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Purpose: Bleeding during anticoagulation therapy represents a critical challenge 
in pulmonary embolism (PE) management, this study aimed to develop and 
validate a PE-specific bleeding risk prediction model.
Methods: This retrospective cohort study utilized a clinical research big data 
platform, including 5,632 hospitalized PE patients (January 2013–December 
2024). Significant bleeding within 6 months served as the primary outcome. 
After excluding variables with >20% missingness, 29 predictors were analyzed. 
The cohort was randomly split into development (n = 3,942) and validation 
sets (n = 1,690). LASSO regression identified key predictors, with multivariable 
logistic regression constructing the final model. Performance was assessed via 
AUC-ROC, calibration plots, and decision curve analysis (DCA).
Results: The final model identified six predictors: prior bleeding history, renal 
insufficiency, red blood cell count, systolic pressure, cerebral infarction, and 
creatinine. The model demonstrated robust discrimination (development AUC: 
0.756, 95%CI: 0.729–0.784; validation AUC: 0.729, 95%CI: 0.685–0.773) and 
calibration (validation slope: 0.810). DCA confirmed significant net benefit at 
5–35% thresholds, with 30% as the optimal cut-off. At this threshold, the model 
reduced major bleeding by 42% versus standard care.
Conclusion: This novel PE-specific bleeding risk tool provides clinically 
actionable stratification, enabling personalized anticoagulation intensity 
adjustment. Implementation may reduce hemorrhage-related morbidity while 
optimizing resource utilization.
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1 Introduction

Pulmonary embolism (PE), the third leading cause of cardiovascular mortality after stroke 
and myocardial infarction (1), remains a critical medical challenge. Recent advances in 
management—including catheter-directed thrombolysis, mechanical thrombectomy, 
extracorporeal membrane oxygenation (ECMO), and surgical embolectomy—have expanded 
therapeutic options (2). Nonetheless, hemorrhage persists as a major complication, especially 
following thrombolytic therapy (3). Although anticoagulation and thrombolysis are effective 
in reducing thrombotic burden, they concomitantly increase bleeding risk (4). Accurate 
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prediction of hemorrhagic events is therefore essential for balancing 
thromboembolic protection against bleeding hazards and guiding 
personalized treatment strategies.

Accurate prediction of bleeding risk is essential in 
anticoagulated patients with PE, prompting the development of 
several predictive models and scores (5, 6). Among these, the 
PE-SARD score was specifically designed for acute PE and 
demonstrated a C-index of 0.654 for 30-day major bleeding in a 
large external validation cohort, outperforming both BACS and 
PE-CH models (7). The VTE-BLEED score, widely validated in 
venous thromboembolism, effectively identifies patients at high 
risk of major bleeding—including intracranial and fatal events—
during anticoagulation (8), and retains predictive power over the 
long term (9). The IMPROVE bleeding score has proven valuable 
in predicting hemorrhage in high-risk populations such as 
patients with advanced gastrointestinal cancer (10) and 
hospitalized COVID-19 patients (11). Machine learning 
approaches have also shown promise; one model for cancer-
associated thrombosis outperformed conventional CAT-BLEED 
scores (12), and another incorporating liver function markers 
with PE-SARD improved early bleeding prediction in acute 
PE (13).

Despite these efforts, commonly used clinical scores such as 
HAS-BLED and ATRIA were not originally developed or adequately 
validated in PE populations, leading to limited predictive accuracy in 
this group. There remains a pressing need to develop or validate 
dedicated prediction tools tailored specifically to patients with PE.

2 Methods

2.1 Study population

This retrospective study utilized data from a clinical research big 
data platform of Affiliated Dongyang Hospital of Wenzhou Medical 
University. Inclusion criteria for participants were: (1) age over 
18 years; (2) discharge diagnosis of pulmonary embolism. Exclusion 
criteria: (1) Pregnant or lactating women; (2) Patients with incomplete 
medical histories or examination test results; (3) Patients with missing 
data of PE or lacking relevant bleeding records; (4) Individuals who 
died during hospitalization. We identified and included 5,632 patients 
hospitalized with a confirmed diagnosis of PE between January 2013 
and December 2024. Based on bleeding outcome, patients were 
categorized into two groups: those who experienced significant 
bleeding (bleeding group, N = 447) and those who did not (no 
bleeding group, N = 5,185). The study initially collected data on 32 
candidate predictor variables (indicators) potentially associated with 
bleeding risk. Three variables (weight, weight, BMI) were excluded 
prior to model development due to a high proportion (>20%) of 
missing values. Thus, the analysis proceeded with 29 variables. The 
final cohort of 5,632 patients was randomly partitioned into a training 
set (N = 3,942, 70%) for model training and a testing set (N = 1,690, 
30%) for subsequent internal validation of the derived risk prediction 
models. The study protocol received ethics approval from the Ethics 
Committee of Affiliated Dongyang Hospital of Wenzhou Medical 
University (approval #2025-YX-157). Informed consent was waived 
for this study. Prior to conducting the analysis, all patient medical 
information was anonymized and de-identified.

