
Frontiers in Medicine 01 frontiersin.org

Development and validation of an 
interpretable machine learning 
model for predicting low muscle 
mass in patients with rheumatoid 
arthritis: a multicenter study
Feiyue Zhou 1†, Bin Zhou 2†, Yuan Qu 1, Shuai Zhong 1, Ting Liu 1, 
Yuan Liu 1, Xiaohu Zhao 1, Xuanhe Tian 1, Xiaojing Hao 1 and 
Ping Jiang 1*
1 First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China, 
2 Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese 
Medicine, Jinan, China

Background: This study aims to develop a predictive model for identifying 
rheumatoid arthritis (RA) patients at risk of low muscle mass using easily 
obtainable clinical indicators. The goal is to facilitate targeted screening for 
individuals at high risk of sarcopenia, optimize diagnostic strategies, reduce the 
burden of additional testing, and improve the efficiency of early identification 
and intervention.
Methods: This study analyzed data from 1,260 RA patients obtained from the 
National Health and Nutrition Examination Survey (NHANES) database and 
the Affiliated Hospital of Shandong University of Traditional Chinese Medicine 
(SHUTCM). Eight machine learning models were developed, including Random 
Forest, LightGBM, XGBoost, CatBoost, Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Logistic Regression, and a weighted ensemble model. Model 
performance was evaluated using metrics such as accuracy, area under the 
receiver operating characteristic curve (AUC), F1 score, Precision, Recall, and 
Brier score loss. The SHapley Additive exPlanation (SHAP) method was used to 
rank feature importance and interpret the final model.
Results: Among all machine learning models, the tree-based weighted 
ensemble model demonstrated the best performance, achieving an AUC 
of 0.921, outperforming all individual models. The model exhibited good 
calibration and higher net clinical benefit in decision curve analysis, especially 
within the probability threshold range of 0.2 to 0.8, and achieved an AUC of 
0.848 on the test set, demonstrating a certain degree of generalizability. SHAP 
analysis identified BMI, albumin, hemoglobin, age, and creatinine as the most 
important features for predicting the risk of low muscle mass. SHAP dependency 
and waterfall plots further showed the model’s decision-making mechanisms. 
Finally, we developed an online risk prediction calculator based on the FastAPI 
framework, which automatically generates individualized low muscle mass risk 
scores based on user input. The tool has been deployed on the Hugging Face 
platform and is accessible online.
Conclusion: Based on a large, multicenter dataset, we developed and validated 
an explainable ML model capable of identifying individuals with a high risk of low 
muscle mass among patients with rheumatoid arthritis. This model may serve as 
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a decision-support tool for clinicians in guiding further screening and diagnosis 
of sarcopenia.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune condition 
marked by persistent synovitis, which may result in progressive 
deterioration, deformity, and disability of joints. Its global incidence 
rate is 0.5 to 1% (1). Although RA is primarily characterized by 
synovitis, long-term systemic inflammation, metabolic dysregulation, 
and nutritional disturbances, can lead to adverse effects beyond joint 
involvement (2–4). Extra-articular manifestations and complications 
in RA patients further increase disease burden and negatively affect 
both quality of life and prognosis.

Sarcopenia is a complication in RA patients. Defined as a 
progressive and generalized syndrome characterized by the loss of 
muscle strength and muscle mass, sarcopenia has a notably high 
prevalence among individuals with RA. Current studies have indicated 
that the incidence of sarcopenia in RA patients ranges from 24 to 
61.7% (5–8). Sarcopenia significantly impairs physical functioning 
and quality of life (9, 10), and increases the risk of falls and fractures 
(5, 11, 12), further contributing to the disease burden in patients.

Despite growing recognition of sarcopenia among RA patients, it 
remains overlooked in clinical practice (13). Currently, the diagnosis 
of sarcopenia typically includes the assessment of muscle mass, which 
is primarily measured using dual-energy X-ray absorptiometry (DXA) 
or bioelectrical impedance analysis (BIA). However, these methods 
are highly dependent on specialized equipment, which not only 
increases the examination burden for patients but also limits their 
accessibility in primary healthcare settings, where such devices may 
not be available. These factors objectively reduce patients’ willingness 
to undergo screening and diagnosis for sarcopenia, thereby posing a 
barrier to its clinical awareness and broader implementation.

Therefore, this study aimed to develop a predictive model based 
on routinely available clinical data to estimate the probability of low 
muscle mass in RA patients. The goal is to enable targeted 
identification of individuals at high risk of sarcopenia, guide further 
screening and diagnostic efforts, and reduce the examination burden 
on patients.

2 Materials and methods

2.1 Study population

In this study, we  included data from the National Health and 
Nutrition Examination Survey (NHANES) and the Affiliated Hospital 
of Shandong University of Traditional Chinese Medicine (SHUTCM).

NHANES data from 2001 to 2018 were analyzed in this study. 
NHANES is a thorough population health survey conducted by the 
Centers for Disease Control and Prevention (CDC) to gather health 
and nutrition data from the American population. It collects health 
and nutritional information from a representative sample of the 

U.S. population and includes detailed laboratory test results, health 
questionnaires, and mortality records. The survey received approval 
from the Research Ethics Review Committee of the National Center 
for Health Statistics (NCHS), and informed consent was collected 
from all participants. As these data are de-identified and publicly 
released by NCHS, no additional authorization or special access 
was required.

At the SHUTCM, we enrolled patients diagnosed with RA between 
August 2022 and January 2025. The study was conducted by the 
principles of the Declaration of Helsinki and was approved by the 
institutional ethics committee [Approval No. (2022)083-KY]. Informed 
consent was waived due to the retrospective nature of the study.

