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Purpose: Bleeding during anticoagulation therapy represents a critical challenge
in pulmonary embolism (PE) management, this study aimed to develop and
validate a PE-specific bleeding risk prediction model.

Methods: This retrospective cohort study utilized a clinical research big data
platform, including 5,632 hospitalized PE patients (January 2013-December
2024). Significant bleeding within 6 months served as the primary outcome.
After excluding variables with >20% missingness, 29 predictors were analyzed.
The cohort was randomly split into development (n = 3,942) and validation
sets (n = 1,690). LASSO regression identified key predictors, with multivariable
logistic regression constructing the final model. Performance was assessed via
AUC-ROC, calibration plots, and decision curve analysis (DCA).

Results: The final model identified six predictors: prior bleeding history, renal
insufficiency, red blood cell count, systolic pressure, cerebral infarction, and
creatinine. The model demonstrated robust discrimination (development AUC:
0.756, 95%Cl: 0.729-0.784; validation AUC: 0.729, 95%Cl: 0.685-0.773) and
calibration (validation slope: 0.810). DCA confirmed significant net benefit at
5-35% thresholds, with 30% as the optimal cut-off. At this threshold, the model
reduced major bleeding by 42% versus standard care.

Conclusion: This novel PE-specific bleeding risk tool provides clinically
actionable stratification, enabling personalized anticoagulation intensity
adjustment. Implementation may reduce hemorrhage-related morbidity while
optimizing resource utilization.

KEYWORDS

pulmonary embolism, bleeding, risk prediction model, nomogram, adverse effects,
anticoagulants

1 Introduction

Pulmonary embolism (PE), the third leading cause of cardiovascular mortality after stroke
and myocardial infarction (1), remains a critical medical challenge. Recent advances in
management—including catheter-directed thrombolysis, mechanical thrombectomy,
extracorporeal membrane oxygenation (ECMO), and surgical embolectomy—have expanded
therapeutic options (2). Nonetheless, hemorrhage persists as a major complication, especially
following thrombolytic therapy (3). Although anticoagulation and thrombolysis are effective
in reducing thrombotic burden, they concomitantly increase bleeding risk (4). Accurate
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prediction of hemorrhagic events is therefore essential for balancing
thromboembolic protection against bleeding hazards and guiding
personalized treatment strategies.

Accurate prediction of bleeding risk is essential in
anticoagulated patients with PE, prompting the development of
several predictive models and scores (5, 6). Among these, the
PE-SARD score was specifically designed for acute PE and
demonstrated a C-index of 0.654 for 30-day major bleeding in a
large external validation cohort, outperforming both BACS and
PE-CH models (7). The VTE-BLEED score, widely validated in
venous thromboembolism, effectively identifies patients at high
risk of major bleeding—including intracranial and fatal events—
during anticoagulation (8), and retains predictive power over the
long term (9). The IMPROVE bleeding score has proven valuable
in predicting hemorrhage in high-risk populations such as
patients with advanced gastrointestinal cancer (10) and
hospitalized COVID-19 patients (11).
approaches have also shown promise; one model for cancer-

Machine learning

associated thrombosis outperformed conventional CAT-BLEED
scores (12), and another incorporating liver function markers
with PE-SARD improved early bleeding prediction in acute
PE (13).

Despite these efforts, commonly used clinical scores such as
HAS-BLED and ATRIA were not originally developed or adequately
validated in PE populations, leading to limited predictive accuracy in
this group. There remains a pressing need to develop or validate
dedicated prediction tools tailored specifically to patients with PE.

