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arthritis: a multicenter study
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Ping Jiang'*

!First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,
2Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese
Medicine, Jinan, China

Background: This study aims to develop a predictive model for identifying
rheumatoid arthritis (RA) patients at risk of low muscle mass using easily
obtainable clinical indicators. The goal is to facilitate targeted screening for
individuals at high risk of sarcopenia, optimize diagnostic strategies, reduce the
burden of additional testing, and improve the efficiency of early identification
and intervention.

Methods: This study analyzed data from 1,260 RA patients obtained from the
National Health and Nutrition Examination Survey (NHANES) database and
the Affiliated Hospital of Shandong University of Traditional Chinese Medicine
(SHUTCM). Eight machine learning models were developed, including Random
Forest, LightGBM, XGBoost, CatBoost, Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Logistic Regression, and a weighted ensemble model. Model
performance was evaluated using metrics such as accuracy, area under the
receiver operating characteristic curve (AUC), F1 score, Precision, Recall, and
Brier score loss. The SHapley Additive exPlanation (SHAP) method was used to
rank feature importance and interpret the final model.

Results: Among all machine learning models, the tree-based weighted
ensemble model demonstrated the best performance, achieving an AUC
of 0.921, outperforming all individual models. The model exhibited good
calibration and higher net clinical benefit in decision curve analysis, especially
within the probability threshold range of 0.2 to 0.8, and achieved an AUC of
0.848 on the test set, demonstrating a certain degree of generalizability. SHAP
analysis identified BMI, albumin, hemoglobin, age, and creatinine as the most
important features for predicting the risk of low muscle mass. SHAP dependency
and waterfall plots further showed the model's decision-making mechanisms.
Finally, we developed an online risk prediction calculator based on the FastAPI
framework, which automatically generates individualized low muscle mass risk
scores based on user input. The tool has been deployed on the Hugging Face
platform and is accessible online.

Conclusion: Based on a large, multicenter dataset, we developed and validated
an explainable ML model capable of identifying individuals with a high risk of low
muscle mass among patients with rheumatoid arthritis. This model may serve as
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a decision-support tool for clinicians in guiding further screening and diagnosis

of sarcopenia.
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rheumatoid arthritis, National Health and Nutrition Examination Survey, machine
learning model, low muscle mass, sarcopenia

1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune condition
marked by persistent synovitis, which may result in progressive
deterioration, deformity, and disability of joints. Its global incidence
rate is 0.5 to 1% (1). Although RA is primarily characterized by
synovitis, long-term systemic inflammation, metabolic dysregulation,
and nutritional disturbances, can lead to adverse effects beyond joint
involvement (2-4). Extra-articular manifestations and complications
in RA patients further increase disease burden and negatively affect
both quality of life and prognosis.

Sarcopenia is a complication in RA patients. Defined as a
progressive and generalized syndrome characterized by the loss of
muscle strength and muscle mass, sarcopenia has a notably high
prevalence among individuals with RA. Current studies have indicated
that the incidence of sarcopenia in RA patients ranges from 24 to
61.7% (5-8). Sarcopenia significantly impairs physical functioning
and quality of life (9, 10), and increases the risk of falls and fractures
(5, 11, 12), further contributing to the disease burden in patients.

Despite growing recognition of sarcopenia among RA patients, it
remains overlooked in clinical practice (13). Currently, the diagnosis
of sarcopenia typically includes the assessment of muscle mass, which
is primarily measured using dual-energy X-ray absorptiometry (DXA)
or bioelectrical impedance analysis (BIA). However, these methods
are highly dependent on specialized equipment, which not only
increases the examination burden for patients but also limits their
accessibility in primary healthcare settings, where such devices may
not be available. These factors objectively reduce patients’ willingness
to undergo screening and diagnosis for sarcopenia, thereby posing a
barrier to its clinical awareness and broader implementation.

Therefore, this study aimed to develop a predictive model based
on routinely available clinical data to estimate the probability of low
muscle mass in RA patients. The goal is to enable targeted
identification of individuals at high risk of sarcopenia, guide further
screening and diagnostic efforts, and reduce the examination burden
on patients.

2 Materials and methods
2.1 Study population

In this study, we included data from the National Health and
Nutrition Examination Survey (NHANES) and the Affiliated Hospital
of Shandong University of Traditional Chinese Medicine (SHUTCM).

NHANES data from 2001 to 2018 were analyzed in this study.
NHANES is a thorough population health survey conducted by the
Centers for Disease Control and Prevention (CDC) to gather health
and nutrition data from the American population. It collects health
and nutritional information from a representative sample of the

Frontiers in Medicine

U.S. population and includes detailed laboratory test results, health
questionnaires, and mortality records. The survey received approval
from the Research Ethics Review Committee of the National Center
for Health Statistics (NCHS), and informed consent was collected
from all participants. As these data are de-identified and publicly
released by NCHS, no additional authorization or special access
was required.

At the SHUTCM, we enrolled patients diagnosed with RA between
August 2022 and January 2025. The study was conducted by the
principles of the Declaration of Helsinki and was approved by the
institutional ethics committee [ Approval No. (2022)083-KY]. Informed
consent was waived due to the retrospective nature of the study.

We excluded individuals under the age of 18, individuals without
a confirmed RA diagnosis, those lacking essential hematological
laboratory data, and those missing key skeletal muscle measurements.