We excluded individuals under the age of 18, individuals without 
a confirmed RA diagnosis, those lacking essential hematological 
laboratory data, and those missing key skeletal muscle measurements.

2.2 Clinical feature assessment

The variables included in this study were gender, age, body mass 
index (BMI), neutrophil count, lymphocyte count, hemoglobin, platelet 
count, alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), cholesterol, albumin, urea, creatinine, and uric acid.

The NHANES research gathered RA-related data via a self-
administered questionnaire. Participants were asked in question 
MCQ160a: “Have doctors or other health professionals informed 
you that you have arthritis?” with possible responses being “Yes,” “No,” 
“Refused,” or “Do not know.” If the answer was “Yes,” they were further 
asked in question MCQ195: “What type of arthritis are you suffering 
from?” with response options including “Rheumatoid arthritis,” 
“Osteoarthritis,” “Psoriatic arthritis,” “Other,” “Refused,” and “Do not 
know.” Participants who answered “Yes” to MCQ160a and selected 
“Rheumatoid arthritis” in MCQ195 were identified as having RA 
(questionnaire available at: https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx).

For patients from the SHUTCM, clinical information including 
RA diagnosis and relevant laboratory data was extracted from 
electronic medical records.

To reduce variability arising from differences in laboratory 
instruments and reagent batches across datasets, standardization 
procedures were applied. The systemic immune-inflammation index 
(SII; where SII = platelet count × neutrophil count/lymphocyte count) 
and the neutrophil-to-lymphocyte ratio (NLR) were derived 
through computation.

2.3 Assessment of low muscle mass

In the NHANES population, low muscle mass was defined based 
on the skeletal muscle mass index (SMI), which was derived from 
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appendicular skeletal muscle mass (ASM) obtained through DXA 
scans of the limbs. SMI was calculated as ASM divided by 
BMI. According to the Foundation for the National Institutes of 
Health Sarcopenia Project criteria, individuals were classified as 
having Low muscle mass if their SMI was less than 0.789 for men or 
less than 0.512 for women (14).

For patients enrolled from the SHUTCM, low muscle mass was 
assessed according to the criteria established by the Asian Working 
Group for Sarcopenia using BIA (15). ASM was obtained via BIA and 
adjusted for height. Low muscle mass was defined as <7.0 kg/m2 for 
men and <5.7 kg/m2 for women.

2.4 Feature engineering and data 
preprocessing

In the baseline characteristics table, continuous variables were 
expressed as mean ± standard error and compared using Student’s 
t-test. For continuous variables that did not follow a normal 
distribution, data were presented as median and interquartile 
range and assessed using the Mann–Whitney U test. Categorical 
variables were summarized as counts and percentages, and 
compared using the chi-square test or Fisher’s exact test, 
as appropriate.

We divided the RA cohort by time: participants enrolled before 
January 2024 were assigned to the training set, where 10-fold cross-
validation was used for training and validation. Participants 
enrolled between January 2024 and January 2025 were assigned to 
the test set.

To assess heterogeneity between the two centers included in 
the training set, we compared the distributions of all covariates 
across centers. The Kolmogorov–Smirnov (K–S) test was applied 
to evaluate whether the distributions of continuous variables 
differed significantly between centers. Variables with K–S test 
p-values <0.05 were considered to have statistically significant 
distributional differences. Univariate and multivariate logistic 
regression analyses were performed to explore the associations 
between variables and low muscle mass. In addition, restricted 
cubic spline (RCS) models were used to further investigate 
potential nonlinear relationships between continuous variables and 
the risk of low muscle mass.

Because NHANES lacks RA-specific activity indices in some 
cycles, we  additionally quantified how well hematology-derived 
inflammation proxies relate to acute-phase reactants in the clinical 
cohort. Specifically, using the SHUTCM dataset we  computed 
Spearman’s rank correlation (ρ) between NLR/SII and CRP/ESR 
(two-sided p-values; 95% CIs via nonparametric bootstrap).

Data cleaning were performed prior to modeling. The target 
variable was the presence of low muscle mass. During the feature 
engineering stage, an automated interaction construction approach was 
applied. Several clinically relevant feature pairs (e.g., Age × BMI, 
Hemoglobin × Creatinine, Albumin × ALT) were used to generate new 
numerical interaction terms to enhance the representational capacity 
of the dataset. Categorical variables were encoded using one-hot 
encoding. To avoid data leakage, all standardization procedures for 
numerical variables were embedded within the cross-
validation pipeline.

2.5 Model construction and ensemble 
strategy

Seven machine learning models, including Random Forest, 
LightGBM, XGBoost, CatBoost, Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), and Logistic Regression were used to 
predict the risk of low muscle mass in RA patients. To optimize the 
performance of each base model, automated hyperparameter tuning 
was performed using Optuna with Bayesian optimization, targeting 
the F1 score as the objective metric. The maximum number of 
optimization iterations was set to 15. Given the superior performance 
of tree-based models, we calculated their out-of-fold AUC scores and 
used them as weights to construct a weighted ensemble model, which 
served as the final prediction model.

2.6 Training strategy and cross-validation

To ensure the robustness of the evaluation results, we  applied 
stratified 10-fold cross-validation. Within each fold, the training set was 
oversampled using the Synthetic Minority Over-sampling Technique 
(SMOTE) to address class imbalance. Each base model was 
independently trained on the resampled training set and generated 
probability predictions for the validation set. To determine the optimal 
classification threshold, we evaluated 999 candidate thresholds ranging 
from 0.001 to 0.999 for each model, selecting the one that maximized 
the F1 score. Given the strong performance of tree-based models, 
we selected four high-performing models—Random Forest, LightGBM, 
XGBoost, and CatBoost—and used their validation-set predicted 
probabilities as input features for the ensemble model. Finally, a 
weighted ensemble model was constructed using out-of-fold 
AUC-based weights from these four models to generate the final 
prediction. To evaluate the generalizability of the ensemble model, 
we conducted validation on the test set.