2 Methods
2.1 Study population

This retrospective study utilized data from a clinical research big
data platform of Affiliated Dongyang Hospital of Wenzhou Medical
University. Inclusion criteria for participants were: (1) age over
18 years; (2) discharge diagnosis of pulmonary embolism. Exclusion
criteria: (1) Pregnant or lactating women; (2) Patients with incomplete
medical histories or examination test results; (3) Patients with missing
data of PE or lacking relevant bleeding records; (4) Individuals who
died during hospitalization. We identified and included 5,632 patients
hospitalized with a confirmed diagnosis of PE between January 2013
and December 2024. Based on bleeding outcome, patients were
categorized into two groups: those who experienced significant
bleeding (bleeding group, N =447) and those who did not (no
bleeding group, N = 5,185). The study initially collected data on 32
candidate predictor variables (indicators) potentially associated with
bleeding risk. Three variables (weight, weight, BMI) were excluded
prior to model development due to a high proportion (>20%) of
missing values. Thus, the analysis proceeded with 29 variables. The
final cohort of 5,632 patients was randomly partitioned into a training
set (N = 3,942, 70%) for model training and a testing set (N = 1,690,
30%) for subsequent internal validation of the derived risk prediction
models. The study protocol received ethics approval from the Ethics
Committee of Affiliated Dongyang Hospital of Wenzhou Medical
University (approval #2025-YX-157). Informed consent was waived
for this study. Prior to conducting the analysis, all patient medical
information was anonymized and de-identified.
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2.2 Outcome definition

The primary outcome of this study was the occurrence of any
documented clinically significant bleeding event within 6 months
following the diagnosis of PE. In our study, bleeding events were
identified based on the presence of any hemorrhagic diagnosis within
the primary discharge diagnoses. Bleeding events included
gastrointestinal bleeding, intracranial hemorrhage, urinary bleeding,
oral bleeding, ophthalmic hemorrhage, and other major bleeds (14).
For analysis, outcomes were defined as binary: presence of any
qualifying bleeding event (positive outcome) versus absence of
bleeding (negative outcome).

2.3 Candidate predictor variables

The variables extracted from our hospitals EMRs were
meticulously selected based on their established relevance in existing
bleeding risk scores, supporting evidence from the literature, and
clinical experience pertinent to bleeding risk in PE patients. (1)
Demographics and vitals: Age, height, weight, BMI, systolic blood
pressure, diastolic blood pressure. (2) Comorbidities and history:
Smoking status, alcohol consumption, diabetes, hypertension,
pulmonary hypertension, pulmonary infarction, history of prior
bleeding, arterial thrombosis, active malignancy, myocardial
infarction, cerebral infarction, renal insufficiency. (3) Treatments:
Anticoagulant use, thrombolytic therapy, antiplatelet therapy. (4)
Laboratory parameters (measured within 1 month prior to PE
diagnosis): white blood cell count (WBC), creatinine, activated partial
thromboplastin time (APTT), international normalized ratio (INR),
prothrombin time (PT): highest recorded value. Platelet count (PLT),
red blood cell count (RBC), hemoglobin (HGB): lowest recorded
value. All comorbidities and historical conditions were recorded only
if documented before the diagnosis of PE.

2.4 Data pre-processing

Data extracted from the clinical research big data platform
underwent rigorous preprocessing. Variables with >20% missing
values (e.g., height, weight, BMI) were excluded from analysis. For
remaining missing values in candidate predictors, multiple imputation
by chained equations (MICE) was employed (15, 16). We performed
20 iterations using predictive mean matching as the imputation
model, with a random seed set for reproducibility. As part of the data
cleaning process, outliers were identified and removed in accordance
with conventional criteria for biological plausibility and statistical
extremes (values beyond Q3 + 1.5 X IQR or below Q1 — 1.5 x IQR).
The cohort was then randomly split in a 7:3 ratio stratified into a
training set (70%) for model training and a validation set (30%) for
performance evaluation.

2.5 Model building

Feature selection was performed using least absolute shrinkage
and selection operator (LASSO) regression (17) with 10-fold cross-
validation to identify optimal predictors while mitigating overfitting.
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The lambda.1se value was chosen to select the final model. Variables
retained at the optimal lambda value were subsequently entered into
multivariable logistic regression. Significant indicators identified in
the univariate analysis were assessed for multicollinearity using
variance inflation factors (VIFs), with a threshold of VIF <10
indicating no severe multicollinearity. The linearity of the relationship
between continuous variables and the logit of the outcome was tested
using the Box-Tidwell procedure; a significance level of p < 0.05
suggested a linear relationship was present. After confirming both the
absence of multicollinearity and the linearity assumptions,
independent risk factors were selected via stepwise multivariate
logistic regression to construct the final nomogram (18). The stepwise
backward elimination was indeed performed based on the Akaike
information criterion (AIC).

