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Beyond joints: the importance of
animal models in exploring
rheumatoid arthritis
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Miguel Angel González-Gay1,2*, Raquel Largo1‡ and
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Joint inflammation is the most prominent feature of rheumatoid arthritis (RA), but
this disease can affect practically any organ of the body. The association between
RA and comorbidities is multifaceted, involving traditional risk factors, chronic
inflammation, and the effects of medications. A large number of animal models
have been developed for the study of RA. All of them developed histopathological
changes, such as human diseases, and often experienced other comorbidities.
The choice of one model or another depends on several factors. It is important
to bear in mind, for example, the study of pathophysiological mechanisms, the
progression, and the activated autoimmunity, among others. It is also necessary
to know what comorbidities are described in each model, as the selection
may depend on the possibility of replicating these comorbidities. In this review,
we will focus on the study of cardiovascular, musculoskeletal, and hepatic
comorbidities in the four most used and induced RA models: collagen-induced
arthritis (CIA), adjuvant-induced arthritis (AIA), pristane-induced arthritis (PIA),
and serum transfer K/BxN. In this manuscript we offer guidance on how these
models replicate RA key comorbidities and how to choose the most suitable
RA model.
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1 Comorbidities in RA

Rheumatoid arthritis (RA) is a systemic autoimmune disorder marked by chronic
synovial inflammation, leading to joint damage and disability. It can occur at any age
and affects both sexes, though it is more prevalent in women (1). It is estimated that 31.7
million individuals will be living with RA worldwide by 2050, constituting a major global
health burden, as measured in disability-adjusted life years (DALYs) (2). Although joint
inflammation is the most prominent feature, RA can affect practically any organ of the
body (3). The association between RA and comorbidities is multifaceted, involving the
medications used to treat RA, traditional risk factors, and the presence of chronic systemic
inflammation (3–5). Based on the cross-sectional COMOrbidities in RA (COMORA)
study, the most commonly observed comorbidities (past or current) in patients with RA
are depression, asthma, and cardiovascular disease (CVD), the leading cause of death
in RA, including myocardial infarction (MI) and stroke, solid-organ malignancies, and
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GRAPHICAL ABSTRACT

chronic obstructive pulmonary disease (4, 5). Moreover,
osteoporotic fractures are more commonly observed in patients
with RA and they significantly affect the functional decline of
the patient (6). Muscle loss is commonly observed in patients
with RA (7). According to the updated EWGSOP2 guideline,
the prevalence of sarcopenia is 11 times higher in patients with
RA than in controls (8). In fact, muscle loss has been recognized
as an important contributor to comorbidity and reduced life
expectancy in RA (9). Regarding gastrointestinal comorbidity
in patients with RA, the most common is liver dysfunction,
followed by intrahepatic hemorrhage, hepatosplenomegaly,
cirrhosis, and necrotic pancreatitis (4). RA can also affect both the

central and peripheral nervous systems, with neurological clinical
manifestations undetected or attributed to arthritic pain, causing
diagnostic delays (4).

Although our understanding of RA pathogenesis has advanced
in recent years, RA remains a global research hotspot due to the
lack of preventive or curative treatments, the presence of drug-
refractory cases, and the wide range of comorbidities and extra-
articular manifestations frequently observed (2, 4, 5).

Recent epidemiological studies in 2024 report that the
most prevalent comorbidities in patients with RA are
hypertension (36.4%−56% of patients with RA), thyroid
disorders (21.5%−34.8%), dyslipidemia (19.5%), and obesity
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(14.2%−16.9%), followed by osteoporosis (19.1%), osteoarthritis
(9.2%), etc. (10, 11). Most patients with RA suffer from these
comorbidities. Around 42.8% develop at least one comorbidity,
and approximately 28% develop up to three (12). The high
prevalence and clinical impact of these comorbidities highlight
why it is important to study RA as a systemic disorder. Although
studies in humans would be ideal, they have many limitations that
lead us to use animal models to study RA and its comorbidities
(13). In humans, it is impossible to fully control genetic or
environmental variables. However, most of the RA models
resemble the pathological characteristics shown in human diseases
(14). The same occurs in the case of testing new treatments;
studies on patient response have intrinsic limitations, especially
in the preclinical phase (15). Furthermore, access to human tissue
is scarce and often restricted, limiting the ability to investigate
pathological processes in depth. All these features make it essential
to use animal models to study RA comorbidities, as they offer
insights that would be difficult to obtain from human studies.

2 Animal models of RA

A large number of animal models have been developed for
the study of RA (16–19). The choice of one model or another
depends on several factors, such as the study of the mechanisms
of the disease, its progression, severity, activated autoimmunity,
the reliability and simplicity of some models, and the efficiency
to predict drug efficacy in humans (18, 20). RA models are
relatively easy to perform, have good reproducibility of data,
and are generally of short duration. Most RA models exhibit
pathological features similar to the human disease, although
important differences exist, such as the rapid progression of RA
in animal models, primarily due to acute inflammatory responses,
and a tendency in rodents to exhibit both marked bone resorption
and new bone formation in response to joint inflammation (20).
Therefore, when choosing an animal model for RA, we must
carefully analyze the specific aspects of the disease and the specific
objective of each study.

Animal models of RA can be broadly divided into two main
categories: spontaneous models, which include animals developing
arthritis via genetic modifications; and induced models in which
arthritis arises following chemical or immunological induction.
Spontaneous models typically progress naturally and result in
chronic, non-resolving disease, whereas induced models often self-
resolve over time (17, 19).

Rodents represent the most commonly employed models for
investigating the pathogenesis and progression of RA. However,
significant genetic divergences between rodents and humans
influence the development of RA and complicate the direct
translational applicability of experimental findings to clinical
settings. Therefore, alternative animal models, including rabbits,
guinea pigs, and non-human primates (NHPs), have been used
to overcome these limitations and more accurately replicate the
human disease (18, 20).

Among the various experimental models of arthritis, the
following are among the most widely used:

• The collagen-induced arthritis (CIA) mouse model is one
of the most widely used experimental models for studying

RA (21). In this mouse model, the most commonly used
strains are those that are genetically susceptible to developing
autoimmune arthritis in response to type II collagen
immunization. In this regard, susceptibility to CIA in mice is
closely linked to their MHC haplotype, particularly the H-2q

haplotype (22).
• The most widely used strain is DBA/1, particularly the DBA/1J

sub-strain. These mice are highly susceptible to CIA when
immunized with type II collagen (CII) in combination with
adjuvants. As a result, DBA/1 mice are considered the gold
standard for CIA studies and are extensively used in both
pathogenesis research and the preclinical testing of therapeutic
agents (23). In contrast, C57BL/6 mice are naturally resistant
to CIA. However, they are frequently used in research due
to the availability of numerous transgenic and knockout
lines. Therefore, CIA can be induced in C57BL/6 mice
under modified conditions, such as with specific adjuvants
or genetic alterations, making them valuable for studying the
role of individual genes in arthritis (23). Another commonly
referenced strain is BALB/c, which is also generally resistant
to CIA. The B10.Q strain is another CIA-susceptible model
(24). These mice are used to investigate the genetic and
immunological basis of arthritis susceptibility.

Mice are injected with a solution of CII, often from bovine or
chicken sources, emulsified in an adjuvant, commonly Complete
Freund’s Adjuvant (CFA), which contains killed mycobacteria and
enhances the immune response (21). This injection is usually
administered at the base of the tail or in the footpad. In some cases,
a second dose of CII, often in Incomplete Freund’s Adjuvant (IFA),
is given approximately 1 week later to boost the immune response
(21). Arthritis typically develops within a few weeks following the
sensitization phase, leading to the manifestation of clinical signs
such as joint swelling, redness, and limping (25). The model may
not fully replicate the episodic nature of RA, including spontaneous
remissions and exacerbations (21, 25).

The adjuvant-induced arthritis (AIA) model is a well-
established system primarily employed to explore the pathogenesis
of RA and evaluate potential therapeutic agents. It is known for
its simplicity and reliability (26). A single unilateral subcutaneous
injection of CFA is administered, usually in the hind foot or at
the base of the tail (26). This injection triggers an inflammatory
response, leading to the development of arthritis with joint swelling
and stiffness, reduced mobility and pain, and often affects multiple
joints, mimicking the symmetrical involvement observed in human
RA (26, 27). One of the main limitations of the AIA model is its
self-limiting nature, where the disease typically resolves after a few
weeks, which may not accurately reflect the chronic progression
seen in human RA (18).

The pristane-induced arthritis (PIA) model is primarily
utilized to investigate the mechanisms of inflammatory arthritis,
particularly those involving T cell activation and the role of
autoantibodies in the disease process (28, 29). The model is
induced by injecting pristane, a mineral oil derivative, typically
administered intradermally or subcutaneously. Arthritis usually
develops within a few weeks after pristane injection (28, 29).
The onset can be influenced by factors such as mouse strain
and the specific injection site. The PIA model exhibits several
clinical features reminiscent of human RA, including joint swelling
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and inflammation, particularly in the hind limbs, pain, and
reduced mobility in affected joints (28, 29). The model can
present a polyarticular pattern of arthritis, affecting multiple joints
symmetrically. The model primarily emphasizes T cell-mediated
mechanisms and may not fully represent other aspects of RA
pathogenesis, such as antibody-mediated processes (28, 29).

The K/BxN model is designed to investigate the pathogenesis
of RA, particularly the role of autoantibodies and T cells in
the development of joint inflammation and damage (16). The
K/BxN model is derived from a cross between KRN mice, which
express a transgenic T cell receptor (TCR) specific for glucose-
6-phosphate isomerase (GPI), and Non-Obese Diabetic (NOD)
mice, which have a strong autoimmune background. K/BxN mice
express a TCR that recognizes GPI, leading to a strong autoimmune
response when they are exposed to their specific antigen (30).
Unlike other models that require specific antigen immunization,
K/BxN mice spontaneously develop arthritis due to the expression
of the transgenic TCR and the production of anti-GPI antibodies.
While the spontaneous development of arthritis mimics some
aspects of human disease, it may not fully capture all features
of RA, particularly those that arise from environmental triggers
(30). The model focuses heavily on T cell and antibody-mediated
mechanisms, potentially overlooking other important pathways
involved in RA (16).