2.7 Performance evaluation and 
visualization

Several commonly used evaluation metrics were employed to assess 
the reliability of the models, including accuracy, area under the receiver 
operating characteristic curve (AUC), F1 score, precision, recall, and 
Brier score loss. To assess the clinical utility of the models under different 
decision-making scenarios, we  plotted the receiver operating 
characteristic (ROC) curves, calibration curves, and decision curve 
analysis (DCA) plots for all models. The DCA plots included “Treat-All” 
and “Treat-None” strategies as baseline references (16).

2.8 Model interpretation

SHAP was used to interpret the prediction results of the models. 
SHAP is a model-agnostic method for explaining machine learning 
predictions. It is based on Shapley values, which quantify the 
contribution of each feature to a given prediction. In this way, SHAP 
helps to explain the decision-making process of the model, especially 
in interpreting complex “black-box” models (17).

https://doi.org/10.3389/fmed.2025.1694320
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhou et al.� 10.3389/fmed.2025.1694320

Frontiers in Medicine 04 frontiersin.org

We used the weighted ensemble model as the explainer and 
calculated SHAP values across the entire training dataset. The SHAP 
analysis included feature importance ranking (summary bar plot), 
feature impact distribution (summary dot plot), individual-level 
explanation (waterfall plot), feature dependence visualization 
(dependence plot), cross-center population importance comparison 
(forest plot); direction consistency analysis (Cleveland dot plot); 
subgroup difference analysis (dependence plots).

Feature importance was evaluated by the mean absolute SHAP 
value of each input variable, indicating its global influence on the 
model’s output. The summary dot plot displayed the distribution of 
SHAP values for each feature across all samples, along with feature 
values to reveal positive or negative directional impact.

An individual-level explanation was demonstrated using a waterfall 
plot for the second patient in the dataset, showing the cumulative 
contribution of each feature to the model’s prediction. Dependence plots 
were generated for key features to explore the functional relationships and 
interactions between feature values and SHAP values.

Cross-center population importance comparison (forest plot). For 
each feature, we computed the mean absolute SHAP value (mean |SHAP|) 
in the overall sample, the NHANES subcohort, and the hospital 
subcohort. We  then calculated the between-center difference Δ and 
obtained a 95% bootstrap confidence interval for Δ. Results are displayed 
as a horizontal forest plot ordered by Δ; error bars that cross the zero line 
indicate no significant difference. Direction consistency analysis 
(Cleveland dot plot). For each feature, we calculated the proportion of 
instances with SHAP >0 in three groups (overall, NHANES, hospital). 
This proportion indicates whether higher feature values tend to increase 
or decrease the predicted risk. Plotting and connecting the three points 
allows a visual assessment of directional consistency across populations. 
Subgroup difference analysis (dependence plots). We stratified the data 
by sex (female vs. male) and age (<60 vs. ≥60 years), computed mean 
SHAP within each subgroup, and calculated the between-subgroup 
difference Δ. Features with larger differences are summarized using 
horizontal forest-style plots to highlight subgroup-specific 
explanatory strength.

2.9 Web-based calculator

An online risk prediction calculator was developed based on the 
FastAPI framework. The model consists of four base learners (Random 
Forest, LightGBM, XGBoost, and CatBoost) and a weighted ensemble 
model, each loading pretrained model files for inference. After users 
input clinical indicators via the web interface, the backend automatically 
calculates derived variables (NLR, SII, Age_group) and interaction terms 
(BMI × Age, Hemoglobin × Creatinine, Albumin × ALT). These features 
are then standardized and passed into the models to obtain prediction 
probabilities, which are finally aggregated by the ensemble model to 
output the overall risk probability.

The system has been deployed on a public server and is accessible 
online for real-time prediction: https://huggingface.co/spaces/
FYZhouLab/Low_muscle_mass.

2.10 Statistical software

The logistic regression, KNN, random forest, and SVM models were 
implemented using the scikit-learn library. The XGBoost model was 

built with the xgboost library, LightGBM was implemented using the 
lightgbm library, and the CatBoost model was constructed with the 
catboost library.

3 Results

3.1 Baseline characteristics

A total of 1,260 individuals with RA were included in this study, of 
whom 615 were from the SHUTCM and 645 from the NHANES 
database. In the overall dataset, 74.1% of participants were female, and 
25.9% were male. Baseline characteristics were stratified by low muscle 
mass status. Significant differences were observed between the low muscle 
mass group (G1) and the non-low muscle mass group (G2) across several 
baseline variables. The mean age of the G1 group was 55.44 ± 0.82 years, 
significantly higher than that of the G2 group (51.59 ± 0.38 years, 
p < 0.001). In addition, the hemoglobin level in G1 was slightly lower than 
that in G2 (p = 0.030). Detailed baseline characteristics are presented in 
Table 1, and the study design is illustrated in Figure 1.

To compare the baseline characteristics of training set between the 
two study centers, the K–S test was performed for all non-outcome 
variables. The results indicated that several variables exhibited 
significant distributional differences between the two centers. Detailed 
information is provided in Supplementary Table 1.

3.2 Independent risk factors and nonlinear 
relationships

To investigate the association between clinical variables and low 
muscle mass, we performed univariate logistic regression (Table 2) 
and multivariate logistic regression analyses (Table  3) using the 
training dataset. In the univariate analysis, age, neutrophil count, 
albumin, creatinine, SII, and older age group were significantly 
associated with low muscle mass. In the multivariate analysis, age, 
albumin, creatinine, and neutrophil count remained independently 
associated with low muscle mass.

