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Background: The comorbidity of rneumatoid arthritis (RA), achronic autoimmune
disease, with cervical cancer has garnered a lot of attention. Cervical cancer
is much more common in RA patients than in the general population, which
may be caused by immunosuppressive therapy, chronic inflammation, and poor
clearance of the Human Papillomavirus (HPV). The purpose of this study is to
explore the molecular mechanism of comorbidity between RA and cervical
cancer and identify potential biomarkers through transcriptomics and single cell
transcriptomics analysis.

Methods: In this study, transcriptome expression profile data of RA and
cervical cancer were downloaded from Gene Expression Omnibus (GEO) and
The Cancer Genome Atlas (TCGA) databases, and differential gene analysis,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analysis were performed. Using multivariate Cox
proportional hazard modeling and Lasso regression, independent differential
genes linked to the prognosis of cervical cancer were screened. Molecular
docking technology was used to predict the interaction between candidate
gene encoded proteins and HPV 16 E6/E7. Intercellular communication and the
expression patterns of potential genes in various cell groups were examined
using single cell transcriptome data. Finally, the expression of candidate genes
in cervical tissues of patients with RA combined with cervical cancer was verified
by immunohistochemistry.

Results: The study found that those with RA had 493 up-regulated genes
and 216 down-regulated genes, while individuals with cervical cancer had
2,600 up-regulated genes and 2,172 down-regulated genes. Cox regression
analysis identified 35 genes independently associated with the prognosis of
cervical cancer, of which SPP1, LYZ, and MCM5 were significantly regulated in
both RA and cervical cancer. The HPV 16 E6/E7 specific binding sites of the
proteins produced by these three genes were shown using molecular docking
simulation. Especially, single cell transcriptomic analysis revealed that SPP1 was
highly expressed in NK/T cells, Myeloid cells, and epithelial cells, and served
as an important ligand receptor pair for communication between these cells.
Immunohistochemistry results further verified the high expression of SPP1, LYZ,
and MCM5 in patients with RA combined with cervical cancer.
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Conclusion: This study successfully identified SPP1, LYZ, and MCM5 as key hub
genes for the comorbidity of RA and cervical cancer. By regulating processes
like inflammation, immune evasion, and cell proliferation, these genes not only
have a high diagnostic potential but may also contribute to the occurrence and
development of cervical cancer.

KEYWORDS

rheumatoid arthritis, cervical cancer, human papillomavirus, autoimmunity, tumor
immunity, diagnostic biomarkers

1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease
characterized by chronic, symmetrical polyarticular inflammation,
which can lead to joint destruction, loss of function, and systemic
damage to multiple systems (1, 2). Cervical cancer is the fourth most
common cancer in women worldwide, with more than 600,000 new
cases and about 340,000 deaths each year, and more than 85% of them
are concentrated in low- and middle-income countries with scarce
medical resources. An incidence rate of 13.8/100,000, a mortality rate
of 4.5/100,000, and 56,000 deaths were recorded in China in 2022,
with 151,000 new cases of cervical cancer (3, 4). Cervical cancer’s age
standardized disability adjusted life year rate is 110 DALYs/100,000
(5). The burden is heaviest among working age women aged 30-59.
Direct medical expenses and productivity losses due to cervical cancer
in low- and middle-income countries account for 0.5-1.2% of total
annual health expenditures (6). The incidence of cervical cancer in RA
patients is 1.5-2 times greater than in the general population,
according to the latest studies (7). This could be because of
immunosuppressive therapy, chronic inflammation, and poor
clearance of the Human Papillomavirus (HPV) (8, 9). Related
mechanism studies have found that RA related proinflammatory
factors may activate HPV oncogenes and promote malignant
transformation of cervical epithelial cells by activating signaling
pathways. Immunosuppressive therapy can weaken the anti-HPV
response of local cervical immune cells and accelerate disease
progression (10-12). All of these will significantly increase the risk of
an ongoing HPV infection in RA patients and delay HPV clearance
(13). Cervical cancer has also been confirmed to be a cancer driven by
persistent infection with high-risk HPV (HR-HPV), but not all
women infected with HPV will develop cervical cancer (8). Obviously,
the occurrence of cervical carcinogenesis must be synergistic with
other factors besides HR-HPV infection (14). Exploring the synergistic
carcinogenic factors and mechanisms of action of HPV will help to
improve the occurrence mechanism of cervical cancer. In addition, in
comorbidity research, transcriptomics can reveal the interaction
between diseases and become a powerful tool for cross research on
immune diseases (15-17). This evidence suggests that the study of
comorbidity between RA and cervical cancer is an intersectional field
connecting autoimmunity and tumor immunity. Its results will
reshape the prevention and control path of high-risk populations and
provide a paradigm for the exploration of the mechanism of chronic
inflammation related cancer.

This study identified shared genes that are differently expressed in
cervical cancer and RA using transcriptomics etc. We further assessed
the clinical significance of these genes in cervical cancer patients and
investigated the potential molecular underpinnings of the formation
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of chronic inflammation related cervical cancer by examining the
interaction between these genes in immune cells and epithelial cells.
Furthermore, we explored the molecular mechanism of comorbidity
between RA and cervical cancer by immunohistochemistry analysis
of patients with cervical cancer combined with RA, and successfully
identified three key hub genes: SPP1, LYZ, and MCM5.

