., myasthenia) (18), and metabolic 
status (e.g., malnutrition, frailty) (19).

Therefore, the early identification of high-risk populations for 
mechanical ventilation weaning failure in the ICU, along with timely 
and effective interventions for their risk factors, is of significant 

importance in reducing the incidence of mechanical ventilation 
extubation failure among ICU patients and improving clinical 
outcomes. Risk prediction models use mathematical formulas to 
assess the existence of specific conditions or the future risk of certain 
events, effectively identifying risk factors for diseases and quantifying 
the magnitude of risk associated with each factor (20). Multiple 
countries have developed various risk prediction models for 
extubation failure in ICU patients undergoing mechanical ventilation. 
However, these different models’ predictive capabilities and clinical 
applicability remain unclear. Furthermore, no studies have been found 
that systematically evaluate these models. Therefore, this study aims 
to systematically evaluate the risk prediction models for extubation 
failure in patients undergoing mechanical ventilation in the ICU, with 
the intention of providing a basis for clinical medical staff to select or 
develop appropriate risk prediction models for extubation failure in 
ICU mechanical ventilation patients.

2 Materials and methods

This systematic review has been registered in PROSPERO 
(Registration ID: CRD420251124371).

2.1 Inclusion and exclusion criteria

2.1.1 Study types
Cohort studies, case–control studies, and cross-sectional studies.

2.1.2 Research subjects
Patients aged ≥18 years requiring invasive mechanical ventilation 

in the ICU.

2.1.3 Research content
The construction and/or validation of a prediction model for 

extubation failure in patients undergoing mechanical ventilation in 
the Intensive Care Unit.

2.1.4 Exclusion criteria
① Non-Chinese or Non-English literature; ② Literature that only 

analyzes risk factors without establishing a risk prediction model; ③ 
Literature for which the original text cannot be obtained or data is 
incomplete; ④ Studies that have been published repeatedly; ⑤ Studies 
where the number of predictive variables included in the model is 
less than 2.

2.2 Literature retrieval strategy

A comprehensive search was conducted in various databases, 
including CNKI, Wanfang Data, China Biomedical Literature Database, 
VIP, PubMed, Web of Science, Embase, Cochrane Library, and CINAHL, 
regarding research on risk prediction models for extubation failure in 
patients on mechanical ventilation in the ICU. The search timeframe was 
from the establishment of the database until August 8, 2025. The search 
was restricted to English- and Chinese-language publications; no 
additional language filters were applied during the initial retrieval, but 
all non-English/non-Chinese articles were subsequently excluded in line 
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with the pre-specified inclusion criteria. The search strategy combined 
both subject headings and free-text terms, focusing primarily on 
keywords such as “Intensive Care Units,” “ICU,” “Intubation, 
Intratracheal,” “Respiration, Artificial,” and “Risk Assessment.” This 
comprehensive approach ensures a thorough exploration of relevant 
literature in the context of critical care management. For the complete 
search strategy, please refer to Appendix A. Additionally, we employed 
the PICOTS framework recommended by the CHARMS checklist (21) 
for key evaluations and data extraction in systematic reviews to describe 
the key elements of this systematic review as follows. The detailed search 
strategy is provided in Appendix A.

P (Population, P): patients aged ≥18 years in the ICU receiving 
mechanical ventilation.

I (Intervention model, I): development and/or validation of a risk 
prediction model for extubation failure in ICU patients on 
mechanical ventilation.

C (Comparator, C): none. O (Outcome, O): The outcome is 
defined as extubation failure in patients on mechanical ventilation 
during their ICU stay.

T (Timing, T): before extubation in patients on mechanical 
ventilation in the ICU.

S (Setting, S): the intended use of this prediction model is for risk 
stratification in the ICU to assess the risk of extubation failure, thereby 
enabling timely preventive measures.

2.3 Literature screening and data extraction

Initially, two researchers (ZX and CXJ) independently screened the 
literature and extracted data based on inclusion and exclusion criteria. 
If necessary, a third reviewer (QXY) participated. The literature 
screening method involved using NoteExpress software to remove 
duplicate records, reading titles and abstracts for initial screening, 
excluding obviously irrelevant literature, and then further reading the 
full texts for secondary screening to determine the final included 
literature. Subsequently, standardized forms were developed for data 
extraction based on the Critical Appraisal and Data Extraction for 
Systematic Reviews of Prediction Modelling Studies (CHARMS) (21).

2.4 Assessment of bias risk in included 
studies

Two researchers employed the Prediction Model Risk of Bias 
Assessment Tool (PROBAST) (22) to evaluate the risk of bias and 
applicability of the models included in the literature.