To further explore potential nonlinear relationships between 
continuous variables and risk of low muscle mass, we  used RCS 
models. The results, presented in Figure 2, showed that some variables 
exhibited marked nonlinear associations with low muscle mass, 
suggesting that traditional linear models may underestimate the true 
impact of these factors.

Besides, in the SHUTCM clinical dataset, we  quantified the 
associations between hematology-derived inflammatory indices 
(NLR, SII) and acute-phase reactants (ESR, CRP) using Spearman’s 
rank correlation. All four correlations were positive and statistically 
significant, but the effect sizes were in the weak range, indicating that 
SII and NLR partially reflect systemic inflammatory burden yet cannot 
fully substitute for the acute-phase response represented by CRP/ESR 
(Supplementary Table 2).

3.3 Model development and performance 
comparison

Given the limited number of features included in this study (17 in 
total), no explicit variable selection was performed to avoid potential 
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information loss. All features were retained for model development. 
During model training, ensemble learning and cross-validation were 
applied to reduce the risk of overfitting, and SHAP analysis was used 
to assess feature importance.

We developed and compared eight classification algorithms, 
including Random Forest, LightGBM, XGBoost, CatBoost, SVM, 
KNN, Logistic Regression, and an AUC-weighted ensemble model. 
Among the base learners, CatBoost (AUC = 0.772), LightGBM 
(AUC = 0.768), Random Forest (AUC = 0.766), and XGBoost 
(AUC = 0.753) showed better performance. Cross-validation results 
confirmed the stability of these findings. Given the superior predictive 
performance of tree-based models, we  constructed a weighted 
ensemble model based on the AUC scores of four tree-based learners. 
The weighted ensemble model achieved the best overall performance, 
with an AUC of 0.921, significantly outperforming all individual 
models. The average performance metrics of each machine learning 
model across 10-fold cross-validation are presented in Table 4, while 
the Out-of-Fold (OOF) performance metrics are summarized in 
Table 5.

Calibration curves showed that the ensemble model’s predicted 
probabilities closely matched actual event rates, indicating better 
calibration than other models. Decision curve analysis showed that 
the ensemble model achieved higher net clinical benefit across a wide 
range of threshold probabilities, suggesting greater clinical utility. 
Figure 3 presents the performance of the models on the validation set.

To evaluate the generalizability of the ensemble model, 
we  conducted validation on the test set. Figure  4 presents the 

performance of the models on the validation set. On the independent 
test set, the ensemble model demonstrated robust discriminatory 
ability, with an AUC of 0.848 (Figure 4B). As shown in Figure 4A, the 
model achieved consistent performance across multiple evaluation 
metrics, including Accuracy, Recall, Precision, and F1 score. The 
calibration curve (Figure 4C) indicated that the predicted probabilities 
were reasonably aligned with the observed outcomes, although some 
degree of underestimation was observed at higher probability ranges. 
Decision curve analysis (Figure 4D) further showed that the ensemble 
model provided a greater net clinical benefit compared with the 
“treat-all” and “treat-none” strategies, particularly within the threshold 
probability range of 0.1–0.4, suggesting good clinical applicability of 
the model. Performance of the ensemble model on the test set are 
shown in Table 6.

3.4 Model interpretation

Due to the complex ensemble structure and nonlinear interactions 
of the weighted ensemble model, it is inherently less interpretable and 
considered a “black-box” model. To address this limitation, we applied 
the SHAP method, which quantifies the contribution of each feature 
to the model’s prediction, enabling interpretation of the model output. 
SHAP analysis results are visualized in Figure 5.

Model interpretation was conducted at both the global 
(feature-level) and local (individual-level) levels. At the global 
level, we used SHAP summary bar plots (Figure 5A) and dot plots 

TABLE 1  Baseline characteristics.

Characteristic N1 Overall G1 G2 p-value

Gender 0.77

 � Female 934 934 (74.1%) 172 (75.1%) 762 (73.9%)

 � Male 326 326 (25.9%) 57 (24.9%) 269 (26.1%)

Age group <0.001

 � Age <60 931 931 (73.9%) 146 (63.8%) 785 (76.1%)

 � Age >60 329 329 (26.1%) 83 (36.2%) 246 (23.9%)

Age 1,260 52.29 ± 0.34 55.44 ± 0.82 51.59 ± 0.38 <0.001

Cholesterol 1,260 4.91 (4.29–5.69) 4.89 (4.27–5.69) 4.94 (4.29–5.69) 0.648

Lymphocyte 1,260 1.79 (1.40–2.30) 1.84 (1.41–2.40) 1.77 (1.38–2.30) 0.201

Neutrophil 1,260 3.80 (3.00–4.80) 4.10 (3.10–5.00) 3.78 (3.00–4.72) 0.075

Hemoglobin 1,260 13.20 (12.20–14.30) 12.90 (11.10–14.40) 13.30 (12.30–14.20) 0.003

Platelet 1,260 254.00 (212.00–308.25) 261.00 (211.00–320.00) 253.00 (213.00–305.50) 0.281

Albumin 1,260 41.00 (39.00–43.00) 39.50 (38.00–42.00) 41.40 (39.25–43.25) <0.001

ALT 1,260 19.00 (14.00–26.00) 18.00 (13.00–25.00) 19.00 (14.00–26.00) 0.452

AST 1,260 21.00 (18.00–26.00) 21.00 (17.00–27.00) 21.00 (18.00–26.00) 0.459

UREA 1,260 4.64 (3.86–5.71) 4.64 (3.89–5.71) 4.65 (3.81–5.71) 0.737

Uric acid 1,260 283.00 (232.00–345.00) 261.70 (212.00–333.10) 287.00 (236.50–345.00) 0.004