2.2 Clinical feature assessment

The variables included in this study were gender, age, body mass
index (BMI), neutrophil count, lymphocyte count, hemoglobin, platelet
count, alanine aminotransferase (ALT), aspartate aminotransferase
(AST), cholesterol, albumin, urea, creatinine, and uric acid.

The NHANES research gathered RA-related data via a self-
administered questionnaire. Participants were asked in question
MCQ160a: “Have doctors or other health professionals informed
you that you have arthritis?” with possible responses being “Yes,” “No,”
“Refused,” or “Do not know.” If the answer was “Yes,” they were further
asked in question MCQ195: “What type of arthritis are you suffering
from?” with response options including “Rheumatoid arthritis,”
“Osteoarthritis,” “Psoriatic arthritis,” “Other,” “Refused,” and “Do not
know?” Participants who answered “Yes” to MCQ160a and selected
“Rheumatoid arthritis” in MCQ195 were identified as having RA
(questionnaire available at: https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx).

For patients from the SHUTCM, clinical information including
RA diagnosis and relevant laboratory data was extracted from
electronic medical records.

To reduce variability arising from differences in laboratory
instruments and reagent batches across datasets, standardization
procedures were applied. The systemic immune-inflammation index
(SIL; where SII = platelet count x neutrophil count/lymphocyte count)
and the neutrophil-to-lymphocyte ratio (NLR) were derived
through computation.

2.3 Assessment of low muscle mass

In the NHANES population, low muscle mass was defined based
on the skeletal muscle mass index (SMI), which was derived from
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appendicular skeletal muscle mass (ASM) obtained through DXA
scans of the limbs. SMI was calculated as ASM divided by
BMI. According to the Foundation for the National Institutes of
Health Sarcopenia Project criteria, individuals were classified as
having Low muscle mass if their SMI was less than 0.789 for men or
less than 0.512 for women (14).

For patients enrolled from the SHUTCM, low muscle mass was
assessed according to the criteria established by the Asian Working
Group for Sarcopenia using BIA (15). ASM was obtained via BIA and
adjusted for height. Low muscle mass was defined as <7.0 kg/m? for
men and <5.7 kg/m? for women.

2.4 Feature engineering and data
preprocessing

In the baseline characteristics table, continuous variables were
expressed as mean * standard error and compared using Student’s
t-test. For continuous variables that did not follow a normal
distribution, data were presented as median and interquartile
range and assessed using the Mann-Whitney U test. Categorical
variables were summarized as counts and percentages, and
compared using the chi-square test or Fisher’s exact test,
as appropriate.

We divided the RA cohort by time: participants enrolled before
January 2024 were assigned to the training set, where 10-fold cross-
validation was used for training and validation. Participants
enrolled between January 2024 and January 2025 were assigned to
the test set.

To assess heterogeneity between the two centers included in
the training set, we compared the distributions of all covariates
across centers. The Kolmogorov-Smirnov (K-S) test was applied
to evaluate whether the distributions of continuous variables
differed significantly between centers. Variables with K-S test
p-values <0.05 were considered to have statistically significant
distributional differences. Univariate and multivariate logistic
regression analyses were performed to explore the associations
between variables and low muscle mass. In addition, restricted
cubic spline (RCS) models were used to further investigate
potential nonlinear relationships between continuous variables and
the risk of low muscle mass.

Because NHANES lacks RA-specific activity indices in some
cycles, we additionally quantified how well hematology-derived
inflammation proxies relate to acute-phase reactants in the clinical
cohort. Specifically, using the SHUTCM dataset we computed
Spearman’s rank correlation (p) between NLR/SII and CRP/ESR
(two-sided p-values; 95% Cls via nonparametric bootstrap).

Data cleaning were performed prior to modeling. The target
variable was the presence of low muscle mass. During the feature
engineering stage, an automated interaction construction approach was
applied. Several clinically relevant feature pairs (e.g., Age x BMI,
Hemoglobin x Creatinine, Albumin x ALT) were used to generate new
numerical interaction terms to enhance the representational capacity
of the dataset. Categorical variables were encoded using one-hot
encoding. To avoid data leakage, all standardization procedures for
numerical  variables embedded within the

were Cross-

validation pipeline.
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2.5 Model construction and ensemble
strategy

Seven machine learning models, including Random Forest,
LightGBM, XGBoost, CatBoost, Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Logistic Regression were used to
predict the risk of low muscle mass in RA patients. To optimize the
performance of each base model, automated hyperparameter tuning
was performed using Optuna with Bayesian optimization, targeting
the F1 score as the objective metric. The maximum number of
optimization iterations was set to 15. Given the superior performance
of tree-based models, we calculated their out-of-fold AUC scores and
used them as weights to construct a weighted ensemble model, which
served as the final prediction model.

2.6 Training strategy and cross-validation

To ensure the robustness of the evaluation results, we applied
stratified 10-fold cross-validation. Within each fold, the training set was
oversampled using the Synthetic Minority Over-sampling Technique
(SMOTE) to address class imbalance. Each base model was
independently trained on the resampled training set and generated
probability predictions for the validation set. To determine the optimal
classification threshold, we evaluated 999 candidate thresholds ranging
from 0.001 to 0.999 for each model, selecting the one that maximized
the F1 score. Given the strong performance of tree-based models,
we selected four high-performing models—Random Forest, Light GBM,
XGBoost, and CatBoost—and used their validation-set predicted
probabilities as input features for the ensemble model. Finally, a
weighted ensemble model was constructed using out-of-fold
AUC-based weights from these four models to generate the final
prediction. To evaluate the generalizability of the ensemble model,
we conducted validation on the test set.

