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Placental vascularization may influence fetal brain development, but its long-

term impact on neurodevelopment remains unclear. In this pilot study, we

analyzed two ligand proteins: vascular endothelial growth factor (VEGF) and

placental growth factor (PLGF), and their receptors mRNA and protein levels

in placentas from children who later were diagnosed with autism spectrum

disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), or controls.

ASD placentas showed lower VEGF, PLGF, and KDR protein levels but higher

FLT1, while ADHD placentas had increased FLT1 and reduced VEGF mRNA.

These findings suggest distinct placental vascular alterations in ASD and ADHD,

highlighting a potential role of the placenta-brain axis in neurodevelopmental

disorders and early-life mechanisms underlying impaired brain development.

KEYWORDS

placenta, VEGF family, autism spectrum disorder, attention-deficit/hyperactivity
disorder, angiogenesis

Introduction

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD)
are common neurodevelopmental conditions with complex etiologies. According to
the Diagnostic and Statistical Manual of Mental Disorders, ASD is characterized by
social communication and interaction difficulties, along with repetitive behaviors. At the
same time, ADHD presents as persistent inattention and/or hyperactivity-impulsivity.
Both disorders emerge in early childhood and impact cognitive, social, and emotional
development (1).
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The reported prevalence of ASD varies across studies and 
regions. In Chile, the ASD prevalence has been estimated at 1.96% 
(2021), derived from a cohort of 272 children (2). However, meta-
analytic estimates suggest global ASD prevalence in children closer 
to ∼0.7–1.5%, with substantial heterogeneity across studies and 
regions (3). Furthermore, global estimations from meta-analyses 
indicate that ADHD aects approximately 5–8% of children and 
adolescents, with higher estimates in boys than girls (4, 5), 
highlighting the need for deeper investigation into prenatal and 
perinatal contributors. 

The etiology of ASD and ADHD involves genetic, epigenetic, 
and environmental factors, with gene-environment interactions 
playing a significant role. Prenatal risk factors for ASD include 
advanced parental age, maternal conditions like gestational 
hypertension and diabetes, and obstetric complications such as 
preeclampsia and preterm birth (6). ADHD is highly heritable, but 
environmental exposures during pregnancy can modulate genetic 
susceptibility (7). The placental function may play a role in the 
early programming of these disorders (8). For instance, placental 
insuÿciency and maternal vascular malperfusion, indicative of 
prenatal hypoxia and nutrient deprivation, have been linked to 
a markedly increased risk of ASD (9, 10). Also, altered placental 
DNA methylation patterns were associated with ASD susceptibility 
(11, 12). 

The placenta is a key regulator of fetal development, facilitating 
the exchange of nutrients and gases, and producing bioactive 
molecules essential for brain development. Angiogenic factors 
(ligands), such as vascular endothelial growth factor (VEGF) and 
placental growth factor (PLGF), as well as their receptors—type 1 
(VEGFR-1, FLT1) and type 2 (VEGFR-2, KDR)—play critical roles 
in placental vascularization (13). Dysregulation of these pathways 
has been implicated in pregnancy complications, but their potential 
contribution to neurodevelopmental disorders remains unclear. 

Using our placental biobank, we investigated the expression 
(mRNA and protein) of VEGF, PLGF, FLT1, and KDR in the 
placentas of children (10–12 years old) who were diagnosed 
with ASD or ADHD, compared to age-matched controls. This 
study provides insights into the prenatal origins of these 
disorders and highlights potential underlying alterations occurring 
during pregnancy. 

Methods 

Patients 

Ethical approval and participant recruitment 
The Bioethics Committee of the Herminda Martin Hospital 

in Chillán approved this study. Informed consent was obtained 
from all parents, and the children also provided informed assent 
to participate. This pilot study utilized a database from the 
Vascular Physiology Laboratory at the University of Bio Bio, 
containing clinical data from 617 deliveries and stored placentas 
(n = 363). Mothers were contacted when their children were 10– 
12 years old, and a telephone interview was conducted to identify 
potential participants searching for children with a previous 
diagnosis of ASD or ADHD. 

Clinical and neurological assessment 
In-person evaluations were scheduled for children with a 

reported diagnosis of ASD or ADHD. Before this evaluation, 
we obtained a written informed consent, and a speech-language 
pathologist (C. Celis) conducted an initial interview to verify the 
diagnosis. Children were then referred to a neurologist (Dr. E. 
López) for diagnostic reconfirmation. 