All these models developed histopathological changes, such
as synovial hyperplasia, infiltration of immune cells (e.g., T
cells, B cells, and macrophages), cartilage destruction, and bone
erosion (17). In addition to the inflammatory joint pathology,
patients frequently suffer from comorbidities, such as muscle
loss (rheumatoid sarcopenia) and cardiovascular disease (8, 31).
Consequently, the selection of a particular animal model may
depend on the possibility of replicating these comorbidities
(Figure 1).

There is a wide literature already covering the range of arthritis
animal models and their characteristics in comparison to human
disease pathophysiology and therapeutic responses (32). Being
aware of the wide variety of existing arthritis models, in this review,
we will focus on four of the induced models described in this
section: CIA, AIA, PIA, and K/BxN, and how comorbidities related
to the cardiovascular, musculoskeletal, and digestive systems are
studied in these models. Although most RA comorbidities are
represented in animal models, some are poorly covered. This is
the case for neurological affections such as depression or chronic
fatigue, for which there is little evidence (33). The same applies
to pain (34). Therefore, we will not address them in this review.
In addition, some other animal models, apart from the four
mentioned, will not be discussed in this review, as they do not
adequately mimic RA comorbidities (35).

3 Study of RA comorbidities in
different animal models

3.1 Cardiovascular disease (CVD) studies in
RA animal models

CVD is the most prevalent comorbidity in patients with RA,
resulting in a more severe disease burden, with a 1.5 times
higher risk of CVD in patients with RA when compared to the

general population (36). Both traditional risks and inflammation
contribute to the progression of atherosclerosis and cardiovascular
issues in patients with RA (31, 37). Patients with RA have a
higher prevalence of coronary artery disease (CAD) compared to
the healthy population. In RA, the lipid profile shows reduced
levels of total and low-density lipoprotein (LDL) cholesterol
during high-grade inflammation (38). CVD in RA is linked to
a dyslipidemic pattern and severe systemic inflammation (39).
Additionally, traditional CVD risk factors, such as hypertension
in RA may be modulated by the inflammatory state (24). Some
of the preclinical animal studies discussed above can contribute
to interpreting the pathophysiological connection between RA
and CVD, as well as to identifying underlying mechanisms and
potential therapeutic targets. CVD studies in RA animal models
include cardiac morphological and histological abnormalities (such
as cardiac hypertrophy, structural impairments, and fibrosis), as
well as ultrastructural changes (40). Preclinical studies also explore
cardiac functional parameters either using cardiac ultrasound
or invasively after catheterization (40). Coronary atherosclerosis,
coronary endothelial dysfunction, arterial hypertension, and heart
rhythm disorders are also well described in RA animal models, but
although myocardial infarction is the leading cause of mortality
in RA, there is a lack of RA animal studies (40). Among cardiac
arrhythmias, atrial fibrillation (AF) and ventricular arrhythmias
are the most studied ones. The study of this AF using animal
models holds significant translational relevance, as it enables a more
precise understanding of the molecular mechanisms involved in
disease development. However, clinical studies face challenges in
directly determining the causes of AF. Consequently, experimental
investigations are essential to elucidate the relationship between
AF and atrial remodeling. In CIA models, findings resemble
cardiovascular outcomes observed in humans (41, 42).

The most common studies on cardiac impairments have been
performed in CIA, AIA, and PIA animal models, with few studies
being carried out in the K/BxN model (Table 1) (40). In this regard,
Zihao et al. (43) detected increased infiltration of inflammatory cells
and fibrosis in the ventricular tissues of CIA mice. Additionally,
elevated expression of pro-inflammatory genes such as TNF-
α, IL-6, IL-17, and MMP3 was observed in isolated ventricular
cardiomyocytes and cardiac fibroblasts in these mice (43). In
a parallel study, the treatment with Liquiritigenin, a triterpene
with anti-inflammatory properties, dismissed the expression of
inflammatory factors (TNF-α, IL-1β, and IL-6) and pro-fibrotic
genes (fibronectin, and collagen I and III) in the heart, and reduced
the fibrotic markers, such as TGF-b1 and phos-Smad2/3, in cardiac
tissue in mice (44). In male DBA/1J mice, the response of the aorta
to norepinephrine and acetylcholine with or without endothelium
did not change in comparison with healthy mice, although the CIA-
induced RA mice presented an increment of inducible nitric oxide
synthase (45). The prevalence of atrial fibrillation (AF) was also
studied using the CIA model (41, 46). In atrial tissue of female
Wistar rats, both IL-6 and TNF-α levels were incremented with
a high AF inducibility and duration in the arthritic animals that
correlated with the serum levels of the pro-inflammatory cytokines
(41, 42). Furthermore, in this model, increased expression of TGF-
β and αSMA in the atrium was observed, indicating a fibrotic
process in the cardiac tissue (42). The CIA animal model is also
used to study the reduced heart rate variability (HRV) experienced
by patients with RA (47). In this regard, reduced HRV can indicate
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FIGURE 1

Main RA animal models methodology and related comorbidities reported in the literature. CIA, collagen-induced arthritis; AIA, antigen-induced
arthritis; CFA, complete Freund’s adjuvant; IFA, incomplete Freund’s adjuvant; RA, rheumatoid arthritis; ROS, reactive oxygen species; mBSA,
methylated bovine serum albumin; NOD, non-obese diabetic; IP, intraperitoneal.

problems with the autonomic nervous system, which is often seen
in patients with RA. In rats, the low-frequency/high-frequency ratio
was increased in the first weeks of arthritis induction in comparison
with healthy animals (48). This alteration correlates with the CIA
inflammatory phase (48). Deceleration and acceleration capacity,
both measures of heart rate variability, were altered in CIA rats (48).

In male AIA rats, the histology of cardiac tissue revealed
atrophic fibers at day 40 of arthritis induction (49). In a

parallel study in isolated hearts from AIA rats, a reduced
coronary acetylcholine-induced relaxation associated with cardiac
hypertrophy was developed, whose positivity correlated with
plasma levels of endothelin-1, angiotensin-II, and arthritis score
(50). The same manuscript reported decreased cardiac functional
recovery, and high myeloperoxidase activity and infarct size after
ischemia/reperfusion in arthritic animals (50). On the other hand,
Shubert et al. (51) reported that AIA rats have several modifications
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TABLE 1 Cardiovascular comorbidities in RA animal model studies.

Animal models of RA Cardiovascular disease features observed in studies with animal models of RA

CIA Mice Inflammatory cell infiltration in heart tissue (43)

Cardiac tissue fibrosis (43, 44)

High pro-inflammatory markers in isolated ventricular cardiomyocytes (43)

Inducible nitric oxide synthase in aorta (45)

High expression of fibrosis markers in heart fibronectin, collagen I or III, -b1 and phos-Smad2/3 (44)

Rat High pro-inflammatory cytokines in atrial (41, 42)

Elevated atrial fibrillation inducibility and duration (41, 42)

Positive fibrosis markers TGF-β and αSMA expression in atrium (42)

Heart rate variability in inflammatory phase (47)

Alterations in deceleration and acceleration NN intervals (48)

AIA Rat Atrophy of cardiac fibers (49)

Cardiac hypertrophy positively correlated with arthritis score (50)

Decreased cardiac functional recovery after ischemia/reperfusion (50)

High oxidative stress in heart (51)

Lipid alterations in heart (52)

High pro-inflammatory cytokines in heart (53)

Stimulates the development of atherosclerosis-related aorta lesions (54)

PIA Rat Cardiac hypertrophy in acute and chronic inflammatory phases (60)

Fibrosis of heart in acute and chronic inflammatory phases (60)

High pro-inflammatory markers in acute and chronic inflammatory phases (60)

Alterations in pressure and activity of left ventricle (60)

Cardiac tissue fibrosis (60)

Increase of infarct size (60)

Endothelial dysfunction (58)

Alterations in lipid levels similar to “lipid paradox” developed in RA patients (58)

K/BxN Mice Infiltration of T-cells in the heart (61, 63)

Cardiac hypertrophy in chronic inflammatory phases (61, 63)

Cardiac fibrosis in chronic inflammatory phases (61, 63)

Low end-systolic pressure volume (61)

Worse aortic atherosclerosis generated by an atherogenic diet (64)

in the oxidative state of the heart, including an increase of oxidative
stress, protein damage, and lipid damage in the whole tissue.
The use of tofacitinib in AIA rats decreased total cholesterol and
low-density lipoprotein (LDL) cholesterol, but did not modulate
the alterations in blood pressure or heart rate (52). In another
study, PGE synthase, Cyclooxygenase (COX)-2, and IL-1β were
upregulated in the heart tissue (53). A few years ago, a study
assessed how chronic arthritis causes vascular lesions in rabbits
with pre-existing atherosclerosis. For this purpose, the investigators
developed an animal model combining chronic inflammatory
arthritis with atherosclerosis to study their interaction. Their
findings showed that chronic arthritis significantly worsened
vascular damage in rabbits, suggesting that sustained inflammation
from arthritis can accelerate the progression of atherosclerosis.
This model highlighted the link between chronic inflammatory

diseases and cardiovascular complications, offering insights into
the mechanisms by which arthritis may increase cardiovascular risk
(54). This indicates that RA is an independent risk factor for the
development of atherosclerotic lesions. In the same animal model,
treatment with chondroitin sulfate was able to reduce markers
of systemic inflammation as well as PBMCs’ pro-inflammatory
activation (55). Chondroitin sulfate diminished the size of the
femoral neointima lesions, and only 11% of chondroitin sulfate-
treated rabbits developed early atherosclerotic lesions in the aorta
(55). When these rabbits were treated with glucosamine sulfate, an
inhibition in NF-κB activation in PBMCs was observed, indicating
that this is probably the mode of action for sulphated glucosamine
(56). Finally, when AIA rabbits with induced endothelial injury
of the femoral artery were fed with an atherogenic diet and
treated with celecoxib, serum levels of CRP and IL-6 were reduced.
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However, the increased expression of COX-2 and CCL2 remained
unchanged. Celecoxib blocked NF-κB activation in PBMCs, but it
did not affect the lesions in the femoral artery (57).

The PIA model mimics the features of chronic inflammatory
arthritis. It has been found useful for long-term pharmacological
studies and to interpret the complexity of CVD in RA (58).

The PIA model is able to reproduce some cardiovascular
features of patients with RA, such as the presence of endothelial
dysfunction in both macro- and microvascular beds, a link between
inflammation and macrovascular endothelial dysfunction. This
model also replicates changes in lipid levels mimicking the “lipid
paradox” (58). The lipid paradox associated with rheumatoid
arthritis is understood as an alteration in the lipid profile of these
patients, which occurs due to the high inflammatory burden. An
inverse relationship is observed between cholesterol levels and
cardiovascular risk in this population (59).

