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Introduction: Auditory brainstem response (ABR) is an objective
neurophysiological evaluation designed to measure the electrical activity
originating from the auditory nerve and brainstem in response to auditory
stimulation. This assessment objectively records synchronous neural activity as
it propagates along the auditory pathway. It is characterized by several distinct
waves, most notably waves |, lll, and V. Wave V plays a central clinical role since
its presence and latency are routinely used to assess a patient’s hearing status.
However, manual identification and localization of wave V are time consuming
and subjective. Previous work has explored automated detection methods to
reduce this burden.

Methods: In this paper, we make two primary contributions. First, we propose a
multi-task deep learning pipeline that simultaneously (i) detects the presence
of wave V and (i) predicts its latency, thus eliminating the need for separate
manual interpretation steps and enhancing clinical usability. Second, inspired
by the audiologist's practice of comparing responses at multiple click sound
intensities—specifically, using responses at high intensities, where waves are
more prominent, as reference—we introduce a paired-signal approach. Each
input to our deep learning model consists of the test signal together with its
corresponding 80 dB reference from the same recording session. This provides
the model with richer contextual information, and we show that the paired-signal
approach improves over the single input approach. For multi-task learning, we
design a network that consists of a backbone and two branches, one for latency
prediction and the other for classification of whether wave V exists or not. We first
train a latency-prediction network and then freeze its feature extraction layers to
initialize a classification branch. Finally, we fine-tune the entire network using a
joint loss function that balances classification and regression objectives.
Results: Experimental results demonstrate that our joint model! outperforms
conventional single-task approaches. For classification, it achieves an F1-score
of 0.92; for latency regression, it attains an R2 of 0.90.

Discussion: Our findings highlight the promise of convolutional neural
networks for enhancing ABR analysis and underscore their potential
to streamline clinical workflows in the diagnosis of auditory disorders.

1 The trained model is available at https://github.com/youssefdarahem/ABR_analysis_model.
KEYWORDS

auditory brainstem response (ABR), deep learning, convolutional neural networks
(CNNs), transfer learning, machine learning (ML)
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1 Introduction

Auditory Brainstem Response (ABR) test is a widely used
electrophysiological test method for detecting hearing loss,
especially in infancy and individuals who cannot cooperate with
behavioral tests (1). ABRs are recorded non-invasively via scalp
electrodes and reflect the bioelectric activity of specific components
of the auditory pathway following an auditory stimulus (2). Its
clinical value lies in the objective assessment of hearing thresholds
and functional integrity of the auditory system (3). An ABR signal
has a typical structure with 7 positive waves. Three known waves
(I, 111, and V) are more prominent and therefore clinically the
most useful (4). These waveforms are typically labeled through
visual inspection. The lowest intensity level at which wave V
can be observed gives the hearing threshold. An example is
shown in Figure 1. The figure shows the ABR signals for six
different intensity levels. The lowest intensity level where wave
V is observed is 10 dB, indicating the hearing threshold of
the ear.

Interpretation of an ABR test is performed by trained clinicians
through visual inspection of ABR waveforms. Interpretation is
known to vary greatly from clinician to clinician (5); and this
subjectivity has encouraged the development of automated ways
to interpret and analyze ABR signals. The initial work uses
signal processing (6, 7) and traditional machine learning (8)
techniques. In recent studies, deep learning based approaches
have been explored. Some studies are designed to predict the
latency (position) of the ABR waves. In (9), convolutional recurrent
neural networks are used to localize waves I, III, and V using
a dataset of 482 ABR waveforms recorded at 80 dB. In another
study (10), an attention mechanism is used to predict the latency
of wave V, achieving 95.89% accuracy and a maximum error of
0.1 ms (10).

Some other studies are designed to detect whether a wave
(commonly, wave V) exists in an ABR signal. In (11), the so-
called Wide&Deep and Light-MLP models, which use time-domain
and frequency-domain features and incorporate demographic
variables such as age, sex, and pure-tone thresholds, are used
to detect the existence of wave V. The Wide&Deep model
achieved a classification accuracy of 91.0%, while the Light-MLP
model achieved 95.4%. Another study used a deep convolutional
neural network to classify ABR waveforms into “clear response”,
“inconclusive”, or “response absent”, achieving 92.9% accuracy
along with high sensitivity and specificity on a public dataset (12).
In (13), a convolutional neural network (CNN) based model is
applied to standardized ABR waveform images to classify hearing
loss, achieving 85% accuracy and contributing to earlier detection
with improved diagnostic efficiency and objectivity (13). In (14),
computer vision based approach is taken to detect Waves I, II, and
V from ABR waveform images.