Final sample and data collection 
The final sample consisted of 16 children: 4 with ADHD, 4 

with ASD, and eight controls without neurocognitive disorders 
(Non-ND). Controls were matched by gestational age, pregnancy 
conditions, child sex, newborn anthropometry, and placental 
weight. Clinical information was stored in a database, and 
structured questionnaires were used to collect missing pregnancy-
related data. 

PCR quantitative (qRTPCR) 
Total RNA was isolated from placental extracts, and cDNA 

was synthesized. qRTPCR was performed using specific primers 
(Supplementary Table 1) for the genes of interest, with gene 
expression quantified using the 2−/CT method (14). 

Western blot 
Placental protein extracts (50 µg) were separated by SDS-

polyacrylamide gel electrophoresis and analyzed with primary 
antibodies anti-VEGF (Santa Cruz, California, OR, USA; sc-
7269, 1:1000 dilution), anti-PLGF (Santa Cruz, California, OR, 
USA; sc-518003, 1:1000), anti-FLT1 (Santa Cruz, California, 
OR, USA; sc-316, 1:1000), and anti- KDR (Cell Signaling 
Technology, Denver, MA, USA; 2472, 1:1000 dilution). They were 
applied overnight independently, followed by incubation with 
the secondary antibodies Anti-Rabbit IgG (sc-A9169) or Anti-
Mouse IgG (sc-A9917) (Sigma-Aldrich, MO, USA). Proteins were 
normalized with β-actin (Sigma-Aldrich, California, OR, USA; 
A5441, 1:5000 dilution). The bands were quantified using ImageJ 
software as previously described (15). 

Statistical analysis 

Quantitative variables were presented as mean ± SD, and 
qualitative variables as percentages. Comparisons between groups 
were performed using the Kruskal-Wallis test, with Dunn’s 
post hoc test for pairwise comparisons. A p-value < 0.05 was 
considered statistically significant. Data were organized in a 
Microsoft Excel database, and statistical analyses were conducted 
using GraphPad Prism. 

Results 

Participant selection and group 
characteristics 

Of the 617 potential participants, only 363 had placenta samples 
in our database. From then, 212 mothers were contacted, and 24 
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FIGURE 1 

Placental expression of VEGF, PLGF, FLT1, and KDR in children later diagnosed with autism spectrum disorder (ASD), attention-deficit/hyperactivity 
disorder (ADHD), or controls (Non-ND). (A) Schematic representation of the study design, analyzing placental samples stored in our biobank for 
10–12 years. Figure A created with Biorender. (B) Representative blots of VEGF, PLGF, FLT1, KDR, and β-actin. Protein and mRNA expression of 
(C) VEGF, (D) PLGF, (E) FLT1, and (F) KDR. Every dot represents an individual subject. Data are presented as mean ± SD. P-values are included in each 
graph. 

agreed to participate (Supplementary Figure 1). The final sample 

included in this pilot study consists of four placentas and children 

with ADHD, four with ASD, and eight with non-neurocognitive 

disorders (Non-ND) (Figure 1A). The age range at inclusion 

was 10–12 years, with no significant dierences among groups. 
A Kruskal–Wallis test indicated significant dierences among 

groups in mothers’ age [H(2) = 8.53, p = 0.0053, n = 16]. Post hoc 

Dunn’s test showed a significant dierence in the age of mothers 
of children with ADHD compared to those of the Non-ND group 

(Z = 2.92, p = 0.0106). No significant dierences were observed 

in gestational age, newborn anthropometry, or placental weight 
(Table 1). 

Placental eÿciency was calculated (grams of fetal mass per 
gram of placental mass), a widely used measure of how much fetal 
mass is produced per gram of placental mass. This ratio had shown 
variations associated with pregnancy outcomes (16). We found that 
placental eÿciency was significantly dierent among the studied 
groups [H(2) = 8.49, p = 0.0061], with higher values in the ADHD 
group than in the Non-ND group (Z = 2.79, p = 0.016). 

Pregnancy complications tended to be more frequent among 
mothers of children with ADHD (3/4) and ASD (4/4) compared 

TABLE 1 Characteristics of the included children. 