Peyronnel et al. studied the effects of treadmill exercise on
cardiac health in rats with PIA. Regular treadmill exercise reduced
cardiac fibrosis and inflammation in these rats. Additionally,
exercise decreased the heart’s vulnerability to ischemia–reperfusion
injury, which is the damage caused when blood supply returns
to the tissue after a period of ischemia or lack of oxygen. These
findings suggest that physical exercise may provide protective
cardiovascular benefits in the context of chronic inflammatory
arthritis (60).

With regard to the K/BxN animal model, K/BxN F1 mice
presented increased infiltration of activated T-cells in the heart
at week 8 and cardiac hypertrophy and fibrosis at week
16 in comparison with KRN mice at the same week (61).
Cardiomyopathy was also presented in the K/BxN model in
comparison with healthy mice (61). In arthritic mice, increased
MYH7 expression in the heart and reduced end-systolic pressure-
volume relationships were observed, indicating progression toward
dilated cardiomyopathy (62). All these pathologies were prevented
with 16 weeks of exercise in K/BxN mice (63). Moreover, on an
atherogenic diet, K/BxN mice displayed a 22-fold increase in aortic
atherosclerosis when compared to control mice (64).

3.2 Musculoskeletal system disorders in RA
animal models

3.2.1 Muscle studies in RA animal models
Rheumatoid cachexia (RC) is a syndrome characterized by

weight loss, muscle wasting, and overall weakness associated with
RA (65). RC affects 11%−26% of patients with RA worldwide,
although some studies report a prevalence as high as two-thirds
of patients with RA (9, 66). It results from a combination
of inflammatory processes, metabolic changes, and the body’s
response to chronic disease (67). Chronic inflammation in RA
leads to the release of pro-inflammatory cytokines (TNFα, IL-1β,
and IL-6), which can disrupt normal metabolism and appetite
(68). Muscle protein breakdown, driven by proteases activated
through the ubiquitin–proteasome pathway involving MuRF1 and
Atrogin-1, can exceed muscle protein synthesis, ultimately leading
to sarcopenia (69). This is often exacerbated by physical inactivity

due to pain and joint damage (70). Patients may experience
significant fatigue, contributing to a decreased ability to perform
daily activities, further worsening the cycle of inactivity and muscle
loss (71).

The CIA model remains one of the most employed animal
models for investigating muscle-related comorbidities in RA
due to its ability to mimic both joint pathology and systemic
manifestations (Table 2). The Filippin group demonstrated
progressive weight loss beginning at week 2 following arthritis
induction in the CIA model (72). Notably, mice exhibited reduced
motor activity and speed within the first week. Histological analysis
at 45 days post-induction revealed atrophy of the gastrocnemius
(GA) and tibialis anterior (TA) muscles, which correlated with
elevated serum IL-6 levels (72). In a long-term CIA model using
male DBA/1J mice, a reduction in grip strength, decreased weights
of the tibialis anterior (TA), and gastrocnemius (GA) were reported
(73). The same CIA model was developed by the Suginohara group.
In this study, the arthritic animals presented soleus, plantaris, and
GA with less weight than healthy mice, with high systemic IL-6
and TNF-α levels. In this study, treatment with Ninjin’yoeito, a
traditional Japanese medicine, reduced inflammatory cytokine
levels and prevented muscle loss in arthritic animals at higher
doses (74). In the same way, female Wistar rats induced to arthritis
presented weight loss and GA atrophy (75). Positive staining for
IL-1β and high expression of Murf1 were reported in this study,
although myostatin (MSTN) levels did not increase in the GA of
CIA rats, as observed in patients with RA (75). In a parallel study
with male Sprague–Dawley rats immunized with bovine type II
collagen, less muscle CSA was observed, with a decrease in the first
protein of muscle differentiation, MyoD in GA, and there was no
modulation in the late muscle differentiation protein, myogenin,
indicating changes in muscle myogenesis and muscle atrophy
(76). In this study, Murf1 was not decreased in GA, suggesting
differences in atrogenes expression, which play a critical role
in controlling protein turnover in skeletal muscle to maintain
muscle function, between genders in rats. MSTN expression was
also not modulated, consistent with the previous study in rats
(76). In a study of RC pharmacological treatment, the Oliveira
group compared the effect of methotrexate and etanercept in
male DBA1/J mice. CIA mice treated with methotrexate did not
counteract the GA/TA weight loss and the high expression of
Murf1 in GA, but etanercept prevented muscle atrophy, and Murf1
decreased the expression in GA, suggesting a different response
to muscle loss, dependent on treatment and independent of the
inflammatory state (77).

Muscle loss is not only present in the CIA model. Strong
evidence of muscle loss is reported in the AIA model (Table 2).
Pita et al. (49) observed weight loss with induction of fat mass and
atrophy of the soleus muscle in AIA male Wistar rats at day 15
of induction. The ATPase activity of these myosins was negatively
correlated with the duration of muscle contraction, indicating
that the ATPase activity of myosin may play a significant role
in influencing the speed of muscle contraction (49). In AIA rats,
the activity of ATPase and sarcoplasmic/endoplasmic reticulum
Ca2+-ATPase expression decreased, suggesting that changes in the
transport of Ca2+ cause alterations in the muscle contraction of
arthritic AIA mice (78). Also, an increase of TNF-α expression
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TABLE 2 Musculoskeletal comorbidities in RA animal model studies.

Animal models of RA Musculoskeletal disorders observed in studies with animal models of RA

CIA Mice Corporal weight loss (72)

Loss of motor activity, grip strength and speed (72, 73)

Atrophy of gastrocnemius and tibilais anterior (72, 75)

Decrease in muscle weight (73, 74, 77)

Decreased diameter of muscle fibers in TA and GA (73)

Bone erosion (86, 90, 91, 93)

Collagen deposition in the periosteum (86)

Joint architecture distorted (86, 93)

Reduction of trabecular bone mineral density in femur and tibia (87)

Expression of RANKL in joint tissue (87)

Invasive pannus produces bone erosion in the navicular, talus, and distal tibia (88, 89)

Inflammatory infiltrate in the joint (89)

Cartilage destruction (90, 93)

Reduction of bone mineral density (91)

Increase of proteolysis markers (93)

Extra-articular expansion causing bone damage (93)

Rat Corporal weight loss (75)

Muscle atrophy (75, 76)

Increase of inflammatory markers in muscle (75)

MSTN does not increase as in patients with RA (75, 76, 82)

Changes in muscle myogenesis (76)

Erosive polyarthritis (85)

Infiltration of mononuclear cells in the ankle synovial tissue (85)

Destruction of bone and cartilage (85, 92, 94)

Joint inflammatory cells infiltration and pannus formation (94)

AIA Rat Reduction of body weight (49, 79)

Induction of fat mass (49)

Induction of atrophy in muscles (49, 79)

Alterations in muscle contraction (78)

Increase of inflammatory markers in EDL (78)

Decrease in coordination (80)

Low GA weight (79)

Bone erosion (97, 102)

Bone cortical porosity (97)

Decreased bone mineral density (97)

Synovitis (102)

Joint destruction (102)

Rabbit Muscle weight loss (81)

Muscle atrophy (81)

Muscle growth and regeneration (81)

MSTN does not increase as in patients with RA (81)

Severe inflammatory cachexia when fed with a hyperlipidaemic diet (57)

(Continued)
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TABLE 2 (Continued)

Animal models of RA Musculoskeletal disorders observed in studies with animal models of RA

Increased RANKL and OPG (104)

Infiltration of macrophages and transformation into foam cells and osteoclasts (105)

Loss of chondrocytes (106)

Mice Synovitis (95, 98)

Bone erosion (95, 96, 100, 101)

Cartilage damage (95)

Increased osteoclasts 90, neutrophils and monocytes (96)

Enhanced expression of inflammatory and erosion markers (96, 98)

Joint edema (100)

PIA Rat Corporal weight loss (58)

Cortical bone resorption and increased osteoclasts (107, 110, 111)

Inflammatory cells infiltration (107)

Pannus formation (110)

Synovium hyperplasia (111)

Bone and cartilage erosion (111)

Mice Bone resorption (109)

Inflammatory cell infiltration (109)

K/BxN Mice Increase of inflammatory markers in GA (63)

Muscle atrophy (63)

Decreased motor coordination, strength and activity (63, 84)

Bone erosion (112, 115–119)

Cartilage damage/loss (112, 114, 115, 118)

Loss of trabecular bone mineral density in tibia calcaneus (112)

Alveolar bone loss (113)

Periosteal new bone resorption (114)

Inflammatory cell infiltrates (114, 118)

RANKL, receptor activator of nuclear factor κB ligand; CIA, collagen-induced arthritis; AIA, antigen-induced arthritis; PIA, pristane-induced arthritis.

was observed in EDL (78). The decrease in body weight in
AIA rats was also reported by the Ghouri group at day 8 of
arthritis induction, accompanied by GA atrophy (79). Furthermore,
they observed that motor coordination in the rotating rod
was dismissed in AIA rats (80). Little et al. showed in rabbit
experimental AIA that increased inflammation produces muscle
loss, contributes to atrophy, structural derangement, and increased
atrogene expression. A myonuclear expansion was also observed,
which is an anatomical marker of muscle growth and regeneration
(81). Paradoxically, this model presented a decrease in myostatin
levels in serum and muscle (81). This does not correlate with levels
observed in patients with RA (82). However, these data, together
with the downregulation of myostatin signaling, the increase MyoD
and myogenin, and decreased pSTAT3 signaling, reflect attempts to
repair the catabolic insult of inflammatory arthritis (81, 83). The
data suggest the existence of a compensatory anabolic activation
in AIA rabbits as these animals displayed signs of simultaneous
muscle wasting and repair (81). When AIA rabbits were fed with a
hyperlipidemic diet they developed a severe inflammatory cachexia,

and the inhibition of COX-2 by celecoxib improved this state,
suggesting that COX products may play an important role in
cachexia development (57).

Only one reference has been found regarding the use of the PIA
model in muscle studies. Chouk et al. (58) reported weight loss in
the first days of arthritis induction in rats (Table 2).