2 Materials and methods
2.1 Data collection

“Rheumatoid arthritis” and “cervical cancer” were used as search
terms in the Gene Expression Omnibus (GEO) database to find the
transcriptome expression profile data. The four RA datasets
downloaded from GEO were GSE55235 (healthy controls, 10 cases;
RA, 10 cases), GSE55457 (healthy controls, 10 cases; RA, 13 cases)
(18), GSE77298 (healthy controls, 7 cases; RA, 16 cases) (19) and
GSE89408 (healthy controls, 28 cases; RA, 152 cases) (20), and the
cervical cancer dataset was GSE63514 (healthy controls, 24 cases;
cervical cancer, 28 cases) (21). In addition, we downloaded the
expression profile dataset of cervical cancer (healthy controls, 3 cases;
cervical cancer, 306 cases) from the TCGA database,' and the
expression profile dataset of normal cervical tissue (healthy controls,
10 cases) from Genotype Tissue Expression (GTEx) (22). Finally, the
single cell transcriptome dataset of cervical cancer GSE208653
(healthy control, 2 cases; cervical cancer, 3 cases) (23) was downloaded
from GEO for analysis. The workflow of this study is shown in
Figure 1.

2.2 Differential gene analysis

The three RA datasets GSE55235, GSE55457 and GSE77298 were
merged based on the remove_batcheffect function of the IOBR2 R
package (24), and the limma R package (25) was used for analysis of
differential genes. Principal component analysis (PCA) revealed a
more uniform sample distribution following the removal of batch
effects with IOBR2, indicating their effective removal
(Supplementary Figures Sla,b). The TCGA and GTEx datasets were
then combined and made correct, differential gene analysis was
performed using the R language’s edgeR (26) package, and the
differential gene heat map was created using the pheatmap package.

1 https://portal.gdc.cancer.gov/
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GSE55235. GSE55457. GSE77298 TCGA. GTEx
HC: 27 RA: 39 HC: 13 CC: 306
DEGs
GO and KEGG
DEGs 2,600 upregulated genes
GO and KEGG 2,172 downregulated genes
Cox proportional hazard model
Lasso regression
493 upregulated genes . ROC curve of CC
216 downregulated genes ) (R T T e 1-year, 3-year, and 5-year
Intersection analysis
SPP1, LYZ, and MCM5
Diagnostic accuracy Expression patterns in scRNA-seq Molecular docking Validation in vivo
GSE89408 GSE63514 GSE208653
HC: 28 RA: 152 | HC: 24 CC: 28 HC:2 CC: 3
FIGURE 1
Flowchart illustrating the main methods of the current study. Healthy controls, HC; Rheumatoid arthritis, RA; Cervical cancer, CC; Differentially
expressed genes, DEGs; Receiver operating characteristic curve, ROC; Gene ontology, GO; Kyoto Encyclopedia of Genes and Genomes, KEGG; Single
cell RNA Sequencing, scRNA-seq.

The standard screening criteria for differentially expressed genes
(DEGs) are logFC > 1 or < —1 and adj. p value < 0.05. We classified
logFC > 1 or < —1 as up-regulated or down-regulated.

2.3 GO and KEGG functional enrichment
analysis of differentially expressed genes

Gene function [biological process (BP), cell component (CC), and
molecular function (MF)] and KEGG functional enrichment analysis
were conducted on differentially expressed genes using the
clusterProfiler (27) software package (v4.0). For multiple test
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correction, the Benjamini-Hochberg technique was employed, and a
difference was deemed statistically significant when p < 0.05.

2.4 Hub gene screening and validation

We first used the univariate Cox proportional hazard model to
screen differentially expressed genes significantly associated with
cervical cancer overall survival (OS) and then screened differentially
expressed genes using the Lasso regression algorithm and then used
the multivariate Cox proportional hazard model to screen independent
differentially expressed genes associated with cervical cancer OS. The
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study made use of the Survminer R package’s surv_cutpoint function
to calculate the cutoff value of cervical cancer risk factors and divided
the results into a low risk group (risk score less than the cutoff value)
and a high risk group (risk score greater than or equal to the cutoff
value). Finally, using the time dependent receiver operating
characteristic curve (ROC), the model’s predictive ability was
confirmed in the training set.

2.5 Diagnostic evaluation of candidate hub
genes in RA and cervical cancer

We intersected the differentially expressed genes of RA with the
genes associated with the prognosis of cervical cancer in order to
confirm the diagnostic accuracy of hub genes in RA and cervical
cancer. In order to assess the diagnostic utility of candidate hub genes
in RA and cervical cancer, the study compiled the area under the
curve (AUC) in the test and validation sets for the common
differentially expressed genes of RA and cervical cancer using the
pROC (28) R language package.

2.6 Molecular docking simulation of
candidate hub genes and HPV E6/E7

We obtained the three dimensional protein structures of HPV16
E6, HPV16 E7, SPP1, LYZ and MCMS5 from the Protein Data Bank
(PDB). Then, the interaction network between the candidate gene
encoded proteins and HPV16 E6/E7 was systematically analyzed by
molecular docking technology. The study predicted the three
dimensional structure of related proteins based on the AlphaFold 3
deep learning platform. PyMOL was used to remove water molecules
and original ligands from the target protein, and AutoDockTools was
used to perform hydrogenation, charge calculation, and nonpolar
hydrogen bonding. After the grid parameters and genetic algorithm
were determined, AutoDock Vina was used for molecular docking,
and the results were finally visualized using Discovery Studio
and PyMOL.

2.7 Single cell transcriptomics data
processing

We used Seurat (v5.1) (29) for further analysis based on the cervical
cancer single cell transcriptome dataset (GSE208653). The study’s quality
control parameters were set as more than 500 genes in the cell, more
than 4,000 RNA counts per cell, and less than 20% of mitochondrial
reads. Following the filtering process, the expression matrix was
transformed [In (CPM + 1)] and normalized using the NormalizeData
function in the Seurat package. With highly variable genes as input,
principal component analysis was then performed using “RunPCA” A
graph-based clustering algorithm was used for the clustering process,
and the Seurat function “Run tSNE” was used for visualization. To deal
with batch effects between data sets, we used the Harmony method for
data integration. PCA and t-distributed stochastic neighbor embedding
(t-SNE) revealed a more uniform sample distribution following the
removal of batch effects with Harmony, indicating their effective removal
(Supplementary Figures S2a,b). We divided the cell populations into 9
groups according to marker genes: NK/T cells, Neutrophils, Epithelial
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cells, Myeloid cells, Plasma Cells, Mast cells, B cells, Fibroblasts, and
Endothelial cells. We then used DotPlot and FeaturePlot functions to
analyze the expression patterns of the three candidate genes in different
cell populations. To study the communication between ligands and
receptors between cell clusters, Cellchat was used to analyze intercellular
communication. Furthermore, we explored the cell-cell network
between epithelial and myeloid cells and compared the differences in
signaling pathways between cervical cancer and healthy controls.