2.4.1 Bias risk assessment
PROBAST comprises four domains: study population, predictors, 

outcomes, and analysis. Each question can be  answered as “Yes,” 
“Probably Yes,” “Probably No,” “No,” or “No Information.” If any domain 
is rated as “No” or “Probably No,” that domain is considered high risk; 
only when all questions are answered as “Yes” or “Probably Yes” is the 
domain considered low risk. If all four domains are assessed as low risk, 
the overall risk of bias (ROB) is rated as “Low”; if one or more domains 
are rated as uncertain risk while the remaining domains are low risk, the 
overall risk is classified as “Unclear.” The applicability assessment is 
similar to the bias risk assessment but uses only the first three domains 
to determine the applicability of the prediction model. The first two 

researchers (ZX and CXJ) conducted the assessments independently, 
with the final judgment made by a third reviewer (QXY).

2.4.2 Applicability assessment
The applicability assessment encompasses three domains: the study 

subjects, the predictive factors, and the outcomes. The judgment process 
is similar to bias risk, where the overall applicability of the predictive 
model is rated as ‘low’, ‘high’, or ‘unclear’. The overall rating is deemed 
‘low risk’ only when all domains are assessed as ‘low risk’. If one or more 
domains are rated as ‘high risk’, the applicability is classified as ‘high risk’. 
If a particular domain is rated as ‘unclear’, but all other domains are 
rated as ‘low risk’, the applicability is considered ‘unclear’.

3 Results

3.1 Literature screening process and results

A preliminary search yielded 15,467 relevant articles. After 
removing duplicates, 11,944 articles remained. A gradual screening 
process ultimately included 14 articles (23–36). The literature 
screening process and results are shown in Figure 1.

3.2 Basic characteristics of included studies 
and bias risk assessment results

Among the included literature are 8 studies from China (28, 30–36), 
2 from the United States (26, 27), 1 from Brazil (25), 1 from Colombia 
(24), and 1 from France (23). Additionally, there is 1 multi-national 
collaborative study (29). In the past 5 years, 10 studies have been 
published (27–36). Among the 14 studies, 9 are retrospective studies 
(24, 27, 30–36), while 5 are prospective studies (23, 25, 26, 28, 29). The 
basic characteristics of the included literature are shown in Table 1.

3.3 Establishment of the models included

A total of 28 predictive models for the offline failure risk were 
reported in the studies included. The number of candidate predictive 
variables in each study ranged from 9 to 105. Regarding variable 
selection, 11 studies (23–27, 30–34, 36) employed univariate and 
multivariate analyses, 2 studies (28, 35) utilized recursive feature 
elimination, and 1 study (29) applied Lasso regression for variable 
selection. In the handling of continuous variables, 3 studies (32, 34, 36) 
converted continuous variables into categorical variables, while the 
remaining eleven studies (23–31, 33, 35) maintained the continuity of 
the continuous variables. In the area of missing data handling, 10 
studies (25–27, 30–36) did not report the missing data and the 
methods used for handling it. 2 studies (28, 29) only reported the use 
of multiple imputation to supplement the missing data. However, it did 
not specify the exact number of missing data points. 1 study (23) 
directly deleted the missing data, while only 1 study (24) reported the 
missing data and the method of mean imputation employed. 
Regarding model establishment methods, 10 studies (23, 25, 27, 29–34, 
36) utilized only Logistic Regression for modeling, while 1 study (26) 
employed Neural Networks for modeling. Another study (28) applied 
Machine Learning methods for modeling. Additionally, one study (35) 
utilized five methods: LR, RF, SVM, XG Boost, and Light GBM for 
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modeling. 7 studies (23, 24, 26, 27, 29, 33, 35) conducted only internal 
validation, 2 studies (30, 36) performed only external validation, and 
2 studies (28, 31) employed a combination of internal and external 
validation methods for evaluation. The remaining 3 studies (25, 32, 34) 
did not conduct either internal or external validation. 4 studies (23, 26, 
32, 36) did not report the model calibration methods, while 10 studies 
(24, 25, 27–31, 33–35) provided calibration information, typically in 
the form of the Hosmer-Lemeshow test. See Tables 2–4.

3.4 Model performance and included 
predictive factors

Among the 14 studies included, the AUC values of the 28 
models ranged from 0.688 to 0.970, with 26 models having an 
AUC greater than 0.7, indicating good predictive performance. 
Definitions of extubation failure and their time windows differed 
across studies; therefore AUCs are presented descriptively without 

quantitative synthesis, avoiding inflation of performance due to 
definitional heterogeneity. The final presentation formats of the 
models varied; 5 studies (24, 30, 32, 35, 36) presented the models 
in the form of equations, 4 studies (23, 25, 27, 29) utilized risk 
scores, 3 studies (31, 33, 34) presented the models as nomograms, 
and 1 study (26) did not specify the final presentation format of 
the model. The number of predictive factors included in the final 
models ranged from 4 to 17, with the top five most frequently 
occurring predictive factors being: mechanical ventilation 
duration, GCS score, APACHE II score, age, and hemoglobin. 
Predictive factors that appeared with a frequency of ≥2 times are 
shown in Figure 2, Tables 3–5

3.5 Assessment of bias risk and applicability

The bias assessment tool PROBAST was employed to evaluate the 
bias risk and applicability of the included literature. All studies were 

FIGURE 1

Flowchart of the literature search, screening, and final included.
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TABLE 1  The basic characteristics of the included studies.