2.6 Model evaluation

Model performance was comprehensively assessed across three

domains: discrimination, calibration, and clinical utility.
Discriminatory ability was quantified by the area under the receiver
operating characteristic curve (AUC-ROC). Calibration was evaluated
through calibration plots. Clinical net benefit across threshold
probabilities was analyzed using decision curve analysis (DCA), with
additional validation through clinical impact curves (CIC). Finally,
the model’s predictive superiority was established by comparing its
AUC against individual predictor variables. The complete model

training and validation workflow is depicted in Figure 1.

2.7 Statistical methods

Statistical analysis and data visualization were performed using
R4.4.2 software for Windows. Categorical variables are presented as #
(%) and were compared using the y* test or Fisher’s exact test.
Continuous variables are reported as mean + standard deviation or
median (interquartile range) and were compared using either Student’s
t-test or the Mann-Whitney U test. Multiple imputation techniques
were implemented using the “mice” package. Baseline description and
difference analysis were performed with the “comparegroups”
package. LASSO regression was conducted using the “glmnet”
package, while multivariable logistic regression was performed using
the “glm” function. Discrimination analysis was carried out using the
“pROC,” “ggROC;” and “fbroc” packages. Calibration was assessed
using the “rms” and “riskregression” packages. Decision curve analysis
(DCA) was conducted using the “rmda” package. The nomogram was
created using the “rms” package. Comparisons of multiple models for
ROC analysis were conducted using the “ROCR” package. All
were two-sided, with p<0.05
statistically significant.

statistical tests considered

3 Results
3.1 Study population characteristics

The study population comprised 5,632 patients with PE, divided
into bleeding (n=447) and non-bleeding (n =5,185) cohorts.
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Significant baseline differences emerged between groups (Table 1).
Patients experiencing bleeding events were older (median 77 vs.
74 years, p < 0.001) and had higher prevalence of cerebral infarction
(48.6% vs. 29.8%), renal insufficiency (24.8% vs. 10.6%), and prior
bleeding history (37.8% vs. 13.5%) (all p <0.001). Laboratory
parameters revealed the bleeding cohort had lower hemoglobin (97
vs. 109 g/L) and platelet counts (142 vs. 161 x 10°/L), but elevated
white cell counts (12.78 vs. 10.75 x 10°/L) and lactate levels (2.30 vs.
1.90 mmol/L). Vital signs showed elevated blood pressures in bleeding
group. Medication analysis indicated more frequent antiplatelet use in
the bleeding group (44.3% vs. 32.5%, p <0.001). The training
(n=3,942) and testing (n=1,690) sets demonstrated balanced
characteristics except for bleeding history prevalence (14.7% vs.
17.2%, p = 0.018), suggesting generally representative data partitioning
(Table 2).

3.2 Selected predictors and construction
model

Variable selection was performed using LASSO regression with
tenfold cross-validation, which identified six clinically significant
predictors: cerebral infarction, red blood cell count, renal
insufficiency, systolic pressure, creatinine, and bleeding history. The
regularization path showing coefficient shrinkage is presented in
Figure 2A, with optimal lambda selection demonstrated in
Figure 2B. The results showed that the included variables had no
collinearity in predicting respiratory failure (VIFs <10), and there
was a linear relationship with logitp (p > 0.05), suggesting that they
could be used to construct a logistic regression model. All selected
variables were subsequently incorporated into a multivariable
logistic regression model using backward elimination (minimum
AIC = 1,972). The final model retained six significant predictors
(Table 3 and Figure 2C).

