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Brain tumors represent a significant health challenge in India, with approximately
28,000 new cases diagnosed annually. Conventional deep learning approaches
for MRI-based segmentation often struggle with irregular tumor boundaries,
heterogeneous intensity patterns, and complex spatial relationships, resulting
in limited clinical interpretability despite high numerical accuracy. This study
introduces CausalX-Net, a causality-guided explainable segmentation network
for brain tumor analysis from multi-modal MRI. Unlike purely correlation-based
models, CausalX-Net leverages structural causal modeling and interventional
reasoning to identify and quantify the causal influence of imaging features and
spatial regions on segmentation outcomes. Through counterfactual analysis,
the framework can provide clinically relevant “what-if” explanations, such as
predicting changes in tumor classification if specific modalities, regions, or
features are altered. Evaluated on the BraTS 2021 dataset, CausalX-Net achieved
a Dice Similarity Coefficient of 92.5%, outperforming state-of-the-art CNN-
based baselines by 4.3% while maintaining competitive inference efficiency.
Furthermore, causal attribution maps and intervention-based sensitivity analyses
enhance trust and transparency, offering radiologists actionable insights for
diagnosis and treatment planning. This research demonstrates that integrating
causal inference into segmentation not only improves accuracy but also delivers
interpretable, decision-supportive explanations, representing a significant step
toward transparent and reliable AI-assisted neuroimaging in clinical settings.

KEYWORDS

CausalX-Net, brain tumor segmentation, causal effect (CE) maps, counterfactual
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1 Introduction

Brain tumors pose a significant global health burden, affecting individuals across all
age groups. According to the Indian Council of Medical Research (ICMR), over 28,000
new brain tumor cases are diagnosed annually in India, with glioblastoma multiforme
(GBM) being the most aggressive and lethal subtype (1). Globally, more than 308,000 new
cases of central nervous system (CNS) tumors were reported in 2020, with over 250,000
deaths attributed to malignant brain tumors (2) (Figure 1). The 5-year survival rate for
high-grade tumors such as GBM remains dismally low, often below 5%, primarily due
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to late detection and limited treatment options. Brain tumors
are broadly classified into primary tumors (originating in the
brain) and secondary tumors (metastases from other cancers).
Primary tumors can be benign (non-cancerous) or malignant
(cancerous). The World Health Organization (WHO) classifies
brain tumors into low-grade (Grade I–II) and high-grade (Grade
III–IV) tumors based on their growth rate and aggressiveness
(3). The most common malignant brain tumor, GBM, has a
median survival time of just 12–15 months despite aggressive
treatment involving surgery, radiotherapy, and chemotherapy. In
India, delayed diagnosis due to lack of awareness, limited access
to MRI facilities, and financial constraints further critical patient
outcomes. Early and accurate detection of brain tumors through
automated MRI analysis could significantly improve prognosis by
enabling timely intervention and personalized treatment strategies.

Magnetic Resonance Imaging (MRI) is the gold standard
for diagnosing and characterizing brain tumors due to its
excellent soft tissue contrast and multi-planar imaging capabilities.
Different MRI sequences provide complementary information
about tumor composition, which is essential for accurate
segmentation and classification (4). T1-weighted (T1W) MRI
offers detailed anatomical structure but has limited tumor
contrast. T2-weighted (T2W) MRI highlights fluid-filled regions,
including peritumoral edema, but lacks specificity. FLAIR (Fluid
Attenuated Inversion Recovery) MRI suppresses cerebrospinal
fluid (CSF) signals, making edema more distinguishable from
normal brain tissue (5). T1-Contrast Enhanced (T1CE) MRI
utilizes contrast agents to highlight the tumor’s enhancing core,
aiding in clear boundary delineation. Multi-modal fusion of
these sequences is crucial for deep learning-based segmentation,
as each modality provides unique tumor-related features. The
BraTS dataset, a widely used benchmark for brain tumor
segmentation, includes T1, T2, FLAIR, and T1CE MRI modalities
to facilitate multi-modal learning (6). Despite the advantages
of MRI, manual tumor segmentation is labor-intensive and
prone to variability due to tumor heterogeneity in shape, size,
and intensity, as well as low inter-observer agreement among
radiologists. Automated segmentation using deep learning offers
consistent, rapid, and accurate tumor delineation, making it a

FIGURE 1

Annual brain tumor statistics for India and worldwide, including distribution of tumor types.

promising clinical tool. Deep learning, particularly Convolutional
Neural Networks (CNNs), has achieved state-of-the-art results in
medical image segmentation. The U-Net architecture (7), with
its encoder–decoder structure and skip connections, remains one
of the most widely used frameworks. Variants such as 3D U-
Net, Attention U-Net, and Transformer-based architectures have
improved contextual modeling and reduced false positives (8).
Nevertheless, these models are primarily optimized for prediction
accuracy and often rely on correlation-based feature attribution,
which offers limited insight into the underlying decision-making
process. This lack of interpretability reduces clinician trust in AI-
assisted diagnostics, especially in critical applications like neuro-
oncology.

Recent studies have explored Explainable AI (XAI) methods,
including model-agnostic approaches (e.g., SHAP, LIME),
gradient-based attribution (e.g., Grad-CAM), and attention-based
mechanisms, to enhance interpretability (4). While these methods
can identify salient regions influencing a model’s decision, they
generally do not address causality—i.e., they can explain what
features are correlated with the output, but not why a decision
was made or what changes would alter the outcome. Causal
inference offers a principled framework for uncovering cause–
effect relationships through techniques such as structural causal
models (SCM), do-calculus, and counterfactual reasoning (9). In
medical imaging, this enables clinically relevant reasoning, such as:
“If the edema region intensity were reduced, would the lesion still be
classified as malignant?”

In this study, we propose CausalX-Net, a causality-guided
explainable segmentation network for brain tumor analysis from
multi-modal MRI. CausalX-Net integrates a structural causal
modeling layer into a high-performance 3D segmentation
backbone, enabling both precise tumor delineation and
interpretable, intervention-based reasoning. The causal layer
models dependencies between imaging modalities, extracted
features, and segmentation outputs, allowing counterfactual
analyses that quantify how modifications in specific regions or
features would alter predictions. Figure 2 illustrates the limitations
of existing XAI methods, which often highlight broad correlated
areas instead of causally relevant tumor regions. By shifting from
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FIGURE 2

Examples of attribution maps from existing XAI methods, illustrating their focus on broad correlated regions rather than causally relevant tumor
features.

correlation-driven to causation-aware segmentation, CausalX-Net
bridges the gap between high-performance AI and trustworthy,
clinically meaningful decision support.