Author (year) Country Study design Participants Sample size Outcome indicators

Totality Case

Godet et al. (2017) (23) France Prospective study
MV patients with craniocerebral 

injury in the ICU
140 43 Re-intubation within 48 h after extubation

Sará-Ochoa et al. (2017) (24) Colombia Retrospective study MV patients in the ICU 1,017 157 Re-intubation within 48 h after extubation

Dos Reis et al. (2017) (25) Brazil Prospective study
MV patients with traumatic brain 

injury in the ICU
311 43 Re-intubation within 48 h after extubation

Hsieh et al. (2018) (26) USA Prospective study MV patients in the ICU 3,602 185 Re-intubation or death within 72 h after extubation

Bansal et al. 2022 (27) USA Retrospective study MV patients in the ICU 6,161 746 Re-intubation within 72 h after extubation

Zhao et al. (2021) (28) China Prospective study MV patients in the ICU 16,191 2,807 Re-intubation within 48 h after extubation

Cinotti et al. (2022) (29) Multiple countries Prospective study MV patients in the ICU 1,512 231 Extubation failure within 5 days

Wang et al. (2023) (30) China Retrospective study MV patients in the ICU 546 131
Need for non-invasive or invasive ventilatory support, or death, within 

48 h after extubation

Li (2023) (31) China Retrospective study MV patients in the ICU 548 230 Re-intubation within 48 h after extubation

Yang et al. (2023) (32) China Retrospective study MV patients in the NICU 310 60 Re-intubation within 48 h after extubation

Zhao et al. (2023) (33) China Retrospective study MV patients in the ICU 670 133
Death within 48 h after extubation or inability to resume spontaneous 

breathing within 48 h after extubation.

Hu et al. (2024) (34) China Retrospective study
MV elderly severe-pneumonia 

patients in the ICU
330 117

Requirement for non-invasive or invasive ventilatory support, or death, 

within 48 h after extubation.

Xu et al. (2024) (35) China Retrospective study MV patients in the ICU 487 164 Re-intubation within 48 h after extubation

Sun et al. (2025) (36) China Retrospective study MV patients in the EICU 138 11 Re-intubation within 48 h after extubation

https://doi.org/10.3389/fmed.2025.1695394
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Z
en

g
 et al.�

10
.3

3
8

9
/fm

ed
.2

0
2

5.16
9

53
9

4

Fro
n

tie
rs in

 M
e

d
icin

e
0

6
fro

n
tie

rsin
.o

rg

TABLE 2  Model construction methods and performance.

Author (year) Number of 
candidate 
variables

Variable selection 
method

Continuous 
variable handling

Missing data Modeling 
approach

Model performance

Data Handling 
methods

Performance Calibration 
method

Godet et al. (2017) (23) 9

Univariate and 

multivariate stepwise 

regression

Retained in continuous form 1,276 Direct deletion LR A: 0.820 —

Sará-Ochoa et al. (2017) (24) 21
Univariate and 

multivariate analysis
Retained in continuous form 8 Mean imputation — A: 0.689 H–L test

Dos Reis et al. (2017) (25) 17
Univariate and 

multivariate analysis
Retained in continuous form — — LR A: 0.810 H–L test

Hsieh et al. (2018) (26) 37
Univariate and 

multivariate analysis
Retained in continuous form — — ANN A: 0.850 —

Bansal et al. 2022 (27) 21
Univariate and 

multivariate analysis
Retained in continuous form — — LR

A: 0.720
H–L test

B: 0.720

Zhao et al. (2021) (28) 89
Recursive feature 

elimination
Retained in continuous form — Multiple imputation ML

A1: 0.774

Calibration curve

A2: 0.779

A3: 0.819

A4: 0.829

A5: 0.830

A6: 0.835

A7: 0.821

A8: 0.802

A9: 0.780

A10: 0.765

A11: 0.722

B1: 0.714

B2: 0.743

B3: 0.688

B4: 0.770

B5: 0.771

B6: 0.803

B7: 0.717

B8: 0.700

B9: 0.713

B10: 0.712

B11: 0.736

(Continued)
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TABLE 2  (Continued)