Finally, in the K/BxN mice model (Table 2), the Huffman group
observed an increase in systemic and GA IL-6 expression, which
was negatively correlated with GA weight (63). Also, high levels
of atrogin-1 in GA and less motor coordination and strength
were evidenced in K/BxN mice. Exercise in K/BxN mice for 12
weeks counteracted the muscle atrophy and atrogenes expression,
however, not the high levels of IL6 in GA (63). Doucet et al.
(84) used smart cages for locomotor activity measurements for
23-h periods in C57BL/6 mice, finding that arthritic mice had a
significant reduction in locomotor activity (speed, number of active
movements and rear movements, travel distance) on days 7–8 of
arthritis compared to days 0 and 13–14. In the same work, authors
indicate that treatment with a fish oil diet induced an impact on
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both travel distance and rear time, being increased with the diet
during the peak of arthritis at day 8. This was accompanied by no
changes in clinical index, but a significant attenuation in the ankle
when compared to the chow-fed group (84).

In conclusion, based on the evidence reviewed, the CIA model
appears to be the most suitable animal model for studying and
replicating rheumatoid sarcopenia. It consistently shows muscle
mass loss and a decreased CSA of muscle fibers mediated by IL-
6, TNF-α, and IL-1β. In addition, the CIA model also reproduces
accurately the chronic and progressive course of RA as observed in
humans (72, 77). In contrast, the AIA model is the least suitable
for this purpose, as it induces an acute and limiting inflammatory
response that makes it more difficult to reflect the prolonged muscle
wasting characteristic of rheumatoid sarcopenia (78–80). Finally,
the K/BxN model replicates muscle atrophy and physical activity
decline, but only driven by IL-6 inflammatory signaling (Figure 2).

3.2.2 Bone and cartilage studies in RA animal
models

Bone remodeling in RA is a frequent comorbidity mediated by
local and/or systemic alterations in the levels of proinflammatory
cytokines that are known to stimulate bone resorption and can
lead to osteoporosis and fractures. Both induced and genetically
manipulated arthritis models have been extensively used to
investigate bone resorption and formation in RA (Table 2 and
Figure 2).

The first model described in 1977 was the CIA model.
Trentham et al. (85) showed that immunization of rats developed
an erosive polyarthritis that was associated with an autoimmune
response against cartilage. The histology of these arthritic rats
resembles RA, producing an intense infiltration of mononuclear
cells in the ankle synovial tissue and destruction of bone and
cartilage (85). Since this first approach, many studies on bone loss
in the CIA model have appeared on the scene. The CIA model
has been used to analyze the kinetics, histological, and molecular
changes in bone and associate them with the clinical disease
development (86). In 2015, Denninger et al. (86) demonstrated
that the main histopathological changes in inflammation and bone
structure happened during the first 2 weeks on the onset of
clinical symptoms in the joint, and once inflammation declined,
it is the bone remodeling that predominated. This fact makes the
CIA model a suitable candidate to study the relationship between
inflammation and bone formation in RA. In mice, a reduction of
trabecular bone mineral density was observed in the femur and
tibia after 45 days of induction, this reduction being enhanced
with the administration of adiponectin (87). No differences were
observed in cortical bone density analysis, and a positive expression
of RANKL was observed in the joint (87). MicroCT imaging of
bone volume in the tarsal region in CIA mice showed a decrease
at 31–35 days following the initial collagen immunization, with
pannus causing bone erosion in the navicular, talus, and distal tibia
that was counteracted with prednisone (88). In 2018, Chen et al.
(89) showed that treatment with Apremilast, a phosphodiesterase
4 (PDE4) inhibitor, which blocks immune and inflammatory
responses, counteracted bone erosion and inflammatory infiltrate
in the joint in the murine CIA model. Moreover, when bone

erosion was studied at day 42 of immunization after 20 days
of treatment with etanercept, abatacept, or zoledronic acid, no
changes in bone erosion or cartilage destruction in femorotibial
joints were observed, in contrast to dexamethasone treatment
(90). A similar effect was observed when mice were treated with
a neutralizing anti-RANKL monoclonal antibody (IK22-5) (91).
Recently, Lin et al. (92), in order to evaluate the similarity of CIA
models with the features of pre-RA (high conversion risk time
period before clinical diagnosis), explored changes in antibodies,
joint inflammation, erosion, and gut microbiota in rats. These
researchers showed that both std-CIA (standard CIA model)
and Mono-CIA (single collagen-induced group) could successfully
cause RA symptoms, including joint swelling and bone erosion;
meanwhile, a much milder model, half-CIA (half-dose collagen-
induced group), induced only mild swelling in rats (92). Li et al.
(93) reported that CIA mice developed joint space changes and
bone damage, with extra-articular expansion being observed. They
observed a significant loss of medullary trabecular bone and a
higher OARSI score in CIA mice, concomitant with Aggrecan
upregulation and metalloproteinase (as MMP3) downregulation
(93). Early intra-articular Alpha2-macroglobulin treatment exerted
an anti-inflammatory effect and attenuated bone and cartilage
damage in this model (93). Yan et al. (94), in a recent manuscript,
summarize the clinical signs of RA in the CIA model, including
body weight loss, higher arthritis and paw indexes, cartilage
degeneration, bone destruction, inflammatory cells infiltration, and
pannus formation. All these clinical and molecular signs were
ameliorated with Jolkinolide B, an ent-abietane-type diterpenoid
found in Euphorbia jolkini, treatment that showed a reduction
in arthritis progression and disease severity in a JAK2/STAT3
mechanism (94).

Bone remodeling at the onset of RA has also been studied
using the AIA animal model. It has been observed that AIA
develops synovitis, bone erosion, and cartilage damage after 14 days
of primary immunization (95). Decreased periarticular trabecular
bone mineral density and increased presence of osteoclasts,
neutrophils, and monocytes have also been found after 14 days
of immunization (96). It has been observed that cortical bone
deterioration started before AIA onset at day 12 post-immunization
(97). Cortical porosity was the earliest structural cortical parameter
to be altered, starting at day 8 post-immunization, followed by
cortical thickness and mineral density decreased from day 10, and
a lower CT area after day 12 (97). One of the characteristics of
bone pathology in RA is periarticular bone loss that occurs in
early arthritis and happens adjacent to the inflamed joints. Engdahl
et al. (96) found that mutated citrullinated vimentin triggered
significant periarticular bone loss associated with an increased
infiltration of osteoclast precursors and mature osteoclasts in the
periarticular bone marrow. In this context, articular injection of
murine bovine serum albumin after CFA immunization enhanced
the expression of both RANKL and M-CSF, IL-8, IL-1, IL-6,
and TNF-α (96). As synovial IL-17 expression is upregulated in
RA, it has been observed that neutralization of IL-17 in mice
significantly prevented joint swelling at day 1 of flare, suppressing
joint inflammation and cartilage proteoglycan depletion at day 4
(98). Blocking IL-17 also clearly reduced bone erosions, Cathepsin
K, and synovial RANKL (98). Moreover, using this animal model,
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FIGURE 2

Progression of musculoskeletal and bone comorbidities is associated with specific inflammatory cytokines or autoantibodies production in RA animal
models. In the CIA and K/BxN models, cytokine release by macrophages is driven by autoantibody signaling, whereas in the PIA and AIA models, the
inflammatory response is primarily T cell-dependent. A solid black line indicates progression or activation, a dashed black line indicates the release of
molecules, a red line indicates induction, and a green line indicates a reduction in levels. CIA, collagen-induced arthritis; AIA, antigen-induced
arthritis; PIA, pristane-induced arthritis; IL-6, interleukin-6; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; and MSTN, myostatin.

it was observed that deficiency of the IL-1ra (a naturally occurring
inhibitor of IL-1) gene induced autoimmunity and arthritis, with
erosive destruction of the ankle bone among other features, such
as infiltration of inflammatory cells, proliferation of the lining cells
in the synovial membrane, and neutrophil infiltration, emphasizing
the importance of IL-1/IL-1ra balance in maintaining joints
physiology and immune system homeostasis (99). Methotrexate
(MTX), the reference drug for RA treatment worldwide, decreased
joint edema and prevented arthritis-induced alveolar bone loss in
mice, probably via a newly described mechanism where oral and
gut microbiota are involved (100). Using the AIA animal model,
Almeida de Arruda et al. (100) described the impact of MTX on
the oral–gut axis microbiota and that the protective role of MTX
in RA-induced alveolar bone loss might be mediated via drug-
microbiome interaction in the course of RA. Schneider et al. (101)
have demonstrated using AIA mice that NETs directly contribute to
bone erosions, increasing osteoclast formation. Moreover, in 2017,
Vidal et al. (102) studied the impact of tofacitinib on the skeletal
bone effects of inflammation. Authors observed that in the AIA
rat model, treatment with tofacitinib inhibited synovitis as well as

joint destruction, preventing bone erosion. Although tofacitinib
was able to reduce RANKL and OPG, reducing bone turnover
and bone cortical and trabecular hardness, this drug was not able
to reverse the effects of inflammation on mechanical properties
or cortical and trabecular bone structure (102). It has also been
proved in AIA rats that BCEE and Diclofenac treatments prevent
the development of granuloma and destructive lesions in ankle’s
connective tissue. In addition, both treatments prevented erosions
and cystic expansion in the bone (103). In AIA-induced rabbits,
an increased expression of both RANKL and OPG was found in
the articular cartilage when compared to healthy cartilage, with a
higher RANKL/OPG ratio that correlated with a significant bone
loss in the subchondral plate (104). The location of this RANKL was
also different, with intracellular and extracellular RANKL signals in
AIA and no extracellular RANKL signals in healthy cartilage (104).
Prieto-Potín et al. (105) have demonstrated, by inducing AIA in
rabbits, that hyperlipidemia is capable of enhancing the systemic
inflammation produced by RA, inducing damage to joint tissues via
massive infiltration of macrophages and their transformation into
foam cells and active osteoclasts. In the same AIA rabbit model, it
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was found that the parathyroid hormone related protein (PTHrP)
was detected in diseased cartilage chondrocytes, suggesting that it
has a role in this pathological condition, with a decrease in cell and
matrix PTHrP in late AIA in parallel with the loss of chondrocytes,
as happens in human RA cartilage (106).