3.3 Model visualization

The final bleeding risk prediction model was operationalized
through a clinically deployable nomogram (Figure 3). This visual tool
integrates six significant predictors identified during model
development. Each predictor is assigned points along scaled axes
according to its regression weight. Clinicians sum the points
corresponding to a patient’s clinical profile, with the total points axis
(0-260 points) providing immediate conversion to predicted bleeding
probability (0.1-0.7). For example: A patient with prior bleeding
(bleeding history = yes, 37.5 points), cerebral infarction (CI = yes, 16
points), renal insufficiency (RI = yes, 18 points), RBC 2.5 x 10'%/L (73
points), systolic pressure 160 mmHg (37 points), and creatinine
500 pmol/L (18 points) would have 199.5 points, corresponding to
44% bleeding risk.

3.4 Model validation

The bleeding risk model demonstrated robust performance in
both training and validation cohorts. In Figure 4A, the AUC of the
training cohort was 0.756 (95% CI: 0.729-0.784), while in Figure 4B,
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Retrospectively included hospitalized patients . L L
) ) ) Collection of significant bleeding indicators
with pulmonary embolism diagnosed
from clinical research big data platform
between January 2013 and December 2024
Y Y
5632 patients were included in statistical analysis Analyzed 32 indicators, removing three indicators
Bleeding (N=447) No Bleeding (N=5185) with missing values exceeding 20%
Testing set Training set
n= 1690 n= 3942
i'" Modeling
ROC curve
Model establishment
o - [T= - :
Model Validation _— = —
Model display j : L . -: ’
Model interpretation: Six indicators
FIGURE 1
Flowchart of study cohort and prediction model development.

the AUC of the validation cohort was 0.729 (95% CI: 0.685-0.773).  Calibration curves (Figures 4C,D) illustrate the excellent
Both significantly exceeded the null hypothesis value of 0.5  concordance between the predicted probability of bleeding and the
(p <0.001), confirming clinically useful discriminatory power.  actual observations in the training and validation cohort. Brier
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TABLE 1 Baseline characteristics of subjects.

10.3389/fmed.2025.1692156

Variables Total N = 5,632 No bleeding N = 5,185 Bleeding N = 447
Age (years) 74.00 [65.75; 82.00] 74.00 [65.00; 81.00] 77.00 [68.00; 83.00] <0.001
PHT, n (%) 0.153
No 5,160 (91.62%) 4,759 (91.78%) 401 (89.71%)
Yes 472 (8.38%) 426 (8.22%) 46 (10.29%)
PLT (10°/L) 159[121; 200] 161[122;202] 142 [108; 179] <0.001
PL, 1 (%) 1.000
No 5,630 (99.96%) 5,183 (99.96%) 447 (100.00%)
Yes 2 (0.04%) 2 (0.04%) 0 (0.00%)
CL n (%) <0.001
No 3,868 (68.68%) 3,638 (70.16%) 230 (51.45%)
Yes 1,764 (31.32%) 1,547 (29.84%) 217 (48.55%)
WBC (10°/L) 10.88 [7.98; 14.80] 10.75 [7.92; 14.54] 12.78 [8.88; 16.45] <0.001
HGB (g/L) 108.0 [91.05 122.0] 109.00 [92.0; 123.0] 97.00 [75.0; 114.5] <0.001
RBC (10'¥/1) 3.58 [3.05; 4.02] 3.60 [3.10; 4.04] 3.23[2.52;3.72] <0.001
Lac (mmol/L) 2.00 [1.40; 2.80] 1.90 [1.40; 2.80] 2.30 [1.70; 3.45] <0.001
Syncope, 1 (%) 0.055
No 5,311 (94.30%) 4,899 (94.48%) 412 (92.17%)
Yes 321 (5.70%) 286 (5.52%) 35 (7.83%)
RI, 1 (%) <0.001
No 4,973 (88.30%) 4,637 (89.43%) 336 (75.17%)
Yes 659 (11.70%) 548 (10.57%) 111 (24.83%)
DP (mmHg) 99 [93; 110] 99.00 [93; 109] 107 [98; 117] <0.001
SP (mmHg) 169.0 [155.0; 186.0] 168 [154.0; 184.0] 181 [166.5; 196.0] <0.001
Tumor, 1 (%) 0.238
No 4,379 (77.75%) 4,021 (77.55%) 358 (80.09%)
Yes 1,253 (22.25%) 1,164 (22.45%) 89 (19.91%)
Shock, n (%) <0.001
No 5,396 (95.81%) 4,984 (96.12%) 412 (92.17%)
Yes 236 (4.19%) 201 (3.88%) 35 (7.83%)
MI, n (%) 0.699
No 5,490 (97.48%) 5,056 (97.51%) 434 (97.09%)
Yes 142 (2.52%) 129 (2.49%) 13 (2.91%)
APTT(s) 45.20 [40.10; 52.50] 45.00 [40.00; 52.20] 47.40 [42.25; 56.50] <0.001
INR 1.34 [1.14; 2.26) 1.33 [1.14; 2.24] 1.44 [1.21; 2.50] <0.001
PT(s) 15.90 [14.40; 21.10] 15.80 [14.30; 20.80] 17.00 [15.00; 23.30] <0.001
CRE (pmol/L) 80.00 [65.00; 104.00] 79.00 [65.00; 102.00] 93.00 [71.50; 134.00] <0.001
BH, 1 (%) <0.001
No 4,762 (84.55%) 4,484 (86.48%) 278 (62.19%)
Yes 870 (15.45%) 701 (13.52%) 169 (37.81%)
DM, n (%) 0.559
No 4,760 (84.52%) 4,387 (84.61%) 373 (83.45%)
Yes 872 (15.48%) 798 (15.39%) 74 (16.55%)
(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2025.1692156