2.7 Performance evaluation and
visualization

Several commonly used evaluation metrics were employed to assess
the reliability of the models, including accuracy, area under the receiver
operating characteristic curve (AUC), F1 score, precision, recall, and
Brier score loss. To assess the clinical utility of the models under different
decision-making scenarios, we plotted the receiver operating
characteristic (ROC) curves, calibration curves, and decision curve
analysis (DCA) plots for all models. The DCA plots included “Treat-All”
and “Treat-None” strategies as baseline references (16).

2.8 Model interpretation

SHAP was used to interpret the prediction results of the models.
SHAP is a model-agnostic method for explaining machine learning
predictions. It is based on Shapley values, which quantify the
contribution of each feature to a given prediction. In this way, SHAP
helps to explain the decision-making process of the model, especially
in interpreting complex “black-box” models (17).
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We used the weighted ensemble model as the explainer and
calculated SHAP values across the entire training dataset. The SHAP
analysis included feature importance ranking (summary bar plot),
feature impact distribution (summary dot plot), individual-level
explanation (waterfall plot), feature dependence visualization
(dependence plot), cross-center population importance comparison
(forest plot); direction consistency analysis (Cleveland dot plot);
subgroup difference analysis (dependence plots).

Feature importance was evaluated by the mean absolute SHAP
value of each input variable, indicating its global influence on the
model’s output. The summary dot plot displayed the distribution of
SHAP values for each feature across all samples, along with feature
values to reveal positive or negative directional impact.

An individual-level explanation was demonstrated using a waterfall
plot for the second patient in the dataset, showing the cumulative
contribution of each feature to the models prediction. Dependence plots
were generated for key features to explore the functional relationships and
interactions between feature values and SHAP values.

Cross-center population importance comparison (forest plot). For
each feature, we computed the mean absolute SHAP value (mean |SHAP|)
in the overall sample, the NHANES subcohort, and the hospital
subcohort. We then calculated the between-center difference A and
obtained a 95% bootstrap confidence interval for A. Results are displayed
as a horizontal forest plot ordered by A; error bars that cross the zero line
indicate no significant difference. Direction consistency analysis
(Cleveland dot plot). For each feature, we calculated the proportion of
instances with SHAP >0 in three groups (overall, NHANES, hospital).
This proportion indicates whether higher feature values tend to increase
or decrease the predicted risk. Plotting and connecting the three points
allows a visual assessment of directional consistency across populations.
Subgroup difference analysis (dependence plots). We stratified the data
by sex (female vs. male) and age (<60 vs. >60 years), computed mean
SHAP within each subgroup, and calculated the between-subgroup
difference A. Features with larger differences are summarized using
horizontal ~ forest-style highlight
explanatory strength.

plots to subgroup-specific

2.9 Web-based calculator

An online risk prediction calculator was developed based on the
FastAPI framework. The model consists of four base learners (Random
Forest, Light GBM, XGBoost, and CatBoost) and a weighted ensemble
model, each loading pretrained model files for inference. After users
input clinical indicators via the web interface, the backend automatically
calculates derived variables (NLR, SII, Age_group) and interaction terms
(BMI x Age, Hemoglobin x Creatinine, Albumin x ALT). These features
are then standardized and passed into the models to obtain prediction
probabilities, which are finally aggregated by the ensemble model to
output the overall risk probability.

The system has been deployed on a public server and is accessible
online for real-time prediction: https://huggingface.co/spaces/
FYZhouLab/Low_muscle_mass.

2.10 Statistical software

The logistic regression, KNN, random forest, and SVM models were
implemented using the scikit-learn library. The XGBoost model was
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built with the xgboost library, LightGBM was implemented using the
lightgbm library, and the CatBoost model was constructed with the
catboost library.

3 Results
3.1 Baseline characteristics

A total of 1,260 individuals with RA were included in this study, of
whom 615 were from the SHUTCM and 645 from the NHANES
database. In the overall dataset, 74.1% of participants were female, and
25.9% were male. Baseline characteristics were stratified by low muscle
mass status. Significant differences were observed between the low muscle
mass group (G1) and the non-low muscle mass group (G2) across several
baseline variables. The mean age of the G1 group was 55.44 + 0.82 years,
significantly higher than that of the G2 group (51.59 +0.38 years,
P <0.001). In addition, the hemoglobin level in G1 was slightly lower than
that in G2 (p = 0.030). Detailed baseline characteristics are presented in
Table 1, and the study design is illustrated in Figure 1.

To compare the baseline characteristics of training set between the
two study centers, the K-S test was performed for all non-outcome
variables. The results indicated that several variables exhibited
significant distributional differences between the two centers. Detailed
information is provided in Supplementary Table 1.

3.2 Independent risk factors and nonlinear
relationships

To investigate the association between clinical variables and low
muscle mass, we performed univariate logistic regression (Table 2)
and multivariate logistic regression analyses (Table 3) using the
training dataset. In the univariate analysis, age, neutrophil count,
albumin, creatinine, SII, and older age group were significantly
associated with low muscle mass. In the multivariate analysis, age,
albumin, creatinine, and neutrophil count remained independently
associated with low muscle mass.