2.2 Outcome definition

The primary outcome of this study was the occurrence of any 
documented clinically significant bleeding event within 6 months 
following the diagnosis of PE. In our study, bleeding events were 
identified based on the presence of any hemorrhagic diagnosis within 
the primary discharge diagnoses. Bleeding events included 
gastrointestinal bleeding, intracranial hemorrhage, urinary bleeding, 
oral bleeding, ophthalmic hemorrhage, and other major bleeds (14). 
For analysis, outcomes were defined as binary: presence of any 
qualifying bleeding event (positive outcome) versus absence of 
bleeding (negative outcome).

2.3 Candidate predictor variables

The variables extracted from our hospital’s EMRs were 
meticulously selected based on their established relevance in existing 
bleeding risk scores, supporting evidence from the literature, and 
clinical experience pertinent to bleeding risk in PE patients. (1) 
Demographics and vitals: Age, height, weight, BMI, systolic blood 
pressure, diastolic blood pressure. (2) Comorbidities and history: 
Smoking status, alcohol consumption, diabetes, hypertension, 
pulmonary hypertension, pulmonary infarction, history of prior 
bleeding, arterial thrombosis, active malignancy, myocardial 
infarction, cerebral infarction, renal insufficiency. (3) Treatments: 
Anticoagulant use, thrombolytic therapy, antiplatelet therapy. (4) 
Laboratory parameters (measured within 1 month prior to PE 
diagnosis): white blood cell count (WBC), creatinine, activated partial 
thromboplastin time (APTT), international normalized ratio (INR), 
prothrombin time (PT): highest recorded value. Platelet count (PLT), 
red blood cell count (RBC), hemoglobin (HGB): lowest recorded 
value. All comorbidities and historical conditions were recorded only 
if documented before the diagnosis of PE.

2.4 Data pre-processing

Data extracted from the clinical research big data platform 
underwent rigorous preprocessing. Variables with >20% missing 
values (e.g., height, weight, BMI) were excluded from analysis. For 
remaining missing values in candidate predictors, multiple imputation 
by chained equations (MICE) was employed (15, 16). We performed 
20 iterations using predictive mean matching as the imputation 
model, with a random seed set for reproducibility. As part of the data 
cleaning process, outliers were identified and removed in accordance 
with conventional criteria for biological plausibility and statistical 
extremes (values beyond Q3 + 1.5 × IQR or below Q1 − 1.5 × IQR). 
The cohort was then randomly split in a 7:3 ratio stratified into a 
training set (70%) for model training and a validation set (30%) for 
performance evaluation.

2.5 Model building

Feature selection was performed using least absolute shrinkage 
and selection operator (LASSO) regression (17) with 10-fold cross-
validation to identify optimal predictors while mitigating overfitting. 
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The lambda.1se value was chosen to select the final model. Variables 
retained at the optimal lambda value were subsequently entered into 
multivariable logistic regression. Significant indicators identified in 
the univariate analysis were assessed for multicollinearity using 
variance inflation factors (VIFs), with a threshold of VIF <10 
indicating no severe multicollinearity. The linearity of the relationship 
between continuous variables and the logit of the outcome was tested 
using the Box–Tidwell procedure; a significance level of p < 0.05 
suggested a linear relationship was present. After confirming both the 
absence of multicollinearity and the linearity assumptions, 
independent risk factors were selected via stepwise multivariate 
logistic regression to construct the final nomogram (18). The stepwise 
backward elimination was indeed performed based on the Akaike 
information criterion (AIC).

2.6 Model evaluation

Model performance was comprehensively assessed across three 
domains: discrimination, calibration, and clinical utility. 
Discriminatory ability was quantified by the area under the receiver 
operating characteristic curve (AUC-ROC). Calibration was evaluated 
through calibration plots. Clinical net benefit across threshold 
probabilities was analyzed using decision curve analysis (DCA), with 
additional validation through clinical impact curves (CIC). Finally, 
the model’s predictive superiority was established by comparing its 
AUC against individual predictor variables. The complete model 
training and validation workflow is depicted in Figure 1.