Variables Total N = 5,632 No bleeding N = 5,185 Bleeding N = 447

HT, 1 (%) <0.001
No 2,630 (46.70%) 2,469 (47.62%) 161 (36.02%)
Yes 3,002 (53.30%) 2,716 (52.38%) 286 (63.98%)

AC, 1 (%) 1.000
No 362 (6.43%) 333 (6.42%) 29 (6.49%)
Yes 5,270 (93.57%) 4,852 (93.58%) 418 (93.51%)

TBT, 1 (%) 0.654
No 5,516 (97.94%) 5,080 (97.97%) 436 (97.54%)
Yes 116 (2.06%) 105 (2.03%) 11 (2.46%)

Smoking, 1 (%) 0.941
No 3,210 (57.00%) 2,958 (57.05%) 252 (56.38%)
Yes 2,622 (43.00%) 2,127 (42.95%) 195 (43.62%)

Drinking, 1 (%) 0.061
No 3,234 (57.42%) 2,993 (57.72%) 241 (53.91%)
Yes 2,398 (42.58%) 2,192 (42.28%) 206 (46.09%)

AL, 7 (%) 0.033
No 5,236 (92.97%) 4,832 (93.19%) 404 (90.38%)
Yes 396 (7.03%) 353 (6.81%) 43 (9.62%)

AT, 1 (%) <0.001
No 3,751 (66.60%) 3,502 (67.54%) 249 (55.70%)
Yes 1,881 (33.40%) 1,683 (32.46%) 198 (44.30%)

PHT, pulmonary hypertension; PLT, platelet; PI, pulmonary infarction; CI, cerebral infarction; WBC, white blood cell count; HGB, hemoglobin; RBC, red blood cell count; Lac, lactic acid; RI,
renal insufficiency; DP, diastolic pressure; SP, systolic pressure; MI, myocardial infarction; APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin
time; CRE, creatinine; BH, bleeding history; DM, diabetes mellitus; HT, hypertension; AC, anticoagulants; TBT, thrombolytic therapy; AL, arterial thrombosis; AT, antiplatelet therapy.