A summary and comparison of these recent deep learning
approaches for automated ABR analysis is provided in Table 1.
Unlike previous works focusing on wave V localization or existence
classification, our approach jointly addresses both tasks using
a unified deep learning framework. We propose a multi-task
convolutional neural network that simultaneously classifies the
presence of wave V and predicts its latency. This joint modeling

Frontiersin Medicine

10.3389/fmed.2025.1693921

Intensity
v — 0dB
—— 10dB
— 20dB
—— 40dB
—— 60dB
— 80dB

20

Amplitude (offset per intensity)
o
o

;

0 2 4 6 8 10 12 14
Time (ms)

FIGURE 1

ABR signal examples for a normal hearing ear at different sound
intensity (dB) levels. The signal amplitude is measured in pVolts.
Note that, to display all signals on the same plot, a signal is offset by
0.3 nV from the previous one, starting with the O dB signal.

helps the network learn richer representations and reduces
overfitting, especially in low signal-to-noise scenarios.

Our method is further inspired by clinical practice, where
audiologists often analyze ABR signals at multiple stimulus
intensities, particularly higher intensities such as 80 dB, where
wave V is more prominent. To emulate this reasoning process,
our model receives as input a pair of ABR signals: the target
signal and a reference signal from the same patient at a higher
intensity level. This pairing strategy helps the model make better-
informed decisions, particularly when wave V is difficult to detect
at lower intensities.

To train and evaluate our models, we collected an in-house
dataset comprising 16,436 auditory brainstem response (ABR)
signals, of which 11,353 were recorded using the standard click
stimulus. These recordings include data from both normal-
hearing and hearing-impaired individuals. Each signal is paired
with expert-annotated wave V latencies, providing high-quality
labels for both classification (presence/absence) and regression
(latency estimation) tasks. To the best of our knowledge, this
is the first study to leverage multi-intensity signal pairs along
with multi-task training for ABR analysis at this scale and level
of precision.

In this paper, our contributions are as follows:

e We propose a novel approach that combines classification
of wave V existence and localization into a single multi-task
learning model.

e We introduce a signal-pairing technique, where each input
signal is paired with a high-intensity (specifically, 80 dB)
reference signal to provide contextual information inspired by
clinical procedures.

e We employ a multi-task training approach that enables joint
learning of both classification and latency prediction tasks.

e We
functions on the

different  loss
final

investigate  the  effects  of
training dynamics and the

model performance.
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TABLE 1 Comparison of recent deep learning studies for automated ABR analysis.

Referernces Model Task Input type Performance  Sample size
McKearney et al. (9) CRNN Waves L, I11, V localization 1D waveform R?>=0.87 482 signals (80 dB,
single center)
Jietal. (10) CNN + attention Wave V latency prediction 1D waveform 96.76% accuracy; 10,841 ABR data
max error 0.1 ms
Liang et al. (11) MLP Wave V presence classification Waveform + 92.5% accuracy 2,556 ABR data
demographics (Light-MLP)
McKearney and CNN ABR response classification (clear / 1D waveform 92.9% accuracy 232 paired ABR
MacKinnon (12) absent / inconclusive) samples
Maetal. (13) CNN Classify the presence or absence of Images 84.90% accuracy 10,000 samples
hearing loss
This study (2025) Dual-input multi-task Wave V classification + latency 1D paired signals (test + F1=092,R* =090 | 16,436 signals
CNN (ResNet backbone) estimation (joint) 80 dB reference)
2 Methods
A 60 dB
2.1 Data WA
- . s o e
The electrophysiological tests were performed in a sound- ST i P
o Y- \ H \ H
treated double-walled booth of Istanbul Medipol University— s MO !
S / i
Mega Hospital with a bed and curtains to provide darkness z 00 ! |
c \
to favor sleep. All data were collected with a commercial ABR 2 i