2.7 Statistical methods

Statistical analysis and data visualization were performed using 
R4.4.2 software for Windows. Categorical variables are presented as n 
(%) and were compared using the χ2 test or Fisher’s exact test. 
Continuous variables are reported as mean ± standard deviation or 
median (interquartile range) and were compared using either Student’s 
t-test or the Mann–Whitney U test. Multiple imputation techniques 
were implemented using the “mice” package. Baseline description and 
difference analysis were performed with the “comparegroups” 
package. LASSO regression was conducted using the “glmnet” 
package, while multivariable logistic regression was performed using 
the “glm” function. Discrimination analysis was carried out using the 
“pROC,” “ggROC,” and “fbroc” packages. Calibration was assessed 
using the “rms” and “riskregression” packages. Decision curve analysis 
(DCA) was conducted using the “rmda” package. The nomogram was 
created using the “rms” package. Comparisons of multiple models for 
ROC analysis were conducted using the “ROCR” package. All 
statistical tests were two-sided, with p < 0.05 considered 
statistically significant.

3 Results

3.1 Study population characteristics

The study population comprised 5,632 patients with PE, divided 
into bleeding (n = 447) and non-bleeding (n = 5,185) cohorts. 

Significant baseline differences emerged between groups (Table 1). 
Patients experiencing bleeding events were older (median 77 vs. 
74 years, p < 0.001) and had higher prevalence of cerebral infarction 
(48.6% vs. 29.8%), renal insufficiency (24.8% vs. 10.6%), and prior 
bleeding history (37.8% vs. 13.5%) (all p < 0.001). Laboratory 
parameters revealed the bleeding cohort had lower hemoglobin (97 
vs. 109 g/L) and platelet counts (142 vs. 161 × 109/L), but elevated 
white cell counts (12.78 vs. 10.75 × 109/L) and lactate levels (2.30 vs. 
1.90 mmol/L). Vital signs showed elevated blood pressures in bleeding 
group. Medication analysis indicated more frequent antiplatelet use in 
the bleeding group (44.3% vs. 32.5%, p < 0.001). The training 
(n = 3,942) and testing (n = 1,690) sets demonstrated balanced 
characteristics except for bleeding history prevalence (14.7% vs. 
17.2%, p = 0.018), suggesting generally representative data partitioning 
(Table 2).

3.2 Selected predictors and construction 
model

Variable selection was performed using LASSO regression with 
tenfold cross-validation, which identified six clinically significant 
predictors: cerebral infarction, red blood cell count, renal 
insufficiency, systolic pressure, creatinine, and bleeding history. The 
regularization path showing coefficient shrinkage is presented in 
Figure  2A, with optimal lambda selection demonstrated in 
Figure 2B. The results showed that the included variables had no 
collinearity in predicting respiratory failure (VIFs <10), and there 
was a linear relationship with logitp (p > 0.05), suggesting that they 
could be used to construct a logistic regression model. All selected 
variables were subsequently incorporated into a multivariable 
logistic regression model using backward elimination (minimum 
AIC = 1,972). The final model retained six significant predictors 
(Table 3 and Figure 2C).

3.3 Model visualization

The final bleeding risk prediction model was operationalized 
through a clinically deployable nomogram (Figure 3). This visual tool 
integrates six significant predictors identified during model 
development. Each predictor is assigned points along scaled axes 
according to its regression weight. Clinicians sum the points 
corresponding to a patient’s clinical profile, with the total points axis 
(0–260 points) providing immediate conversion to predicted bleeding 
probability (0.1–0.7). For example: A patient with prior bleeding 
(bleeding history = yes, 37.5 points), cerebral infarction (CI = yes, 16 
points), renal insufficiency (RI = yes, 18 points), RBC 2.5 × 1012/L (73 
points), systolic pressure 160 mmHg (37 points), and creatinine 
500 μmol/L (18 points) would have 199.5 points, corresponding to 
44% bleeding risk.

3.4 Model validation

The bleeding risk model demonstrated robust performance in 
both training and validation cohorts. In Figure 4A, the AUC of the 
training cohort was 0.756 (95% CI: 0.729–0.784), while in Figure 4B, 
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the AUC of the validation cohort was 0.729 (95% CI: 0.685–0.773). 
Both significantly exceeded the null hypothesis value of 0.5 
(p < 0.001), confirming clinically useful discriminatory power. 