Analyzed characteristic Non-ND ADHD ASD p 

N 8 4 4 

Children’s age (years) 12.8 ± 0.3 12.5 ± 0.5 12.7 ± 0.5 0.753 

Maternal age at pregnancy (years) 33.8 ± 5.8 19.25 ± 3.3* 30.25 ± 7.4 0.0053 

Primipara (n, %) 2 (25) 3 (75) 2 (50) 

Gestational age (weeks) 38.3 ± 1.2 36.3 ± 4.6 38.3 ± 0.9 0.697 

Pregnancy complications (n, %) 5 (62.5) 3 (75) 4 (100) – 

Cesarean section (n, %) 4 (50) 1 (25) 4 (100) – 

Newborn sex (male/female) 5/3 2/2 1/3 – 

Weight (gr) 3537 ± 642.3 2535 ± 744.0 3793 ± 798.2 0.055 

Size (cm) 49.4 ± 1.6 45.0 ± 4.8 48.5 ± 4.0 0.109 

Placental weight (gr) 517.5 ± 90.4 495 ± 137 580 ± 181 0.496 

Placental eÿciency (gr/gr) 0.14 ± 0.02 0.19 ± 0.01* 0.15 ± 0.03 0.006 

Non-ND, non-neurocognitive disorders. Any pregnancy complications, including podalic presentation, preeclampsia, gestational diabetes, and preterm delivery. *p < 0.05 versus Non-ND. 
Bold represents statistical dierences. Kruskal-Wallis test followed by Dun’s multiple comparisons test. 
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to those of children in the Non-ND group (5/8). Among these 
complications, preeclampsia was reported in 2/4 ADHD cases, 3/4 
ASD cases, and 2/8 in the Non-ND group. Additionally, gestational 
diabetes was observed in two mothers from the Non-ND group and 
one from the ASD group. Only one case of preterm delivery was 
reported, occurring in the ADHD group. 

Placental protein and gene expression 
analysis 

Figure 1B shows representative blots of analyzed proteins. 
A Kruskal–Wallis test indicated significant dierences among 
groups in the placental protein levels of VEGF [H(2) = 10.48, 
p = 0.0006]; PLGF [H(2) = 8.75, p = 0.0038]; FLT1 [H(2) = 9.41, 
p = 0.0019]; and KDR [H(2) = 5.22, p = 0.050]. Placentas from 
children with ASD exhibited significantly lower protein levels of 
VEGF (Figure 1C, Z = 3.00, p = 0.0054), PLGF (Figure 1D, Z = 2.96, 
p = 0.0062), and KDR (Figure 1F, Z = 2.27, p = 0.046) compared to 
children in the Non-ND group. These reductions were not reflected 
at the mRNA level. Conversely, compared to children in the Non-
ND group, FLT1 protein levels were significantly higher in the ASD 
group (Figure 1E, Z = 2.27, p = 0.046) despite no dierences in FLT1 
mRNA expression. 

Placentas of children with ADHD showed significantly lower 
VEGF mRNA levels (Figure 1C, Z = 2.95, p = 0.0031) and elevated 
FLT1 protein levels (Figure 1F, Z = 2.70, p = 0.013) compared to 
children in the Non-ND group. No significant dierences were 
observed in VEGF, PLGF, or KDR protein levels. 

There were no statistically significant dierences in any of the 
analyzed markers between the ASD and ADHD groups. 

Discussion 

The results indicate that ASD is associated with a deficiency 
in angiogenic agonists (VEGF and PLGF) and their receptor, 
KDR, as well as an increase in FLT1 in the placenta. ADHD 
placentas exhibit a distinct angiogenic imbalance with elevated 
FLT1 protein level. These findings suggest potential early-
life placental vascular disruptions that may contribute to 
the intrauterine initiation of altered neurodevelopmental 
trajectories. 

A growing body of evidence supports the role of the placenta 
in brain development and the etiology of neurodevelopmental 
disorders (8, 9, 17). Studies have linked placental abnormalities 
to an increased risk of ASD and ADHD (11, 12, 18). For 
instance, preeclampsia, a condition characterized by impaired 
placental vascularization (15), has been associated with an 
increased risk of ASD and developmental delay (19). For 
ADHD, placental stress responses and angiogenic imbalances 
may also contribute to its pathogenesis (20). Compatible 
with this finding, placentas in the ADHD group showed 
an increase in insuÿciency compared with the control 
group. Moreover, epidemiologic studies suggest an increased 
risk of neurodevelopmental diagnoses after abruption of 
the placenta, though specificity for ASD was not directly 
analyzed (21). 