PIA-induced arthritis rats also had cortical bone resorption
with increased osteoclast number, inflammatory cells infiltrates,
and a high range of bone formation on day 130 post-
induction (107). Both systemic and local administration of porcine
extracellular matrix-bound nanovesicles (MBV) are as effective
as MTX in the alleviation of acute and chronic PIA in the rat,
including adverse bone remodeling (108). Several antirheumatic
drugs have been tested in this animal model in order to assess
their therapeutic effects (109). Prednisolone, MTX, Celecoxib,
diclofenac, indomethacin, and SB242235 (p38 inhibitor) inhibited
bone resorption among other RA features, such as cell infiltration,
but etanerceb was not able to alter either clinical or biological
manifestations (109). PIA rats expressed heterogeneous nuclear
ribonucleoprotein (hnRNP)-A2, maximum being during the acute
phase, and its levels correlated with arthritis severity (110). hnRNP-
A2 also stimulated lymph node cells to produce inflammatory
cytokines in a MyD88-dependent manner, and overexpression of
hnRNP-A2 in the PIA rats joints during the acute and chronic
phases was found in synoviocytes of the inflammatory pannus
tissue, chondrocytes of articular cartilage, and osteoclast-like
multinucleated cells, inducing resorption of cortical bone during
both phases of PIA (110). Finally, a recent work from Zeng
et al. (111) showed that PIA animals had swollen paws with
increased arthritis scores, synovium hyperplasia, body weight loss,
and bone or cartilage erosion. In this model, treatment with the
classical reversible AChE inhibitor pyridostigmine (PYR) abolished
PIA-induced inflammation, oxidative stress, bone resorption, and
gut microbiota dysbiosis, data that support new pharmacological
interventions in animal models of RA (111).

Both male and female K/BxN mice had severe bone erosion
and cartilage loss in the ankle, with loss of trabecular bone mineral
density in the tibia calcaneus (112). In this model, alveolar bone
loss is also found (113), suggesting that K/BxN serum injection
is a suitable model to study the bone damage that occurs in
arthritis. K/BxN serum transfer mice developed periosteal new
bone formation and articular cartilage damage with cartilaginous
metaplasia 29 days post-serum transfer (114). Bone resorption, with
loss of articular cartilage and inflammatory cells infiltrates, is shown
21–42 days post-serum transfer; meanwhile, it has been observed
that 42 days post-serum injection, extra-articular fibroplasia,
ulcerated articular cartilage, joint ankylosis with severe bone
remodeling, and a few remaining inflammatory cells are the main
characteristics of this model (114). K/BxN models have been used to
understand the mechanisms underlying the pathogenesis of RA as
well as to investigate new treatments. Using this model, it was found
that although osteopontin is involved in inflammation, immunity
mediated by Th1 cells, and bone remodeling, this molecule did not
have any role in either inflammation, bone erosion, or cartilage
damage in the K/BxN serum-transfer model (115). It has been
described that Budding uninhibited by benzimidazoles 1 (BUB1),
which is known as a serine/threonine protein kinase, exerted an
inhibitory effect on TNFα or IL-1β-mediated NF-κB signaling in

bone marrow-derived macrophages, inhibiting their differentiation
to osteoclasts, and attenuating bone loss (116). It has also been
reported that blockade of Netrin-1, an axonal guidance molecule
that acts as a chemorepulsant and inhibits migration of neutrophils,
monocytes, and lymphocytes, and its receptor Unc5b prevented
bone destruction and inflammation in K/BxN serum transferred
mice (117). It was found that ankle bone erosions were present
since week 2 post-serum transfer, and blockade of Netrin-1 or its
receptor Unc5b reduces bone lesions as osteoclast differentiation
was inhibited (117). García et al. showed that the absence of
metalloproteinase MMP8 exacerbated the severity of arthritis
but not its time course, onset, and remission, with increased
synovial inflammation, bone erosions and overexpression of IL-
1β, PROKR2, and PTX3. In this model, authors also observed that
the absence of MMP8 did not protect from cartilage damage (118).
The K/BxN model has been used to understand the role of nuclear
protein heterogeneous nuclear RNP A2/B1 (hnRNP A2/B1), as
antibodies against this protein, as found in approximately 30%
of patients with RA (119). In both K/BxN and CIA experimental
models, the severity of arthritis as well as bone erosions were
reduced when hnRNP A2/B1 was silenced (119). Finally, using
this model, Brines et al. (120) demonstrated that hemeoxygenase-
1 (HO-1) deficiency aggravates arthritis progression with local
upregulation of pro-inflammatory IL-6 and MMP-3 cytokines and
serum RANKL and osteocalcin levels, suggesting a role for HO-1 in
osteoblast function in arthritis.

In conclusion, the AIA model is the most appropriate to
reproduce periarticular bone loss characteristic of RA. As shown
in studies, this model describes juxta-articular bone loss associated
with high osteoclast presence in the periarticular marrow, increased
RANKL and proinflammatory cytokines (96–98, 104). In contrast,
K/BxN models show more heterogeneous bone remodeling, with
early erosions, periosteal bone formation, and, in late stages,
even ankylosis, making them less specific for studying localized
periarticular bone loss exclusively (114, 117, 118).

3.3 Metabolic syndrome studies in RA
animal models

It is well known that RA is associated with several components
of metabolic syndrome, such as obesity, insulin resistance,
rheumatoid cachexia, dyslipidemia, and altered adipokine profiles,
all being linked to an increase of CVD mortality (121). In a
healthy population, CVD is usually associated with an increase
in LDL levels and a decrease in HDL levels. Paradoxically,
systemic inflammation in RA correlates with lower levels of total
cholesterol, HDL, and LDL. Congruently, the use of methotrexate
and DMARDs (disease modifying anti-rheumatic drugs), which
decrease systemic inflammation and disease activity, counteract
this lipid profile in patients with RA. Differences in the metabolic
state of patients with RA (obesity, adipokine levels, or insulin
sensitivity) make the study of the mechanisms associated with this
comorbidity difficult (122).

For this reason, preclinical studies have an enormous interest
(Table 3) (121).
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TABLE 3 Metabolic syndrome comorbidities in RA animal model studies.

Animal model of RA Metabolic syndrome disorders observed in studies with animal models of RA

CIA Mouse Insulin resistance (123)

Altered adipocytokine profile (123)

Expression of anti-citrullinated proteins antibodies (ACPAs) (123)

Inflammatory state with macrophages and B/plasmatic cells infiltration in adipose tissue (123)

Low cholesterol levels (124)

Altered carbohydrate and lipid metabolism (125)

Rat Dyslipidemia (40)

Unrestricted LRD feeding caused mild inflammation in healthy mice (128)

Intake-restricted LRD increased blood glucose and decreased blood lactic acid (128)

AiA Mouse Activation of lipogenesis enzymes, activated by liver X receptor α (LXRα), causes inflammation (129)

Unrestricted LRD feeding improved AIA (128)

Increased levels of MCP-1 and IL-1β (128)

Accelerated glycolysis (128)

No differences in pyruvic acid and triglycerides (128)

Metabolic disorders (128)

Increased macrophages M2/M1 ratio (128)

LRD feeding induced anti-inflammatory differentiation of monocytes/macrophages (128)

Rat Unrestricted LRD feeding improved AIA (128)

Rabbit HFD induce “lipid paradox” (59)

Decreased serum LDL-cholesterol and triglycerides (59)

Increase in serum CRP levels (59)

Synovitis (59)

PIA Rat Vascular dysfunction and “lipid paradox” (58)

No changes in blood glucose levels (58)

Decrease in total cholesterol and triglycerides (58)

Decrease in adiponectin levels (58)

K/BxN Mouse Dyslipidemia (64)

Reduced serum levels of triglycerides (64)

Increased levels of LDL/vLDL (64)

Decreased levels of HDL (64)

ACPAs, anti-citrullinated protein antibodies; LRD, lard-rich diet; LXRα, liver X receptor α; MCP-1, monocyte-chemoattractant protein 1; IL-1β, interleukin 1β; HFD, high-fat diet; IL-6,
interleukin 6; LDL, low-density lipoprotein; CRP; C-reactive protein; vLDL, very low-density lipoprotein; HDL, high-density lipoprotein, CIA, collagen-induced arthritis; AIA, antigen-induced
arthritis; PIA, pristane-induced arthritis.

In the CIA mouse model, disease activity was associated with
insulin resistance and an altered adipocytokine profile together
with the presence of anti-citrullinated protein antibodies (ACPAs)
(123). In this RA context, adipose tissue is characterized by
an inflammatory state with macrophages and B/plasmatic cells
infiltration. ACPAs can have a direct effect, inducing inflammation
and insulin resistance in macrophages to promote defective
adipocyte differentiation, which can be partially restored by
biologicals (123). In 2016, Wen et al. (124) described low
cholesterol levels in CIA mice. Arias de la Rosa et al. (125)
reported that CIA global inflammation (at systemic and tissue
levels) was characterized by inadequate carbohydrate and lipid

metabolism in different tissues, with the adipose tissue being the
most susceptible tissue to the RA-induced metabolic alterations.
These authors suggest that the inflammatory state in RA affects the
adipose tissue, inducing insulin resistance and lipolysis (reducing
lipid accumulation), therefore, the adipose tissue is an early
RA target (125). The integration of the whole body glucose
test in the CIA mice model is a useful translational model
to test compound-induced metabolic derangements in patients
with RA (126). This study showed that prednisolone slightly
decreased fasted glucose concentrations as well as endogenous
glucose production, while increasing insulin secretion (126). Jhun
et al. (127) developed an obese CIA model, where obesity
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accelerated the inflammation and autoimmunity through the
upregulation of inflammatory adipokines and cytokines expression.
These authors indicate that obesity contributes to inflammation
through CII-specific T cell differentiation. Although it may not be
pathogenic in triggering arthritis, obesity is crucial in amplifying
the inflammatory process via the Th1/Th17 response (127).
However, data found in CIA rats are more controversial, and
some investigators showed low lipid levels in this model, and
other groups found high levels (40). It has been demonstrated
in the CIA rat model that unrestricted Lard-rich Diet (LRD)
feeding caused mild inflammation in healthy mice, but it can
conditionally reduce inflammation in reloading endogenous PPAR-
γ agonist fatty acids (128). Intake-restricted LRD increased
blood glucose and decreased blood lactic acid in CIA rats,
indicating an overall negative effect on inflammation-related
glycolysis (128).

CIA models also show pro-atherogenic lipid alterations. These
models show decreased levels of total cholesterol (TC) and HDL,
and high levels of ox-LDL, mimicking the alterations described in
patients with RA (124).