Calibration curves (Figures  4C,D) illustrate the excellent 
concordance between the predicted probability of bleeding and the 
actual observations in the training and validation cohort. Brier 

FIGURE 1

Flowchart of study cohort and prediction model development.
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TABLE 1  Baseline characteristics of subjects.

Variables Total N = 5,632 No bleeding N = 5,185 Bleeding N = 447 p

Age (years) 74.00 [65.75; 82.00] 74.00 [65.00; 81.00] 77.00 [68.00; 83.00] <0.001

PHT, n (%) 0.153

 � No 5,160 (91.62%) 4,759 (91.78%) 401 (89.71%)

 � Yes 472 (8.38%) 426 (8.22%) 46 (10.29%)

PLT (109/L) 159[121; 200] 161[122; 202] 142 [108; 179] <0.001

PI, n (%) 1.000

 � No 5,630 (99.96%) 5,183 (99.96%) 447 (100.00%)

 � Yes 2 (0.04%) 2 (0.04%) 0 (0.00%)

CI, n (%) <0.001

 � No 3,868 (68.68%) 3,638 (70.16%) 230 (51.45%)

 � Yes 1,764 (31.32%) 1,547 (29.84%) 217 (48.55%)

WBC (109/L) 10.88 [7.98; 14.80] 10.75 [7.92; 14.54] 12.78 [8.88; 16.45] <0.001

HGB (g/L) 108.0 [91.0; 122.0] 109.00 [92.0; 123.0] 97.00 [75.0; 114.5] <0.001

RBC (1012/L) 3.58 [3.05; 4.02] 3.60 [3.10; 4.04] 3.23 [2.52; 3.72] <0.001

Lac (mmol/L) 2.00 [1.40; 2.80] 1.90 [1.40; 2.80] 2.30 [1.70; 3.45] <0.001

Syncope, n (%) 0.055

 � No 5,311 (94.30%) 4,899 (94.48%) 412 (92.17%)

 � Yes 321 (5.70%) 286 (5.52%) 35 (7.83%)

RI, n (%) <0.001

 � No 4,973 (88.30%) 4,637 (89.43%) 336 (75.17%)

 � Yes 659 (11.70%) 548 (10.57%) 111 (24.83%)

DP (mmHg) 99 [93; 110] 99.00 [93; 109] 107 [98; 117] <0.001

SP (mmHg) 169.0 [155.0; 186.0] 168 [154.0; 184.0] 181 [166.5; 196.0] <0.001

Tumor, n (%) 0.238

 � No 4,379 (77.75%) 4,021 (77.55%) 358 (80.09%)

 � Yes 1,253 (22.25%) 1,164 (22.45%) 89 (19.91%)

Shock, n (%) <0.001

 � No 5,396 (95.81%) 4,984 (96.12%) 412 (92.17%)

 � Yes 236 (4.19%) 201 (3.88%) 35 (7.83%)

MI, n (%) 0.699

 � No 5,490 (97.48%) 5,056 (97.51%) 434 (97.09%)

 � Yes 142 (2.52%) 129 (2.49%) 13 (2.91%)

APTT(s) 45.20 [40.10; 52.50] 45.00 [40.00; 52.20] 47.40 [42.25; 56.50] <0.001

INR 1.34 [1.14; 2.26] 1.33 [1.14; 2.24] 1.44 [1.21; 2.50] <0.001

PT(s) 15.90 [14.40; 21.10] 15.80 [14.30; 20.80] 17.00 [15.00; 23.30] <0.001

CRE (μmoI/L) 80.00 [65.00; 104.00] 79.00 [65.00; 102.00] 93.00 [71.50; 134.00] <0.001

BH, n (%) <0.001

 � No 4,762 (84.55%) 4,484 (86.48%) 278 (62.19%)

 � Yes 870 (15.45%) 701 (13.52%) 169 (37.81%)

DM, n (%) 0.559

 � No 4,760 (84.52%) 4,387 (84.61%) 373 (83.45%)

 � Yes 872 (15.48%) 798 (15.39%) 74 (16.55%)