To further explore potential nonlinear relationships between
continuous variables and risk of low muscle mass, we used RCS
models. The results, presented in Figure 2, showed that some variables
exhibited marked nonlinear associations with low muscle mass,
suggesting that traditional linear models may underestimate the true
impact of these factors.

Besides, in the SHUTCM clinical dataset, we quantified the
associations between hematology-derived inflammatory indices
(NLR, SII) and acute-phase reactants (ESR, CRP) using Spearman’s
rank correlation. All four correlations were positive and statistically
significant, but the effect sizes were in the weak range, indicating that
SII and NLR partially reflect systemic inflammatory burden yet cannot
fully substitute for the acute-phase response represented by CRP/ESR
(Supplementary Table 2).

3.3 Model development and performance
comparison

Given the limited number of features included in this study (17 in
total), no explicit variable selection was performed to avoid potential
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TABLE 1 Baseline characteristics.

10.3389/fmed.2025.1694320

Characteristic N1 Overall Gl G2 p-value
Gender 0.77

Female 934 934 (74.1%) 172 (75.1%) 762 (73.9%)

Male 326 326 (25.9%) 57 (24.9%) 269 (26.1%)
Age group <0.001

Age <60 931 931 (73.9%) 146 (63.8%) 785 (76.1%)

Age >60 329 329 (26.1%) 83 (36.2%) 246 (23.9%)
Age 1,260 5229 +0.34 55.44 +0.82 51.59 +0.38 <0.001
Cholesterol 1,260 491 (4.29-5.69) 4.89 (4.27-5.69) 4.94 (4.29-5.69) 0.648
Lymphocyte 1,260 1.79 (1.40-2.30) 1.84 (1.41-2.40) 1.77 (1.38-2.30) 0.201
Neutrophil 1,260 3.80 (3.00-4.80) 4.10 (3.10-5.00) 3.78 (3.00-4.72) 0.075
Hemoglobin 1,260 13.20 (12.20-14.30) 12.90 (11.10-14.40) 13.30 (12.30-14.20) 0.003
Platelet 1,260 254.00 (212.00-308.25) 261.00 (211.00-320.00) 253.00 (213.00-305.50) 0.281
Albumin 1,260 41.00 (39.00-43.00) 39.50 (38.00-42.00) 41.40 (39.25-43.25) <0.001
ALT 1,260 19.00 (14.00-26.00) 18.00 (13.00-25.00) 19.00 (14.00-26.00) 0.452
AST 1,260 21.00 (18.00-26.00) 21.00 (17.00-27.00) 21.00 (18.00-26.00) 0.459
UREA 1,260 4.64 (3.86-5.71) 4.64 (3.89-5.71) 4.65 (3.81-5.71) 0.737
Uric acid 1,260 283.00 (232.00-345.00) 261.70 (212.00-333.10) 287.00 (236.50-345.00) 0.004
Creatinine 1,260 61.00 (49.00-77.79) 54.00 (44.20-70.72) 61.88 (50.39-78.68) <0.001
NLR 1,260 2.10 (1.53-2.86) 2.11 (1.55-2.94) 2.09 (1.53-2.84) 0.834
SII 1,260 532.93 (367.68-776.12) 575.92 (363.84-827.44) 523.62 (370.15-772.57) 0.389
BMI 1,260 26.72 (23.47-31.13) 25.29 (20.61-32.96) 26.98 (24.01-30.90) <0.001

ALT, alanine aminotransferase; AST, aspartate aminotransferase; UREA, serum urea nitrogen; NLR, neutrophil to lymphocyte ratio; SII, Systemic Immune Inflammation Index; BMI, body

mass index. G1: low muscle mass group; G2: non-low muscle mass group.

information loss. All features were retained for model development.
During model training, ensemble learning and cross-validation were
applied to reduce the risk of overfitting, and SHAP analysis was used
to assess feature importance.

We developed and compared eight classification algorithms,
including Random Forest, LightGBM, XGBoost, CatBoost, SVM,
KNN, Logistic Regression, and an AUC-weighted ensemble model.
Among the base learners, CatBoost (AUC =0.772), LightGBM
(AUC =0.768), Random Forest (AUC =0.766), and XGBoost
(AUC = 0.753) showed better performance. Cross-validation results
confirmed the stability of these findings. Given the superior predictive
performance of tree-based models, we constructed a weighted
ensemble model based on the AUC scores of four tree-based learners.
The weighted ensemble model achieved the best overall performance,
with an AUC of 0.921, significantly outperforming all individual
models. The average performance metrics of each machine learning
model across 10-fold cross-validation are presented in Table 4, while
the Out-of-Fold (OOF) performance metrics are summarized in
Table 5.

Calibration curves showed that the ensemble model’s predicted
probabilities closely matched actual event rates, indicating better
calibration than other models. Decision curve analysis showed that
the ensemble model achieved higher net clinical benefit across a wide
range of threshold probabilities, suggesting greater clinical utility.
Figure 3 presents the performance of the models on the validation set.

To evaluate the generalizability of the ensemble model,
we conducted validation on the test set. Figure 4 presents the
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performance of the models on the validation set. On the independent
test set, the ensemble model demonstrated robust discriminatory
ability, with an AUC of 0.848 (Figure 4B). As shown in Figure 4A, the
model achieved consistent performance across multiple evaluation
metrics, including Accuracy, Recall, Precision, and F1 score. The
calibration curve (Figure 4C) indicated that the predicted probabilities
were reasonably aligned with the observed outcomes, although some
degree of underestimation was observed at higher probability ranges.
Decision curve analysis (Figure 4D) further showed that the ensemble
model provided a greater net clinical benefit compared with the
“treat-all” and “treat-none” strategies, particularly within the threshold
probability range of 0.1-0.4, suggesting good clinical applicability of
the model. Performance of the ensemble model on the test set are
shown in Table 6.