2.8 Patient collection

The study retrospectively collected a total of 32 cases of cervical
tissue pathological sections from patients at the Second Hospital of
Shanxi Medical University between January 2021 and December 2024.
Of these, 11 were healthy controls, 12 had cervical cancer, and 9 had
RA combined with cervical cancer. The selection criteria for cervical
cancer were as follows: cervical cancer was confirmed by pathology,
and there was no history of chemoradiotherapy before surgery. In
addition, diabetes, hypertension, and a history of malignant tumors
were not included, nor were any other chronic systemic disorders.
Patients with RA were diagnosed according to the 2010 ACR/EULAR
RA diagnosis and classification criteria. Cervical tissue samples of
healthy controls were obtained from persons who had a hysterectomy
due to adenomyosis or uterine fibroids, and histology confirmed that
the cervix had normal morphology and clear surgical margins. Detailed
clinical characteristics of the three groups, including age, RA disease
duration, treatment history (especially immunosuppressive therapy),
and HPV infection status, are shown in Supplementary Table S1.

In accordance with the 1964 Declaration of Helsinki and its
subsequent revisions or similar ethical standards, this study was
approved by the Ethics Committee of the Second Hospital of Shanxi
Medical University (approval number: 2023YX179). All subjects
signed written informed consent.

2.9 Immunohistochemistry

We used an immunohistochemical staining kit (elabscience, China,
E-IR-R215) to stain paraffin sections. First, the tissue sections were
dewaxed, hydrated, antigen repaired, endogenous enzymes inactivated,
and serum blocked. Then, SPP1 (Zenbio, China, 680476, 1:100), LYZ
(Zenbio, China, 381103, 1:100), and MCM5 (Zenbio, China, R22573,
1:100) were dripped on the sections and incubated at 37 °C for 2 h.
After washing with PBS three times, the secondary antibody
(elabscience, China, E-IR-R215B) was dripped again, 30 min of
incubation at 37 °C, followed by three PBS washes. Finally, DAB color
developing solution was dripped on the sections, and brown-yellow
was a positive result. Image] was used to quantify pathological images.

2.10 Statistical analysis

All data in this study were based on at least 3 biological
replicates, and all statistical studies used R software (version 4.4.1).
Measurement data are presented as the mean + standard deviation.
Intergroup comparisons were performed using one-way analysis of
variance (ANOVA). If the ANOVA indicated a statistically
significant difference, the Least Significant Difference (LSD) post hoc
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test was used for pairwise comparisons. To control for type I error
inflation due to multiple comparisons, all p values were adjusted
using the Bonferroni correction. If there was heterogeneity of
variance, the Mann-Whitney U test was used. All p values were
determined using two-sided testing, and p < 0.05 was taken as
statistically significant.

3 Results

3.1 Identification of differentially expressed
genes in patients with rheumatoid arthritis

We conducted differentially expressed gene analysis on the
combined RA dataset (GSE55235, GSE55457, and GSE77298), which
included 27 controls and 39 patients with rheumatoid arthritis. When
the conditions were set as logFC > 1 or logFC < —1, and adj. p value

10.3389/fmed.2025.1693787

< 0.05, we found that compared with the healthy control group, the
rheumatoid arthritis group had 493 upregulated genes and 216
downregulated genes. We displayed the differentially expressed genes
using heat maps and volcano plots (Figures 2a,b). GO and KEGG
enrichment analyses were then conducted on the differential genes
that were up-regulated and down-regulated (Figures 2¢,d). The GO
and KEGG enrichment of the up-regulated differentially genes
showed that these up-regulated differentially genes were mainly
concentrated in response to interleukin 7, neutrophil mediated
immunity, negative regulation of natural killer cell mediated
immunity, canonical inflammasome complex, immunoglobulin
receptor activity, pathway for JAK-STAT signaling, cell cycle, and
tumor necrosis factor signaling. GO and KEGG enrichment of the
differentially down-regulated genes revealed their associations with
the following: negative regulation of immunoglobulin mediated
immune response, negative regulation of B cell mediated immunity,
positive regulation of the MAPK cascade, regulation of cell growth,
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DNA binding transcription repressor activity, signaling pathways
regulating stem cell pluripotency, JAK-STAT signaling pathway, and
c¢GMP-PKG signaling pathway; chemical pathways involving
estrogen, choline in cancer, amphetamine dependency, cholesterol,
and pyruvate metabolism.

3.2 ldentification of differentially expressed
genes in cervical cancer patients

This study performed a joint analysis of the TCGA and GTEx
databases, involving 13 healthy controls and 306 cervical cancer
patients, to identify differentially expressed genes associated with
cervical cancer. We set the differential gene screening conditions as
logFC > 1 or logFC < —1, and adj. p value < 0.05. Compared with the
healthy control group, we finally screened out 2,600 upregulated genes
and 2,172 downregulated genes (Figures 3a,b). GO and KEGG
enrichment of the differentially expressed genes that were
up-regulated and down-regulated revealed that the majority of the