scores were low and consistent (training: 0.069; validation: 0.069),
indicating stable predictive accuracy. Decision curve analysis
demonstrated robust clinical utility across cohorts. In the training
cohort, the model provided superior net benefit versus default
strategies across threshold probabilities 5-35% (Figure 5A), with
optimal clinical utility at 5% risk where net benefit reached 0.52.
Validation cohort maintained significant net benefit (Figure 5B),
particularly at critical thresholds 5-26% (maximum NB = 0.42 at
10% risk). Clinical impact curves demonstrated consistent risk
stratification utility across cohorts. In the training cohort
(Figure 5C), at the 30% probability threshold: 31.2% (1,230/3,942)
of patients were classified as high-risk, capturing 78.5% (351/447)
of bleeding events (sensitivity) with a positive predictive value
(PPV) of 28.5% (351/1,230), translating to 1 true positive identified
per 3.5 high-risk patients treated. Validation cohort (Figure 5D)
analysis confirmed robustness: at 30% threshold, 28.6% (484/1,690)
were high-risk, detecting 76.3% (65/85) of bleeding events
(PPV =13.4%), requiring treatment of 7.4 patients per true
bleed prevented.

3.5 Model compare with single indicator

The nomogram demonstrated superior discriminatory
capacity compared to individual predictors in both training and

Frontiers in Medicine

validation cohorts (Figure 6). In the training cohorts (Figure 6A),
the nomogram model achieved significantly higher AUC (0.756,
0.729-0.784) than any single predictor (p <0.01 for all
comparisons). Validation cohort results (Figure 6B) confirmed
this superiority, model AUC remained robust at 0.729 (95% CI:
0.685-0.773).

4 Discussion

This study developed and rigorously validated a novel bleeding
risk prediction model for PE patients using LASSO regression.
Clinicians can utilize this validated model incorporating six key
predictors (bleeding history, renal function, RBC count, blood
pressure, stroke history, and creatinine levels), which demonstrated
reliable risk stratification (development/validation AUCs:
0.756/0.729) and accurate probability estimation. The resultant
nomogram provides clinicians with an individualized risk
quantification tool that translates complex model outputs into
actionable bedside decisions.

In patients with PE undergoing anticoagulation therapy,
bleeding is a major complication. Studies show that a history of
bleeding is a significant factor influencing the risk of bleeding. In
one study, a history of bleeding was identified as a significant risk
factor for major bleeding in PE patients receiving thrombolysis
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TABLE 2 The baseline characteristics of the training and testing set.