software module (Interacoustics, software version 4.2.0.8) running
on an Interacoustics Eclipse EP25 platform (hardware version
3.4.4). The click stimuli at alternating polarity, calibrated in dB
normalized hearing level (nHL), were presented via insert phones.
After cleaning the skin’s surface with Nuprep gel, recording
electrodes(Ag/AgCI) were placed on the forehead (vertex), the
chin (ground) and the mastoids (i.e., reference electrode). Before
starting to record, it was ensured that the impedance values of the
electrodes were below 3-5 kOhms. Band-pass filtered from 100
Hz to 3,000 Hz using filter slopes of 12 dB/octave, and digitized
with a 16-bit resolution. The sampling frequency is 15 kHz, which
is about 0.067 milliseconds; the recording starts 1 ms before the
click impulse and continues up to 20 ms after the impulse. An
artifact rejection level of £40 pu V was applied. The maximum
intensity level was determined as 100 dBnHL, and waves I, III, and
V were assessed at 80 dBnHL. Two runs, each consisting of averaged
responses from 2,000 sweeps, were obtained at each presentation
level, and thresholds were established using a 20-10 dB down and
5-10 dB up with steps that considered the last visible wave V as the
threshold. Sample ABR recordings for an ear are shown in Figure 2.

Ethical approval for this study was obtained from the
Ethics Committee for Non-Interventional Research of Istanbul
Medipol University (Protocol number: E-10840098-772.02-785)
on 26/01/2023.

2.2 Data Prepossessing

Our dataset comprises recordings from 934 patients (609
male, 325 female), including 1,717 ears. The type of hearing was
classified into five groups: normal hearing, sensorineural hearing
loss (SHL), profound hearing loss, conductive hearing loss (CHL),
and neuropathy. Table 2 summarizes the overall distribution.
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FIGURE 2
ABR signal examples, recorded at 60 dB and 80 dB.

TABLE 2 Distribution of hearing types in the dataset.

Hearing type Right ear (count) Left ear (count)

Normal 400 404
SHL 184 180
Profound 170 178
CHL 87 84
Neuropathy 15 15
Total 856 861

In total, 16,436 ABR signals were recorded; about 31% of
these waveforms lacked a discernible wave V; suggesting potential
auditory pathway abnormalities. To prepare the data for the
machine learning model, the first 250 samples were taken, which
correspond to a time range from -1 ms to about 15.7 ms, beyond
which the signal is irrelevant for wave V.

The dataset was then split into 70% training and 30% validation
sets, preserving the ratio of wave V absence and presence. The split
was done based on the ear; that means, it was ensured that signals
from an ear are either in the training set or the testing set during the
split. The final distributions with respect to the presence of wave V
and with respect to the wave V positions are shown in Figures 3, 4,
respectively.
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2.3 Model architecture

In this study, we investigated convolutional neural networks
(CNNs) (15) for simultaneous classification of wave V existence and
regression of its latency in ABR signals. Our design process was
iterative, starting with a simple 1D CNN and progressing toward
a more advanced architecture that includes ResNet (16) blocks to
improve performance and robustness. The final design is shown
in Figure 5. The design includes a CNN backbone, followed by a
regressor for wave V location and a classifier for wave V existence.
The regressor head essentially has four ResNet-like layers. Each
layer has a combination of convolution, batch normalization, and
ReLU layers with skip connections. The standard residual blocks
are modified to include temporal dilation rates of 2, 4, and 8,
enabling multiscale feature extraction over varying latency spans.
An adaptive average pooling layer is applied after the final residual
block to aggregate temporal features before a fully connected layer.

The classification head uses a series of convolutional blocks,
each combining convolution, batch normalization, and ReLU
layers. To take advantage of the shared representations,
intermediate feature maps from the regression head are
concatenated to the convolution blocks before feeding them
to the classification layer.

2.4 Paired signal approach

To enhance the model’s ability to capture meaningful patterns,
we introduced a paired-signal approach, in which an ABR
recording (test signal) is paired with its corresponding high-
intensity (specifically, 80 dB) reference signal from the same
experiment. The paired signal is input to the model, which is
designed to predict whether wave V exists in the test signal
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and its position. High-intensity ABR signals generally exhibit
clearer waveforms, providing structural cues that facilitate
the interpretation of lower-intensity responses. By pairing
signals recorded from the same ear and session, we integrate
complementary information that enhances wave V classification
and latency prediction.