10.3389/fmed.2025.1693787

up-regulated genes were involved in the regulation of the fibroblast
apoptotic rate, regulation of ubiquitin protein ligase activity, DNA
damage response, positive regulation of myeloid leukocyte mediated
immunity, cell surface pattern recognition receptor signaling pathway,
tumor necrosis factor mediated signaling pathway, alpha beta T cell
receptor complex, MHC class II protein complex, histone H3 kinase
activity, cyclin dependent protein serine/threonine kinase inhibitor
activity, DNA replication origin binding, TNF signaling pathway, Toll
like receptor signaling pathway and Hippo signaling pathway
(Figure 3c). The majority of the differentially expressed genes that
were down-regulated were involved in the positive regulation of the
BMP signaling pathway, receptor clustering, proton motive force
driven mitochondrial ATP synthesis, G protein coupled receptor
complex, vinculin binding, and extracellular matrix structural
elements that provide compression resistance, mRNA 5 UTR binding,
transcription coactivator and corepressor binding, choline
metabolism in cancer, leukocyte transendothelial migration, apelin
signaling pathway, Rap1 signaling pathway, phospholipase D signaling
pathway (Figure 3d).
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3.3 Using Lasso regression and Cox
regression to identify hub genes associated
with cervical cancer prognosis

The study first screened for differentially expressed genes linked
to the prognosis of cervical cancer using a univariate Cox proportional
model. The findings indicated that 199 genes with differential
expression were linked to the prognosis of cervical cancer (p < 0.05,
Supplementary Table S2). After that, we further screened prognostic
genes using Lasso regression; 56 prognostic genes were included
when 4 = 0.022 (Figure 4a; Supplementary Figure S3). Afterwards,
we further included the 56 genes in the multivariate Cox proportional
model to further screen genes independently associated with the
cervical cancer prognosis. The outcomes demonstrated 35 genes were
screened and selected as prognostic predictors, that LYZ, CRIP1,
PPP1R14A, CHMP4C, ADCY4, CBX7, DES, ZNF280D, FEZ1, SPP1,
CYTL1, RPL41P5, CA9, BAIAP2L1, AC103810.3, HOXA10, SKA3,
HSPG2, RGS5, CCZ1, EEF1D, MCM5, RAB3IL1, and SPINT1 were
independent variables for cervical cancer development and
occurrence (p < 0.05, Figure 4b). For the 1-, 3-, and 5-year prognoses
of cervical cancer, we further assessed the predictive power of the

10.3389/fmed.2025.1693787

prediction model built with 35 genes using the receiver operating
characteristic curve (ROC). The areas under the ROC curve of the 35
gene prediction model for 1-year, 3-year, and 5-year cervical cancer
overall survival prognosis were 0.959, 0.986, and 0.920 (Figure 4c),
respectively, which also shows that the 35 genes used to develop the
prediction model has a good predictive value in cervical cancer.

3.4 Diagnostic potential of candidate
biomarkers in rheumatoid arthritis and
cervical cancer

By performing intersection analysis on 35 cervical cancer
prognosis related genes and RA differential genes, a total of 3
co-upregulated differential genes were identified (Figure 5a), namely
SPP1, LYZ, and MCMS5, which were upregulated in patients with
rheumatoid arthritis and cervical cancer. Next, we evaluated the
three genes’ potential for diagnosis, SPP1, LYZ, and MCMS5, in the
RA test set data (GSE55235, GSE55457, and GSE77298) and
validation set (GSE89408) as well as the cervical cancer test data sets
(TCGA and GTEx) and validation set (GSE63514). The ROC curves

o

78 69 63 58 56 49 47 41 38 30 19 11 7 2

Gene

15

LYZ
CRIP1
SPNS1
PPPIR14A
POLR2J3
CHMP4C
ADCY4
MRPL38
PEARI
CBX7

14
L

3

1
1

2
1

Partial Likelihood Deviance

DES
ZNF280D

S

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
|
|
1
|
1
1

FEZ1
TMEM98
SPP1
CYTL1
RPL41P5
CA9
FGFR3
RIBC2
BAIAP2L1

-2.0

STS
HOXA10
SKA3
HSPG2
RGS5
CCZ1
SLC7AS
EEF1D
MCM5
RAB3IL1
SPINT1

0.6
1

0.4
1

True positive rate

0.2
1

1 years (AUC=0.959)
== 3 years (AUC=0.986)
== 5 years (AUC=0.920)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

FIGURE 4

Area Under Curve, AUC.

ADAMTS9

RNASEH2A

AC103810.3

Sample HR(95%CI) o P value

(N=293) :
0.63 (0.51 - 0.78) HH <0.001 *#*
0.41(0.23 - 0.72) —a— - 0.002 **
3.55(0.71 - 17.74) P 0.123
3.06 (1.86 - 5.02) —=— <0.001 *++
0.56 (0.28 - 1.13) ——A 0.103
3.01 (1.79 - 5.06) M | <0.001 ***
15.91(5.51 — 45.92) . e <0.001 ***
222 (0.82 - 6.01) I——I—| 0.115
1.65 (0.98 — 2.79) = 0.061
3.08 (1.42 - 6.66) L —a— 0.004 **
1.57 (0.88 — 2.79) —— 0.128
0.61 (0.47 - 0.79) H <0.001 ***
22.45(5.48 - 91.96) . ———&———— <0.001 ***
0.54 (026~ 1.11) l—-—-1 0.095
2.55(1.53 - 4.23) | <0.001 **#*
1.34 (0.93 - 1.95) | 0.118
153 (121 - 1.94) HH <0.001 ***
229 (1.54 - 3.41) e <0.001 ***
0.48 (0.35— 0.67) e <0.001 ***
127 (1.06 - 1.52) . 0.011 *
0.82 (0.66 — 1.02) H 0.08
1.52 (0.91 - 2.56) —— 0.11
2,52 (1.29 - 4.93) —a— 0.007 **
1.98 (1.28 — 3.08) Ml | 0.002 **
1.60 (0.98 — 2.59) = 0.058
2,06 (1.28 - 3.32) = 0.003 **
3.04 (1.25 - 7.38) s 0.014 %
1.90 (1.22 - 2.98) N | 0.005 **
0.52 (031~ 0.86) e 0.01*
3.28 (1.20 — 8.95) ] 0.02*
0.78 (0.59 — 1.02) Ha 0.074
6.86(2.72 — 17.34) e <0.001 ***
027(0.12- 058y FH—®—— - <0.001 ***
0.47 (0.25 - 0.89) —a— 0.021 %
238 (1.23 - 4.60) —a— 0.01 *

r T — —
0.1 05 1 5 10 50 100

Lasso regression, univariate and multivariate Cox proportional models were used to identify genes associated with the prognosis of cervical cancer. (a)
LASSO regression analysis of genes related to prognosis of cervical cancer. (b) Screening of genes related to prognosis of cervical cancer using
multivariate Cox proportional model. (c) Analysis of the 1-year, 3-year, and 5-year prediction ability of the 35 genes cervical cancer prediction model.