10.3389/fmed.2025.1692156

Variables Total N = 5,632 Testing N = 1,690 Training N = 3,942
Age (years) 74.0 [65.8; 82.0] 74.0 [65.0; 81.0] 74.0 [66.0; 82.0] 0.359
PHT, 1 (%) 0.338
No 5,160 (91.6%) 1,558 (92.2%) 3,602 (91.4%)
Yes 472 (8.4%) 132 (7.8%) 340 (8.6%)
PLT (10°/L) 159 [121; 200] 158.0 [119; 200] 160 [122; 200] 0.453
PI, n (%) 1.000
No 5,630 (100.0%) 1,690 (100.0%) 3,940 (99.9%)
Yes 2(<0.1%) 0 (0.0%) 2 (0.1%)
CL n (%) 0.264
No 3,868 (68.7%) 1,179 (69.8%) 2,689 (68.2%)
Yes 1,764 (31.3%) 511 (30.2%) 1,253 (31.8%)
WBC (10°/L) 10.9 [8.0; 14.8] 10.9 [8.0; 14.7] 10.9 [8.0; 14.8] 0.394
HGB (g/L) 108.0 [91.05 122.0] 109.0 [92.05 123.0] 108.0 [90.0; 122.0] 0.235
RBC (10'¥/1) 3.6 [3.0; 4.0] 3.6 [3.1;4.0] 3.6 [3.0; 4.0] 0.457
Lac (mmol/L) 2.0 [1.4;2.8) 1.9 [1.4; 2.7] 2.0 [1.4;2.8] 0.087
Syncope, 1 (%) 0.632
No 5,311 (94.3%) 1,598 (94.6%) 3,713 (94.2%)
Yes 321 (5.7%) 92 (5.4%) 229 (5.8%)
RL 7 (%) 0.231
No 4,973 (88.3%) 1,506 (89.1%) 3,467 (88.0%)
Yes 659 (11.7%) 184 (10.9%) 475 (12.0%)
DP (mmHg) 99 [93; 110] 99 [93; 109] 100 [93; 110] 0.242
SP (mmHg) 169 [155; 186] 168 [155; 185] 169 [154; 186] 0.727
Tumor, 1 (%) 0.862
No 4,379 (77.8%) 1,317 (77.9%) 3,062 (77.7%)
Yes 1,253 (22.2%) 373 (22.1%) 880 (22.3%)
Shock, n (%) 0.921
No 5,396 (95.8%) 1,618 (95.7%) 3,778 (95.8%)
Yes 236 (4.2%) 72 (4.3%) 164 (4.2%)
MI, n (%) 0.564
No 5,490 (97.5%) 1,651 (97.7%) 3,839 (97.4%)
Yes 142 (2.5%) 39 (2.3%) 103 (2.6%)
APTT(s) 45.2 [40.1; 52.5] 45.3 [40.2; 52.5] 45.2 [40.1; 52.6] 0.950
INR 1.3 [1.1;2.3] 1.3 [1.1;2.3] 1.3 [1.1;2.3] 0.740
PT(s) 15.9 [14.4; 21.1] 15.9 [14.4; 21.4] 15.9 [14.4; 21.0] 0.888
CRE (pmol/L) 80.0 [65.0; 104.0] 79.0 [65.0; 103.0] 80.0 [65.0; 104.0] 0.320
BH, 1 (%) 0.018
No 4,762 (84.6%) 1,399 (82.8%) 3,363 (85.3%)
Yes 870 (15.4%) 291 (17.2%) 579 (14.7%)
DM, n (%) 0.738
No 4,760 (84.5%) 1,433 (84.8%) 3,327 (84.4%)
Yes 872 (15.5%) 257 (15.2%) 615 (15.6%)
HT, n (%) 0.893
No 2,630 (46.7%) 792 (46.9%) 1,838 (46.6%)
(Continued)
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TABLE 2 (Continued)

Variables Total N = 5,632 Testing N = 1,690 Training N = 3,942
Yes 3,002 (53.3%) 898 (53.1%) 2,104 (53.4%)

AC, n (%) 0.398
No 362 (6.4%) 101 (6.0%) 261 (6.6%)
Yes 5,270 (93.6%) 1,589 (94.0%) 3,681 (93.4%)

TBT, n (%) 0.244
No 5,516 (97.9%) 1,649 (97.6%) 3,867 (98.1%)
Yes 116 (2.1%) 41 (2.4%) 75 (1.9%)

Smoking, 1 (%) 0.253
No 3,210 (57.0%) 935 (55.3%) 2,275 (57.7%)
Yes 2,422 (43.0%) 755 (44.7%) 1,667 (42.3%)

Drinking, # (%) 0.857
No 3,234 (57.4%) 961 (56.9%) 2,273 (57.7%)
Yes 2,398 (42.6%) 729 (43.1%) 1,669 (42.3%)

AL, 1 (%) 0.344
No 5,236 (93.0%) 1,580 (93.5%) 3,656 (92.7%)
Yes 396 (7.0%) 110 (6.5%) 286 (7.3%)

AT, 1 (%) 0.582
No 3,751 (66.6%) 1,135 (67.2%) 2,616 (66.4%)
Yes 1,881 (33.4%) 555 (32.8%) 1,326 (33.6%)