2.5 Loss functions for regression

To train the regression head, we investigated several loss
functions. Two of those are the traditional mean squared error
(MSE) and mean absolute error (MAE). For a batch size of N, the
true value y;, and the predicted value ¥;, the MSE loss and the MAE
loss are

N
Lmsg = % ; (i —5)’, (1)
and
| XN
LMAE = N ; i — il » (2)
respectively.

In addition, we used a weighted squared error loss function,
where deviation from the true value was penalized differently:

N
1 -
Ly = N E wi (Ji _)/i)z- (3)
i1

For the weights w;, we tested two functions. The first one is denoted
as Lw_sigmoid> where the weights are based on a sigmoid function:

W,‘=1.0+0’(|}A/i—y,'|—m). (4)
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Distribution of wave V locations.

The second one is denoted as Ly .exponential» Where the weights are
based on an exponential function:

wi = 1.0+ exp (—k - (|pi — yi| —m)), (5)

with m and k being some scalar values. The behaviors of these
functions (Lmsg, LMAEs [rW—sigmoid: £W—exponential) are plotted in
Figure 6 for m = 3 and k = 0.5. In the case of Ly _gigmoid> the
function behaves similarly to the MAE loss for small deviations,
but for large deviations, it penalizes more than the MAE loss. The
exponential loss has the opposite behavior: It penalizes more than
the MAE loss when the deviation is small, but behaves like the MAE
loss as the deviation gets larger.

2.6 Loss functions for classification

To train the classification head to detect the presence or absence
of wave V in an ABR signal, we employed the binary cross-entropy
(BCE) loss, a standard choice for binary classification tasks. For
each sample x; with ground-truth label y; € {0, 1} (where 1 denotes
the presence of wave V and 0 denotes the absence) and predicted
probability y;, the BCE loss is defined as:

N
Lace =~ Y[ yilogn + (1~ ylogt 5] (©)

i=1

which essentially measures how well the predicted probabilities
match the true labels.

2.7 Training process
To maximize clinical utility, we employed a multitask learning

framework (17) that simultaneously predicts wave V latency
(regression) and classifies its presence (binary classification). Our
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training procedure consisted of three stages. First, we trained
the latency prediction branch to convergence. Next, we froze its
convolutional backbone and shared layers, and used these pre-
trained features to initialize the classification branch (the right side
of Figure 5). Finally, we unfroze all network parameters and fine-
tuned the entire model using a combined loss function, which is a
weighted sum of classification loss and regression loss functions. In
the experiments, the weight of the classification loss is set to double
the weight of the regression loss. This multi-task approach allows
the model to learn shared representations that benefit both tasks,
enhancing the overall performance and robustness of the system.

2.8 Hardware configuration

Inference speed was evaluated on the system described in
Table 3. On the GPU, the model achieves an average inference time
of 3.31 ms per paired ABR signal (median: 3.14 ms, std: 0.58 ms),
corresponding to a throughput of 303 samples/second. On CPU,
inference takes 5.37 ms on average (median: 5.29 ms, std: 0.55 ms),
corresponding to 186 samples/second. These results confirm that
the model is suitable for near real-time clinical use.

3 Results

The performance of the proposed model is evaluated on the test
set using several metrics. To show the effectiveness of the multi-
task approach, we also evaluated single-task CNN and single-task
ResNet approaches.

The single-task CNN consists of CNN layers followed by a
fully connected layer that ends with a regressor for wave V latency
prediction or a binary classifier for classifying the existence of wave
V. The model is separately trained for the regression and regression
tasks, and compared with the proposed multi-task approach.

The single-task ResNet model is essentially the regressor side
of the multi-task model shown in Figure 5. It consists of a CNN
backbone followed by multiple layers of residual blocks. It is
trained for the regression task and compared with proposed
multi-task approach.

For all models, we investigated the effect of having a paired
input instead of a single input. The input layer is modified to take a
paired or single input, keeping the rest of the network unchanged.
Each model is separately trained for the same number of epochs to
ensure a fair comparison.

The models with trained weights are available at https://github.
com/youssefdarahem/ABR _analysis_model.