Dyslipidemia has also been studied in AIA mice and rabbits
(59). In these animals, inflammation is worse due to the activation
of lipogenesis enzymes by Liver X receptor α (LXRα) (129).
Unrestricted LRD feeding without intake restriction improved AIA
both in mice and rats (128). MCP-1 and IL-1β are increased in
AIA mice, but unrestricted LRD feeding attenuated their expression
in an opposite effect than in healthy mice (128). These authors
did not observe any differences in pyruvic acid and triglycerides
among groups, but glycolysis was accelerated in AIA mice (128).
SIRT1 expression was not modified, but unrestricted LRD feeding
induced an increase in PPAR-γ expression in perirenal fat tissues.
This interaction between fat tissue and resident macrophages
provides the basis for immune changes associated with metabolic
disorders. Increase in ARG-1 expression confirmed that LRD
increased the macrophage M2/M1 ratio in AIA mice, indicating
that LRD feeding induced anti-inflammatory differentiation of
monocytes/macrophages (128). Arthritic rabbits fed with a high-
fat diet (HFD) mimicked the “lipid paradox” found in patients with
RA. HFD-fed AIA rabbits had decreased serum LDL–cholesterol
and triglycerides when compared with control HFD-fed animals.
This was accompanied by an increase in serum CRP levels
and synovitis. Also in this animal model, inflammation impairs
reverse cholesterol transport and promotes lipid accumulation
in macrophages. Administration of tofacitinib reestablishes this
pathway, normalizes CRP levels, and elevates circulating lipid
concentrations, mirroring the effects reported in patients with
RA (59).

Limited data are available on PIA and K/BxN animal models.
As described above, the PIA dark Agouti rat reproduces vascular
dysfunction and the “lipid paradox” observed in RA (58). Chouk
et al. (58) found that in arthritic rats, blood glucose was not
modified in any phase of the disease, but TC and triglycerides were
decreased in PIA at both phases, with adiponectin levels decreased
in the acute phase. It has been observed that K/BxN mice under an
atherogenic diet developed dyslipidemia, characterized by reduced
serum levels of triglycerides, increased LDL/vLDL, and decreased
HDL compared with controls (64).

3.4 Liver disease in RA animal models

Liver damage in patients with RA has received considerably less
attention than cardiovascular or musculoskeletal comorbidities,
and the available evidence remains limited. In patients with RA,
liver damage can complicate diagnosis, making it challenging to
identify whether it’s a hepatic manifestation of RA, an unrelated
primary liver disease, or liver toxicity resulting from RA treatment
(130). Liver damage in RA often presents as asymptomatic
abnormal liver tests, but in some cases, it can progress to cirrhosis
(130). Additionally, individuals with RA are at a higher risk of
developing associated autoimmune liver diseases (131).

Reports of liver damage in RA models are also limited (Table 4).
The CIA model has been most widely used to replicate the liver
damage observed in patients with RA. In CIA rats, significant
alterations in hepatic lipid metabolism have been reported, such as
reductions in fatty acid content during the CIA induction phase.

Zhang et al. (132) have recently established an animal model
combining CIA with non-alcoholic fatty liver disease (NAFLD)
in rats. These authors reported the development of fibrous tissue,
an increase of pro-inflammatory infiltration cells, and collagen
accumulation in the liver, but the structure of the hepatic lobules
remained intact (132). Only the CIA model fed with HFD presented
lipid droplets in the cytoplasm and nucleus of liver tissue. Also,
steatosis was observed in hepatocytes of the CIA model, and this
was higher in the CIA model fed with HFD (132). In a parallel study
with CIA DBA1/J male mice, arthritic animals had downregulated
genes involved in glucose metabolism and upregulated genes
associated with lipid metabolism in the liver (130). Also, the CIA
model showed high expression of markers of apoptosis and cell
stress in the liver (130). Furthermore, marked hepatocellular fat
accumulation and fibrosis were reported in the liver of CIA mice
(130). A possibility is that inflammation in RA mice generates
insulin resistance, promoting the apoptotic and fibrotic state of
the liver (130). The study of how CIA affects the metabolism of
tryptophan, kynurenine, and 3-hydroxyanthranilic acid (3-HAA)
in the liver was performed and showed that tryptophan was
statistically reduced in CIA mice when compared with controls.
However, in the pre-arthritic livers, there was a trend toward a
decrease in tryptophan concentration as well as kynurenine (133).

Adipokine-caused hepatic changes in RA-related hypolipemia
were studied in AIA in both mice and rats. In these models, IL-6,
IL-1β, MCP-1, visfatin, and adiponectin were increased in arthritic
animals, inducing oxidative stress, liver injuries, and increased
fatty acid oxidation (134). This metabolic change was accompanied
by an increased FABP1, CD36, ATGL, and CPT-1A expression
and a decrease in PPARγ that impaired its inhibition on NFκB
in preadipocytes, leading to a mass secretion of inflammatory
adipokines (134). These data indicate a disruption of triglyceride
anabolism/catabolism balance in the liver, and as hepatocytes use
more lipids but synthesize less, hypolipemia is developed in RA
animals (134). The same authors indicate changes in the lipid
metabolism-related genes (HSL, PPARγ , and SIRT1) expression
in LRD-fed mice, indicating an accelerated fat turnover (128).
Sundaram et al. (135) reported high levels of ROS, hydroperoxides,
lipid peroxidation, protein carbonyl content, and nitrite levels
in AIA rats in comparison with healthy animals, together with
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TABLE 4 Liver Comorbidities in RA animal model studies.

Animal model of RA Liver disorders observed in studies with animal models of RA

CIA Rat Fibrous tissue (132)

Increase of pro-inflammatory infiltration cells (132)

Increase of collagen accumulation (132)

No modifications in hepatic lobules structure (132)

Fed with HFD produce lipid droplets (132)

Steatosis (132)

Mouse Downregulated genes involved in glucose metabolism (130)

Upregulated genes associated with lipid metabolism (130)

Increase of apoptosis and cell stress (130)

Steatosis and Fibrosis (130)

Insulin Resistance (130)

Increase of extracellular vesicles in serum and liver (137)

Increased levels of macrophages in joints, liver and spleen (138)

AiA Mouse Hypolipemia (134)

Increased levels of IL-6, IL-1β, MCP-1, visfatin and adiponectin (oxidative stress) (134)

Increased fatty acid oxidation (134)

Metabolic change due to the increase of FABP1, CD36, ATGL, and CPT-1A expression (134)

Decrease in PPARγ (134)

Dysregulation of triglycerides anabolism/catabolism balance (134)

LRD-fed mice presented changes in lipid metabolism (128)

Rat Hypolipemia (134)

Increased levels of IL-6, IL-1β, MCP-1, visfatin and adiponectin (oxidative stress) (134)

Increased fatty acid oxidation (134)

Metabolic change due to the increase of FABP1, CD36, ATGL, and CPT-1A expression (134)

Decrease in PPARγ (134)

Dysregulation of triglycerides anabolism/catabolism balance (134)

Increased levels of ROS, hydroperoxides, lipid peroxidation, protein carbonyl content and nitrite (135)

Hepatotoxicity and inflammatory infiltrate (135)

Decrease activity of catalase and glutathione peroxidase (136)

Increased in cytosolic glucose-6-phosphate dehydrogenase activity (136)

Increase in the inducible peroxisomal NO synthase (136)

PIA No studies have been found on hepatic comorbidity in PIA model

K/BxN Mouse Increase of extracellular vesicles in serum and liver (137)

Increased levels of macrophages in joints, liver and spleen (138)

HFD, high fat diet; IL-6, interleukin 6; IL-1β, interleukin 1β; MCP-1, monocyte-chemoattractant protein 1; FABP, fatty acid binding protein 1; CD36, cluster of differentiation 36; ATGL, adipose
triglyceride lipase; CPT-1A, carnitine palmitoyl transferase 1; PPARγ, peroxisome proliferator activated receptor γ; LRD, lard-rich diet; ROS, reactive oxidative stress; NO, nitric oxide; CIA,
collagen-induced arthritis; AIA, antigen-induced arthritis; PIA, pristane-induced arthritis.

hepatotoxicity and inflammatory infiltrate in the liver. Comar
et al. also revealed an increased oxidative stress in the liver of
AIA rats, with higher levels of protein carbonyl groups. They
also reported high levels of NO markers, a decrease in catalase
and glutathione peroxidase activities, and an increase in cytosolic
glucose-6-phosphate dehydrogenase activity. Finally, no changes
were observed in superoxide dismutase and glutathione reductase

activities (136). These authors indicate that the increased ROS
content in the liver seems to be the consequence of both a deficient
antioxidant defense and a stimulated pro-oxidant system (136).

However, beyond these animal models, the information about
other models like PIA and K/BxN is less clear. This model has
been poorly studied with respect to liver pathology, leaving an
important gap in our understanding of whether hepatic changes
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can be representative. Regarding the K/BxN animal model, Liang
et al. (137) have recently demonstrated in both CIA and K/BxN
animal models the increase of extracellular vesicles in serum and
liver of arthritic mice compared to controls. When compared with
methotrexate treatment, a decrease in serum ALT activity was
observed after decoy extracellular vesicles treatment, together with
reduced steatosis and inflammatory infiltration in the liver (137).
Comparing both CIA and K/BxN animal models, Paoletti et al.
(138) demonstrated that macrophages are increased not only in
joints but also in other tissues (such as liver and spleen). Treatment
with the antagomiR-155-5p encapsulated in PEG liposomes to
deliver small RNA to monocytes and macrophages specifically
reduces joint inflammation. Despite the high accumulation in the
liver, these liposomes had no or minor effects on liver macrophages.

No studies have been found on hepatic comorbidity in the
PIA model.

3.5 Lung comorbidities in RA animal models

Lung complications are the second most common cause of
death in patients with RA (139, 140). Among them, patients with
RA suffer from interstitial lung disease (ILD), chronic obstructive
pulmonary disease (COPD), chronic bronchitis (and other airway-
related manifestations), pleural diseases, pulmonary nodules, and
inducible bronchus-associated lymphoid tissue (iBALT) (141). The
pathogenesis of lung complications in RA has been associated
with genetics and environmental exposures, such as smoking.
However, further studies are needed to elucidate the underlying
pathological mechanisms and identify novel therapeutic options
(139). In this regard, studies using different animal models are
shedding light on the mechanisms underlying RA comorbidities
and potential therapeutic approaches. However, animal modeling
of RA-associated lung disease is limited (Table 5).

