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Placental vascularization may influence fetal brain development, but its long-
term impact on neurodevelopment remains unclear. In this pilot study, we
analyzed two ligand proteins: vascular endothelial growth factor (VEGF) and
placental growth factor (PLGF), and their receptors mRNA and protein levels
in placentas from children who later were diagnosed with autism spectrum
disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), or controls.
ASD placentas showed lower VEGF, PLGF, and KDR protein levels but higher
FLT1, while ADHD placentas had increased FLT1 and reduced VEGF mRNA.
These findings suggest distinct placental vascular alterations in ASD and ADHD,
highlighting a potential role of the placenta-brain axis in neurodevelopmental
disorders and early-life mechanisms underlying impaired brain development.
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Introduction

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD)
are common neurodevelopmental conditions with complex etiologies. According to
the Diagnostic and Statistical Manual of Mental Disorders, ASD is characterized by
social communication and interaction difficulties, along with repetitive behaviors. At the
same time, ADHD presents as persistent inattention and/or hyperactivity-impulsivity.
Both disorders emerge in early childhood and impact cognitive, social, and emotional
development (1).
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The reported prevalence of ASD varies across studies and
regions. In Chile, the ASD prevalence has been estimated at 1.96%
(2021), derived from a cohort of 272 children (2). However, meta-
analytic estimates suggest global ASD prevalence in children closer
to ~0.7-1.5%, with substantial heterogeneity across studies and
regions (3). Furthermore, global estimations from meta-analyses
indicate that ADHD affects approximately 5-8% of children and
adolescents, with higher estimates in boys than girls (4, 5),
highlighting the need for deeper investigation into prenatal and
perinatal contributors.

The etiology of ASD and ADHD involves genetic, epigenetic,
and environmental factors, with gene-environment interactions
playing a significant role. Prenatal risk factors for ASD include
advanced parental age, maternal conditions like gestational
hypertension and diabetes, and obstetric complications such as
preeclampsia and preterm birth (6). ADHD is highly heritable, but
environmental exposures during pregnancy can modulate genetic
susceptibility (7). The placental function may play a role in the
early programming of these disorders (8). For instance, placental
insufficiency and maternal vascular malperfusion, indicative of
prenatal hypoxia and nutrient deprivation, have been linked to
a markedly increased risk of ASD (9, 10). Also, altered placental
DNA methylation patterns were associated with ASD susceptibility
(11, 12).

The placenta is a key regulator of fetal development, facilitating
the exchange of nutrients and gases, and producing bioactive
molecules essential for brain development. Angiogenic factors
(ligands), such as vascular endothelial growth factor (VEGF) and
placental growth factor (PLGF), as well as their receptors—type 1
(VEGFR-1, FLT1) and type 2 (VEGFR-2, KDR)—play critical roles
in placental vascularization (13). Dysregulation of these pathways
has been implicated in pregnancy complications, but their potential
contribution to neurodevelopmental disorders remains unclear.

Using our placental biobank, we investigated the expression
(mRNA and protein) of VEGE, PLGE, FLT1, and KDR in the
placentas of children (10-12 years old) who were diagnosed
with ASD or ADHD, compared to age-matched controls. This
study provides insights into the prenatal origins of these
disorders and highlights potential underlying alterations occurring
during pregnancy.

Methods

Patients

Ethical approval and participant recruitment

The Bioethics Committee of the Herminda Martin Hospital
in Chillan approved this study. Informed consent was obtained
from all parents, and the children also provided informed assent
to participate. This pilot study utilized a database from the
Vascular Physiology Laboratory at the University of Bio Bio,
containing clinical data from 617 deliveries and stored placentas
(n = 363). Mothers were contacted when their children were 10—
12 years old, and a telephone interview was conducted to identify
potential participants searching for children with a previous
diagnosis of ASD or ADHD.
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Clinical and neurological assessment

In-person evaluations were scheduled for children with a
reported diagnosis of ASD or ADHD. Before this evaluation,
we obtained a written informed consent, and a speech-language
pathologist (C. Celis) conducted an initial interview to verify the
diagnosis. Children were then referred to a neurologist (Dr. E.
Lépez) for diagnostic reconfirmation.