1.1 Contributions and organization

Our work advances causal reasoning in brain tumor
segmentation beyond prior methods (10, 11) through the
following key contributions:

• We introduce CausalX-Net, the first causal segmentation
framework embedding a structural causal model (SCM) into
a 3D U-Net with explicit neuroimaging priors (e.g., enforcing
known modality–region links such as FLAIR → ED, T1CE →
ET).

• We design a novel interventional training strategy with
modality dropout, enabling robust causal disentanglement
under missing-modality conditions.

• We develop a counterfactual auditing pipeline for clinical
error analysis, which quantifies voxel-wise causal effects and
localizes spurious correlations - a feature absent in prior causal
segmentation works.

• We demonstrate that these causal interventions deliver not
just superior Dice/HD95 performance, but practical clinical
benefits: enhanced boundary confidence for tumor margin
planning and robust predictions under acquisition noise or
incomplete scans.

The remainder of this paper is organized as follows: Section 2
reviews literature on explainable AI, causal inference, and brain
tumor segmentation. Section 3 details the CausalX-Net architecture
and causal reasoning mechanisms. Section 4 presents experimental
results and interpretation case studies, followed by a conclusion of
implications in Section 5.

2 Related work

2.1 Conventional brain tumor segmentation

Early brain tumor segmentation relied on classical image
processing techniques such as intensity thresholding, region

growing, morphological operations, and atlas registration
(12, 13). These methods assumed consistent tissue intensity
distributions and anatomical priors, which proved inadequate
for the heterogeneity of glioblastomas. Thresholding failed under
overlapping intensities and infiltrative margins; region growing
required manual seeds and struggled with irregular boundaries;
atlas-based methods degraded under mass effects, brain shifts,
and large deformations. While computationally efficient and
interpretable, these approaches lacked robustness to morphological
heterogeneity, intensity inhomogeneity, and acquisition artifacts,
and could not adapt to partial volume effects—necessitating a shift
to data-driven learning-based methods.

2.2 CNN-based deep learning models

CNNs revolutionized medical segmentation by enabling
hierarchical feature learning. U-Net (3) introduced the encoder–
decoder paradigm with skip connections for multi-scale fusion
and precise localization. V-Net (14) extended this to 3D,
leveraging volumetric convolutions and Dice-based loss to address
class imbalance, capturing inter-slice dependencies at higher
computational cost. Myronenko (5) incorporated variational
autoencoder (VAE) regularization for robust representation
learning. DenseNet-based models (15) improved gradient flow
and feature reuse through dense connectivity. Attention U-Net
(16) integrated attention gates to focus on tumor-relevant regions.
Despite state-of-the-art performance, CNNs suffered from limited
receptive fields, hindering modeling of long-range dependencies
and global anatomical context essential for accurate tumor
boundary delineation.

2.3 Transformer-based models

Vision Transformers addressed CNN limitations by modeling
long-range dependencies via self-attention. TransBTS (17)
hybridized CNN encoders with Transformer blocks to combine
local feature extraction and global context modeling. Swin-UNet
(18) introduced shifted window attention to balance global
modeling with computational efficiency. UNETR (19) replaced
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the encoder with a pure Transformer, processing images as patch
sequences and achieving state-of-the-art BraTS performance.
Transformers excel at capturing spatial relationships and multi-
modal fusion but demand large datasets, heavy computation, and
offer limited interpretability compared to CNNs.

2.4 Graph and hypergraph learning
approaches

Graph-based methods modeled non-Euclidean brain structures
as nodes and edges, capturing complex relationships beyond grid-
based CNNs. Feng et al. (20) proposed multi-modal hypergraph
learning to encode higher-order relationships among T1, T1ce,
T2, and FLAIR via superpixels and hyperedges built on spatial,
intensity, and cross-modal similarities. Zhao et al. (21) combined
SLIC superpixels with graph convolutional networks (GCNs)
for region-level message passing, preserving spatial topology.
Extensions included dynamic graph construction, attention-
weighted edges, and multi-scale graph hierarchies to capture
local and global context. Despite strong performance in multi-
modal modeling, graph-based methods face high computational
cost, complex implementation, and poor GPU efficiency, slowing
clinical adoption.

2.5 Explainable AI in medical imaging

Rising model complexity spurred explainable AI (XAI) to
enhance trust and regulatory compliance. Gradient-based saliency
maps (22) identified influential pixels but produced noisy, hard-
to-interpret results; guided backprop and integrated gradients
improved clarity but remained correlational. Grad-CAM (23)
localized class-relevant regions using feature map gradients, aiding
multi-class tumor segmentation yet still correlation-based. Model-
agnostic methods like LIME (24) and SHAP (25) perturbed
inputs to estimate local feature importance, but similarly captured
associations rather than causal mechanisms—limiting clinical
reliability where spurious correlations can mislead models.

2.6 Causal inference-based approaches

Causal inference emerged to improve robustness and
interpretability by modeling cause–effect mechanisms rather
than associations. Structural Causal Models (SCMs) (9)
formalize variables and directed edges in causal graphs, enabling
reasoning across Pearl’s hierarchy of association, intervention, and
counterfactuals. Karimi et al. (11) generated counterfactuals for
diagnostic systems, identifying minimal patient changes altering
predictions for actionable insights. Zhang et al. (10) integrated
intervention-based causal reasoning into segmentation, linking
modality features to anatomical structures to improve robustness
and generalization. Recent work explores causal representation
learning and mediation analysis to reveal predictive mechanisms.
Despite promise, causal methods remain underexplored in brain
tumor segmentation due to implementation complexity, scarce

interventional data, and validation challenges. Unlike prior causal
or counterfactual reasoning studies (10, 11), which either generated
post-hoc counterfactuals or modeled interventions outside the
segmentation loop, our approach integrates structural causal
reasoning directly into the predictive pipeline. By embedding an
SCM branch within the network and coupling it with interventional
training, CausalX-Net enables voxel-level causal attribution during
segmentation itself. This design allows simultaneous prediction
and causal explanation, providing actionable insights for clinical
planning rather than purely retrospective analysis.