The CIA and AIA models are the primary animal models used
to study RA-associated interstitial lung disease (RA-ILD), as they
reproduce key features of the condition in a manner dependent on
the response to CFA.

Environmental co-exposures exacerbate both joint and
pulmonary pathology in the CIA model (141). Repetitive inhalation
of organic dust or LPS enhanced arthritis severity while promoting
interstitial inflammation, autoantibody production, and fibrotic
remodeling, replicating the clinical features observed in RA-ILD
patients (141–143). Combination approaches, particularly CIA plus
bleomycin, reproduced lung fibrosis in addition to joint pathology.
In this context, multiple therapeutic strategies like melatonin,
ethoxyquin, hESC-MSCs, and inhibitors of JAK2/STAT3 or
TGF-β/SMAD signaling reduce both articular inflammation
and pulmonary fibrosis (144–149). These results suggest that
the recruitment of inflammatory macrophages/monocytes and
neutrophils might contribute to the pro-fibrotic inflammatory
lung responses in the CIA model following airborne biohazard
exposures (149). Therefore, although CFA induces the main
features of RA-ILD, additional factors such as CII immunization
or environmental exposures (e.g., organic dust, LPS, or bleomycin)
can further amplify inflammatory infiltration, fibrosis, and
autoantibodies deposition in the lungs, making the model more
analogous to the comorbidity observed in patients with RA.

Studies have shown that AIA rats develop disrupted lung
histology characterized by inflammatory cell infiltration, pleural
inflammation, and pleural fibrosis (150, 151). These alterations
replicate pathological changes in RA-ILD patients. However, many
of these similarities are driven by the CFA component itself:
granuloma-like structures and giant cells commonly observed in
the model are characteristic of live mycobacterial infection but
can also arise from the killed Mycobacterium butyricum present
in CFA. This indicates that the adjuvant substantially contributes
to the pulmonary phenotype (152). While CFA acts as a potent
immune enhancer, CII immunization is essential to amplify the
pulmonary manifestations in the CIA model. Indeed, lung cell
counts are significantly higher in CIA rats compared with CFA-
only rats, indicating that CII is required for robust inflammatory
infiltration (153). In addition, ACPA autoantibodies (e.g., anti-
citrullinated fibrinogen), which induce the autoimmune response
in RA, are deposited in the lung tissue of the CIA model (153).

No studies have been found on pulmonary comorbidity in the
PIA model.

Regarding the use of the K/BxN animal model to study lung
involvement, few studies have been published. K/BxN have been
employed in the study of iBALT pathology. K/BxN lung exhibited
multiple areas of lymphocytic infiltration around vessels, airways,
and submucosal in the lungs, replicating iBALT comorbidity of
patients with RA (154). In the K/BxN model, lung infiltrate
was correlated with weight loss, but not with the severity of
arthritis (154). However, the K/BxN model does not develop
pulmonary fibrosis naturally; it can be induced by bleomycin,
similar to the CIA model (154). The use of segmented filamentous
bacteria (SFB) colonization also induced iBALT in young K/BxN
mice that resembled the iBALT formations in patients with RA
(154, 155). In addition, SFB are able to induce autoantibodies
in lung during the pre-arthritic phase of K/BxN model (154–
156). In a follow-up study, Teng et al. (157) demonstrated
that middle-aged K/BxN mice developed more severe arthritis
and exhibited more extensive iBALT lesions compared to young
mice, regardless of SFB colonization. Furthermore, K/BxN mice
presented pulmonary dysfunction, characterized by reduced
compliance and an elevated M1/M2 macrophage ratio in lung tissue
(146). Pulmonary dysfunction paralleled articular inflammation,
as therapeutic interventions produced similar outcomes in both
lung and joint compartments (146). Although few studies have
directly investigated lung pathology in the K/BxN model, data
indicate that K/BxN mice develop multiple lymphocytic infiltration
around airways, vessels, and submucosal regions, recapitulating
iBALT structures seen in Patients with RA.

3.6 Renal comorbidities in RA animal
models

The prevalence of chronic kidney disease (CKD) in Patients
with RA is around 25%, proportionally higher than the prevalence
in healthy individuals (158). CDK in patients with RA can be
divided into two main causes: derived from chronic inflammation
(elevated inflammatory markers such as CRP in early stages) and
drug-induced kidney diseases (159, 160). Specifically in animal
models, renal damage is best reproduced through inflammation,
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TABLE 5 Lung comorbidities RA animal model studies.

Animal model of RA Lung disorders observed in studies with animal models of RA

CIA Mouse Repetitive inhalation exposures to organic dust enhance arthritis and bone deterioration (141)

CIA+ODE induce lung damage (141)

ODE induce neutrophilic inflammation (141)

No changes in airway cell influx and cytokine/chemokine levels (141)

Increased in lung neutrophils and macrophages (141)

Lung inflammation and fibrosis (142)

Collagen deposition in lungs (147)

AiA Rat Increase in lipid peroxidation marker (MDA) (168)

Reduction in antioxidant system (SOD) and IL-10 (168)

Nonspecific interstitial lung disease (175)

MUC-1 (mucine) been more prominent in the periphery of granulomas (175)

PIA No studies have been found on pulmonary comorbidity in PIA model

K/BxN Mouse iBALT formations (154, 155)

Development of autoantibodies (156)

HH mice show substantial lung dysfunction and a significant reduction in lung compliance (176)

Dysregulation in the M1/M2 macrophage ratio, with an increased M1/M2 macrophage ratio in HH + STIA lungs (176)

ODE, organic dust extract; MDA, malonyl dialdehyde; SOD, superoxide dismutase; IL-10, interleukin 10; MUC-, mucine 1; iBALT, inducible bronchus-associated lymphoid tissue; HH,
hyper-homocysteinemia; STIA, serum transfer induced arthritis; CIA, collagen-induced arthritis; AIA, antigen-induced arthritis; PIA, pristane-induced arthritis.

whereas drug-induced toxicity is highly dependent on dose and
pharmacokinetics. Patients with RA with CKD have an increased
risk of cardiovascular disease regardless of other classical CVD
risk factor, and the decrease in kidney function limits RA
treatment options (161, 162). This is caused due to the higher
disease activity in RA, the greater the influence on kidney
function due to nephrotoxic medication use (e.g., NSAIDs), the
atherosclerotic renal disease, the secondary amyloidosis, and the
direct nephrotoxic effects of chronic inflammation (163). Studying
RA-associated renal comorbidities is highly relevant for expanding
the range of treatments available to patients. As previously
mentioned, many patients have a limited treatment repertoire due
to impaired kidney function.

In order to understand the mechanism involved in RA
associated kidney disease, several studies in animal models have
been performed (Table 6).

The CIA model was used to study endothelial dysfunction,
and data showed an increase in iNOS in aorta, heart, and kidney
microcirculation, finding iNOS immunostaining in the endothelial
layers of microvessels, in the glomeruli, and in the interstitium
(45). Kidneys from CIA mice exhibited lymphocytic cell infiltration
and necrotic renal tubular epithelial cells in the interstitium of
the distal tubule, together with elevated creatinine and BUN
levels, which was not prevented with MTX. However, Ganoderma
lucidum polysaccharide peptide (GLPP) was able to reduce the
systemic immune response and ameliorate kidney injury (164).
The CIA model has also been used to study the link between RA
and oxidative stress. CIA rats have increased malondialdehyde,
protein carbonyl content, and antioxidant enzymes (SOD, catalase,
GST, GPx, and GR) in joints, liver, kidney, and spleen, and
administration of suramin restored all of them (165). Oxidative

damage in CIA mice was also studied by Kim et al. (166), who
showed that levels of MDA were increased in kidneys from CIA
mice, meanwhile the levels of GSH, catalase, and SOD were
reduced. In 2012, Jonker et al. (167) reported in Rhesus monkeys
that CIA kidney allografts had nodular infiltrates with increased
CD3+ T cells and that CD8+ cells slightly increased in the
interstitium when compared with nodular infiltrates. Markers of
dendritic cells (CD83), monocyte-derived DC (CD205), and TLR2
(CD282) showed specific expression patterns in the kidney in these
animals (167). As urine from patients with RA showed an increase
in 3-HAA concentration, this was tested in CIA mice, and data
demonstrated that kidneys from both pre-arthritic and animals
with established CIA had increased 3-HAA concentration when
compared with naive organs (133).

The JAK/STAT, NFKB, and HMGB expressions were
substantially increased in AIA kidneys in comparison to the
normal control tissue, and were reduced when animals were
γ-radiated (168). Histologically, arthritic mice showed tubular
epithelial cell degeneration without significant necrosis or
apoptosis. Moreover, kidneys from AIA mice showed compression
of the renal tubules, disorganization of the glomeruli, and
vascularization when compared with control animals, indicating
the development of membranous glomerulitis, nephropathy,
vasculitis, or secondary amyloidosis (169). These were reverted
when AIA mice were treated with nanocapsules of curcumin
and vitamin D3 (169). AIA rats were used to analyze liver and
kidney injuries of MTX treatment. MTX treatment resulted in
obvious toxicity as early as 18 days after induction, with increased
levels of alkaline phosphatase (AKP), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), uric acid (UA), blood urea
nitrogen (BUN), and creatinine (CRE) reinforced on day 35, and
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TABLE 6 Renal comorbidities in RA animal model studies.