3.4 Model interpretation

Due to the complex ensemble structure and nonlinear interactions
of the weighted ensemble model, it is inherently less interpretable and
considered a “black-box” model. To address this limitation, we applied
the SHAP method, which quantifies the contribution of each feature
to the model’s prediction, enabling interpretation of the model output.
SHAP analysis results are visualized in Figure 5.

Model interpretation was conducted at both the global
(feature-level) and local (individual-level) levels. At the global
level, we used SHAP summary bar plots (Figure 5A) and dot plots
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Rheumatoid arthritis patients from the NHANES
database and the Affiliated Hospital of Shandong
University of Traditional Chinese Medicine

v

Individuals under the age of 20, lacking baseline
information, sarcopenia indicators and serological

indicators were excluded.

v

¥

Training set

Univariate and
multivariate analysis

480: Shandong TCM Hospital
645: NHANES database

A total of 1,125 RA patients enrolled before January

Test set
A total of 135 RA patients enrolled between
January 2024 and January 2025
All patients came from Shandong TCM
Hospital

, |

Data preprocessing:
Construct and select interaction terms
One-hot encoding of categorical variable.

RCS analysis of
continuous variables
and sarcopenia

|

Base Classifiers:

KNN, Logistic Regression

Random Forest, LightGBM, XGBoost, CatBoost, SVM,

l

Perform 10-Fold Stratified Cross-Validation

}

Apply SMOTE to Balance Training Data in Each Fold

l

Base Models on Each Fold

Optimize Hyperparameters with Optuna and Train All

!

Predict on Validation set

)

Average Ensemble Based on Out-Of-Fold AUC

selected high-performing models and Build Weighted

y

set

Ensemble model validation was conducted on the test

l

and Dependence Plots)

Interpret Model Using SHAP(Summary, Dot, Waterfall,

-

online risk prediction

Web Application: Model deployed via FastAPI for

FIGURE 1
Flowchart of model development and verification.

(Figure 5B) to evaluate the overall contribution of each feature to
the model. The bar plot ranks features based on their mean absolute
SHAP values, revealing that BMI, albumin, hemoglobin, age, and
creatinine were the top five contributors to the model’s predictions.
The SHAP summary dot plot provides a visual representation of
the direction and magnitude of each feature’s impact on the
prediction. It showed that higher levels of BMI, creatinine,
albumin, and hemoglobin were associated with a lower predicted
risk of low muscle mass, while older age, lymphocyte count, and
neutrophil count were associated with increased risk. At the local
level, we used SHAP waterfall plots (Figure 5C) to visualize the
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model’s decision process for individual patients. A waterfall plot
was generated for the second patient in the test set, showing the
contribution of each feature (sorted in descending order of
absolute SHAP value) to the final prediction.

SHAP dependence plots (Figure 6) further illustrated how
individual features influenced model predictions. Features with SHAP
values greater than zero were positively associated with the model’s
prediction of low muscle mass.

Cross-center population importance comparison (Figure 7A).
Among the top-ranked features by overall mean SHAP, we observed
clear between-cohort differences. BMI had a markedly negative A
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TABLE 2 Univariate logistic regression.

Variable (O] 95% CI p-value
Albumin 0.889 (0.85,0.93) <0.001
Age 1.030 (1.02, 1.04) <0.001
Age_group 1.857 (1.34,2.58) <0.001
Neutrophil 1.118 (1.02, 1.22) 0.014
Creatinine 0.992 (0.99, 1.00) 0.030
SIT 1.000 (1.00, 1.00) 0.040
NLR 1.106 (0.98, 1.25) 0.103
Uric_acid 0.999 (1.00, 1.00) 0.213
Platelet 1.001 (1.00, 1.00) 0.218
Lymphocyte 1.094 (0.89,1.35) 0.406
Hemoglobin 0.982 (0.92, 1.04) 0.563
BMI 0.994 (0.97, 1.02) 0.611
AST 0.997 (0.98, 1.01) 0.614
Cholesterol 0.982 (0.85,1.13) 0.806
ALT 0.999 (0.99, 1.01) 0.874
UREA 1.005 (0.93,1.09) 0.899
Gender 1.010 (0.72, 1.42) 0.952

ALT, alanine aminotransferase; AST, aspartate aminotransferase; UREA, serum urea
nitrogen; NLR, neutrophil to lymphocyte ratio; SII, Systemic Immune Inflammation Index;
BMI, body mass index; 95% CI, 95% confidence interval.

TABLE 3 Multivariate logistic regression.

Variable (O] 95% ClI p-value
Intercept 2.284 (0.28,18.58) 0.440
Albumin 0.903 (0.86, 0.94) <0.001
Age 1.036 (1.01, 1.06) <0.001
Creatinine 0.989 (0.98, 1.00) 0.003
Neutrophil 1.182 (1.04, 1.34) 0.008
SIT 0.999 (1.00, 1.00) 0.365
Age_group >60 0.999 (0.60, 1.67) 0.999

SII, Systemic Immune Inflammation Index; 95% CI, 95% confidence interval.