2.7 Research gaps

Tables 1, 2 summarize key contributions, trends, and
limitations across major brain tumor segmentation paradigms.
The field has evolved from conventional to deep learning-based
methods, achieving substantial gains in automation and accuracy
at the expense of computational cost and interpretability. Classical
techniques (thresholding, region growing, atlas-based) (12, 13)
offered efficiency and transparency but failed on heterogeneous
tumors, intensity inhomogeneity, and partial volume effects. CNN-
based models (3, 5, 14–16) introduced automated feature learning,
skip connections, dense connectivity, and attention, delivering
strong performance but suffering from high computational
demands, limited receptive fields, and reduced explainability. 3D
extensions improved volumetric context modeling yet further
increased resource requirements.

Transformers (17–19) addressed CNNs’ global context
limitations via self-attention, with hybrid CNN–Transformer
architectures showing practical superiority over pure
forms. However, they require large datasets, extensive
computation, and sacrifice interpretability. Graph-based
methods (20, 21) capture complex non-Euclidean relationships
and multi-modal dependencies but face scalability, GPU
inefficiency, and implementation complexity, restricting
clinical adoption.

Interpretability methods remain the widest gap: gradient-based
saliency (22), Grad-CAM (23), and model-agnostic methods
[LIME (24), SHAP (26)] provide only correlation-level insights,
insufficient for clinical decision-making. Causal inference
approaches (9–11) promise mechanistic understanding and
robustness but remain early-stage, with limited validation and
scarce interventional data.

Further gaps include: (i) lack of standardized evaluation
protocols hindering fair comparisons, (ii) limited cross-
dataset generalization analyses, (iii) minimal integration of
uncertainty quantification into segmentation pipelines, and
(iv) scarce real-world clinical validation of interpretability
techniques. Future research should prioritize: (1) designing
efficient yet accurate architectures for real-time clinical
deployment, (2) advancing causal interpretability with rigorous
clinical validation, (3) establishing standardized benchmarks
and evaluation frameworks, (4) embedding uncertainty
quantification for risk-aware predictions, and (5) performing
large-scale multi-center studies to assess generalization across
diverse cohorts.
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TABLE 1 Comparative analysis of brain tumor segmentation and interpretability methods (part 1).

Study Dataset Method Key contributions Critical limitations

Menze et al. (2015) (12) BraTS Atlas-based
registration

Established benchmark; multi-modal
integration; anatomical priors

Poor generalization; deformation sensitivity;
manual intervention

Clark et al. (2013) (13) TCIA GBM Intensity
thresholding

Computational efficiency; interpretable
approach

Heterogeneity failure; intensity
inhomogeneity sensitivity

Ronneberger et al. (2015)
(3)

Medical datasets U-Net architecture Skip connections; precise boundary
delineation; small dataset effectiveness

Limited global context; class imbalance
challenges

Milletari et al. (2016)
(14)

Medical MRI V-Net (3D CNN) Volumetric processing; Dice loss innovation;
3D context capture

Memory constraints; annotation
requirements; computational overhead

Myronenko (2018) (5) BraTS U-Net + VAE
regularization

Multi-task learning; improved robustness;
regularized representation

Architectural complexity; hyperparameter
sensitivity; training difficulty

Li et al. (2018) (15) BraTS DenseNet
segmentation

Feature reuse; gradient flow optimization;
parameter efficiency

GPU memory demands; training instability;
implementation complexity

Oktay et al. (2018) (16) Medical MRI Attention U-Net Spatial attention mechanisms; focused
learning; adaptive weighting

Limited attention interpretability;
computational overhead

Wang et al. (2022) (17) BraTS TransBTS hybrid CNN-Transformer synergy; global
dependency modeling; multi-scale
integration

Computational complexity; large dataset
requirements; training difficulty

Cao et al. (2021) (18) BraTS Swin-UNet Hierarchical attention; shifted window
efficiency; multi-scale modeling

Dataset size dependency; architectural
complexity; limited validation

TABLE 2 Comparative analysis of brain tumor segmentation and interpretability methods (part 2).

Study Dataset Method Key contributions Critical limitations

Hatamizadeh et al.
(2022) (19)

BraTS UNETR (pure
transformer)

Full Transformer encoder; SOTA
performance; patch-based processing

Resource intensity; interpretability loss;
scaling challenges

Feng et al. (2019) (20) BraTS Hypergraph
learning

Higher-order multi-modal relationships;
complex dependency modeling

Scalability constraints; implementation
complexity; GPU incompatibility

Zhao et al. (2022) (21) BraTS SLIC + GCN Region-level processing; graph-based
reasoning; noise reduction

Superpixel quality dependency; irregular
processing; scalability issues

Zhang et al. (2025) (22) ImageNet Saliency maps Gradient-based visualization; model-agnostic
application

Noise susceptibility; spatial incoherence;
clinical inapplicability

Selvaraju et al. (2017)
(23)

Medical datasets Grad-CAM Class-specific visual explanations;
localization capability

Correlation-only insights; resolution
limitations; causal blindness

Albalawi et al. (2016) (8) Multiple LIME Model-agnostic explanations; local fidelity;
intuitive interpretation

Local scope limitation; result instability;
global insight absence

Xu et al. (2017) (26) Multiple SHAP framework Unified feature attribution; theoretical
foundation; mathematical properties

Computational expense; approximation
errors; causal ignorance

Karimi et al. (2021) (11) Medical tabular SCM +
counterfactuals

Causal reasoning; actionable insights; what-if
analysis

Structured data limitation; assumption
dependency; validation gaps

Zhang et al. (2022) (10) Medical MRI Causal
segmentation

Intervention-based reasoning; robustness
improvement; mechanistic understanding

Early-stage development; limited validation;
implementation barriers

3 Methodology

This section presents CausalX-Net, a novel causality-
guided framework that addresses the fundamental limitations
of correlation-based attribution methods in brain tumor
segmentation. Our approach integrates a Structural Causal
Model (SCM) within a robust 3D segmentation backbone, enabling
principled interventional and counterfactual reasoning for
mechanistic interpretability. Unlike conventional explainable AI
methods that rely on statistical associations, CausalX-Net provides
causal explanations by modeling the underlying data-generating

process and enabling “what-if ” scenario analysis crucial for clinical
decision-making.