Creatinine 1,260 61.00 (49.00–77.79) 54.00 (44.20–70.72) 61.88 (50.39–78.68) <0.001

NLR 1,260 2.10 (1.53–2.86) 2.11 (1.55–2.94) 2.09 (1.53–2.84) 0.834

SII 1,260 532.93 (367.68–776.12) 575.92 (363.84–827.44) 523.62 (370.15–772.57) 0.389

BMI 1,260 26.72 (23.47–31.13) 25.29 (20.61–32.96) 26.98 (24.01–30.90) <0.001

ALT, alanine aminotransferase; AST, aspartate aminotransferase; UREA, serum urea nitrogen; NLR, neutrophil to lymphocyte ratio; SII, Systemic Immune Inflammation Index; BMI, body 
mass index. G1: low muscle mass group; G2: non-low muscle mass group.
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(Figure 5B) to evaluate the overall contribution of each feature to 
the model. The bar plot ranks features based on their mean absolute 
SHAP values, revealing that BMI, albumin, hemoglobin, age, and 
creatinine were the top five contributors to the model’s predictions. 
The SHAP summary dot plot provides a visual representation of 
the direction and magnitude of each feature’s impact on the 
prediction. It showed that higher levels of BMI, creatinine, 
albumin, and hemoglobin were associated with a lower predicted 
risk of low muscle mass, while older age, lymphocyte count, and 
neutrophil count were associated with increased risk. At the local 
level, we used SHAP waterfall plots (Figure 5C) to visualize the 

model’s decision process for individual patients. A waterfall plot 
was generated for the second patient in the test set, showing the 
contribution of each feature (sorted in descending order of 
absolute SHAP value) to the final prediction.

SHAP dependence plots (Figure  6) further illustrated how 
individual features influenced model predictions. Features with SHAP 
values greater than zero were positively associated with the model’s 
prediction of low muscle mass.

Cross-center population importance comparison (Figure 7A). 
Among the top-ranked features by overall mean SHAP, we observed 
clear between-cohort differences. BMI had a markedly negative Δ 

FIGURE 1

Flowchart of model development and verification.
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(mean|SHAP|, NHANES − SHUTCM) with a 95% CI not crossing 
zero, indicating greater explanatory strength in the hospital cohort. 
In contrast, albumin, creatinine, and age/age_group showed positive 
Δ with CIs not crossing zero, implying larger contributions in 
NHANES. Lymphocyte count and ALT also tended to favor the 
hospital side (negative Δ), whereas several metabolic/inflammatory 
variables exhibited small, zero-crossing intervals, suggesting more 
portable signals across populations. This pattern is consistent with 
differences in case mix and laboratory measurement ranges between 
a population survey and a tertiary care setting. Direction consistency 
analysis (Figure 7B). Most core features displayed broadly consistent 
directions across populations (proportions with SHAP >0 well away 
from 0.5). Albumin predominantly showed a negative association, 
while age and creatinine were largely positive. BMI showed mixed 
and non-linear behavior; in the hospital cohort its contribution 
strengthened at higher values, consistent with the threshold or 
steep-rise patterns in the dependence plots. Overall, the 
directionality supports a nutrition–inflammation–muscle-mass axis 

as a cross-population stable signal, while the population-amplified 
effect of BMI warrants attention and potential local calibration at 
deployment. Subgroup difference analysis (Figures 7C,D). Using Δ 
(<60 − ≥60) for the age contrast, creatinine and age itself 
contributed more strongly among older participants (negative Δ), 
whereas BMI and albumin were relatively more influential in the 
<60 group (positive Δ). This suggests effect modification by age, 
with muscle-mass/renal-clearance markers more tightly linked to 
outcomes in older adults and weight/nutritional status contributing 
more among younger adults. For the sex contrast Δ (female − male), 
BMI showed greater explanatory strength in women (positive Δ), 
while creatinine was more important in men (negative Δ); other 
features differed only modestly. These patterns align with sex-specific 
body fat/muscle distribution and physiological thresholds, 
supporting subgroup-aware thresholds and tailored 
risk communication.

3.5 Implementation of the web calculator

We successfully developed and deployed an online sarcopenia risk 
prediction calculator based on the FastAPI framework. The system 
integrates four base learners—Random Forest, LightGBM, XGBoost, 
CatBoost, and weighted ensemble model to generate individualized 
risk predictions. Upon entering relevant clinical variables via the web 
interface, the system automatically computes derived features (e.g., 
NLR, SII, Age_group) and interaction terms (e.g., BMI × Age, 
Hemoglobin × Creatinine, Albumin × ALT). All inputs are then 
standardized and passed into each model for inference. The final risk 
probability score is output by the ensemble model. The system is 
currently deployed on the Hugging Face Spaces platform and supports 
real-time online access and prediction: https://huggingface.co/spaces/
FYZhouLab/Low_muscle_mass.

4 Discussion

This study developed a clinical prediction model that leverages 
routinely collected diagnostic and treatment data to provide 
preliminary screening for muscle mass in RA patients. The model may 
reduce the need for routine sarcopenia screening procedures and 
enable more targeted diagnostic evaluation for individuals at high risk 
of sarcopenia.

In the final model we developed, BMI, albumin, hemoglobin, age, 
and creatinine were identified as the five most important features. BMI 
and serum albumin are commonly considered surrogate markers of 
nutritional status and muscle mass. However, patients with RA often 
exhibit elevated systemic inflammatory burden and additional 
physiological impairments, which may confer additional clinical 
significance to these indicators within the RA population.