Author (year) Number of 
candidate 
variables

Variable selection 
method

Continuous 
variable handling

Missing data Modeling 
approach

Model performance

Data Handling 
methods

Performance Calibration 
method

Cinotti et al. (2022) (29) 20 Lasso regression Retained in continuous form — Multiple imputation LR
A: 0.790 H–L test, calibration 

curveB: 0.710

Wang et al. (2023) (30) 29
Univariate and 

multivariate analysis
Retained in continuous form — — LR A: 0.926 H–L test

Li (2023) (31) 105
Univariate and 

multivariate analysis
Retained in continuous form — — LR

A: 0.773 H–L test, calibration 

curveB: 0.738

Yang et al. (2023) (32) 12
Univariate and 

multivariate analysis

Converted into a categorical 

variable
— — LR A: 0.722 —

Zhao et al. (2023) (33) 22
Univariate and 

multivariate analysis
Retained in continuous form — — LR

A: 0.870 H–L test, calibration 

curveB: 0.867

Hu et al. (2024) (34) 18
Univariate and 

multivariate analysis

Partially converted to 

categorical variables
— — LR A: 0.970

H-L 

test、Calibration 

curve

Xu et al. (2024) (35) 34
Recursive feature 

elimination
Retained in continuous form — —

LR, RF, SVM, XG 

Boost, Light GBM

A1: 0.766

Calibration curve

A2:0.788

A3:0.805

A4:0.800

A5:0.799

Sun et al. (2025) (36) 23
Univariate and 

multivariate analysis

Converted into a categorical 

variable
— — LR A: 0.821 —

A, Model Development Group; B, Model Validation Group; LR, Logistic Regression; RF, Random Forest; ANN, Artificial Neural Network; ML, Machine Learning; DT, Decision; SVM, Support Vector Machine; XG Boost, eXtreme Gradient Boosting; Light GBM, ‌Light 
Gradient Boosting Machine. H–L test, Hosmer–Lemeshow.
A1: Logistic Regression; A2: Support Vector Machine; A3: Random Forest; A4: eXtreme Gradient Boosting; A5: ‌Light Gradient Boosting Machine; A6: Cat Boost; A7: Gradient Boosting Decision Tree; A8: AdaBoost; A9: Multi-Layer Perceptron; A10: K-Nearest 
Neighbor; A11: Naive Bayes; B1: Logistic Regression; B2: Support Vector Machine; B3: Random Forest; B4: eXtreme Gradient Boosting; B5: ‌Light Gradient Boosting Machine; B6: Cat Boost; B7: Gradient Boosting Decision Tree; B8: AdaBoost; B9: Multi-Layer 
Perceptron; B10: K-Nearest Neighbor; B11: Naive Bayes. “—”: No mentioned.
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rated as having a high risk of bias, indicating methodological issues 
present in the development or validation process of the extubation 
failure models for ICU patients on mechanical ventilation. Specific 
results can be found in Figure 3, Table 6 and Appendix B.

3.5.1 Bias in the field of study
9 studies (24, 27, 30–36) (64%, 9/14) exhibited a high risk of bias. 

This is attributed to the retrospective nature of the studies, which may 
introduce recall bias. Important predictive factors related to the failure 

TABLE 3  Model validation and final predictors.

Author (year) Validation method Model 
presentation 
format

Final predictors

Internal validation External validation

Godet et al. (2017) (23) Bootstrap resampling — Risk score
Cough response, swallowing ability, 

swallowing reflex, CRS visual score

Sará-Ochoa et al. (2017) 

(24)
Bootstrap resampling — Model equation

BUN, oxygenation index, APACHE II, 

cumulative fluid balance, hemoglobin

Dos Reis et al. (2017) (25) — — Risk score
Duration of mechanical ventilation, female, 

GCS motor score, secretions, cough response

Hsieh et al. (2018) (26)
Random split validation, K-fold 

cross-validation
— —

TISS score, hemodialysis, rsbi, pre-extubation 

heart rate, pre-extubation oxygenation index, 

MEP

Bansal et al. 2022 (27) Random split validation — Risk score

Duration of mechanical ventilation, body 

mass index, Glasgow Coma Scale score, mean 

airway pressure at 1 min of spontaneous 

breathing trial, fluid balance in the 24 h before 

extubation

Zhao et al. (2021) (28) Random split validation Spatial validation Web calculator