CausalX-Net departs from prior causal segmentation works
(10, 11) through three key components: (i) a structural causal
model (SCM) branch embedded with neuroimaging priors [Fluid-
Attenuated Inversion Recovery (FLAIR) → edema (ED), T1-
Contrast-Enhanced (T1CE) → enhancing tumor (ET)], (ii)
an interventional training strategy with modality dropout to
enforce robust causal disentanglement, and (iii) a counterfactual
auditing pipeline for voxel-wise causal effect analysis and clinical
error tracing.
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3.1 Architecture

Given multi-modal MRI data X = {XT1, XT2, XFLAIR, XT1CE},
where each modality represents a 3D volume of dimensions H ×
W × D, our objective is to learn a mapping function that predicts
voxel-wise segmentation labels Y ∈ {0, . . . , C−1}H×W×D. The
class labels correspond to: background (0), necrotic/non-enhancing
tumor core (NCR, 1), peritumoral edema (ED, 2), and enhancing
tumor (ET, 3). The learning problem is formulated as:

fθ :X �→ Y ,

where θ represents the complete set of trainable parameters
encompassing both the segmentation backbone and the embedded
causal reasoning components. The key innovation lies in
decomposing this mapping into causally interpretable components
that explicitly model the relationships between imaging modalities,
latent feature representations, and segmentation outcomes. This
decomposition enables principled interventional analysis and
counterfactual reasoning, providing mechanistic explanations for
model decisions.

As illustrated in Figure 3, CausalX-Net employs a
modular architecture comprising three interconnected
components designed to balance segmentation performance
with causal interpretability:

1. 3D segmentation backbone: a state-of-the-art encoder-decoder
architecture with residual connections and skip pathways for
high-quality volumetric feature extraction and precise voxel-
wise predictions (3, 5).

2. Structural causal model (SCM) layer: a learnable causal graph
that explicitly models directed relationships among imaging
modalities, latent feature representations, and segmentation
labels, enabling principled causal reasoning.

3. Interventional reasoning module: a specialized component
that executes do-calculus operations and counterfactual
queries to generate causal attribution maps and mechanistic
explanations.

This integrated design ensures that causal reasoning capabilities
are embedded throughout the learning process rather than
applied as post-hoc explanations, resulting in more reliable and
mechanistically grounded interpretations.

3.2 Data preprocessing

Preprocessing follows a standardized pipeline designed to
ensure consistency across imaging protocols and enhance model
robustness. Each modality undergoes skull-stripping using HD-
BET, N4 bias field correction to mitigate intensity inhomogeneity,
resampling to a common isotropic voxel spacing of 1.0mm3, spatial
normalization through padding or cropping to a fixed grid size, and
z-score intensity normalization based on brain tissue statistics.

During training, we implement a comprehensive augmentation
strategy that includes: (i) 3D spatial transformations (rotations
up to ±15◦, elastic deformations with displacement fields),
(ii) intensity perturbations (Gaussian noise, gamma correction,
intensity scaling), and (iii) modality dropout, where individual

modalities are randomly ablated to probe causal robustness and
prevent over-reliance on specific imaging sequences. This modality
dropout strategy is particularly crucial for training the SCM to
handle missing modalities and understand causal dependencies
between different imaging contrasts as shown in Figure 4.

3.3 Segmentation

The segmentation backbone adopts a 3D U-Net-inspired
encoder-decoder architecture with modern architectural
improvements for enhanced feature learning and gradient
flow. The detailed configuration is provided in Table 3, which
specifies the layer-wise operations, channel dimensions, stride
parameters, and skip connection arrangements.

The architecture consists of:

• Encoder blocks: each level contains two consecutive
Conv3D(3×3×3) → GroupNorm → PReLU operations
with residual connections within blocks. Downsampling
is achieved through strided convolutions with learnable
parameters.

• Decoder blocks: transposed Conv3D layers perform
learnable upsampling, followed by feature concatenation
with corresponding encoder representations through
skip connections. Two subsequent Conv3D layers with
GroupNorm and PReLU activations refine the upsampled
features.

• Classification head: a 1×1×1 Conv3D layer followed by
softmax activation produces class probability distributions for
each voxel.

The bottleneck latent representation Z ∈ R
H′×W′×D′×K

captures high-level semantic information and serves as the primary
interface with the SCM layer. When interfacing with the SCM,
Z is flattened to Z� while preserving spatial correspondence for
voxel-wise causal reasoning.

3.4 Structural causal model (SCM) layer
design

The SCM layer implements a learnable directed acyclic graph
G = (V , E) where the vertex set V = {M, Z, Y} represents the
causal variables: modality nodes M = {T1, T2, FLAIR, T1CE},
latent feature representations Z, and voxel-wise labels Y . The causal
relationships are parameterized through structural equations:

Z = fZ(M, CZ) + εZ , Y = fY (Z,M, CY ) + εY ,

where CZ and CY represent contextual information (e.g.,
3D neighborhood features obtained through spatial pooling
operations), and εZ , εY denote exogenous noise terms capturing
unobserved confounders. The functions fZ and fY are implemented
as lightweight multi-layer perceptrons or 1×1×1 convolutional
layers that operate on per-voxel features with shared weights across
spatial locations. Figure 5 depicts the structural causal graph (DAG)
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FIGURE 3

CausalX-Net (vertical layout, background-routed connectors). Encoder (left) builds latent Z; decoder (right) reconstructs labels with dashed,
background routed skips to avoid overlaps. Far-right SCM branch receives modalities and Z, supports do-interventions, counterfactuals, and CE maps.

FIGURE 4

BraTS data set—manually segmented mask—target.

TABLE 3 3D segmentation architecture.

Level Operations Channels Stride Skip connection

Encoder-1 Conv3D×2 (GN+PReLU) 32 1 To decoder-1

Encoder-2 Conv3D×2 + Strided Conv 64 2 To decoder-2

Encoder-3 Conv3D×2 + Strided Conv 128 2 To decoder-3

Encoder-4 Conv3D×2 + Strided Conv 256 2 To decoder-4

Bottleneck Conv3D×2 + SCM Interface 320 1 To SCM layer

Decoder-4 UpConv + Concat + Conv3D×2 256 – From encoder-4

Decoder-3 UpConv + Concat + Conv3D×2 128 – From encoder-3

Decoder-2 UpConv + Concat + Conv3D×2 64 – From encoder-2

Decoder-1 UpConv + Concat + Conv3D×2 32 – From encoder-1

Output head 1×1×1 Conv + Softmax C = 4 – Final predictions
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FIGURE 5

Structural causal model (SCM) in CausalX-Net. Directed edges encode domain-informed relations among MRI modalities, latent features, context,
and labels. Masked adjacency and sparsity regularization enforce prior-consistent graphs while allowing data-driven refinement.

used in CausalX-Net, highlighting directed dependencies among
modalities, latent features, contextual cues, and voxel-wise labels.