Frontiers in Medicine

07

frontiersin.org


https://doi.org/10.3389/fmed.2025.1693787
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Liu et al.

10.3389/fmed.2025.1693787

RA test set

RA validation set

CC test set

CC validation set

sensitivity

' sPP1

AUC =0.805

sensitivity

" sPP1
oool} AUC =0.854

1 - specificity

025 050 075

1.00 000 025 050 075 100

1 - specificity

sensitivity

)

|)>

o
)
=
=

vz

AUC =0.772

sensitivity

T vz
AUC =0.836

0.00

0.00 025
1 - specificity

0% 075 100

sensitivity
°

" sPP1

AUC = 0.895
035 050 075
1 - specificity

1.00

sensitivity

SPP1
AUC =0.701

025 050 075 100
1 - specificity

sensitivity

Lyz
AUC =0.875

075

sensitivity

025
Lyz

AUC =0.376

000 025 05 075 100
1 - specificity

025 05 075
1 - specificity

1.00

025 050 075 100
1 - specificity

sensitivity
°
g

MCM5

sensitivity

FIGURE 5

075

sensitivity
°
g

°

"~ Mcms

CM5
0004} AUC =0.832 0.00 AUC =0.489 ooot AUC =0.995 0004} AUC =0.78
000 025 05 075 100 000 025 050 075 100 000 025 05 075 100 000 035 0% o075 100
1 - specificity 1 - specificity 1 - specificity 1 - specificity

" mcms

The predictive value of SPP1, LYZ, and MCM5 in relation to cervical cancer and rheumatoid arthritis (RA) was examined using a ROC curve. (a) The
intersection of genes that are expressed differently in cervical cancer and RA. (b) ROC curves for evaluating the predictive value of SPP1 in the RA test
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predictive value of MCM5 in the RA test dataset, RA validation dataset, cervical cancer test dataset, and cervical cancer validation dataset. Healthy
controls, HC; Rheumatoid arthritis, RA; Cervical cancer, CC; Area Under Curve, AUC.

showed that SPP1 had good diagnostic potential in the RA test set
(AUC = 0.805), validation set (AUC = 0.854), and cervical cancer test
set (AUC = 0.895) and validation set (AUC = 0.701) (Figure 5b); LYZ
had good diagnostic potential in the RA test set (AUC = 0.772) and
validation set (AUC =0.836) and cervical cancer test set
(AUC =0.875) (Figure 5c); MCMS5 also had good diagnostic
potential in the RA test set (AUC = 0.832) and cervical cancer test
set (AUC = 0.995) and validation set (AUC = 0.780) (Figure 5d).
These results further suggest that SPP1, LYZ, and MCM5 may serve
as potential diagnostic markers for patients with RA and cervical
cancer. To explore the potential functional partnerships among SPP1,
LYZ, and MCM5, we constructed a protein—protein interaction (PPI)
network using the STRING database.? Network analysis revealed that
B2M (Beta 2 microglobulin) is a predicted common interactor for all
three proteins, suggesting that B2M may serve as a functional hub
mediating their collective role in the comorbid mechanism between
RA and cervical cancer (Supplementary Figure S4).

3.5 Prediction of binding sites between
candidate biomarkers and HPV 16 E6/E7
virus using molecular docking

The study used computer simulation molecular docking to further
study the interaction between three candidate biomarkers SPP1, LYZ,
and MCM5 and HPV 16 E6/E7 proteins. Affinity refers to the ability of

2 https://cn.string-db.org/
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aligand to bind to a receptor. The larger the absolute value of the affinity,
the stronger the binding ability (note that the affinity value is negative).
The respective binding energies of SPP1, LYZ, and MCMS5 to E6 are
—47.35, —27.65, and —12.89. SPP1 and E6 are bound by hydrogen bonds
between Leul13 and Phe53, and Glul116 and Argl35 are bound by salt
bridges (Figure 6a); LYZ and E6 are bound by hydrogen bonds between
Argl16 and Asn100 and GIn122 and Prol11, and Argl25 and Asp51
are bound by salt bridges (Figure 6a); MCM5 and E6 are bound by
hydrogen bonds between Glu240 and Arg149, Lys228 and Ser82, Lys734
and Asp58, and Arg724 and Glu29 (Figure 6a). In addition, we also
compared the binding patterns of the proteins translated by these three
candidate biomarkers with HPV16 E7. The respective binding energies
of SPP1, LYZ, and MCMS5 to E7 are —33.2, —120.84, and —54.69. The
predicted patterns showed that SPP1 bound to Lys73 of E7 through
Asp348 and Tyr233 to GIn104 through hydrogen bonds (Figure 6b);
LYZ bound to E7 through Tyr38 to Glu37, Ala65 to Glu55, Asp71 to
Arg53, etc. through hydrogen bonds (Figure 6b); MCM5 bound to Ile11
of E7 through Arg364 binds by hydrogen bonds (Figure 6b).