Final sample and data collection

The final sample consisted of 16 children: 4 with ADHD, 4
with ASD, and eight controls without neurocognitive disorders
(Non-ND). Controls were matched by gestational age, pregnancy
conditions, child sex, newborn anthropometry, and placental
weight. Clinical information was stored in a database, and
structured questionnaires were used to collect missing pregnancy-
related data.

PCR quantitative (QRTPCR)

Total RNA was isolated from placental extracts, and cDNA
was synthesized. QRTPCR was performed using specific primers
(Supplementary Table 1) for the genes of interest, with gene
expression quantified using the 2~2/ACT method (14).

Western blot

Placental protein extracts (50 pg) were separated by SDS-
polyacrylamide gel electrophoresis and analyzed with primary
antibodies anti-VEGF (Santa Cruz, California, OR, USA; sc-
7269, 1:1000 dilution), anti-PLGF (Santa Cruz, California, OR,
USA; sc-518003, 1:1000), anti-FLT1 (Santa Cruz, California,
OR, USA; sc-316, 1:1000), and anti- KDR (Cell Signaling
Technology, Denver, MA, USA; 2472, 1:1000 dilution). They were
applied overnight independently, followed by incubation with
the secondary antibodies Anti-Rabbit IgG (sc-A9169) or Anti-
Mouse IgG (sc-A9917) (Sigma-Aldrich, MO, USA). Proteins were
normalized with B-actin (Sigma-Aldrich, California, OR, USA;
A5441, 1:5000 dilution). The bands were quantified using Image]J
software as previously described (15).

Statistical analysis

Quantitative variables were presented as mean + SD, and
qualitative variables as percentages. Comparisons between groups
were performed using the Kruskal-Wallis test, with Dunn’s
post hoc test for pairwise comparisons. A p-value < 0.05 was
considered statistically significant. Data were organized in a
Microsoft Excel database, and statistical analyses were conducted
using GraphPad Prism.

Results

Participant selection and group
characteristics

Of the 617 potential participants, only 363 had placenta samples
in our database. From then, 212 mothers were contacted, and 24
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Placental expression of VEGF, PLGF, FLT1, and KDR in children later diagnosed with autism spectrum disorder (ASD), attention-deficit/hyperactivity
disorder (ADHD), or controls (Non-ND). (A) Schematic representation of the study design, analyzing placental samples stored in our biobank for
10-12 years. Figure A created with Biorender. (B) Representative blots of VEGF, PLGF, FLT1, KDR, and B-actin. Protein and mRNA expression of

(C) VEGF, (D) PLGF, (E) FLT1, and (F) KDR. Every dot represents an individual subject. Data are presented as mean + SD. P-values are included in each

graph.
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agreed to participate (Supplementary Figure 1). The final sample
included in this pilot study consists of four placentas and children
with ADHD, four with ASD, and eight with non-neurocognitive
disorders (Non-ND) (Figure 1A). The age range at inclusion
was 10-12 years, with no significant differences among groups.
A Kruskal-Wallis test indicated significant differences among
groups in mothers’ age [H(2) = 8.53, p = 0.0053, n = 16]. Post hoc
Dunn’s test showed a significant difference in the age of mothers
of children with ADHD compared to those of the Non-ND group
(Z =292, p = 0.0106). No significant differences were observed

TABLE 1 Characteristics of the included children.

in gestational age, newborn anthropometry, or placental weight
(Table 1).

Placental efficiency was calculated (grams of fetal mass per
gram of placental mass), a widely used measure of how much fetal
mass is produced per gram of placental mass. This ratio had shown
variations associated with pregnancy outcomes (16). We found that
placental efficiency was significantly different among the studied
groups [H(2) = 8.49, p = 0.0061], with higher values in the ADHD
group than in the Non-ND group (Z = 2.79, p = 0.016).