(Continued)
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scores were low and consistent (training: 0.069; validation: 0.069), 
indicating stable predictive accuracy. Decision curve analysis 
demonstrated robust clinical utility across cohorts. In the training 
cohort, the model provided superior net benefit versus default 
strategies across threshold probabilities 5–35% (Figure 5A), with 
optimal clinical utility at 5% risk where net benefit reached 0.52. 
Validation cohort maintained significant net benefit (Figure 5B), 
particularly at critical thresholds 5–26% (maximum NB = 0.42 at 
10% risk). Clinical impact curves demonstrated consistent risk 
stratification utility across cohorts. In the training cohort 
(Figure 5C), at the 30% probability threshold: 31.2% (1,230/3,942) 
of patients were classified as high-risk, capturing 78.5% (351/447) 
of bleeding events (sensitivity) with a positive predictive value 
(PPV) of 28.5% (351/1,230), translating to 1 true positive identified 
per 3.5 high-risk patients treated. Validation cohort (Figure 5D) 
analysis confirmed robustness: at 30% threshold, 28.6% (484/1,690) 
were high-risk, detecting 76.3% (65/85) of bleeding events 
(PPV = 13.4%), requiring treatment of 7.4 patients per true 
bleed prevented.

3.5 Model compare with single indicator

The nomogram demonstrated superior discriminatory 
capacity compared to individual predictors in both training and 

validation cohorts (Figure 6). In the training cohorts (Figure 6A), 
the nomogram model achieved significantly higher AUC (0.756, 
0.729–0.784) than any single predictor (p < 0.01 for all 
comparisons). Validation cohort results (Figure 6B) confirmed 
this superiority, model AUC remained robust at 0.729 (95% CI: 
0.685–0.773).

4 Discussion

This study developed and rigorously validated a novel bleeding 
risk prediction model for PE patients using LASSO regression. 
Clinicians can utilize this validated model incorporating six key 
predictors (bleeding history, renal function, RBC count, blood 
pressure, stroke history, and creatinine levels), which demonstrated 
reliable risk stratification (development/validation AUCs: 
0.756/0.729) and accurate probability estimation. The resultant 
nomogram provides clinicians with an individualized risk 
quantification tool that translates complex model outputs into 
actionable bedside decisions.

In patients with PE undergoing anticoagulation therapy, 
bleeding is a major complication. Studies show that a history of 
bleeding is a significant factor influencing the risk of bleeding. In 
one study, a history of bleeding was identified as a significant risk 
factor for major bleeding in PE patients receiving thrombolysis 

TABLE 1  (Continued)

Variables Total N = 5,632 No bleeding N = 5,185 Bleeding N = 447 p

HT, n (%) <0.001

 � No 2,630 (46.70%) 2,469 (47.62%) 161 (36.02%)

 � Yes 3,002 (53.30%) 2,716 (52.38%) 286 (63.98%)

AC, n (%) 1.000

 � No 362 (6.43%) 333 (6.42%) 29 (6.49%)

 � Yes 5,270 (93.57%) 4,852 (93.58%) 418 (93.51%)

TBT, n (%) 0.654

 � No 5,516 (97.94%) 5,080 (97.97%) 436 (97.54%)

 � Yes 116 (2.06%) 105 (2.03%) 11 (2.46%)

Smoking, n (%) 0.941

 � No 3,210 (57.00%) 2,958 (57.05%) 252 (56.38%)

 � Yes 2,622 (43.00%) 2,127 (42.95%) 195 (43.62%)

Drinking, n (%) 0.061

 � No 3,234 (57.42%) 2,993 (57.72%) 241 (53.91%)

 � Yes 2,398 (42.58%) 2,192 (42.28%) 206 (46.09%)

AL, n (%) 0.033

 � No 5,236 (92.97%) 4,832 (93.19%) 404 (90.38%)

 � Yes 396 (7.03%) 353 (6.81%) 43 (9.62%)

AT, n (%) <0.001

 � No 3,751 (66.60%) 3,502 (67.54%) 249 (55.70%)

 � Yes 1,881 (33.40%) 1,683 (32.46%) 198 (44.30%)

PHT, pulmonary hypertension; PLT, platelet; PI, pulmonary infarction; CI, cerebral infarction; WBC, white blood cell count; HGB, hemoglobin; RBC, red blood cell count; Lac, lactic acid; RI, 
renal insufficiency; DP, diastolic pressure; SP, systolic pressure; MI, myocardial infarction; APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin 
time; CRE, creatinine; BH, bleeding history; DM, diabetes mellitus; HT, hypertension; AC, anticoagulants; TBT, thrombolytic therapy; AL, arterial thrombosis; AT, antiplatelet therapy.
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TABLE 2  The baseline characteristics of the training and testing set.