3.6 Expression patterns of SPP1, LYZ and
MCMS5 in scRNA-seq

We analyzed the cervical cancer single cell transcriptome dataset
(GSE208653) and divided the cervical cancer cell population into
NK/T cells (Control group, 4,948 cells; cervical cancer group, 8,359
cells), Neutrophils (Control group, 1903 cells; cervical cancer group,
3,058 cells), Epithelial cells (Control group, 2,790 cells; cervical
cancer group, 1,160 cells), Myeloid cells (Control group, 735 cells;
cervical cancer group, 1701 cells), Plasma Cells (Control group, 1,565
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cells; cervical cancer group, 242 cells), Mast cells (Control group, 484
cells; cervical cancer group, 184 cells), B cells (Control group, 162
cells; cervical cancer group, 446 cells), Fibroblasts (Control group,
333 cells; cervical cancer group, 231 cells), and Endothelial cells
(Control group, 178 cells; cervical cancer group, 46 cells), a total of
nine cell populations (Figure 7a). The expression of SPP1, LYZ and
MCMS5 in different cell populations was further evaluated. The tumor
group exhibited statistically significant differences in SPP1, LYZ, and
MCMS5 expression levels in NK/T cells, myeloid cells, epithelial cells,
and other cells compared to the healthy control group (Figure 7b;
Supplementary Figures S5a—d). In comparison to the healthy control
group, we observed that both the number and intensity of cell-cell
interactions in the cervical cancer group were higher (Figure 8a).
Subsequently, we compared the differences in signal pathway
enrichment between the healthy control group and the cervical
cancer disease group. The results showed that the communication
intensity of signaling pathways such as LCK, CEACAM, IFN-1I, IL16,
NECTIN, PTN, LAIR1, VCAM, HGE and SPP1 increased
significantly in the cervical cancer group; the communication
intensity of signaling pathways such as ncWNT, CADM, RA, KIT,
EGEF, Histamine, NRG, CD46, and LXA4 increased significantly in
the healthy control group (Figure 8b). In addition, in terms of the
overall signaling pathway intensity, SPP1 in the tumor group was
more strongly expressed in NK/T cells, Neutrophils, and Myeloid
cells (Figure 8c). On this basis, we used Myeloid cells as ligands and
Epithelial cells as receptors to further analyze the differences in
ligand receptor pairs between the healthy control group and the
tumor group. The upregulated ligand receptor pairs in the cervical
cancer group were SPP1 — CD44, FN1 — SDC4, FN1 - SDCI,
FN1 — CD44, CD99 — CD99, and the downregulated ligand receptor
pairs were PPIA - BSG, LGALSY9 — P4HB, LGALS9 — CD44
(Figure 8d).
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3.7 Differential expressions of SPP1, LYZ,
and MCMS in patients with rheumatoid
arthritis combined with cervical cancer

To further verify the above bioinformatics results, we collected
healthy controls, cervical cancer and RA combined with cervical
cancer patients, and used immunohistochemistry to deeply analyze
the distribution and expression of SPP1, LYZ and MCMS5 in cervical
tissues. The findings showed that cervical cancer tissues had increased
expression levels of SPP1 (p = 0.047), LYZ (p = 0.034), and MCM5
(p = 0.002) in comparison to the healthy control group; this difference
was statistically significant (Figure 9). Compared with cervical cancer
patients, SPP1 (p = 0.005), LYZ (p = 0.005) and MCM5 (p = 0.006)
were also highly expressed in RA combined with cervical cancer, and
the difference was statistically significant (Figures 9a—c).

4 Discussion

Many research results show that autoimmune diseases show a
higher susceptibility to cancer than the general population (30-33).
Previous epidemiological data show that the overall risk of cervical
cancer in RA patients is about 20% higher than that in the general
population (34, 35). The occurrence and development of cervical
cancer originates from a multi-level network composed of persistent
HPV infection, destruction of host genome stability, chronic
inflammation of the local cervix, and immune escape (36, 37). This
multi-dimensional system jointly promotes the malignant
transformation of cervical epithelium by activating carcinogenic
signaling pathways. At the same time, as a multi-factor-mediated
autoimmune disease, RAs core pathogenesis is closely related to the
chronic This

persistent inflammatory — microenvironment.
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Single cell transcriptomic characterization of cervical cancer. (a) Single cells in the cervical cancer scRNA seq dataset are visualized using t-SNE by
primary cell type. (b) The dot plot shows how three important core genes are expressed in various cell populations at varying rates. Healthy controls,
HC; Single cell RNA Sequencing, scRNA-seq.
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inflammatory state may enhance HPV infection through multiple
pathways, thereby increasing the susceptibility to cervical cancer
transformation (8, 38). Specifically, gastrointestinal and vaginal
dysbiosis can be triggered by various genetic and environmental
factors, such as HPV infection, and engages in a bidirectional
interaction with the host immune system, thereby promoting chronic
inflammatory diseases. In RA, chronic synovial and systemic
inflammation serves as a core mechanism driving disease progression,

Frontiers in Medicine

involving the activation of signaling pathways such as nuclear
factor-kB (NF-kB), JAK-STAT, and MAPK, as well as the engagement
of inflammasomes and the cGAS-STING pathway. This process
promotes the activation of pro inflammatory T cell subsets such as
Thl, Th9, and Thl7, while suppressing the function of anti-
inflammatory immune cells like Th2, Treg, and Breg cells (39, 40).
dendritic  cells, and

Concurrently, monocytes/macrophages,

neutrophils secrete large quantities of pro-inflammatory factors,
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Immunohistochemistry analysis of the differential expression of SPP1, LYZ, and MCM5 in rheumatoid arthritis combined with cervical cancer patients
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healthy control group. (b) Analysis of LYZ expression in the groups with cervical cancer, rheumatoid arthritis combined with cervical cancer, and
healthy control. (c) Analysis of MCM5 expression in the groups with cervical cancer, rheumatoid arthritis combined with cervical cancer, and healthy
control. *p < 0.05, **p < 0.01. Healthy controls, HC; Rheumatoid arthritis, RA; Cervical cancer, CC.