Pregnancy complications tended to be more frequent among
mothers of children with ADHD (3/4) and ASD (4/4) compared

Analyzed characteristic Non-ND ADHD ASD o] ‘
N 8 4 4

Children’s age (years) 12.8 +£0.3 125+ 0.5 12.7 £ 0.5 0.753
Maternal age at pregnancy (years) 33.8+5.8 19.25 + 3.3* 30.25+7.4 0.0053
Primipara (1, %) 2 (25) 3(75) 2 (50)

Gestational age (weeks) 383+1.2 363+ 4.6 383+0.9 0.697
Pregnancy complications (n, %) 5(62.5) 3(75) 4 (100) -
Cesarean section (1, %) 4 (50) 1(25) 4 (100) -
Newborn sex (male/female) 5/3 2/2 1/3 -
Weight (gr) 3537 4+ 642.3 2535 + 744.0 3793 +£798.2 0.055
Size (cm) 494+1.6 45.0+ 4.8 48.5+4.0 0.109
Placental weight (gr) 517.5+90.4 495 + 137 580 + 181 0.496
Placental efficiency (gr/gr) 0.14 £ 0.02 0.19 £ 0.01* 0.15 £ 0.03 0.006

Non-ND, non-neurocognitive disorders. Any pregnancy complications, including podalic presentation, preeclampsia, gestational diabetes, and preterm delivery. *p < 0.05 versus Non-ND.
Bold represents statistical differences. Kruskal-Wallis test followed by Dun’s multiple comparisons test.
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to those of children in the Non-ND group (5/8). Among these
complications, preeclampsia was reported in 2/4 ADHD cases, 3/4
ASD cases, and 2/8 in the Non-ND group. Additionally, gestational
diabetes was observed in two mothers from the Non-ND group and
one from the ASD group. Only one case of preterm delivery was
reported, occurring in the ADHD group.

Placental protein and gene expression
analysis

Figure 1B shows representative blots of analyzed proteins.
A Kruskal-Wallis test indicated significant differences among
groups in the placental protein levels of VEGF [H(2) = 10.48,
p = 0.0006]; PLGF [H(2) = 8.75, p = 0.0038]; FLT1 [H(2) = 9.41,
p = 0.0019]; and KDR [H(2) = 5.22, p = 0.050]. Placentas from
children with ASD exhibited significantly lower protein levels of
VEGEF (Figure 1C, Z = 3.00, p = 0.0054), PLGF (Figure 1D, Z = 2.96,
p =0.0062), and KDR (Figure 1F, Z = 2.27, p = 0.046) compared to
children in the Non-ND group. These reductions were not reflected
at the mRNA level. Conversely, compared to children in the Non-
ND group, FLT1 protein levels were significantly higher in the ASD
group (Figure 1E, Z =2.27, p = 0.046) despite no differences in FLT1
mRNA expression.

Placentas of children with ADHD showed significantly lower
VEGF mRNA levels (Figure 1C, Z = 2.95, p = 0.0031) and elevated
FLT1 protein levels (Figure 1F, Z = 2.70, p = 0.013) compared to
children in the Non-ND group. No significant differences were
observed in VEGE, PLGE or KDR protein levels.

There were no statistically significant differences in any of the
analyzed markers between the ASD and ADHD groups.

Discussion

The results indicate that ASD is associated with a deficiency
in angiogenic agonists (VEGF and PLGF) and their receptor,
KDR, as well as an increase in FLT1 in the placenta. ADHD
placentas exhibit a distinct angiogenic imbalance with elevated
FLT1 protein level. These findings suggest potential early-
life placental vascular disruptions that may contribute to
the intrauterine initiation of altered neurodevelopmental
trajectories.

A growing body of evidence supports the role of the placenta
in brain development and the etiology of neurodevelopmental
disorders (8, 9, 17). Studies have linked placental abnormalities
to an increased risk of ASD and ADHD (11, 12, 18). For
instance, preeclampsia, a condition characterized by impaired
placental vascularization (15), has been associated with an
increased risk of ASD and developmental delay (19). For
ADHD, placental stress responses and angiogenic imbalances
may also contribute to its pathogenesis (20). Compatible
with this finding, placentas in the ADHD group showed
an increase in insufficiency compared with the control
group. Moreover, epidemiologic studies suggest an increased
risk of neurodevelopmental diagnoses after
the placenta, though specificity for ASD was not directly

analyzed (21).

abruption of
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Placental insufficiency and maternal vascular malperfusion
have been observed in ASD cases, suggesting that prenatal
hypoxia and nutrient deprivation may contribute to altered
brain development (9, 10). For instance, medical record analysis
showed that acute signs of vascular placental alterations (chronic
uteroplacental vasculitis or maternal vascular malperfusion)
were highly associated with risk of ASD (7 to 12-fold higher
risk) (9). Placental trophoblast inclusions, a marker of altered
placental development, have been reported at significantly
higher rates in ASD cases than in controls, suggesting that
structural abnormalities in the placenta may be early indicators
of neurodevelopmental risk (22, 23). Additionally, epigenetic
modifications in the placenta, including DNA methylation
changes at key neurodevelopmental genes, have been identified
in ASD cases, further supporting the placentas role in fetal
brain programming (11, 12). These observations are consistent
with the possibility that acute placental injury or chronic
placental dysfunction might perturb angiogenic signaling and
fetal neurovascular development, but prospective mechanistic
evidence is lacking.