(mean|SHAP|, NHANES — SHUTCM) with a 95% CI not crossing
zero, indicating greater explanatory strength in the hospital cohort.
In contrast, albumin, creatinine, and age/age_group showed positive
A with CIs not crossing zero, implying larger contributions in
NHANES. Lymphocyte count and ALT also tended to favor the
hospital side (negative A), whereas several metabolic/inflammatory
variables exhibited small, zero-crossing intervals, suggesting more
portable signals across populations. This pattern is consistent with
differences in case mix and laboratory measurement ranges between
a population survey and a tertiary care setting. Direction consistency
analysis (Figure 7B). Most core features displayed broadly consistent
directions across populations (proportions with SHAP >0 well away
from 0.5). Albumin predominantly showed a negative association,
while age and creatinine were largely positive. BMI showed mixed
and non-linear behavior; in the hospital cohort its contribution
strengthened at higher values, consistent with the threshold or
steep-rise patterns in the dependence plots. Overall, the
directionality supports a nutrition-inflammation-muscle-mass axis

Frontiers in Medicine

10.3389/fmed.2025.1694320

as a cross-population stable signal, while the population-amplified
effect of BMI warrants attention and potential local calibration at
deployment. Subgroup difference analysis (Figures 7C,D). Using A
(<60 — >60) for the age contrast, creatinine and age itself
contributed more strongly among older participants (negative A),
whereas BMI and albumin were relatively more influential in the
<60 group (positive A). This suggests effect modification by age,
with muscle-mass/renal-clearance markers more tightly linked to
outcomes in older adults and weight/nutritional status contributing
more among younger adults. For the sex contrast A (female — male),
BMI showed greater explanatory strength in women (positive A),
while creatinine was more important in men (negative A); other
features differed only modestly. These patterns align with sex-specific
body fat/muscle distribution and physiological thresholds,
thresholds  and  tailored

supporting  subgroup-aware

risk communication.

3.5 Implementation of the web calculator

We successfully developed and deployed an online sarcopenia risk
prediction calculator based on the FastAPI framework. The system
integrates four base learners—Random Forest, LightGBM, XGBoost,
CatBoost, and weighted ensemble model to generate individualized
risk predictions. Upon entering relevant clinical variables via the web
interface, the system automatically computes derived features (e.g.,
NLR, SII, Age group) and interaction terms (e.g., BMI x Age,
Hemoglobin x Creatinine, Albumin x ALT). All inputs are then
standardized and passed into each model for inference. The final risk
probability score is output by the ensemble model. The system is
currently deployed on the Hugging Face Spaces platform and supports
real-time online access and prediction: https://huggingface.co/spaces/
FYZhouLab/Low_muscle_mass.

4 Discussion

This study developed a clinical prediction model that leverages
routinely collected diagnostic and treatment data to provide
preliminary screening for muscle mass in RA patients. The model may
reduce the need for routine sarcopenia screening procedures and
enable more targeted diagnostic evaluation for individuals at high risk
of sarcopenia.

In the final model we developed, BMI, albumin, hemoglobin, age,
and creatinine were identified as the five most important features. BMI
and serum albumin are commonly considered surrogate markers of
nutritional status and muscle mass. However, patients with RA often
exhibit elevated systemic inflammatory burden and additional
physiological impairments, which may confer additional clinical
significance to these indicators within the RA population.

In the final model, SHAP dependence analysis indicated that
while low BMI exhibited a stronger association with low muscle
mass, excessively high BMI values were also positively associated
with increased risk. Low BMI may be indicative of rheumatoid
cachexia, while high BMI may reflect sarcopenic obesity in patients
with RA. Sarcopenic obesity refers to a pathological body
composition characterized by the coexistence of reduced muscle
mass and excessive fat accumulation, and it has a relatively high
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FIGURE 2
Nonlinear associations between continuous variables and risk of low muscle mass based on restricted cubic spline (RCS) models.
TABLE 4 Average performance metrics of each machine learning model based on 10-fold cross-validation.
Model Accuracy AUC F1 Precision Recall BrierScore
RandomForest 0.820 + 0.044 0.776 + 0.047 0.546 + 0.091 0.506 = 0.109 0.603 + 0.097 0.174 +0.023
LightGBM 0.803 +0.070 0.765 £ 0.071 0.526 +0.089 0.498 £ 0.136 0.608 + 0.156 0.153 £0.031
XGBoost 0.804 + 0.068 0.766 + 0.065 0.532 +0.084 0.505 £ 0.157 0.603 = 0.082 0.312 +0.082
CatBoost 0.823 + 0.041 0.773 +0.043 0.539 + 0.071 0.524 +0.098 0.587 +0.126 0.146 + 0.029
SVM 0.732+0.117 0.711 £ 0.070 0.476 +0.073 0.414 +0.140 0.643 +0.146 0.173 +£0.029
KNN 0.662 + 0.132 0.637 + 0.050 0.394 +0.043 0.333 £0.116 0.608 = 0.206 0.267 +0.027
LogisticRegression 0.657 +0.113 0.651 +0.035 0.416 + 0.031 0.324 +0.083 0.674 + 0.165 0.232+0.010

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted
positives; Recall (sensitivity), proportion of true positives among actual positives.
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TABLE 5 Out-of-fold performance metrics of machine learning models based

10.3389/fmed.2025.1694320

on 10-fold cross-validation.