In the final model, SHAP dependence analysis indicated that 
while low BMI exhibited a stronger association with low muscle 
mass, excessively high BMI values were also positively associated 
with increased risk. Low BMI may be  indicative of rheumatoid 
cachexia, while high BMI may reflect sarcopenic obesity in patients 
with RA. Sarcopenic obesity refers to a pathological body 
composition characterized by the coexistence of reduced muscle 
mass and excessive fat accumulation, and it has a relatively high 

TABLE 2  Univariate logistic regression.

Variable OR 95% CI p-value

Albumin 0.889 (0.85, 0.93) <0.001

Age 1.030 (1.02, 1.04) <0.001

Age_group 1.857 (1.34, 2.58) <0.001

Neutrophil 1.118 (1.02, 1.22) 0.014

Creatinine 0.992 (0.99, 1.00) 0.030

SII 1.000 (1.00, 1.00) 0.040

NLR 1.106 (0.98, 1.25) 0.103

Uric_acid 0.999 (1.00, 1.00) 0.213

Platelet 1.001 (1.00, 1.00) 0.218

Lymphocyte 1.094 (0.89, 1.35) 0.406

Hemoglobin 0.982 (0.92, 1.04) 0.563

BMI 0.994 (0.97, 1.02) 0.611

AST 0.997 (0.98, 1.01) 0.614

Cholesterol 0.982 (0.85, 1.13) 0.806

ALT 0.999 (0.99, 1.01) 0.874

UREA 1.005 (0.93, 1.09) 0.899

Gender 1.010 (0.72, 1.42) 0.952

ALT, alanine aminotransferase; AST, aspartate aminotransferase; UREA, serum urea 
nitrogen; NLR, neutrophil to lymphocyte ratio; SII, Systemic Immune Inflammation Index; 
BMI, body mass index; 95% CI, 95% confidence interval.

TABLE 3  Multivariate logistic regression.

Variable OR 95% CI p-value

Intercept 2.284 (0.28, 18.58) 0.440

Albumin 0.903 (0.86, 0.94) <0.001

Age 1.036 (1.01, 1.06) <0.001

Creatinine 0.989 (0.98, 1.00) 0.003

Neutrophil 1.182 (1.04, 1.34) 0.008

SII 0.999 (1.00, 1.00) 0.365

Age_group >60 0.999 (0.60, 1.67) 0.999

SII, Systemic Immune Inflammation Index; 95% CI, 95% confidence interval.
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FIGURE 2

Nonlinear associations between continuous variables and risk of low muscle mass based on restricted cubic spline (RCS) models.

TABLE 4  Average performance metrics of each machine learning model based on 10-fold cross-validation.

Model Accuracy AUC F1 Precision Recall BrierScore

RandomForest 0.820 ± 0.044 0.776 ± 0.047 0.546 ± 0.091 0.506 ± 0.109 0.603 ± 0.097 0.174 ± 0.023

LightGBM 0.803 ± 0.070 0.765 ± 0.071 0.526 ± 0.089 0.498 ± 0.136 0.608 ± 0.156 0.153 ± 0.031

XGBoost 0.804 ± 0.068 0.766 ± 0.065 0.532 ± 0.084 0.505 ± 0.157 0.603 ± 0.082 0.312 ± 0.082

CatBoost 0.823 ± 0.041 0.773 ± 0.043 0.539 ± 0.071 0.524 ± 0.098 0.587 ± 0.126 0.146 ± 0.029

SVM 0.732 ± 0.117 0.711 ± 0.070 0.476 ± 0.073 0.414 ± 0.140 0.643 ± 0.146 0.173 ± 0.029

KNN 0.662 ± 0.132 0.637 ± 0.050 0.394 ± 0.043 0.333 ± 0.116 0.608 ± 0.206 0.267 ± 0.027

LogisticRegression 0.657 ± 0.113 0.651 ± 0.035 0.416 ± 0.031 0.324 ± 0.083 0.674 ± 0.165 0.232 ± 0.010

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted 
positives; Recall (sensitivity), proportion of true positives among actual positives.
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prevalence among individuals with RA (18). Unlike traditional 
simple obesity, RA-related sarcopenic obesity typically involves a 
dual alteration: a decrease in lean body mass and an increase in fat 
mass. The condition of reduced lean mass in RA is also referred to 
as rheumatoid cachexia (19), which is often driven by chronic 
inflammation that impairs both the synthesis and degradation of 
skeletal muscle proteins (20). This state is associated with increased 
disease activity and higher mortality risk (21–23). Therefore, 
although some RA patients may present with elevated BMI, chronic 
inflammation-induced loss of lean mass may lead to the coexistence 
of low muscle mass and high BMI, highlighting the need for careful 
interpretation of BMI in this population.

Hemoglobin is a sensitive indicator of both inflammation-related 
anemia and nutritional status (24–26). In patients with RA, hemoglobin 
levels are closely associated not only with disease activity but also with 
tissue damage caused by chronic inflammation (27). Multiple studies 
have demonstrated a significant correlation between low hemoglobin 
levels and clinical joint damage, independent of traditional disease 
activity markers. Hemoglobin has been proposed as an independent 
risk factor for predicting joint and other tissue damage (28, 29). 
Chronic anemia associated with RA is considered one of the common 
comorbidities of the disease (30), and its underlying mechanisms may 
involve reduced red blood cell lifespan, pathological iron homeostasis 
driven by hepcidin, and a diminished response to erythropoietin (31). 

TABLE 5  Out-of-fold performance metrics of machine learning models based on 10-fold cross-validation.