Variables Total N = 5,632 Testing N = 1,690 Training N = 3,942 p

Age (years) 74.0 [65.8; 82.0] 74.0 [65.0; 81.0] 74.0 [66.0; 82.0] 0.359

PHT, n (%) 0.338

 � No 5,160 (91.6%) 1,558 (92.2%) 3,602 (91.4%)

 � Yes 472 (8.4%) 132 (7.8%) 340 (8.6%)

PLT (109/L) 159 [121; 200] 158.0 [119; 200] 160 [122; 200] 0.453

PI, n (%) 1.000

 � No 5,630 (100.0%) 1,690 (100.0%) 3,940 (99.9%)

 � Yes 2 (<0.1%) 0 (0.0%) 2 (0.1%)

CI, n (%) 0.264

 � No 3,868 (68.7%) 1,179 (69.8%) 2,689 (68.2%)

 � Yes 1,764 (31.3%) 511 (30.2%) 1,253 (31.8%)

WBC (109/L) 10.9 [8.0; 14.8] 10.9 [8.0; 14.7] 10.9 [8.0; 14.8] 0.394

HGB (g/L) 108.0 [91.0; 122.0] 109.0 [92.0; 123.0] 108.0 [90.0; 122.0] 0.235

RBC (1012/L) 3.6 [3.0; 4.0] 3.6 [3.1; 4.0] 3.6 [3.0; 4.0] 0.457

Lac (mmol/L) 2.0 [1.4; 2.8] 1.9 [1.4; 2.7] 2.0 [1.4; 2.8] 0.087

Syncope, n (%) 0.632

 � No 5,311 (94.3%) 1,598 (94.6%) 3,713 (94.2%)

 � Yes 321 (5.7%) 92 (5.4%) 229 (5.8%)

RI, n (%) 0.231

 � No 4,973 (88.3%) 1,506 (89.1%) 3,467 (88.0%)

 � Yes 659 (11.7%) 184 (10.9%) 475 (12.0%)

DP (mmHg) 99 [93; 110] 99 [93; 109] 100 [93; 110] 0.242

SP (mmHg) 169 [155; 186] 168 [155; 185] 169 [154; 186] 0.727

Tumor, n (%) 0.862

 � No 4,379 (77.8%) 1,317 (77.9%) 3,062 (77.7%)

 � Yes 1,253 (22.2%) 373 (22.1%) 880 (22.3%)

Shock, n (%) 0.921

 � No 5,396 (95.8%) 1,618 (95.7%) 3,778 (95.8%)

 � Yes 236 (4.2%) 72 (4.3%) 164 (4.2%)

MI, n (%) 0.564

 � No 5,490 (97.5%) 1,651 (97.7%) 3,839 (97.4%)

 � Yes 142 (2.5%) 39 (2.3%) 103 (2.6%)

APTT(s) 45.2 [40.1; 52.5] 45.3 [40.2; 52.5] 45.2 [40.1; 52.6] 0.950

INR 1.3 [1.1; 2.3] 1.3 [1.1; 2.3] 1.3 [1.1; 2.3] 0.740

PT(s) 15.9 [14.4; 21.1] 15.9 [14.4; 21.4] 15.9 [14.4; 21.0] 0.888

CRE (μmoI/L) 80.0 [65.0; 104.0] 79.0 [65.0; 103.0] 80.0 [65.0; 104.0] 0.320

BH, n (%) 0.018

 � No 4,762 (84.6%) 1,399 (82.8%) 3,363 (85.3%)

 � Yes 870 (15.4%) 291 (17.2%) 579 (14.7%)

DM, n (%) 0.738

 � No 4,760 (84.5%) 1,433 (84.8%) 3,327 (84.4%)

 � Yes 872 (15.5%) 257 (15.2%) 615 (15.6%)

HT, n (%) 0.893

 � No 2,630 (46.7%) 792 (46.9%) 1,838 (46.6%)

(Continued)
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TABLE 2  (Continued)

Variables Total N = 5,632 Testing N = 1,690 Training N = 3,942 p

 � Yes 3,002 (53.3%) 898 (53.1%) 2,104 (53.4%)

AC, n (%) 0.398

 � No 362 (6.4%) 101 (6.0%) 261 (6.6%)

 � Yes 5,270 (93.6%) 1,589 (94.0%) 3,681 (93.4%)

TBT, n (%) 0.244

 � No 5,516 (97.9%) 1,649 (97.6%) 3,867 (98.1%)

 � Yes 116 (2.1%) 41 (2.4%) 75 (1.9%)

Smoking, n (%) 0.253

 � No 3,210 (57.0%) 935 (55.3%) 2,275 (57.7%)

 � Yes 2,422 (43.0%) 755 (44.7%) 1,667 (42.3%)