Model Accuracy AUC F1 Precision Recall BrierScore
RandomForest 0.809 0.766 0.508 0.466 0.558 0.174
LightGBM 0.773 0.768 0.489 0.407 0.613 0.153
XGBoost 0.782 0.753 0.464 0.411 0.533 0312
CatBoost 0.835 0.772 0.492 0.539 0.452 0.146
SVM 0.685 0.710 0.41 0.307 0.618 0.173
KNN 0.528 0.637 0.347 0.230 0.709 0.267
LogisticRegression 0.64 0.652 0.370 0.268 0.598 0.232
Ensemble model 0.859 0.921 0.651 0.578 0.744 0.094

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted

positives; Recall (sensitivity), proportion of true positives among actual positives.
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FIGURE 3
observed probabilities. (D) Decision curve analysis (DCA) evaluating clinical net benefit.

prevalence among individuals with RA (18). Unlike traditional
simple obesity, RA-related sarcopenic obesity typically involves a
dual alteration: a decrease in lean body mass and an increase in fat
mass. The condition of reduced lean mass in RA is also referred to
as rheumatoid cachexia (19), which is often driven by chronic
inflammation that impairs both the synthesis and degradation of
skeletal muscle proteins (20). This state is associated with increased
disease activity and higher mortality risk (21-23). Therefore,
although some RA patients may present with elevated BMI, chronic
inflammation-induced loss of lean mass may lead to the coexistence
of low muscle mass and high BMI, highlighting the need for careful
interpretation of BMI in this population.

Frontiers in Medicine 09

Hemoglobin is a sensitive indicator of both inflammation-related
anemia and nutritional status (24-26). In patients with RA, hemoglobin
levels are closely associated not only with disease activity but also with
tissue damage caused by chronic inflammation (27). Multiple studies
have demonstrated a significant correlation between low hemoglobin
levels and clinical joint damage, independent of traditional disease
activity markers. Hemoglobin has been proposed as an independent
risk factor for predicting joint and other tissue damage (28, 29).
Chronic anemia associated with RA is considered one of the common
comorbidities of the disease (30), and its underlying mechanisms may
involve reduced red blood cell lifespan, pathological iron homeostasis
driven by hepcidin, and a diminished response to erythropoietin (31).
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TABLE 6 Performance of the ensemble model on the test set.

Model Accuracy AUC (95% F1 | Precision Recall BrierScored BestThresholdUsed Permutation

Cl) p-value
Ensemble 0.848 (0.770,
0.837 0.645 0.625 0.667 0.133 0.326 <0.001
model 0.923)

Accuracy, overall proportion of correctly classified cases; AUC, area under the curve; F1, harmonic mean of precision and recall; Precision, proportion of true positives among predicted
positives; Recall (sensitivity), proportion of true positives among actual positives.
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SHAP dependence plots for clinical features in the ensemble model.

Research suggests that chronic anemia may contribute to the
development and progression of low muscle mass by impairing oxygen
delivery to muscle tissue (32), providing a potential pathophysiological
explanation for the decline in muscle mass observed in RA patients.

Serum albumin is the most abundant protein in plasma and serves
as a key indicator of nutritional status. Recent studies have shown that
malnutrition can lead to decreased serum albumin levels, accelerate the
loss of lean body mass, and subsequently contribute to the development
of low muscle mass—a mechanism that may be closely associated with
functional decline and reduced muscle strength or mass in older adults
(33). In addition to reflecting nutritional reserve, serum albumin is a
negative acute-phase reactant (34): its concentration decreases when
IL-6 driven hepatic acute-phase signaling is activated. Clinically,
albumin fluctuations are closely tied to outcomes in critical illness. In
rheumatoid arthritis (RA), cytokine-mediated inflammation,
predominantly IL-6, IL-1 and TNF-a, engages the gp130-STAT3
pathway, shifting hepatocyte protein synthesis toward positive acute-
phase proteins and down-regulating albumin (35-37); capillary leak,
hemodilution, and catabolic effects further lower circulating levels.
This mechanistic framework explains the inverse relation between
albumin and inflammatory activity and the frequent hypoalbuminemia
in active RA observed clinically (38, 39).

Lower serum creatinine reflects reduced muscle mass, whereas
higher values can also reflect impaired renal clearance, this dual
dependence explains why creatinine alone is an imperfect proxy for
sarcopenia. In rheumatoid arthritis (RA), chronic cytokine-driven
inflammation (TNF-a, IL-6) promotes rheumatoid cachexia,
accelerating muscle protein breakdown, reducing synthesis, and
predisposing to low muscle mass, thereby linking inflammatory
activity to creatinine declines via loss of muscle substrate (40, 41). To
disentangle muscle from kidney effects, several studies propose the
sarcopenia index (SI = serum creatinine/serum cystatin C x 100) or

Frontiers in Medicine

11

the creatinine-to-cystatin C ratio, leveraging the fact that cystatin C is
largely independent of muscle mass. These indices show promising
diagnostic and prognostic performance for low muscle mass across
cohorts (42-45). Our findings are consistent with this biology: in an
RA population where inflammation-driven muscle wasting is
prevalent, creatinine provide clinically useful signals for identifying
individuals at risk of low muscle mass, while also acknowledging renal
function as a key confounder (46).