Age, body mass index, stroke, heart rate, 

respiratory rate, mean arterial pressure, 

oxygen saturation, temperature, pH, central 

venous pressure, tidal volume, positive end-

expiratory pressure, mean airway pressure, 

Pressure support level in pressure support 

ventilation mode, duration of mechanical 

ventilation, number of successful spontaneous 

breathing trials, fluid balance in the 24 h 

before extubation, type of antibiotics

Cinotti et al. (2022) (29) Random split validation — Risk score

TBI, strong cough, gag reflex, swallowing 

ability, endotracheal suction ≤2 times per 

hour, GCS motor score, temperature on the 

day of extubation

Wang et al. (2023) (30) — Temporal validation Model equation

Duration of mechanical ventilation, 

diaphragmatic excursion, diaphragmatic 

thickness variation, RSBI, inferior vena cava 

variability

Li (2023) (31) Bootstrap resampling Temporal validation Nomogram

Duration of mechanical ventilation, APACHE 

II score, ROX index, COPD, PaO2, 

hemoglobin

Yang et al. (2023) (32) — — Model equation

Duration of mechanical ventilation, age, GCS 

score, smoking index, MODS, underlying 

respiratory disease

Zhao et al. (2023) (33) Random split validation — Nomogram

Duration of mechanical ventilation, APACHE 

II score, SOFA score, PaCO2, ventilator-

induced diaphragmatic dysfunction

Hu et al. (2024) (34) — — Nomogram
Duration of mechanical ventilation, age, 

COPD, smoking, D-dimer, oxygenation index

Xu et al. (2024) (35) Five-fold cross-validation — Model equation
APACHE II, respiratory rate during SBT, GCS 

score, hemoglobin
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of extubation from mechanical ventilation in ICU patients could not 
be obtained solely through the review of medical records.

3.5.2 Bias in predictive factor
Research 5 studies (23, 25, 26, 28, 29) (36%, 5/14) were assessed 

as having a low risk of bias in the predictive factor domain, while 9 
studies (24, 27, 30–36) (64%, 9/14) were rated as unclear. The reason 
for this is that the 5 studies were prospective in nature, with the 
measurement of predictive factors conducted prior to the occurrence 
of outcomes, utilizing a blind method by default. The remaining 9 
studies were retrospective, and it remains unclear whether the 
assessment of predictive factors was conducted without knowledge of 
the outcome data.

3.5.3 Bias in outcome domains
11 studies (23–25, 28, 30–36) (79%, 11/14) were rated as low risk 

in the predictor domain, while 3 studies (26, 27, 29) (21%, 3/14) were 
rated as high risk. This may be because ten studies not only utilized 
standardized guidelines but also had clear and consistent definitions 
of outcome indicators. The remaining three studies were rated high 
risk due to offline assessment of outcomes exceeding 48 h.

3.5.4 Analysis of bias in the field
Fourteen studies exhibited a high risk of bias in the analysis. 

The issues identified include: ① In 13 studies (23–27, 29–36), the 
number of outcome events was insufficient (EPV < 20); ② 3 studies 
(32, 34, 36) improperly transformed continuous variables into 
categorical variables, indicating an inappropriate variable handling 
method; ③ 10 studies (25–27, 30–36) did not report missing data 
and the methods for handling it; ④ 11 studies (23–27, 30–34, 36) 
selected predictive factors based on univariate analysis without 
employing appropriate variable selection methods; ⑤ 3 studies (25, 
32, 34) did not perform internal or external validation of the 
models; ⑥ None of the 14 studies addressed the issue of model 
overfitting or underfitting.

3.5.5 Applicability assessment
11 studies (24, 26–33, 35, 36) demonstrated overall good 

applicability, while 3 studies (23, 25, 34) exhibited relatively low overall 
applicability. Among them, 2 studies (23, 25) were limited to 
mechanically ventilated patients with traumatic brain injuries in the 

ICU, and one study (34) focused on elderly patients with 
severe pneumonia.

4 Discussion

4.1 Quality of research on extubation 
failure risk prediction models is acceptable 
but contains certain biases

This study provides a comprehensive analysis of prediction 
models to identify the extubation failure risk in adult patients 
undergoing mechanical ventilation in the ICU. A total of 28 prediction 
models were included, with AUC values ranging from 0.688 to 0.970. 
Among these, 26 models exhibited an AUC greater than 0.7, indicating 
good predictive performance. The high risk of bias is primarily 
concentrated in the analytical domain, mainly due to insufficient 
outcome event numbers, improper handling of variables, the selection 
of predictive factors based on univariate analysis, failure to report 
missing data information, incomplete model performance evaluation, 
and lack of reporting on model fit.