Animal model of RA Renal disorders observed in studies with animal models of RA

CIA Mouse Endothelial dysfunction (45)

Lymphocytic cell infiltrate and necrotic renal tubular epithelial cells in the interstitium of the distal tubule (164)

Increased elevated creatinine and BUN levels (27)

Oxidative damage (166)

Increased levels of MDA (166)

Decreased levels of GSH, catalase and SOD (166)

Increase in 3-HAA concentration (133)

Rat Increase levels of malondialdehyde, protein carbonyl content and antioxidant enzymes (165)

Presence of renal hyaline casts (173)

Rhesus monkeys Presence of nodular infiltrates (167)

Specific expression patterns of CD83, CD205 and CD282 (167)

AiA Rat Induction of JAK/STAT, NFKB and HMGB (168)

MTX treatment resulted in increased levels of AKP, AST, ALT, UA, BUN and CRE (170)

Hypoalbuminemia and globulinemia, dyslipidemia, oxidative stress, inflammation and impairment of kidney functions
(171)

Elevated serum, hepatic and renal aminotransferases and ALP (172)

Mouse Tubular epithelial cell degeneration (169)

Showed membranous glomerulitis, nephropathy, vasculitis or secondary amyloidosis (169)

Rat Presence of renal hyaline casts less prevalent than in CIA model (173)

PIA Mouse Showed glomerular and renal vascular lesions (174)

K/BxN No studies have been found on renal damage in K/BxN

BUN, blood urea nitrogen; MDA, malonyl dialdehyde; GSH, glutathione; SOD, superoxide dismutase; 3-HAA, 3-hydroxyanthranilic acid; CD83, cluster of differentiation 83; CD205, cluster of
differentiation 205; CD282, cluster of differentiation 282; JAK/STAT, janus kinase/signal transducer and activator of transcription; NFKB, nuclear factor kappa B; HMGB, high mobility box 1
protein; MTX, methotrexate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; UA, uric acid; CRE, creatinine; ALP, alkaline phosphatase; CIA, collagen-induced arthritis; AIA,
antigen-induced arthritis; PIA, pristane-induced arthritis.

probably induced by glycolysis-facilitated intestinal absorption
(170). In the same animal model, it an increase of serum TAG,
total lipid, LDL cholesterol, total cholesterol, CRP, globulin, urea,
creatinine, and NOx levels has been observed, with a decrease
in serum total protein, HDL-cholesterol, albumin: globulin ratio
and total anti-oxidants in the arthritis animals, all indicating
hypoalbuminemia and globulinemia, dyslipidemia, oxidative
stress, inflammation, and impairment of kidney functions (171).
Serum, liver, and kidney aminotransferases and ALP have been
described to be elevated in AIA rats due to inflammation in
both liver and kidney impairment in arthritis, as well as leakage
of lysosomal enzymes, a consequence of increased endocytic
activity (172).

An article has been found where kidney damage is studied in
the PIA model, and a systematic comparison between CIA and
PIA in Dark Agouti rats was done in 2010. It was observed that
kidney hyaline casts were more prevalent in CIA animals than
in PIA rats, and the authors indicate that this may be related
to the increase of autoimmune circulating antibodies in CIA
animals (173). Another PIA study, focused on the lupus pathology,
presented glomerular and renal vascular lesions in kidneys after 26
weeks of induction (174).

No studies have been found on renal damage in K/BxN beyond
studies to demonstrate the absence of drug toxicity.

4 Synthesis, translational relevance,
and recommendations for model
selection

While the CIA, AIA, PIA, and K/BxN animal models replicate
joint inflammation and bone erosions characteristic of patients with
RA, their systemic manifestations significantly differ. The selection
of an appropriate animal model must therefore be driven not just
by joint pathology, but specifically by the comorbidity of interest
and the scientific question being addressed.

The next synthesis provides a comparative guide to leveraging
the strengths of each model for RA comorbidity research.

4.1 Recommendations for cardiovascular
or metabolic comorbidity studies

CVD is the main cause of mortality in patients with RA,
so developing models that reflect the inflammatory–metabolic–
vascular pathology is mandatory. This comorbidity is associated
with chronic inflammation-accelerated atherosclerosis, insulin
resistance, endothelial dysfunction, and cardiac fibrosis.
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• All RA models developed circulating lipid alterations
observed in patients with RA. However, insulin resistance
is only present in the CIA model. This suggests different
inflammatory-metabolic associations among different RA
models, which could explain the various cardiac and vascular
alterations observed.

• CIA and AIA models demonstrate consistent evidence
for cardiac pathology, including hypertrophy and reduced
functional recovery. These are excellent starting points for
general inflammation-driven cardiac research.

• PIA is employed for studies focusing on the vascular
components of CVD, replicating systemic endothelial
dysfunction and the RA-associated “lipid paradox”
(where low cholesterol is a poor prognostic factor). PIA
is recommended for long-term pharmacological trials
targeting vascular protection.

• The K/BxN mice, supplemented with an atherogenic diet,
are used to investigate accelerated atherosclerosis and the
progression toward serious heart failure, such as dilated
cardiomyopathy, making it ideal for cardiac fibrosis studies.

4.2 Recommendations for musculoskeletal
comorbidity

RA-associated muscle wasting (sarcopenia/cachexia) is a highly
prevalent systemic complication. The different experimental
models show different skeletal muscle responses, affecting atrophy,
fat infiltration, and tissue regeneration.

• CIA is the gold standard model for general studies on
rheumatoid cachexia. The extensive literature consistently
shows progressive weight loss, muscle atrophy, and increased
atrogene expression, making it the ideal model for testing
treatments targeting chronic muscle wasting and fibrosis.

• AIA is recommended for studying muscle regeneration in
RA. Although it exhibits muscle wasting, AIA simultaneously
activates anabolic pathways (e.g., upregulation of MSTN)
and represents a unique RA model for investigating
the interplay between inflammatory atrophy and
compensatory regeneration.

• K/BxN seems to be an excellent choice for investigating
systemic correlation between inflammatory mediators
(particularly high circulating IL-6) and sarcopenia, or for
examining treatments focused on systemic myositis and
associated muscle fibrosis.

4.3 Recommendations for bone and
cartilage pathology

While all RA models develop the periarticular bone loss,
their capacity to replicate systemic bone comorbidities (e.g.,
osteoporosis) varies in both timing and underlying mechanisms.

• AIA is recommended for studies focused on early RA
pathogenesis. This model develops cortical bone deterioration

starting before the onset of clinical arthritis. This is a useful
model for understanding the preclinical or early diagnostic
phase of RA-related systemic bone loss.

• K/BxN is employed for antibody-driven bone damage that
extends to extra-articular sites. Specifically, this model
replicates the alveolar bone damage and potentially other sites
associated with antibody deposition.

• CIA is suitable for long-term studies of bone
pathology in the context of chronic, resolving, or
treatment-modified inflammation.

4.4 Recommendations for liver and kidney
comorbidities

Research into these comorbidities is limited across all models,
but distinct preferences exist based on available data.

• Liver disease: CIA is the model with more evidence, replicating
pathologies like steatosis, fibrosis, and insulin resistance when
coupled with dietary challenges (e.g., high-fat diets). It should
be prioritized for studies investigating the metabolic syndrome
component of RA-associated liver disease. However, further
research is needed to evaluate the development of these
comorbidities in the CIA model independent of high-fat diets.

• Kidney disease: the CIA model is recommended for studies
of kidney involvement, particularly tubular epithelial cell
degeneration and hyaline casts. While all RA models (CIA,
AIA, PIA, and K/BxN) show systemic inflammatory impact
on renal function, CIA is the best choice for specific
nephropathy studies.

Selection of CIA, AIA, PIA, and K/BxN models should
be guided by the specific RA comorbidity under investigation.
By aligning the specific translational question with the model’s
strengths, researchers can significantly increase the validity and
translational relevance of their findings to human RA pathology
(Table 7 and Supplementary Table S1).

5 Conclusion

The selection and design of an animal model for the
study of a specific comorbidity are important strategies for
developing research translational capacity. In this review article,
we have described comorbidities associated with the cardiac,
musculoskeletal, liver, lung, and renal systems in four widely
used arthritis models with pathologies similar to humans. This
summary will help researchers select the best animal model to
use for the specific study of the comorbidity in question and thus
more effectively evaluate experimental treatments for it. Among the
comorbidities studied herein, there is strong evidence of muscle
loss and heart disease in CIA and AIA y K/BxN animal models,
which reflect the associated comorbidities in patients with RA.
The strongest evidence is in the CIA model, due to the greater
number of studies performed. In contrast, the study of hepatic
comorbidities in these models remains limited and, in many cases,
it is more dependent on diet rather than on the inflammatory
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TABLE 7 Strengths, weaknesses and translational relevance of RA models

Animal
model of RA

Strengths Weaknesses or limitations Translational relevance

CIA Gold standard RA model. Not replicate the remitting nature of
human RA.

Benchmark model for RA comorbidity research.

Develops systemic inflammation, CVD, and
rheumatoid cachexia (muscle wasting).

High variability depending on
strain/adjuvant.

Best for testing therapies targeting CVD,
sarcopenia, fibrosis.

Used to study bone erosion, sarcopenia, and ILD
(with adjuvants/environmental triggers).

Rapid progression in contrast to
chronic human RA.

Valuable in ILD studies combined with
environmental exposures.

AIA Reproduces synovitis and early cortical bone
deterioration.

Self-limiting (resolves after weeks). Ideal for acute inflammation, early bone
pathogenesis, and studying muscle
regeneration/repair.

Unique feature: simultaneous muscle wasting and
repair.

Does not reflect chronic RA
progression.

Suitable for drug testing in inflammation-driven
metabolic and liver changes.

Captures metabolic/liver dysfunction under
certain fat-rich diets.

Pulmonary features are mainly
CFA-driven.

PIA Excellent model for vascular dysfunction and the
RA “lipid paradox.”

Focused on T-cell mechanisms;
limited antibody involvement.

Best for long-term pharmacological studies.

Reproduces long-term systemic inflammation. Less data on muscle wasting. Useful for investigating RA-associated
atherosclerosis, endothelial dysfunction, and lipid
alterations.

K/BxN Ideal for direct study of autoantibody-mediated
damage.

Overemphasis on T-cell/antibody
mechanisms.

Best for studying autoantibody-driven
comorbidities.

Develops alveolar bone loss, dilated
cardiomyopathy, and inducible
bronchus-associated lymphoid tissue (iBALT).

Limited kidney comorbidity data. Relevant for lung (iBALT), bone, and cardiac
damage.

Strong model for testing therapies targeting
antibody-driven RA mechanisms.

stage, highlighting an important gap to be addressed. Neurological
comorbidities, although mentioned in the introduction, are not
discussed in this article, so it would be necessary to focus on
this aspect.

Animal models can also contribute to improving
precision medicine in patients with RA. By combining
and stratifying experimental traditional models depending
on genetic susceptibility, immune phenotype or metabolic
profile, and systemic biology approaches, it will be
possible to reproduce patients’ heterogeneity and treatment
response more faithfully. This forward-looking perspective
emphasizes that animal studies can not only replicate known
comorbidities but also serve to develop more effective and
individualized therapies.

The technological progress avoids us from generating new
RA models, beyond the conventional progress exposed in this
work. These new models will solve current limitations and
will reduce the differences between human and animal RA
pathology. Among these, we found humanized mouse models,
multi-omics approaches, and organ-on-chip systems that could
complement traditional models by offering mechanisms with
higher translational value.
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