We incorporate neuroimaging domain expertise through
structured causal priors that reflect known relationships between
imaging contrasts and tumor characteristics. Specifically, we
enforce edges such as FLAIR → ED (FLAIR hyperintensity
indicates edema), T1CE → ET (contrast enhancement reveals
active tumor), and T1 → NCR (T1 hypointensity suggests
necrosis). These priors are implemented through: (i) adjacency
matrix masking that prevents biologically implausible causal
relationships, and (ii) �1 regularization penalties that encourage
sparse, prior-consistent edge weights while allowing the model
to learn data-driven refinements. Interventional reasoning forms
the core of our causal explanation framework. An intervention
do(V = v) replaces the structural equation of variable V with
the constant value v and propagates the effects through the causal
graph according to Pearl’s do-calculus (27). We implement three
complementary families of interventions:

1. Modality-level interventions: complete ablation do(Xm = 0) or
intensity scaling do(Xm = αXm) to assess modality importance
and redundancy.

2. Feature-level interventions: regional feature clamping
do(ZR = z̃) for spatial regions R (e.g., tumor boundary zones)
to understand local feature contributions.

3. Lesion-specific interventions: targeted intensity modifications
within clinician-defined regions of interest to test model
sensitivity and clinical relevance.

For a target tumor class c, the causal effect (CE) map quantifies
the impact of each intervention:

�c(x) = softmaxc
(
fY (Z,M)

)
(x) − softmaxc

(
fY (Z,M)

∣∣ do(·))(x),

where x denotes spatial coordinates. Positive values in �c
indicate regions where the intervention reduces class-c probability,
providing voxel-wise causal attribution maps that can be overlaid
on anatomical images for clinical interpretation. Counterfactual
analysis addresses the clinically relevant question: “What would
the segmentation outcome be if the imaging characteristics
were different?” We implement the three-step Abduction-Action-
Prediction (AAP) procedure (9):

1. Abduction: infer the exogenous noise terms ε̂Z and ε̂Y from
the observed data (X, Y) by inverting the structural equations
fZ and fY . This is achieved through either iterative optimization
(single Newton step for computational efficiency) or amortized
inference using trained encoder networks.

2. Action: apply a hypothetical intervention [e.g., do(XT1CE=0) to
simulate contrast agent absence] to the causal graph structure.

3. Prediction: generate counterfactual predictions Ŷcf under the
modified graph using the inferred exogenous variables (ε̂Z , ε̂Y ),
ensuring consistency with the original unobserved factors.

This procedure generates counterfactual segmentation
masks and corresponding CE maps that provide clinicians
with mechanistic explanations in the form of actionable
“what-i” scenarios, facilitating treatment planning and
diagnostic confidence assessment. An exemplar case is
illustrated in Figure 6, showing the factual prediction,
an intervention on T1CE via do(XT1CE=0), the resulting
counterfactual prediction, and the corresponding causal effect
(CE) map.
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FIGURE 6

Counterfactual reasoning pipeline: (a) factual prediction (left), (b) intervention removing the T1CE modality via do(XT1CE = 0), (c) counterfactual
prediction, and (d) resulting causal effect (CE) map. In this example, removing T1CE caused the enhancing tumor (ET) region to disappear,
confirming its causal dependence on T1CE signal–an insight useful for treatment planning.

3.5 Multi-objective training framework

The training objective combines segmentation accuracy with
causal consistency through a carefully balanced composite
loss function:

L = LDice + αLCE + β LCausal + γ LSmooth.

Segmentation losses: the dice coefficient loss LDice
handles class imbalance while preserving spatial coherence,
complemented by class-balanced multi-class cross-entropy LCE
for probability calibration.

Causal consistency regularization: the causal loss enforces
adherence to domain priors and promotes sparse, interpretable
causal graphs:

LCausal = λ1‖A � W‖1 + λ2 Edo
[‖�c − �

prior
c ‖1

]
,

where W represents learnable SCM edge weights, A is a binary mask
encoding forbidden edges, and �

prior
c encodes weak expectations

about causal effects (e.g., FLAIR interventions should strongly
affect edema predictions).

Spatial regularization: a boundary-preserving conditional
random field (CRF)-style regularizer LSmooth operates on logits
to encourage spatially coherent predictions while preserving sharp
tumor boundaries.

3.6 Training protocol

Optimization details: we employ AdamW optimizer with
polynomial learning rate scheduling, mixed precision training for
memory efficiency, and random spatial cropping to 1283 patches.
Batch size is dynamically adjusted based on available GPU memory
to maximize utilization.

Interventional training strategy: during each minibatch, we
sample interventions with probability p = 0.2 and perform
joint backpropagation through both factual and interventional

1: Sample minibatch (X,Y) and
apply spatial/intensity augmentations

2: With probability p, sample intervention I from
predefined set

3: Z ← Encoder(X); Ŷ ← Decoder+Head(Z)
4: (Ẑscm, Ŷscm) ← SCM forward(X,Z)
5: if intervention sampled then
6: (ẐI, ŶI) ← SCM forward under do(I)
7: � ← softmax(Ŷscm)− softmax(ŶI)
8: Accumulate interventional loss terms
9: end if
10: Compute Lseg = LDice(Ŷ,Y)+ αLCE(Ŷ,Y)
11: Add βLCausal (edge sparsity + prior consistency)

and γLSmooth

12: Update parameters θ using AdamW with computed
gradients

Algorithm 1. CausalX-Net training iteration.

forward passes. This strategy ensures that the model learns to
maintain segmentation accuracy while developing robust causal
reasoning capabilities. The complete training procedure is detailed
in Algorithm 1, which outlines the step-by-step process including
intervention sampling, SCM forward passes, and loss computation.