Model Accuracy AUC F1 Precision Recall BrierScore

RandomForest 0.809 0.766 0.508 0.466 0.558 0.174

LightGBM 0.773 0.768 0.489 0.407 0.613 0.153

XGBoost 0.782 0.753 0.464 0.411 0.533 0.312

CatBoost 0.835 0.772 0.492 0.539 0.452 0.146

SVM 0.685 0.710 0.41 0.307 0.618 0.173

KNN 0.528 0.637 0.347 0.230 0.709 0.267

LogisticRegression 0.64 0.652 0.370 0.268 0.598 0.232

Ensemble model 0.859 0.921 0.651 0.578 0.744 0.094

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted 
positives; Recall (sensitivity), proportion of true positives among actual positives.

FIGURE 3

Model performance evaluation in the validation sets. (A) Grouped bar chart comparing key evaluation metrics (AUC, Accuracy, Recall, Precision, F1) 
across candidate models. (B) Receiver operating characteristic (ROC) curve. (C) Calibration curve assessing agreement between predicted and 
observed probabilities. (D) Decision curve analysis (DCA) evaluating clinical net benefit.
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FIGURE 4

Performance of the ensemble model on the independent test set. (A) Bar chart summarizing overall performance of the ensemble model—AUC, 
Accuracy, Recall, Precision, and F1. (B) Receiver operating characteristic (ROC) curve showing the discriminative ability of the model. (C) Calibration 
curve demonstrating agreement between predicted probabilities and observed outcomes. (D) Decision curve analysis (DCA) showing the net clinical 
benefit of the ensemble model compared with the “treat-all” and “treat-none” strategies.

TABLE 6  Performance of the ensemble model on the test set.

Model Accuracy AUC (95% 
CI)

F1 Precision Recall BrierScored BestThresholdUsed Permutation 
p-value

Ensemble 

model
0.837

0.848 (0.770, 

0.923)
0.645 0.625 0.667 0.133 0.326 <0.001

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted 
positives; Recall (sensitivity), proportion of true positives among actual positives.

FIGURE 5

Model interpretation of the weighted ensemble model using SHAP. (A) SHAP summary bar plot illustrating the global importance of each feature. 
(B) SHAP summary dot plot, showing the global importance, direction, and distribution of features. (C) SHAP waterfall plot for an individual case.

https://doi.org/10.3389/fmed.2025.1694320
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhou et al.� 10.3389/fmed.2025.1694320

Frontiers in Medicine 11 frontiersin.org

Research suggests that chronic anemia may contribute to the 
development and progression of low muscle mass by impairing oxygen 
delivery to muscle tissue (32), providing a potential pathophysiological 
explanation for the decline in muscle mass observed in RA patients.

Serum albumin is the most abundant protein in plasma and serves 
as a key indicator of nutritional status. Recent studies have shown that 
malnutrition can lead to decreased serum albumin levels, accelerate the 
loss of lean body mass, and subsequently contribute to the development 
of low muscle mass—a mechanism that may be closely associated with 
functional decline and reduced muscle strength or mass in older adults 
(33). In addition to reflecting nutritional reserve, serum albumin is a 
negative acute-phase reactant (34): its concentration decreases when 
IL-6 driven hepatic acute-phase signaling is activated. Clinically, 
albumin fluctuations are closely tied to outcomes in critical illness. In 
rheumatoid arthritis (RA), cytokine-mediated inflammation, 
predominantly IL-6, IL-1 and TNF-α, engages the gp130–STAT3 
pathway, shifting hepatocyte protein synthesis toward positive acute-
phase proteins and down-regulating albumin (35–37); capillary leak, 
hemodilution, and catabolic effects further lower circulating levels. 
This mechanistic framework explains the inverse relation between 
albumin and inflammatory activity and the frequent hypoalbuminemia 
in active RA observed clinically (38, 39).

Lower serum creatinine reflects reduced muscle mass, whereas 
higher values can also reflect impaired renal clearance, this dual 
dependence explains why creatinine alone is an imperfect proxy for 
sarcopenia. In rheumatoid arthritis (RA), chronic cytokine-driven 
inflammation (TNF-α, IL-6) promotes rheumatoid cachexia, 
accelerating muscle protein breakdown, reducing synthesis, and 
predisposing to low muscle mass, thereby linking inflammatory 
activity to creatinine declines via loss of muscle substrate (40, 41). To 
disentangle muscle from kidney effects, several studies propose the 
sarcopenia index (SI = serum creatinine/serum cystatin C × 100) or 

the creatinine-to-cystatin C ratio, leveraging the fact that cystatin C is 
largely independent of muscle mass. These indices show promising 
diagnostic and prognostic performance for low muscle mass across 
cohorts (42–45). Our findings are consistent with this biology: in an 
RA population where inflammation-driven muscle wasting is 
prevalent, creatinine provide clinically useful signals for identifying 
individuals at risk of low muscle mass, while also acknowledging renal 
function as a key confounder (46).