4.1.1 Data sources
In terms of research type, this study includes 9 retrospective 

cohort studies (24, 27, 30–36). The predictive factors incorporated 
into the model may not be comprehensive, and there is a potential risk 
of data omission, which could lead to biased results. In prospective 
studies, the measurement of predictive factors occurs before the 
outcomes, effectively standardizing the assessment methods for these 
factors. This standardization significantly enhances the reliability of 
the model results. The PROBAST evaluation tool suggests that to 
mitigate the risk of overfitting in model development research, the 
number of outcome events should be at least 20 times the number of 
candidate predictors. This implies that the events per variable (EPV) 
should exceed 20. Given that the risk prediction model for extubation 
failure in ICU patients on mechanical ventilation includes numerous 
candidate predictors, it becomes challenging to satisfy the EPV > 20 
criterion. Consequently, future model studies should include a 
sufficiently large sample size. Future research should prioritize the 
pre-selection of clinically significant and potentially predictive 
variables through methods such as clinical expertise, literature review, 

TABLE 4  Classification table of predictors.

Predictive factor Temporal 
attribute

Measurement 
method

Intervenability Clinical significance

Duration of mechanical 

ventilation

Cumulative Vital sign No Reflects the risk of respiratory muscle disuse atrophy

GCS score Pre-extubation Score No Related to the level of consciousness and airway protective 

capacity

APACHE II score Pre-extubation Score No Comprehensively assesses the severity of the disease

Age Baseline Demographic No Respiratory muscle reserve function declines with age

Hemoglobin Pre-extubation Lab Yes Oxygen delivery capacity affects respiratory muscle endurance

Respiratory rate Pre-extubation Vital Sign Yes Reflects the balance between respiratory drive and load

Serum albumin Pre-extubation Lab Yes Nutritional status is related to respiratory muscle protein 

synthesis
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or univariate analysis before formal modeling. It is generally advised 
that the final model include no more than 10 to 15 predictor variables, 
ensuring that the events per variable (EPV) ratio approaches or 
exceeds 20. This approach serves to mitigate the risk of overfitting.

4.1.2 Data analysis
① In the handling of continuous variables, Collins et al. (37) point 

out that when constructing risk prediction models, converting 
continuous variables into two or more categorical variables can 
increase the risk of the model. Among the studies included in this 
research, 3 studies (32, 34, 36) converted continuous variables into 
categorical variables, which may lead to a higher risk of bias in the 
included studies. Future studies should retain continuous predictors 
in their original form or model them with flexible functions such as 
restricted cubic splines; this preserves information, avoids arbitrary 
cut-point bias, and improves both discrimination and calibration. 
Owing to substantial heterogeneity in data sources, candidate 
predictor sets, and modelling methods across studies, we could not 
directly compare AUCs or calibration between models that kept 
variables continuous and those that converted them to categories. 

Future work should use a single dataset and an identical modelling 
pipeline to test both approaches and thereby quantify their true effects 
on discrimination and calibration. ② In the realm of missing data 
handling, 12 studies (25–36) did not report any missing data, whereas 
1 study (23) explicitly excluded subjects with missing data, which 
indicates inadequate handling of this issue. Such an approach may 
result in the loss of valuable hidden information within the excluded 
subjects, potentially leading to bias in the model. Missing data can 
significantly impact the quality of data analysis and the accuracy of 
models, making the preprocessing of missing data particularly 
important. The PROBAST guidelines suggest that missing values 
should not be deleted directly; instead, multiple imputation should 
be employed (38). Multiple imputation methods can effectively reduce 
the adverse effects of missing data on statistical analysis and model 
stability, thereby improving research accuracy and reliability (39). 
Future researchers should provide a comprehensive account of 
missing values and the methods employed to handle them during the 
model construction process. It is recommended that multiple 
imputation techniques be utilized to address these missing values 
effectively. ③ Selection of Predictors in this study, the predictors were 

FIGURE 2

Results of the bias assessment of 14 studies.

TABLE 5  Model external validation performance.

Author (year) Data source AUC Calibration 
accuracy

Zhao et al. (2021) (28) Cardiac Surgical ICU of Zhongshan Hospital, Fudan University 0.80 (0.74–0.83) —

Wang et al. (2023) (30)
Department of Critical Care Medicine, Weifang People’s Hospital, Weifang, 

Shandong
0.924 (0.886–0.961) H-L (p = 0.629)

Li (2023) (31)
Department of Critical Care Medicine, First Hospital of Lanzhou University, 

Lanzhou, Gansu
0.738 (0.630–0.846) —

Sun et al. (2025) (36) Department of Critical Care Medicine, Kaifeng Central Hospital, Kaifeng, Henan — —

H–L, Hosmer–Lemeshow test.
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primarily identified through univariate analysis to find statistically 
significant variables, followed by Logistic Regression analysis to 
incorporate these significant variables into the model. This method of 
screening predictors can reduce the workload but may overlook 
important risk factors. Therefore, it is recommended that future 
research utilize stepwise regression to mitigate multicollinearity issues 
effectively. LASSO regression, which employs the least absolute 
shrinkage and selection operator, can perform parameter estimation 
and variable selection simultaneously. ④ In terms of model validation, 
only 2 studies (28, 31) conducted internal and external validation, 
while 7 studies (23, 24, 26, 27, 29, 33, 35) performed only internal 
validation (Bootstrap resampling and random grouping validation) 
0.2 studies (30, 36) conducted only external validation, and three 
studies (25, 32, 34) did not perform either internal or external 
validation. Therefore, future researchers may choose high-quality 
predictive models for external validation for the risk of extubation 
failure in ICU patients on mechanical ventilation based on the results 
of this study.