Placental insuÿciency and maternal vascular malperfusion 
have been observed in ASD cases, suggesting that prenatal 
hypoxia and nutrient deprivation may contribute to altered 
brain development (9, 10). For instance, medical record analysis 
showed that acute signs of vascular placental alterations (chronic 
uteroplacental vasculitis or maternal vascular malperfusion) 
were highly associated with risk of ASD (7 to 12-fold higher 
risk) (9). Placental trophoblast inclusions, a marker of altered 
placental development, have been reported at significantly 
higher rates in ASD cases than in controls, suggesting that 
structural abnormalities in the placenta may be early indicators 
of neurodevelopmental risk (22, 23). Additionally, epigenetic 
modifications in the placenta, including DNA methylation 
changes at key neurodevelopmental genes, have been identified 
in ASD cases, further supporting the placenta’s role in fetal 
brain programming (11, 12). These observations are consistent 
with the possibility that acute placental injury or chronic 
placental dysfunction might perturb angiogenic signaling and 
fetal neurovascular development, but prospective mechanistic 
evidence is lacking. 

Our findings align with this literature, as reduced 
levels of critical proangiogenic proteins (such as VEGF 
and PLGF) in ASD placentas may indicate compromised 
placental vascularization, potentially leading to fetal brain 
hypoxia, which in turn may have long-lasting consequences. 
Future studies that include CD31 immunohistochemistry 
and stereological/morphometric analysis are required to 
determine whether vessel density or architecture is altered in 
these placentas and how these alterations may predispose to 
structural/functional changes. 

In this regard, our findings of lower VEGF/PLGF and KDR 
protein with higher FLT1 in ASD placentas (and increased FLT1 
in ADHD placentas) are consistent with preclinical evidence 
linking placental angiogenic signaling to fetal brain vascular 
development. For example, Lecuyer et al. showed that prenatal 
alcohol exposure impaired placental angiogenesis, reduced PLGF 
levels, and altered fetal brain vasculature. Interestingly, placental 
repression of PLGF altered brain FLT1 expression and mimicked 
alcohol-induced vascular defects in the cortex. At the same time, 
overexpression of placental PLGF rescued alcohol eects on fetal 
brain vessels. Translational evidence in humans showed that 
alcohol exposure disrupted both placental and brain angiogenesis 
(24). Supporting this idea, another report showed that repression 
of placental CD146, a co-receptor of KDR, led to reduced 
cortical vessel density and oligodendrocyte loss (25). Moreover, 
placental Insulin-like Growth Factor 1 (IGF1) has been shown 
to induce persistent neurodevelopmental changes in striatal 
development (26). These preclinical studies provide mechanistic 
support for a placenta: brain axis by which altered placental 
angiogenic signaling may aect fetal neurovascular development 
and, potentially, later cognitive outcomes. Despite that, we 
acknowledge that our human data are exploratory and do not 
demonstrate causality. 

Considering embryonic development, Manzo et al. 
(27) emphasize the importance of neural tube vascular 
events occurring during early embryogenesis. We note 
that analyses of term placentas provide a window into 
cumulative or persistent placental changes but cannot 
directly demonstrate that the specific angiogenic disruptions 
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we measured were present during neural tube closure. 
Term placental measures may function as surrogate or 
residual markers of earlier placental dysfunction, but 
prospective sampling in early pregnancy is required to test 
temporality and causality. 

The pattern of elevated FLT1 with reduced VEGF 
and PlGF could create a functionally anti-angiogenic 
environment by sequestering free ligand, analogous to 
mechanisms implicated in preeclampsia (28). Alternatively, 
FLT1 upregulation might reflect an adaptive placental 
response to chronic stressors (hypoxia or inflammation). 
Our current data (term placenta protein quantification) 
cannot distinguish these possibilities. We encourage future 
work to enhance our understanding of how this imbalance 
between ligands (VEGF/PLGF) and the FLT1 receptor may 
drive placental vascular alterations that may impair brain 
vascular function. 

We acknowledge that this is a small, exploratory pilot 
study, for which analyses are underpowered for sex-stratified 
comparisons and covariate adjustment. These results should 
therefore be considered hypothesis-generating. Nevertheless, the 
study used precious placental samples stored for over a decade, 
providing a rare opportunity to analyze long-term biological 
markers. The retrospective nature of the study limits causal 
inference, and future prospective studies with larger cohorts are 
needed to validate these findings. Despite that, by integrating 
protein and mRNA analyses, we identified dierential regulatory 
patterns in placentas from individuals with ASD and ADHD, 
providing novel insights into early-life vascular alterations that 
may influence neurodevelopment. Additionally, our findings 
contribute to the growing field of the placenta-brain vascular axis 
(17). 

Conclusion 

In conclusion, this study highlights distinct placental 
angiogenic profiles in ASD and ADHD, suggesting that early-
life vascular imbalances may contribute to neurodevelopmental 
disorders. Further studies are needed to confirm these associations 
and explore potential interventions to improve placental vascular 
health. 
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