We acknowledge several limitations in this study. First, this analysis 
used multicenter data. Because the single-center cohort from the 
Affiliated Hospital of Shandong University of Traditional Chinese 
Medicine did not provide enough events for machine-learning training, 
and because RA severity and case-mix differ between community 
participants and hospital patients, we  augmented the dataset with 
NHANES, a nationally representative U.S. Health Examination Survey, 
and adopted a dual-source design (“population survey and hospital”) to 
improve transportability across community and clinical settings. Results 
from the K–S test indicated that most non-outcome variables exhibited 
significant distributional differences between the two centers. The cross-
center heterogeneity we  observe constitutes a domain shift that can 
influence both bias and transportability. First, spectrum effects arise when 
case severity and prevalence differ by site: discrimination (e.g., AUC) may 
remain acceptable while calibration drifts, causing misestimation of 
absolute risk and threshold-dependent bias (PPV/NPV, net benefit) when 
a model trained in one spectrum is applied to another. Second, 
measurement shifts such as different laboratory ranges, assay platforms, 
or coding practices, can change the apparent effect size of predictors, 
creating center-dependent signals that degrade portability if not 
recognized. To assess potential bias and generalizability, we reported 
performance on a time-split external test set, showing that the ensemble 
retained probability calibration and net clinical benefit despite 
distributional shifts. We also added cross-population SHAP analyses 

FIGURE 6

SHAP dependence plots for clinical features in the ensemble model.
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(Figures 7A–D) to quantify differences in feature contributions between 
NHANES and the hospital cohort and to identify signals that are portable 
versus center-dependent. To minimize bias and preserve generalizability, 
we  recommend: (1) site-specific recalibration (isotonic/Platt) and 
cut-point tuning using a small local sample before deployment; (2) 
prospective monitoring of calibration and decision metrics with drift 
checks (e.g., PSI/K–S) and scheduled re-assessment; and (3) if future 
settings diverge more substantially, consider re-weighting, domain-
adaptation, or hierarchical/multi-source training as extensions.

Second, the NHANES database lacks RA-specific disease activity 
measures such as DAS28, RAPID-3, and, in certain cycles, C-reactive 
protein (CRP) and erythrocyte sedimentation rate (ESR). These 
indicators are frequently used in clinical practice and are closely 
associated with long-term outcomes in RA patients, including 
cardiovascular mortality. This limitation arises from the design of the 
NHANES database, which is intended for population-level health 
surveillance rather than disease-specific clinical research. As a result, 
key components required to calculate conventional RA disease activity 

scores—such as tender and swollen joint counts, patient-reported 
outcomes, CRP, and ESR—were unavailable, preventing us from 
incorporating direct measures of RA disease activity into the 
predictive model. To compensate for this limitation, we included the 
NLR and SII as indirect indicators of RA disease activity. Previous 
studies have demonstrated that NLR is positively correlated with ESR 
and CRP in RA populations (47), and that SII is associated with 
DAS28-ESR and DAS28-CRP (48, 49). Several additional studies also 
support the strong association of NLR and SII with RA disease activity 
(47, 50). Although NLR and SII can partially reflect systemic 
inflammation and disease activity in RA, they remain surrogate 
markers and have inherent limitations. Consistent with prior 
literature, both NLR and SII showed positive, statistically significant 
correlations with CRP and ESR in our dataset, indicating that these 
indices partially track systemic inflammatory burden. However, the 
effect sizes were in the weak range, aligning with published evidence 
that NLR/SII correlate with disease activity but do not fully substitute 
for canonical markers or composite scores. We  acknowledge the 

FIGURE 7

Cross-population explainability analyses. (A) Cross-center population importance comparison (forest plot). Top features are ranked by overall 
mean |SHAP|. Points show Δ (mean|SHAP|) = NHANES − SHUTCM; horizontal error bars denote 95% bootstrap CIs; the vertical line marks no 
difference (Δ = 0). Negative Δ indicates greater explanatory strength in the hospital cohort. (B) Direction consistency analysis (Cleveland dot 
plot). For each feature, points indicate the proportion of instances with SHAP >0 in the overall sample, NHANES, and SHUTCM. (C) Subgroup 
difference analysis by age. Forest-style summary of Δ (mean|SHAP|) = Age <60 – Age ≥60. (D) Subgroup difference analysis by sex. Δ 
(mean|SHAP|) = female − male.
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predictive value of traditional inflammatory markers such as CRP and 
ESR, as well as disease activity scores like DAS28, in the context of 
RA-associated low muscle mass. Therefore, future work should 
incorporate RA-specific disease activity indicators to further optimize 
and validate the predictive model.

Moreover, RA disease activity typically fluctuates over time and in 
response to treatment, rather than remaining constant (51). NLR and 
SII are highly sensitive to changes in RA disease activity; therefore, 
their elevation during periods of active disease may lead to a higher 
likelihood of RA patients being classified as high-risk for low muscle 
mass by the model. This study was based on cross-sectional data, 
capturing only the baseline values of NLR and SII at a single time 
point. As a result, the model reflects inflammation levels at a specific 
moment, without accounting for the longitudinal variation in RA 
disease activity. In future research, we aim to incorporate RA-specific 
disease activity indicators and their temporal dynamics into the 
predictive model to better represent disease progression over time.

We developed an interpretable machine learning model to predict 
the risk of low muscle mass in patients with RA. The final weighted 
ensemble model demonstrated excellent predictive performance. 
Future research should perform prospective external validation in an 
independent center to further evaluate model transportability 
and calibration.
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Glossary

RA - Rheumatoid arthritis

AUC - Area under the receiver operating characteristic curve

SHAP - SHapley Additive exPlanation

DXA - Dual-energy X-ray absorptiometry

BIA - Bioelectrical impedance analysis

NHANES - National Health and Nutrition Examination Survey

SHUTCM - Affiliated Hospital of Shandong University of Traditional 
Chinese Medicine

NCHS - National Center for Health Statistics

SVM - Support vector machine

KNN - K-nearest neighbors

BMI - Body mass index

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

SII - Systemic Immune-Inflammation Index

NLR - Neutrophil-to-lymphocyte ratio

SMOTE - Synthetic Minority Over-sampling Technique

SMI - Skeletal muscle mass index

ASM - Appendicular skeletal muscle mass

K–S - Kolmogorov–Smirnov

ROC - Receiver operating characteristic

DCA - Decision curve analysis

RCS - Restricted cubic spline
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