Despite the high risk of bias associated with all studies, which 
somewhat limits the clinical application of the models, valuable 
insights can still be gained from the recommendation processes of the 
models. Cinotti et al. (29) conducted a prospective multicenter study 
involving 1,512 neurocritical patients across 73 intensive care units 
(ICUs) in 18 countries, effectively mirroring clinical decision-making 
scenarios. The authors utilized LASSO regression for the data-driven 
automatic selection of candidate variables and employed ten-fold 
cross-validation to identify independent predictive factors. This 
approach effectively addresses multicollinearity issues while 
maintaining the model’s simplicity and robustness, establishing a 
strong foundation for subsequent extrapolation applications in diverse 
medical environments. Zhao et al. (28) conducted a study utilizing the 
MIMIC-IV database, which comprised a training set of 16,189 

patients, and performed an independent prospective validation with 
502 patients from the cardiac surgery ICU at Zhongshan Hospital, 
affiliated with Fudan University. This methodology effectively 
balanced sample size and generalizability, mitigating the overfitting 
risk. The CatBoost algorithm inherently accommodates missing 
values and categorical variables, eliminating the necessity for 
additional imputation and dummy variable encoding. The study 
ultimately retained only 17 readily obtainable bedside indicators by 
integrating a SHAP-based recursive feature elimination strategy. The 
internal validation set achieved an area under the receiver operating 
characteristic curve (AUROC) of 0.835. In contrast, the external 
validation set reached an AUROC of 0.803, significantly surpassing 
traditional scoring systems such as the RSBI and SOFA (p < 0.01). 
Furthermore, the research team developed a plug-and-play web-based 
prediction tool that outputs risk probabilities in real-time based on 
input variables, thereby providing a visual and generalizable digital 
foundation for clinical extubation decisions.

4.2 Predictive factors for extubation failure

Variations and commonalities arise due to differences in research 
types and the variables included, leading to inconsistencies in the 
predictive factors identified across various studies. Nonetheless, this 
study identifies commonalities among the predictive factors recognized 
in different research efforts. Specifically, this research explores five risk 
predictive factors that frequently appear: duration of mechanical 
ventilation, Glasgow Coma Scale (GCS) score, APACHE II score, age, 
and hemoglobin levels. Prolonged mechanical ventilation can result in 
diaphragmatic disuse atrophy and decreased contractile function. 
Research indicates that diaphragmatic dysfunction occurs in up to 37% 
of long-term mechanical ventilation patients and is significantly 

FIGURE 3

Predictor frequency distribution.
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associated with weaning failure (40, 41). Prolonged mechanical 
ventilation can lead to ICU-acquired muscle weakness, which decreases 
the contractile strength of respiratory muscles, including the diaphragm 
and accessory respiratory muscles. This muscle weakness significantly 
increases the risk of weaning failure by a factor ranging from 2.64 to 
19.07 (42). Prolonged mechanical ventilation increases the risk of 
complications, including ventilator-associated pneumonia (VAP) and 
barotrauma, which may further exacerbate respiratory function 
impairment (43).

The APACHE II scoring system is used to assess the severity of 
illness and mortality risk in ICU patients. A higher score indicates a more 
severe condition and an increased risk of death. A higher APACHE II 
score indicates more severe systemic physiological disturbances and 
organ failure, which can directly increase the risk of offline failure 
through multiple pathways. Patients with elevated scores frequently 
experience severe hypoxemia, acidosis, hemodynamic instability, and 
multiple organ dysfunction, resulting in an imbalance between 
respiratory work and oxygen consumption (44). The severe inflammatory 
response, malnutrition, and accelerated muscle protein breakdown lead 
to a synchronous decline in the strength of the diaphragm and peripheral 
muscles (45). A high APACHE II score frequently suggests the necessity 
for deep sedation, larger doses of vasopressors, or continuous renal 
replacement therapy (46). These interventions can suppress the 
respiratory drive of the central nervous system, thereby delaying the 
recovery of consciousness and re-establishing airway protective reflexes. 
Consequently, this may lead to a significant reduction in the success rate 
of spontaneous breathing trials and an increased likelihood of 
re-intubation and mortality in the ICU (47).