further activating resident joint cells such as fibroblasts, chondrocytes,

and  osteoclasts, ultimately self-reinforcing

pro-inflammatory microenvironment. In the context of HPV induced

forming a

cervical carcinogenesis and precancerous lesions, the viral
oncoproteins E6 and E7 drive chronic inflammation by upregulating
the COX-2/PGE2 pathway and other inflammatory mediators such as
ROS, RNS, and PTGER. Within the tumor microenvironment (TME),
the early stages are characterized by a predominance of Ml
macrophages, NK cells, and CD4+/CD8 + T cells, which secrete anti-
tumor factors including IL-2, IL-12, IL-18, and IFN-y (41, 42). In
stages, shifts
immunosuppressive populations such as M2 macrophages, Th2/Th17

advanced however, the balance toward
cells, Tregs, and Bregs, which suppress immune responses through the
secretion of factors like IL-4, IL-10, IL-17, and TGF-f, thereby
facilitating tumor immune escape. Throughout this process, sustained

high levels of pro-inflammatory cytokines such as IL-6, IL-1f, and
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TNF-o maintain a state of chronic inflammation and drive disease
progression. Consequently, a deeper understanding of the mechanisms
linking chronic inflammation to carcinogenesis is of paramount
importance for developing interventions aimed at preventing both
autoimmune disorders and cancer (43).

Through the integration and analysis of single cell transcriptome
data from RA and cervical cancer, this study methodically analyzed the
particular signaling pathway regulation network of cervical cancer in
the context of chronic inflammation. First, we analyzed the
differentially expressed genes in the transcriptome data of cervical
cancer patients (|log2FC| > 1, adj. p value < 0.05). Two thousand one
hundred and seventy-two genes were lowly expressed in cervical
cancer, 2,600 genes were highly expressed in cervical cancer, 493 genes
were upregulated in RA patients, and 216 genes were downregulated.
Subsequently, univariate and multivariate COX ratio analysis and
LASSO regression were used to further screen genes related to the
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prognosis of cervical cancer, and a cervical cancer prognosis prediction
model was constructed. On this basis, we successfully identified three
hub genes (SPP1, LYZ, and MCM5) that were differentially expressed
in the prognosis of RA and cervical cancer. Subsequently, molecular
docking was used to predict the binding sites of hub genes and HPV
16 E6/E7. The analysis based on single cell transcriptome data revealed
that the SPP1 signaling pathway was significantly enhanced in cervical
cancer patients and was Myeloid cells and epithelial cells; lastly, it was
found that the expression levels of SPP1, LYZ, and MCM5 were
significantly higher in clinical tissue samples from patients with RA
combined with cervical cancer when analyzed immunohistochemically.
SPP1, also known as osteopontin, often promotes cell invasion
through integrin (avp3, CD44) signals, and can also enhance Th1/
Th17 differentiation and inhibit Treg function (44). In tumor diseases,
SPP1 can activate PI3K/AKT and FAK pathways, drive epithelial
mesenchymal transition, induce MDSC proliferation, and inhibit
CD8 + T cell activity (45, 46); in autoimmune diseases, SPP1 leads to
local inflammatory cell infiltration (47, 48). Previous studies have
found that in RA patients (48), SPP1 can interact with IFN-vy, enhance
Th1 inflammatory response, and inhibit immune tolerance; synergize
with RANKL, promote osteoclast differentiation and lead to bone
erosion. The biological function of LYZ is mainly to hydrolyze
bacterial cell wall peptidoglycan and participate in innate immune
defense (49, 50); regulate macrophage polarization (M1/M2) and
release of inflammatory factors. At present, the mechanism of LYZ in
tumors is still unclear. LYZ activates macrophages to kill tumors and
plays a role in tumor suppression; however, under chronic
inflammation, LYZ releases proinflammatory factors (IL-6, TNF-a) to
promote immunosuppression in the tumor microenvironment. In RA
patients, synovial fluid LYZ levels are elevated, activating the NF-kB
pathway to aggravate joint damage (50, 51). Excessive release of LYZ
can also lead to degradation of healthy tissues, such as intestinal
epithelial barrier damage in inflammatory bowel disease (52, 53).
MCMS5 is a core component of the DNA replication initiation
complex, ensuring stable genome replication, regulating G1/S phase
transition, and driving cell proliferation. MCMS5 is associated with
genomic instability, and its high expression can lead to abnormal
proliferation of cervical cancer, liver cancer (54-57). Previous studies
have found that when B/T cells are overactivated, MCM5 related
lymphocyte infiltration is often observed. However, there is no direct
evidence demonstrating a clear interactive relationship among SPP1,
LYZ, and MCM5. We speculate that B2M might act as a common
interacting protein for SPP1, LYZ, and MCM5. B2M is the light chain
component of MHC class I molecules and is crucial for the stability
and antigen presenting function of MHC class I (58, 59). By
participating in the antigen presentation process of MHC class
I molecules, B2M influences T cell recognition and killing of infected
or tumor cells. This could represent another potential mechanism by
which SPP1, LYZ, and MCMS5, in addition to their individual
functions, collectively regulate chronic inflammation through their
interactions, thereby increasing the risk of cervical carcinogenesis.
The study merged the transcriptome data of prior RA and
cervical cancer patients with the cohort of RA combined with
cervical cancer we collected for thorough analysis, and found that
SPP1, LYZ, and MCM5 are proteins closely related to the HPV 16
virus and may be candidate biomarkers for patients with RA and
cervical cancer. At the same time, based on the level of single cell
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sequencing, we further found that SPP1 is an important signaling
pathway connecting Myeloid cells and epithelial cells. According to
previous studies, a number of inflammatory and autoimmune
conditions, such as Crohn’s disease, cirrhosis, obesity, atherosclerosis,
cancer, multiple sclerosis (MS), RA, and osteoarthritis (OA), have
elevated SPP1 concentrations (40, 60-62). In the immunopathological
process of RA, immune cells and cytokines infiltrate synovial tissue.
The integrin receptors and their ligands are upregulated in this
condition, which leads to the activation of fibroblast like
(FLS),
metalloproteinases (MMPs) and cytokines, and aggravated cell