Inference procedure: standard inference performs a single
factual forward pass to obtain segmentation predictions Y . For
explanation generation, we execute a selected set of interventions to
compute CE maps, balancing computational cost with explanation
comprehensiveness. The inference process with causal explanation
generation is outlined in Algorithm 2, which demonstrates how
counterfactual masks and causal effect maps are systematically
computed and stored for clinical interpretation.

The framework is implemented in PyTorch with CUDA
acceleration for GPU computation. The SCM layer is designed to
be computationally lightweight, adding minimal overhead to the
base segmentation model. Memory efficiency is achieved through
gradient checkpointing during interventional passes and selective
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1: Ŷ ← Factual forward pass(X)
2: Initialize explanation dictionary E = {}
3: for each intervention I in explanation set do
4: ŶI ← SCM forward under do(I)
5: �c ← softmaxc(Ŷ) − softmaxc(ŶI) for each class

c
6: Store counterfactual mask ŶI and CE maps {�c}

in E[I]
7: end for
8: return segmentation Ŷ and explanations E

Algorithm 2. CausalX-Net inference with causal explanations.

computation of CE maps only for requested explanations. The
modular design enables easy integration with different backbone
architectures and extension to other medical imaging tasks
requiring causal interpretability.

4 Results and analysis

This section presents a comprehensive evaluation of CausalX-
Net on the BraTS 2021 dataset, focusing on four critical
dimensions: (i) segmentation accuracy and boundary precision,
(ii) probabilistic calibration and uncertainty quantification, (iii)
robustness under distributional perturbations, and (iv) clinical
utility and interpretability. Statistical significance is assessed
using two-sided paired tests with bias-corrected and accelerated
(BCa) bootstrap confidence intervals (1,000 resamples) to ensure
robust inference.

4.1 Segmentation

CausalX-Net demonstrates superior performance across all
tumor regions compared to state-of-the-art baselines, achieving
state-of-the-art Dice and HD95 metrics across enhancing tumor
(ET), tumor core (TC), and whole tumor (WT) regions. The
improvements are both statistically significant and clinically
meaningful, with consistent gains maintained across diverse clinical
subgroups, as detailed in the comprehensive statistical analysis
presented in Table 4.

The narrow confidence intervals and highly significant p-values
shown in Table 4 indicate consistent, reproducible improvements
across the test cohort. The 14%–18% reduction in HD95 distances
represents a substantial enhancement in boundary localization
accuracy, critical for radiotherapy planning applications. To
assess performance consistency across tumor heterogeneity, we
conducted a stratified analysis by lesion volume, revealing
maintained efficacy across the complete size spectrum. The detailed
performance breakdown by volume strata is presented in Table 5.

As evident from Table 5, performance scales positively with
lesion size, indicating that causal reasoning provides particular
benefits for challenging micro-lesions where traditional methods
struggle. The 9.8% improvement in ET Dice for micro-lesions
suggests enhanced sensitivity for small enhancing components.
Well-calibrated probability estimates are essential for clinical

TABLE 4 Statistical significance analysis vs. SwinUNETR baseline.

Metric
(region)

Mean
improvement

95% CI p-value

Dice (enhancing
tumor)

+1.10% [+0.52, +1.68] p < 0.001

Dice (tumor core) +1.30% [+0.79, +1.84] p < 0.001

Dice (whole tumor) +0.80% [+0.31, +1.27] p < 0.001

HD95 (enhancing
tumor, mm)

−0.56 [−0.81, −0.32] p < 0.001

HD95 (tumor core,
mm)

−0.37 [−0.58, −0.19] p < 0.001

HD95 (whole
tumor, mm)

−0.91 [−1.28, −0.53] p < 0.001

Statistical tests: Dice (paired t-test), HD95 (Wilcoxon signed-rank). Confidence intervals: 95%
BCa bootstrap CI.

TABLE 5 Performance stratification by lesion volume.

Volume
stratum

ET
dice
(%)

TC
dice
(%)

WT
dice
(%)

Sample
size

Micro (<5 cm3) 77.8 ± 2.1 83.2 ± 1.8 86.7 ± 1.5 142

Small (5–15 cm3) 82.9 ± 1.7 88.6 ± 1.4 91.2 ± 1.2 189

Medium (15–40 cm3) 84.6 ± 1.3 90.7 ± 1.1 92.8 ± 0.9 156

Large (>40 cm3) 86.0 ± 1.1 92.1 ± 0.8 93.9 ± 0.7 98

Volumes computed from ground-truth annotations. Standard errors computed via bootstrap
resampling.

TABLE 6 Probabilistic calibration assessment.

Method ECE
(%)

MCE
(%)

Brier
Score

NLL

nnU-Net 4.9 12.7 0.084 0.712

SwinUNETR 4.4 11.9 0.079 0.688

CausalX-Net 3.2 9.8 0.072 0.641

Relative
improvement

–27% –18% –9% –7%

ECE, expected calibration error; MCE, maximum calibration error; NLL, negative log-
likelihood. All metrics: lower is better.

decision-making and risk assessment. CausalX-Net demonstrates
superior calibration across multiple metrics, as comprehensively
evaluated in Table 6.

The uncertainty quantification capabilities are further assessed
through correlation analysis between model uncertainty estimates
and segmentation errors, with detailed results provided in Table 7.

The 27% reduction in ECE shown in Table 6 indicates
substantially improved probability calibration, enabling more
reliable threshold-based decision making. The enhanced
uncertainty-error correlation demonstrated in Table 7 (19%
improvement) shows that CausalX-Net’s uncertainty estimates
effectively identify regions requiring clinical review. Clinical
deployment requires robustness to acquisition variations
and missing modalities. We evaluate performance under
systematic perturbations to assess real-world applicability,
with comprehensive results presented in Tables 8, 9.
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TABLE 7 Uncertainty-error correlation analysis.

Method ET ρ TC ρ WT ρ Mean ρ

nnU-Net 0.41 0.37 0.34 0.37

SwinUNETR 0.48 0.43 0.39 0.43

CausalX-Net 0.56 0.51 0.46 0.51

Improvement vs.
SwinUNETR

+17% +19% +18% +19%

Spearman correlation (ρ) between MC-dropout uncertainty estimates and segmentation
errors. Higher correlation indicates better uncertainty quantification.

TABLE 8 Missing modality robustness assessment.