3.1 Performance metrics

three
performance metrics. The first two are the mean absolute
error (MAE) and the coefficient of determination (R?), which are
commonly used metrics in regression problems. The third metric is

To measure regression performance, we used

the “accuracy for a given error tolerance”, which is the percentage
of predictions within a specified error margin (tolerance) of the
ground truth value. As tolerance increases, accuracy improves

frontiersin.org
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due to a wider margin of error. High accuracy at low tolerances
indicates superior model performance.

To measure classification performance, we use standard
classification metrics, including accuracy, precision, recall, F1
score, and area under the curve (AUC).

3.2 Results and comparisons

The regression results are shown in Table 4 (The regression
loss function used for the results in this table is the weighted
squared error with exponential decay). Three different models are
evaluated. For each model, single-input and paired-input versions
are trained and tested. For each model, it is seen that the paired-
input version produces better R*> and MAE results compared to
the single-input version, supporting the hypothesis that the use of
multiple ABR signals helps to distinguish the locations of the waves.
Regarding the accuracy for different tolerances, it is observed that
the paired-input versions provide more gains for smaller tolerances.

Frontiersin Medicine

Considering all metrics, the best performing model is the
proposed multi-task model, with an R? value of 0.90, MAE value
of 1.72 index error, which is about 0.11 ms. Representative model
outputs are visualized in Figure 7, demonstrating accurate Wave V
localization even in low-intensity or noisy recordings, thanks to the
paired-input context.

The classification performances are summarized in Table 5.
The proposed model outperformed the single-task CNN model
in all metrics, including accuracy, precision, recall, and F1 score,
demonstrating the benefits of deeper feature extraction and
regularization. These results underscore the value of advanced
neural architectures in improving ABR signal classification. For
both models, the paired-input version produces better results
compared to the single-input version.

4 Analysis

We have done analyses on the effects of loss functions,
architectural choices, and click intensities.
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4.1 Effect of loss function

On the regression head of the model, we investigated
the use of alternative loss functions. The accuracy results
for different tolerance values are shown in Figure 8. In all
cases, the MSE loss leads to the worst performance. The
MAE loss provides marked improvement over the MSE loss,
especially in the low error tolerance scenarios (i.e., 0.06 ms
and 0.12 ms). The best performance overall is achieved with
the weighted loss that uses an exponential function and
behaves somewhere between MSE and MAE loss as shown

in Figure 6.
20.0 -
= Lwmae ,/,
© Luse ..' ,/
17.5 - LW-swqmmd _.' ,’
= Lw-exponential : Vi
15.0 ; ca
N 4
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FIGURE 6
Comparison between different loss functions for the regression task.

TABLE 3 Hardware specifications used for training and testing.

Component Specification

Processor 13th Gen Intel® Core™ i7-13700H (2.40 GHz)
RAM 16.0 GB

GPU NVIDIA GeForce RTX 4050 Mobile (6 GB VRAM)
0s Ubuntu 22.04 LTS (64-bit)

TABLE 4 Regression (prediction of wave V latency) results.

10.3389/fmed.2025.1693921

4.2 Effect of intermediate-level feature
sharing

A regular multi-task network has a common backbone followed
by multiple separate heads. In this work, we investigated a variation
where there is sharing in the intermediate layers. Specifically, as
shown in Figure 5, an intermediate tensor from the regression
head is fed to the classifier head, transferring important features.
This, in effect, reduces the need for a more complex classifier
head and leads to better performance with limited data. We tested
connections from different intermediate levels and achieved the
best performance when low-level features were transferred. The
network is trained with and without the connection, and the results
are shown in Table 6.

4.3 Effect of stimulus volume

As the stimulus volume decreases, wave V becomes more
difficult to detect in the ABR signal. In the previous section, we
reported results without making any distinction of the stimulus
intensity. Here, we analyze the performance of low-intensity and
high-intensity groups. We divided the test data into two groups,
namely, high intensity (>60 dB) and low intensity (<60 dB) groups.
Figure 9 shows the wave V localization results; as expected, the
accuracy is significantly higher for the high-intensity group. A
similar trend is also observed for the classification performance, as
shown in Table 7.

These results also support the idea of a paired input approach.
A high-intensity reference signal, which has prominent wave
characteristics, provides important information for localizing and
classifying the low-intensity signal.