We acknowledge several limitations in this study. First, this analysis
used multicenter data. Because the single-center cohort from the
Affiliated Hospital of Shandong University of Traditional Chinese
Medicine did not provide enough events for machine-learning training,
and because RA severity and case-mix differ between community
participants and hospital patients, we augmented the dataset with
NHANES, a nationally representative U.S. Health Examination Survey,
and adopted a dual-source design (“population survey and hospital”) to
improve transportability across community and clinical settings. Results
from the K-S test indicated that most non-outcome variables exhibited
significant distributional differences between the two centers. The cross-
center heterogeneity we observe constitutes a domain shift that can
influence both bias and transportability. First, spectrum effects arise when
case severity and prevalence differ by site: discrimination (e.g., AUC) may
remain acceptable while calibration drifts, causing misestimation of
absolute risk and threshold-dependent bias (PPV/NPYV, net benefit) when
a model trained in one spectrum is applied to another. Second,
measurement shifts such as different laboratory ranges, assay platforms,
or coding practices, can change the apparent effect size of predictors,
creating center-dependent signals that degrade portability if not
recognized. To assess potential bias and generalizability, we reported
performance on a time-split external test set, showing that the ensemble
retained probability calibration and net clinical benefit despite
distributional shifts. We also added cross-population SHAP analyses
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(Figures 7A-D) to quantify differences in feature contributions between
NHANES and the hospital cohort and to identify signals that are portable
versus center-dependent. To minimize bias and preserve generalizability,
we recommend: (1) site-specific recalibration (isotonic/Platt) and
cut-point tuning using a small local sample before deployment; (2)
prospective monitoring of calibration and decision metrics with drift
checks (e.g., PSI/K-S) and scheduled re-assessment; and (3) if future
settings diverge more substantially, consider re-weighting, domain-
adaptation, or hierarchical/multi-source training as extensions.

Second, the NHANES database lacks RA-specific disease activity
measures such as DAS28, RAPID-3, and, in certain cycles, C-reactive
protein (CRP) and erythrocyte sedimentation rate (ESR). These
indicators are frequently used in clinical practice and are closely
associated with long-term outcomes in RA patients, including
cardiovascular mortality. This limitation arises from the design of the
NHANES database, which is intended for population-level health
surveillance rather than disease-specific clinical research. As a result,
key components required to calculate conventional RA disease activity
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scores—such as tender and swollen joint counts, patient-reported
outcomes, CRP, and ESR—were unavailable, preventing us from
incorporating direct measures of RA disease activity into the
predictive model. To compensate for this limitation, we included the
NLR and SII as indirect indicators of RA disease activity. Previous
studies have demonstrated that NLR is positively correlated with ESR
and CRP in RA populations (47), and that SII is associated with
DAS28-ESR and DAS28-CRP (48, 49). Several additional studies also
support the strong association of NLR and SII with RA disease activity
(47, 50). Although NLR and SII can partially reflect systemic
inflammation and disease activity in RA, they remain surrogate
markers and have inherent limitations. Consistent with prior
literature, both NLR and SII showed positive, statistically significant
correlations with CRP and ESR in our dataset, indicating that these
indices partially track systemic inflammatory burden. However, the
effect sizes were in the weak range, aligning with published evidence
that NLR/SII correlate with disease activity but do not fully substitute
for canonical markers or composite scores. We acknowledge the

frontiersin.org


https://doi.org/10.3389/fmed.2025.1694320
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Zhou et al.

predictive value of traditional inflammatory markers such as CRP and
ESR, as well as disease activity scores like DAS28, in the context of
RA-associated low muscle mass. Therefore, future work should
incorporate RA-specific disease activity indicators to further optimize
and validate the predictive model.

Moreover, RA disease activity typically fluctuates over time and in
response to treatment, rather than remaining constant (51). NLR and
SII are highly sensitive to changes in RA disease activity; therefore,
their elevation during periods of active disease may lead to a higher
likelihood of RA patients being classified as high-risk for low muscle
mass by the model. This study was based on cross-sectional data,
capturing only the baseline values of NLR and SII at a single time
point. As a result, the model reflects inflammation levels at a specific
moment, without accounting for the longitudinal variation in RA
disease activity. In future research, we aim to incorporate RA-specific
disease activity indicators and their temporal dynamics into the
predictive model to better represent disease progression over time.

We developed an interpretable machine learning model to predict
the risk of low muscle mass in patients with RA. The final weighted
ensemble model demonstrated excellent predictive performance.
Future research should perform prospective external validation in an
independent center to further evaluate model transportability
and calibration.
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Glossary

RA - Rheumatoid arthritis

AUC - Area under the receiver operating characteristic curve
SHAP - SHapley Additive exPlanation

DXA - Dual-energy X-ray absorptiometry

BIA - Bioelectrical impedance analysis

NHANES - National Health and Nutrition Examination Survey

SHUTCM - Affiliated Hospital of Shandong University of Traditional
Chinese Medicine

NCHS - National Center for Health Statistics
SVM - Support vector machine

KNN - K-nearest neighbors
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BMI - Body mass index

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

SII - Systemic Immune-Inflammation Index
NLR - Neutrophil-to-lymphocyte ratio
SMOTE - Synthetic Minority Over-sampling Technique
SMI - Skeletal muscle mass index

ASM - Appendicular skeletal muscle mass
K-S - Kolmogorov-Smirnov

ROC - Receiver operating characteristic
DCA - Decision curve analysis

RCS - Restricted cubic spline
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