Vidotto et al. (48) found that when the patient’s GCS is less than 8, 
the extubation success rate drops sharply to 33%, indicating that the level 
of consciousness is a key threshold variable in predicting weaning 
outcomes. The degree of consciousness impairment is linearly negatively 
correlated with the integrity of airway protection and respiratory drive. 
As the GCS score decreases, the cough reflex arc is inhibited, and the 
sensitivity of the respiratory center to hypercapnia and hypoxemia 
significantly diminishes. Consequently, patients struggle to maintain 
adequate tidal volume and rhythmic stability during spontaneous 
breathing trials, which leads to an extension of mechanical ventilation 
duration and an exponential increase in the risk of extubation failure 
(49). A decrease in the GCS score may also be  accompanied by 
dysfunction in other organ systems, such as an increase in the SOFA 
score, further complicating the weaning process (50). Therefore, 
healthcare professionals should enhance airway management for patients 
with altered consciousness based on the GCS score and proactively 
implement targeted interventions to reduce weaning difficulties.

As individuals age, their bodily functions gradually decline. With 
increasing age, a person’s respiratory reserve diminishes, leading to a 
heightened risk of decompensation. As age increases, there is a reduction 
in type II muscle fibers in the diaphragm, accompanied by mitochondrial 
dysfunction. This results in an exponential decline in the endurance and 
strength of the respiratory muscles, leading to a higher likelihood of 
diaphragm fatigue during spontaneous breathing tests. Consequently, 
this triggers instability in central-ventilatory coupling (51). 
Immunosenescence and chronic low-grade inflammation significantly 
increase the susceptibility of elderly patients to volume overload, 
ventilator-associated diaphragm dysfunction, and nosocomial infections, 
triggering a systemic inflammatory response syndrome and delaying 
diaphragm repair (52). Elderly patients frequently demonstrate a decline T
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in cardiac functional reserve, pulmonary vascular remodeling due to 
arteriosclerosis, and neurodegenerative disorders. These comorbidities 
further exacerbate the adverse effects of aging on the extubation 
outcomes of ICU patients receiving mechanical ventilation by 
diminishing cardiopulmonary coupling efficiency, extubation respiratory 
drive, and impairing central integration capabilities (53).

Hemoglobin, a crucial carrier of oxygen in the bloodstream, exhibits 
abnormal levels that significantly impact the extubation outcomes of 
patients undergoing mechanical ventilation in the ICU. In a state of low 
hemoglobin, the oxygen supply capability of tissues in patients decreases, 
leading to impaired respiratory muscle function, affecting respiratory 
drive and endurance (54). Relevant research indicates that a decrease in 
hemoglobin concentration directly reduces arterial blood oxygen 
content, leading to a hypoxic state in peripheral tissues and respiratory 
muscles. This hypoxia not only diminishes the contractile ability of the 
respiratory muscles but may also extend the duration of mechanical 
ventilation required for patients (55). Conversely, elevated hemoglobin 
levels adversely affect pulmonary blood circulation by increasing blood 
viscosity. This increase in blood viscosity results in heightened 
microcirculatory resistance, consequently diminishing the adequate 
perfusion of lung tissue and further impairing gas exchange efficiency 
(56). Additionally, elevated hemoglobin levels may promote the 
formation of microthrombi, thereby exacerbating pulmonary vascular 
resistance and potentially leading to offline failure.

5 Limitations

Although this study provides a comprehensive summary of the 
prediction models for extubation failure in ICU patients on mechanical 
ventilation, certain limitations persist. Firstly, this study exclusively 
included retrievable literature in both Chinese and English, which may 
introduce publication bias. Secondly, the imposed English/Chinese 
language restriction could have omitted relevant studies published in 
other languages, potentially limiting the generalisability of our findings. 
Thirdly, due to variations in inclusion criteria and study designs across 
different studies, only a qualitative analysis of the research results was 
conducted, precluding a quantitative analysis. This review could not 
standardise the original definitions; a consensus core outcome (e.g., 
re-intubation within 48 h) with broader criteria analysed separately in 
sensitivity analyses should be adopted in future work.

6 Conclusion

This paper comprehensively evaluates predictive models for 
extubation failure in patients undergoing invasive mechanical 
ventilation in the ICU. The findings suggest that current models are 
susceptible to bias due to several methodological flaws identified 
during the model development process, and some models lack 
external validation. To enhance the quality of future research, the 
research team should adhere to the PROBAST and TRIPOD 
guidelines for model construction, design, and reporting processes. 
Additionally, validating existing models across various regions will 
improve the external generalizability of risk prediction models. The 
research community should prioritise independent replication of the 
remaining models rather than creating new ones, so as to consolidate 
the evidence base before widespread implementation.
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