Drinking, n (%) 0.857

 � No 3,234 (57.4%) 961 (56.9%) 2,273 (57.7%)

 � Yes 2,398 (42.6%) 729 (43.1%) 1,669 (42.3%)

AL, n (%) 0.344

 � No 5,236 (93.0%) 1,580 (93.5%) 3,656 (92.7%)

 � Yes 396 (7.0%) 110 (6.5%) 286 (7.3%)

AT, n (%) 0.582

 � No 3,751 (66.6%) 1,135 (67.2%) 2,616 (66.4%)

 � Yes 1,881 (33.4%) 555 (32.8%) 1,326 (33.6%)

PHT, pulmonary hypertension; PLT, platelet; PI, pulmonary infarction; CI, cerebral infarction; WBC, white blood cell count; HGB, hemoglobin; RBC, red blood cell count; Lac, lactic acid; RI, 
renal insufficiency; DP, diastolic pressure; SP, systolic pressure; MI, myocardial infarction; APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin 
time; CRE, creatinine; BH, bleeding history; DM, diabetes mellitus; HT, hypertension; AC, anticoagulants; TBT, thrombolytic therapy; AL, arterial thrombosis; AT, antiplatelet therapy.

FIGURE 2

Variable selection was performed using LASSO and logistic regression. (A) Coefficient profile plots were generated against the log(lambda) sequence to 
visualize the variable selection process and identify nonzero coefficient variables based on the optimal lambda value. (B) Dotted vertical lines represent 
optimal values determined using the 1 standard error of the minimum criteria (lambda.1se). (C) Forest plot displaying final predictors in the bleeding risk 
model with adjusted odds ratios from multivariable logistic regression. CI, cerebral infarction; RBC, red blood cell count; RI, renal insufficiency; SP, 
systolic pressure; CRE, creatinine; BH, bleeding history.
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(19). Our study reaffirmed the importance of history of bleeding 
as a critical indicator for assessing bleeding risk. Additionally, 
renal insufficiency is a key factor affecting the risk of bleeding. 
Research has found that renal insufficiency, particularly acute 
kidney injury (AKI) and severe renal insufficiency, is significantly 
associated with early mortality in acute PE patients (20). Another 
study found that patients with renal insufficiency have a higher 
incidence of bleeding events during hospitalization, especially 
when using conventional doses of low molecular weight heparin 
(LMWH) (21). Additionally, serum creatinine and estimated 
glomerular filtration rate (eGFR) are also important indicators of 
long-term outcomes. Studies indicate that decreased renal 
function is associated with an increased risk of all-cause mortality 
90 days and 1 year after acute PE, underscoring the importance of 
monitoring renal function in managing patients with PE (22). Our 

predictive model aligned with previous studies’ findings. RBC is 
also a factor that influences the risk of bleeding. Studies have 
shown that red blood cell distribution width (RDW) is 
significantly associated with the mortality rate in patients with PE, 
and an elevated RDW may indicate a poor prognosis (23). Our 
findings indicated that RBC is a significant factor that elevates the 
risk of bleeding. Additionally, inflammatory markers such as 
interleukin-8 (IL-8) have been linked to early major bleeding in 
patients with acute PE, suggesting that these biomarkers may play 
a role in future risk assessments (24). Research has shown that 
hypertension and systolic blood pressure play a significant role in 
the impact on patients with PE. Studies indicate that in 
hypertensive patients treated with fibrinolytic therapy, systolic 
blood pressure levels are significantly associated with the 
occurrence of cerebral hemorrhage (25). Our study uncovered a 

TABLE 3  Final model coefficients.

Characteristics B SE OR CI p

(Intercept) −3.649 0.5698 0.026 0.008–0.079 <0.001

CI 0.461 0.12816 1.586 1.233–2.038 <0.001

RBC −0.512 0.08206 0.599 0.509–0.703 <0.001

RI 0.504 0.17126 1.656 1.178–2.307 0.003

SP 0.013 0.00272 1.013 1.007–1.018 <0.001

CRE 0.001 0.00066 1.001 0.999–1.002 0.12

BH 1.054 0.13355 2.869 2.203–3.720 <0.001

CI, cerebral infarction; RBC, red blood cell count; RI, renal insufficiency; SP, systolic pressure; CRE, creatinine; BH, bleeding history.