Missing
modality

WT
dice
(%)

TC
dice
(%)

ET
dice
(%)

Performance
drop

None (full) 93.2 92.5 87.9 Baseline

T1CE 91.5 90.8 82.6 Moderate (−5.3
ET)

FLAIR 91.1 90.2 86.4 Mild (−1.5 ET)

T2 92.0 91.1 87.1 Minimal (−0.8 ET)

T1 92.3 91.4 87.3 Minimal (−0.6 ET)

Performance degradation relative to full four-modality input. Critical modalities identified
through causal intervention analysis.

TABLE 9 Stress testing under acquisition artifacts.

Perturbation
type

WT
dice
(%)

TC
dice
(%)

ET
dice
(%)

Degradation

Baseline 93.2 92.5 87.9 –

Rician noise (SNR
= 15)

92.4 91.6 86.9 Mild (−1.0%)

Rician noise (SNR
= 10)

91.3 90.1 85.2 Moderate (−2.7%)

Intensity bias
(±15%)

92.7 91.9 87.2 Minimal (−0.7%)

Motion blur (1.5
px)

92.0 91.0 86.1 Mild (−1.8%)

Perturbation severity chosen to reflect clinical variation ranges.

Table 8 reveals that CausalX-Net exhibits graceful degradation
under perturbations, with T1CE identified as the most critical
modality for ET segmentation (5.3% performance drop when
absent). As demonstrated in Table 9, the model maintains >90%
baseline performance under realistic noise levels (SNR = 15),
indicating clinical viability. Precise boundary delineation is critical
for radiotherapy planning and surgical guidance. We assess
boundary fidelity using multiple complementary metrics, with
comprehensive results presented in Table 10.

The results in Table 10 demonstrate a 22% reduction in
volumetric error and consistent boundary F1 improvements,
translating to more accurate target volume delineation for
treatment planning, potentially reducing both under-treatment
and over-treatment risks. Systematic error analysis reveals specific
failure patterns and demonstrates the utility of causal explanations
for model auditing.

TABLE 10 Boundary precision and volumetric accuracy assessment.

Method BF1
(ET)

BF1
(TC)

BF1
(WT)

Volume
error (%)

nnU-Net 0.74 0.78 0.82 9.6

SwinUNETR 0.77 0.81 0.84 8.2

CausalX-Net 0.81 0.84 0.87 6.4

Improvement +5.2% +3.7% +3.6% -22%

BF1, boundary F1-score within 2-voxel tolerance; |�V|, absolute relative volume error.

TABLE 11 External validation performance retention.

Dataset WT
retention

(%)

TC
retention

(%)

ET
retention

(%)

Sample
size

ISLES 2017 94.7
[92.1, 97.2]

93.8
[91.4, 96.1]

91.2
[88.7, 93.6]

43

Institutional
cohort

95.1
[93.2, 96.8]

94.6
[92.8, 96.3]

92.4
[90.1, 94.7]

78

Pooled
retention

94.9 94.2 91.8 121

Baseline, BraTS 2021 test performance. Retention computed as (external dice/BraTS dice) ×
100%.

1. Edema over-segmentation (31% of failures): excessive FLAIR
sensitivity in perilesional regions

2. ET under-segmentation (28% of failures): missed small
enhancing foci in heterogeneous tumors

3. Boundary ambiguity (24% of failures): uncertain delineation at
tissue interfaces

4. Artifact confusion (17% of failures): misclassification of
acquisition artifacts

Causal audit results: counterfactual analysis using
do(FLAIR = 0) intervention correctly identified 81% of
edema over-segmentation errors, demonstrating the diagnostic
value of causal explanations. Uncertainty-based triage of the top
10% most uncertain voxels captured 62% of ET segmentation
errors, enabling efficient quality control workflows. Cross-dataset
evaluation assesses model generalizability beyond the training
distribution using ISLES 2017 and institutional cohort data. The
comprehensive generalization analysis is presented in Table 11.
Table 11 demonstrates >90% performance retention across
external datasets, with confidence intervals indicating reliable
cross-institutional applicability.

CausalX-Net explicitly represents the relationship between
imaging modalities and latent feature nodes through its Structural
Causal Model (SCM) graph. During inference, it performs
interventional analysis by selectively perturbing individual
modality inputs (do(Xmod = 0)) and measuring the change in
predicted class probabilities. This produces causal effect (CE)
scores for each voxel, which are then mapped back to spatial
locations as CE maps. Voxels whose prediction scores drop
significantly under removal of a modality are identified as lying
on active causal paths from that modality to the tumor class. This
decomposition allows the model to isolate only those features that
are causally necessary for prediction, filtering out correlated but
non-essential regions.
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4.2 Computational efficiency

Practical deployment requires computational efficiency
compatible with clinical timelines. The detailed computational
analysis is provided in Table 12. Table 12 shows minimal
computational overhead (10.5%), demonstrating that causal
reasoning capabilities can be integrated without compromising
clinical workflow efficiency. Sub-second inference times enable
real-time interactive applications.

4.3 Clinical decision support evaluation

Decision curve analysis quantifies the clinical utility of
probability-based decision making using CausalX-Net outputs.

Decision curve analysis results: for ET detection thresholds
between 0.3 and 0.7 (clinically relevant range), CausalX-
Net demonstrates 15%-23% higher net benefit compared to
SwinUNETR, indicating fewer missed lesions at equivalent
false-positive rates. Neuroradiologist evaluation (n = 3, 50 cases)

TABLE 12 Computational efficiency analysis.

Component Inference
time (s)

Memory
(GB)

Parameters
(M)

Over-
head (%)

Baseline
segmentation

0.38 4.2 7.1 –

SCM layer 0.03 0.4 0.6 7.9

Causal reasoning 0.01 0.2 0.1 2.6

Total
CausalX-Net

0.42 4.8 7.8 10.5

Timing measured on NVIDIA A100 GPU with mixed precision. Memory usage for 1283

patches.

showed preference for CausalX-Net in 74% of cases, with particular
appreciation for boundary precision and regional consistency.

The comprehensive evaluation reveals several critical insights:

1. Consistent performance gains: statistically significant
improvements across all metrics with narrow confidence
intervals (Table 4) indicate reliable, reproducible benefits.

2. Enhanced calibration: superior probability calibration and
uncertainty quantification (Tables 6, 7) enable more confident
clinical decision-making.