synoviocytes heightened  production of matrix
extravasation (63, 64). The above series of changes will trigger the
invasion and degradation of cartilage, thereby producing
extracellular matrix (ECM) fragments. Integrins might be further
activated by these ECM fragments. Increased avf3 integrin
expression in synovial tissue in RA disease encourages FLS invasion
and attachment to the cartilage pannus junction, which triggers the
release of MMP and cathepsin and ultimately results in joint
destruction. Tumor associated macrophages (TAMs) (65, 66) are the
most common immune cells in the TME, and play a vital role in the
occurrence, development and metastasis of cancer (67, 68). SPP1 can
promote the interaction between cancer cells and macrophages
through a variety of complex mechanisms, thereby enhancing the
proliferation, invasion and migration of cancer cells. Specifically,
SPP1, as a potent chemokine for macrophages, can recruit TAMs
from peripheral blood monocytes to the tumor microenvironment
and promote M2 like activation of TAMs (69, 70) in this
environment. When SPP1 is blocked, glioma cells” capacity to attract
macrophages is greatly diminished. By activating the colony
stimulating factor 1 receptor (CSFIR) pathway in macrophages,
tumor derived SPP1 can also increase the expression of programmed
death ligand 1 (PD-L1) and cause macrophage reprogramming to
M2 type through the integrin and protein tyrosine kinase 2
(PTK2)-Akt signaling pathways (41, 71). In addition, SPP1 increases
the expression of cyclooxygenase 2 (COX-2) in macrophages by
interacting with a9p1 integrin on macrophage receptors, which
activates the p38 and extracellular signal regulated kinase (ERK)
signaling pathways (72). COX 2 derived prostaglandin E2 (PGE2)
and matrix metalloproteinase 9 (MMP9) can stimulate angiogenesis
and further expand the degree of macrophage activation. At the
same time, the latest studies have shown that SPP1 + TAM, as a new
macrophage subset, presents a higher immune infiltration rate and
has the characteristics of promoting tumor development. Increased
SPP1 expression in TAMs can cause T cell inhibition and inhibit
CD8+T cell production of interferon-y (IFN-y) while also
upregulating PD-L1 expression in cancer cells via the NF-xB
pathway. This effect might be connected to SPP1/CD44 activation
(73-75) signaling pathway, which in turn promotes tumor immune
tolerance and immune escape, and enhances the resistance of tumor
cells to anti-tumor immunotherapy. The findings suggest that
chronic inflammation is a prominent characteristic in patients with
RA and cervical cancer. Additionally, SPP1 plays a role in mediating
interactions between macrophages and epithelial cells by regulating
inflammation, epithelial-mesenchymal transition (EMT) (76),
immune evasion, and metabolism, thereby contributing to tumor
progression. Combined intervention of these molecules may provide
a novel treatment option for patients with RA combined with
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cervical cancer. It is evident that SPPI1 exhibits significant
associations with multiple factors within the TME. By binding to
receptors such as CD44 and integrins, SPP1 activates key signaling
pathways including PI3K/AKT/mTOR, Slug/Snail, MAPK/NF-kB,
and Ras/Raf/ERK, thereby promoting tumor cell proliferation,
migration, invasion, adhesion, and EMT. Studies have confirmed
that BET inhibitors and cytarabine can suppress SPP1 transcription,
while Entrectinib directly binds to SPP1 and reduces its expression
(77-79), resulting in synergistic anti-tumor effects. It should
be noted, however, that SPP1 plays a crucial role in bone metabolism
homeostasis, and both excessive inhibition and activation may lead
to bone abnormalities. Future research should focus on developing
precise SPP1 targeted therapeutic strategies, such as highly specific
antibodies, RNA interference techniques, or small molecule
modulators, to achieve controllable regulation of SPP1 activity.
Through tissue specific expression modulation, it is expected to
enhance therapeutic efficacy while minimizing systemic
adverse effects.

Even though our study showed that SPP1, LYZ, and MCM5 have
good clinical value and diagnostic performance in patients with cervical
cancer and RA, there are still certain limitations. First, the dataset has
a small sample size. Future studies should focus on collecting patients
with RA and cervical cancer for high throughput sequencing to further
reveal the role of SPP1, LYZ, and MCMS5 in the disease. In addition, the
number of clinical cohorts of patients with RA combined with cervical
cancer we collected is limited, and the sample size will be expanded for
further verification. Additionally, immunosuppressive therapies
commonly used in RA may influence HPV persistence and the
expression of the identified biomarkers, potentially confounding the
observed associations. Future studies should account for treatment
related variables to clarify these relationships. In conclusion, these

results require additional in vitro and in vivo testing to confirm them.

5 Conclusion

This study explored the molecular mechanism of comorbidity
between RA and cervical cancer by integrating transcriptomic analysis
and validating it in individuals with cervical cancer combined with
RA, and successfully identified three key hub genes (SPP1, LYZ, and
MCMS5), which were significantly upregulated in both RA and cervical
cancer. The results showed that SPP1, LYZ, and MCMS5 not only had
high diagnostic potential in patients with RA and cervical cancer but
also showed specific binding sites with HPV 16 E6/E7 proteins through
molecular docking simulation. Single cell sequencing data showed that
SPP1 was an important pathway for regulating the immune
microenvironment and epithelial cells. Despite the limitations of
limited sample size, this study provides an important paradigm for the
exploration of the mechanism of chronic inflammation related cancers,
and the combined intervention of these molecules may provide a new
treatment idea for patients with RA combined with cervical cancer.
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