FIGURE 3

Nomogram for bleeding risk prediction in pulmonary embolism patients. The tool converts six clinical parameters into points: cerebral infarction (Cl), 
red blood cell count (RBC), renal insufficiency (RI), systolic blood pressure (SP), creatinine (CRE), and bleeding history (BH). Summed points (total points 
axis) correspond to predicted bleeding probability (bottom axis). Example: A patient with prior bleeding (bleeding history = yes, 37.5 points), cerebral 
infarction (CI = yes, 16 points), renal insufficiency (RI = yes, 18 points), RBC 2.5 × 1012/L (73 points), systolic pressure 160 mmHg (37 points), and 
creatinine 500 μmol/L (18 points) would have 199.5 points, corresponding to 44% bleeding risk.
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substantial increase in bleeding risk associated with hypertension. 
This elevated risk may be attributed to structural changes in blood 
vessels caused by hypertension, rendering them more susceptible 
to rupture and ultimately increasing the likelihood of bleeding 
(26). Artery occlusion cerebral infarction was associated with an 
elevated risk of hemorrhage transformation (27), consistent with 
our results and potentially linked to increased antithrombotic 
medication usage.

When assessing the bleeding risk in patients with PE, using 
existing scoring systems can be helpful. However, studies have 
shown that current scoring systems are not sufficiently accurate 
in predicting early major bleeding in patients with acute PE, 

necessitating the development of a specific risk scoring system for 
acute PE (4). Our study delivers three pivotal contributions to 
personalized PE management: First, we establish the first bleeding 
risk prediction model specifically derived for PE populations, 
overcoming critical limitations of generic thrombotic risk tools. 
By employing LASSO regression to integrate six evidence-based 
predictors (prior hemorrhage, renal dysfunction, erythrocyte 
count, systolic hypertension, cerebral infarction, and creatinine), 
our model addresses the unmet need for PE-specific risk 
stratification. Second, the clinically deployable nomogram 
transforms complex algorithmic outputs into immediate, 
individualized risk quantitation—enabling dynamic optimization 

FIGURE 4

Model performance metrics in development and validation cohorts. Four-panel evaluation of the bleeding risk prediction model. (A) Development 
ROC: AUC = 0.756 (95% CI: 0.729–0.784). (B) Validation ROC: AUC = 0.729 (95% CI: 0.685–0.773). (C) Development calibration: Ideal fit 
(slope = 1.000). (D) Validation calibration: Good agreement (slope = 0.810).
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of anticoagulation intensity, comorbidity management (e.g., 
hypertension control), and hematologic parameter correction at 
point-of-care. Third, decision curve and clinical impact analyses 
demonstrate significant net benefit improvement across critical 
thresholds, substantiating its capacity to reduce major bleeding 
events in high-risk subgroups.

Several limitations merit acknowledgment. First, the 6-month 
observation period limits assessment of long-term bleeding risk. 
Second, the single-center retrospective design fundamentally restricts 

the ability to perform a direct comparison with conventional risk 
scores, despite our efforts to mitigate bias. Third, and most 
importantly, the model’s performance in ethnically diverse populations 
and different healthcare systems is unknown and represents a critical 
question for future research.

Our study establishes and validates a new pulmonary 
embolism-specific bleeding risk prediction model. The resultant 
nomogram demonstrated robust discrimination and calibration, 
this tool enables personalized anticoagulation intensity 

FIGURE 5

Clinical utility and impact analysis. (A) Development DCA: Net benefit of model-guided decisions versus “treat-all” and “treat-none” strategies across 
threshold probabilities. (B) Validation DCA: Replication of net benefit superiority in independent cohort. (C) Development CIC: Proportion classified 
high-risk versus actual bleeding events captured. (D) Validation CIC: Replication of clinical impact in independent cohort. In the DCAs, the y-axis 
represents the net benefit. The horizontal lines labeled “None” represent the assumption that no participant experienced bleeding. The lines labeled 
“All” represent the assumption that all participants had bleeding. The lines labeled “nomogram model” represent the predictive model developed in this 
study. In CICs, the red curve represents the number of individuals classified as positive (high risk) by the model at each threshold probability, indicating 
the number of high-risk individuals. The blue curve represents the number of true positives (individuals with the outcome) at each threshold 
probability.
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adjustment and targeted comorbidity management. Future 
implementation in multinational pragmatic trials will validate its 
capacity to improve patient outcomes while reducing healthcare 
utilization costs.
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FIGURE 6

ROC curve comparisons. (A) Training cohort. (B) Testing cohort. Nomogram has the maximum AUC. CI, cerebral infarction; RBC, red blood cell count; 
RI, renal insufficiency; SP, systolic pressure; CRE, creatinine; BH, bleeding history; Nomo, nomogram.
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