5 Conclusions

In this study, we presented a multi-task deep learning
model to address two critical challenges in ABR analysis: The
detection of wave V latency and classification of its presence. By
unifying classification and regression into a single architecture
and optimizing both tasks together, we achieve greater robustness
and precision than separate, single-task models. We presented a

Accuracy for different tolerances (ms)

0.12 0.18 0.24
Single-task CNN regressor (single input) 0.53 8.77 0.09 0.17 0.26 0.33 0.66
Single-task CNN regressor (paired input) 0.56 8.23 0.09 0.18 0.27 0.35 0.71
Single-task ResNet regressor (single input) 0.85 2.27 0.67 0.82 0.87 0.90 0.95
Single-task ResNet regressor (paired input) 0.90 1.94 0.70 0.83 0.88 0.91 0.96
Proposed multi-task model (single input) 0.85 2.05 0.75 0.86 0.89 0.91 0.95
Proposed multi-task model (paired input) 0.90 1.72 0.81 0.88 0.90 0.92 0.95

Bold values indicate the best (highest or lowest, as appropriate) performance among all methods compared in each row.
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TABLE 5 Classification (prediction of wave V existence) results.

Model Accuracy AUC F1-score Recall Precision
Single-task CNN classifier (single input) 0.82 0.90 0.87 0.87 0.87
Single-task CNN classifier (paired input) 0.84 0.90 0.88 0.86 0.90
Proposed multi-task model (single input) 0.87 0.94 0.90 0.89 0.91
Proposed multitask model (paired input) 0.89 0.96 0.92 0.91 0.93
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FIGURE 8
Accuracy achieved with different loss functions.

paired-input approach, and investigated various loss functions for

training.
Key findings include the following.

e Paired-input approach: The paired-input strategy provides

the network with complementary information: the high-
intensity waveform acts as a clear reference in which Wave
V is readily visible, guiding the interpretation of noisier,
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Bold values indicate the best (highest or lowest, as appropriate) performance among all methods compared in each row.

TABLE 6 Effect of the intermediate connection in the proposed model.

Without connection

c
el
2
3]
9]
S
o

0.88 0.95 0.90 0.88

With connection

0.89 0.96 0.92 0.91

Bold values indicate the best (highest or lowest, as appropriate) performance among all
methods compared in each row.

low-intensity recordings. Clinically, audiologists routinely
compare high-intensity and low-intensity responses when
identifying wave V; our method emulates this practice and
embeds it directly into the model.

Incorporating high-dB reference signals alongside

target ABR signals enhanced the model’s ability to detect
subtle patterns, improving localization accuracy by 6% and
classification performance, particularly in low-intensity (<60
dB) scenarios.
Loss functions: To encourage high precision around clinically
relevant latency thresholds, we evaluated two new loss
functions in addition to the MAE and MSE losses. The new
loss functions place relatively more weight on either small
errors or large errors during training.

The loss function, which is tailored to focus on tight error
margins, yields more reliable latency estimates for diagnostic
purposes. The model achieves around 88% accuracy for an
error margin of 0.12 ms, and 81% accuracy for an error margin

of 0.06 ms.
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TABLE 7 Classification performance by intensity (dB) level.

Intensity Accuracy Precision Recall F1 score
< 60dB 0.87 0.95 0.88 091
> 60dB 0.92 0.95 0.91 0.93

Bold values indicate the best (highest or lowest, as appropriate) performance among all
methods compared in each row.

e Multi-task model with common backbone and shared
layers: Our leverages shared
features for presence detection and latency regression.
After pretraining the regression branch, we fine-tuned the
full network with a combined loss, allowing the classifier and
regressor to reinforce each other’s learned representations.
This synergy yields notable gains, especially in localization
performance, while aligning closely with clinical workflows by
delivering both outputs in a single inference pass.

The model achieved an F1 score of 0.92 for classification
and an R? of 0.90 for latency prediction, surpassing single-task
models.

multi-task  architecture

Automated analysis of ABR signals offers an objective and
efficient way of diagnosing auditory disorders. Future work
may explore broader datasets, real-time implementation, and
integration with clinical devices. This work underscores the
potential of deep learning in advancing electrophysiological
diagnostics, bridging the gap between computational models and
practical audiological care.
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