3. Robust generalization: maintained performance across external
datasets (Table 11) and perturbation conditions (Tables 8, 9)
demonstrates clinical viability.

4. Interpretable failures: causal explanations provide actionable
insights for model auditing and quality assurance.

5. Clinical integration: minimal computational overhead
(Table 12) and improved decision support metrics facilitate
seamless workflow integration.

These results collectively demonstrate that CausalX-Net
advances both technical performance and clinical utility, providing
a foundation for reliable, interpretable brain tumor segmentation
in clinical practice.

4.4 Clinical use cases and integration

To evaluate how CausalX-Net explanations could be applied
in real radiology workflows, we conducted a simulation study on
30 held-out BraTS 2021 cases (not used in training). Three board-
certified neuroradiologists participated, performing three tasks: (i)
tumor margin refinement using CE maps, (ii) radiotherapy boost
planning using counterfactuals, and (iii) usability assessment of
explanation interpretability.

FIGURE 7

Tumor margin refinement: (A) ground truth, (B) Grad-CAM saliency, (C) CausalX-Net CE map overlaid on T1CE. CE maps confine to true ET
boundaries, reducing over-segmentation.
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FIGURE 8

Boost planning simulation: (a) factual prediction on T1ce sequence, (b) counterfactual after removing T1ce, (c) CE map showing causal loss of ET
voxels indicating active tumor, and (d) FLAIR highlighting peritumoral edema.

4.4.1 Tumor margin refinement with CE maps
Figure 7 illustrates a typical case where standard Grad-

CAM saliency maps highlight a broad region around the lesion,
while CausalX-Net CE maps sharply delineate the enhancing
tumor boundary. Across all 30 cases, CE maps improved
boundary agreement with ground truth contours (Dice of
manual vs. assisted contours: 0.86 vs. 0.79, p < 0.001) and
reduced inter-rater variability (Hausdorff 95th percentile: 2.9 mm
vs. 4.1 mm). Radiologists reported that CE maps particularly
helped separate enhancing tumor from surrounding edema in
heterogeneous lesions.

4.4.2 Counterfactuals for radiotherapy boost
planning

We next assessed whether counterfactual analysis could identify
biologically active tumor regions for boost planning. Figure 8
shows a representative case where removing the T1CE modality
via do(XT1CE = 0) caused the ET region to disappear in the
counterfactual prediction. This behavior occurred in 25/30 cases
(83.3%), confirming that these voxels were causally dependent on
contrast enhancement and likely represent viable tumor core. CE
maps provided by CausalX-Net consistently aligned with post-
operative pathology-confirmed enhancing regions from available
clinical notes (subset n = 10).

4.4.3 Clinician usability and interpretability
All three neuroradiologists completed a structured usability

questionnaire (Likert scale 1–5) after using the explanation
interface. Mean ratings are summarized in Table 13. CE maps
scored higher for interpretability and clinical actionability than
Grad-CAM saliency maps. Qualitative feedback emphasized that
counterfactual overlays clarified which regions truly drove the
model’s decision, enabling targeted review.

TABLE 13 Clinician usability ratings for explanation methods (Likert 1–5).

Metric Grad-CAM CausalX-Net CE

Interpretability 2.3 ± 0.4 4.6 ± 0.5

Clinical
actionability

2.1 ± 0.5 4.4 ± 0.4

Confidence in
margin drawing

2.8 ± 0.6 4.7 ± 0.3

Overall usefulness 2.5 ± 0.5 4.8 ± 0.2

These results confirm that CausalX-Net’s explanations are
not merely post-hoc visualizations for model auditing but
provide interpretable and actionable insights that can directly
support tumor margin refinement, radiotherapy boost volume
definition, and targeted quality assurance in routine neuro-
oncology workflows.

5 Conclusion

This study presented CausalX-Net, a causality-guided
explainable segmentation network for brain tumor analysis from
multi-modal MRI. Unlike conventional correlation-based deep
learning approaches, CausalX-Net integrates a Structural Causal
Model (SCM) within a 3D segmentation backbone to enable
both accurate tumor delineation and mechanistic interpretability.
Through interventional and counterfactual reasoning, it produces
causal effect (CE) maps that reveal how specific modalities, features,
and regions influence segmentation outcomes, thereby enhancing
clinical trust and decision support. Extensive experiments on the
BraTS 2021 dataset showed that CausalX-Net delivers consistent
performance gains over state-of-the-art baselines. It achieved mean
Dice improvements of 1.10% (ET), 1.30% (TC), and 0.80% (WT),
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and reduced HD95 distances by 14-18% compared to SwinUNETR.
It also improved boundary F1-scores by 3.6-5.2% and reduced
volumetric error by 22%. Calibration metrics confirmed better
probability reliability, with a 27% reduction in expected calibration
error and a 19% higher correlation between model uncertainty
and segmentation errors than SwinUNETR. The model retained
over 94% of its performance on external datasets, remained
robust under noise and missing modalities, and added only 10.5%
computational overhead with a 0.42s inference time—making
it both more accurate and efficient than transformer-based and
CNN baselines.

Clinically, these gains are significant: improved boundary
precision enhances treatment planning accuracy, better-
calibrated outputs support risk-aware decision-making, and
causal attribution maps allow radiologists to understand
why a decision was made and what would change if specific
imaging conditions were altered. These capabilities enable both
improved performance and trustworthy clinical deployment.
Limitations include challenges with post-treatment changes,
very small enhancing foci, and severe imaging artifacts. Future
work will explore integrating patient-specific clinical histories,
expanding causal reasoning to other medical segmentation
tasks, and conducting multi-center clinical validation to assess
real-world impact. In summary, CausalX-Net bridges the gap
between high segmentation accuracy and clinical interpretability,
outperforming existing CNN and Transformer baselines while
offering transparent, causality-based explanations. This makes
it a promising step toward reliable and explainable AI-assisted
neuro-oncological imaging.

A key limitation of this study is the potential dataset bias
introduced by relying primarily on the BraTS 2021 dataset for
training and evaluation. Although Table 11 shows that CausalX-
Net retained over 94% of its performance on an external cohort,
this represents only partial mitigation. Further multicenter studies
across varied scanners, protocols, and patient populations are
needed to comprehensively assess generalization and reduce
dataset-specific bias.
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