Our findings align with this
levels of critical proangiogenic proteins

literature, as reduced
(such as VEGF
and PLGF) in ASD placentas may indicate compromised
placental vascularization, potentially leading to fetal brain
hypoxia, which in turn may have long-lasting consequences.
studies that include CD31 immunohistochemistry
and stereological/morphometric analysis are required to
determine whether vessel density or architecture is altered in

Future

these placentas and how these alterations may predispose to
structural/functional changes.

In this regard, our findings of lower VEGF/PLGF and KDR
protein with higher FLT1 in ASD placentas (and increased FLT1
in ADHD placentas) are consistent with preclinical evidence
linking placental angiogenic signaling to fetal brain vascular
development. For example, Lecuyer et al. showed that prenatal
alcohol exposure impaired placental angiogenesis, reduced PLGF
levels, and altered fetal brain vasculature. Interestingly, placental
repression of PLGF altered brain FLT1 expression and mimicked
alcohol-induced vascular defects in the cortex. At the same time,
overexpression of placental PLGF rescued alcohol effects on fetal
brain vessels. Translational evidence in humans showed that
alcohol exposure disrupted both placental and brain angiogenesis
(24). Supporting this idea, another report showed that repression
of placental CD146, a co-receptor of KDR, led to reduced
cortical vessel density and oligodendrocyte loss (25). Moreover,
placental Insulin-like Growth Factor 1 (IGF1) has been shown
to induce persistent neurodevelopmental changes in striatal
development (26). These preclinical studies provide mechanistic
support for a placenta: brain axis by which altered placental
angiogenic signaling may affect fetal neurovascular development
and, potentially, later cognitive outcomes. Despite that, we
acknowledge that our human data are exploratory and do not
demonstrate causality.

Considering  embryonic

development, Manzo et al

tube vascular

@7)

events

emphasize the importance of neural

occurring during early embryogenesis. We note

that analyses of term placentas provide a window into
cumulative or persistent cannot

placental changes but

directly demonstrate that the specific angiogenic disruptions
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we measured were present during neural tube closure.

Term placental measures may function as surrogate or

residual markers of earlier placental dysfunction, but
prospective sampling in early pregnancy is required to test
temporality and causality.

The pattern of elevated FLT1
and PIGF

environment by

reduced VEGF
anti-angiogenic

with

could create a functionally

sequestering free ligand, analogous to
mechanisms implicated in preeclampsia (28). Alternatively,
FLT1
response to chronic stressors (hypoxia or inflammation).
Our data (term placenta protein quantification)

cannot distinguish these possibilities. We encourage future

upregulation might reflect an adaptive placental

current

work to enhance our understanding of how this imbalance
between ligands (VEGF/PLGF) and the FLT1 receptor may
drive placental vascular alterations that may impair brain
vascular function.

We acknowledge that this is a small, exploratory pilot
study, for which analyses are underpowered for sex-stratified
comparisons and covariate adjustment. These results should
therefore be considered hypothesis-generating. Nevertheless, the
study used precious placental samples stored for over a decade,
providing a rare opportunity to analyze long-term biological
markers. The retrospective nature of the study limits causal
inference, and future prospective studies with larger cohorts are
needed to validate these findings. Despite that, by integrating
protein and mRNA analyses, we identified differential regulatory
patterns in placentas from individuals with ASD and ADHD,
providing novel insights into early-life vascular alterations that
may influence neurodevelopment. Additionally, our findings
contribute to the growing field of the placenta-brain vascular axis

(17).

Conclusion

In conclusion, this

study highlights
angiogenic profiles in ASD and ADHD, suggesting that early-

distinct placental

life vascular imbalances may contribute to neurodevelopmental
disorders. Further studies are needed to confirm these associations
and explore potential interventions to improve placental vascular
health.
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