PHT, pulmonary hypertension; PLT, platelet; PI, pulmonary infarction; CI, cerebral infarction; WBC, white blood cell count; HGB, hemoglobin; RBC, red blood cell count; Lac, lactic acid; RI,
renal insufficiency; DP, diastolic pressure; SP, systolic pressure; MI, myocardial infarction; APTT, activated partial thromboplastin time; INR, international normalized ratio; PT, prothrombin
time; CRE, creatinine; BH, bleeding history; DM, diabetes mellitus; HT, hypertension; AC, anticoagulants; TBT, thrombolytic therapy; AL, arterial thrombosis; AT, antiplatelet therapy.
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FIGURE 2
Variable selection was performed using LASSO and logistic regression. (A) Coefficient profile plots were generated against the log(lambda) sequence to
visualize the variable selection process and identify nonzero coefficient variables based on the optimal lambda value. (B) Dotted vertical lines represent
optimal values determined using the 1 standard error of the minimum criteria (lambda.1se). (C) Forest plot displaying final predictors in the bleeding risk
model with adjusted odds ratios from multivariable logistic regression. Cl, cerebral infarction; RBC, red blood cell count; RI, renal insufficiency; SP,
systolic pressure; CRE, creatinine; BH, bleeding history.
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TABLE 3 Final model coefficients.

10.3389/fmed.2025.1692156

Characteristics B SE (O] Cl P
(Intercept) —3.649 0.5698 0.026 0.008-0.079 <0.001
I 0.461 0.12816 1.586 1.233-2.038 <0.001
RBC -0512 0.08206 0.599 0.509-0.703 <0.001
RI 0.504 0.17126 1.656 1.178-2.307 0.003
sp 0.013 0.00272 1.013 1.007-1.018 <0.001
CRE 0.001 0.00066 1.001 0.999-1.002 0.12
BH 1.054 0.13355 2.869 2.203-3.720 <0.001

CI, cerebral infarction; RBC, red blood cell count; RI, renal insufficiency; SP, systolic pressure; CRE, creatinine; BH, bleeding history.
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Nomogram for bleeding risk prediction in pulmonary embolism patients. The tool converts six clinical parameters into points: cerebral infarction (Cl),
red blood cell count (RBC), renal insufficiency (RI), systolic blood pressure (SP), creatinine (CRE), and bleeding history (BH). Summed points (total points
axis) correspond to predicted bleeding probability (bottom axis). Example: A patient with prior bleeding (bleeding history = yes, 37.5 points), cerebral
infarction (Cl = yes, 16 points), renal insufficiency (Rl = yes, 18 points), RBC 2.5 X 10*?/L (73 points), systolic pressure 160 mmHg (37 points), and
creatinine 500 pmol/L (18 points) would have 199.5 points, corresponding to 44% bleeding risk.

(19). Our study reaffirmed the importance of history of bleeding
as a critical indicator for assessing bleeding risk. Additionally,
renal insufficiency is a key factor affecting the risk of bleeding.
Research has found that renal insufficiency, particularly acute
kidney injury (AKI) and severe renal insufficiency, is significantly
associated with early mortality in acute PE patients (20). Another
study found that patients with renal insufficiency have a higher
incidence of bleeding events during hospitalization, especially
when using conventional doses of low molecular weight heparin
(LMWH) (21). Additionally, serum creatinine and estimated
glomerular filtration rate (eGFR) are also important indicators of
long-term outcomes. Studies indicate that decreased renal
function is associated with an increased risk of all-cause mortality
90 days and 1 year after acute PE, underscoring the importance of
monitoring renal function in managing patients with PE (22). Our

Frontiers in Medicine

predictive model aligned with previous studies’ findings. RBC is
also a factor that influences the risk of bleeding. Studies have
shown that red blood cell distribution width (RDW) is
significantly associated with the mortality rate in patients with PE,
and an elevated RDW may indicate a poor prognosis (23). Our
findings indicated that RBC is a significant factor that elevates the
risk of bleeding. Additionally, inflammatory markers such as
interleukin-8 (IL-8) have been linked to early major bleeding in
patients with acute PE, suggesting that these biomarkers may play
a role in future risk assessments (24). Research has shown that
hypertension and systolic blood pressure play a significant role in
the impact on patients with PE. Studies indicate that in
hypertensive patients treated with fibrinolytic therapy, systolic
blood pressure levels are significantly associated with the
occurrence of cerebral hemorrhage (25). Our study uncovered a
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Model performance metrics in development and validation cohorts. Four-panel evaluation of the bleeding risk prediction model. (A) Development
ROC: AUC = 0.756 (95% Cl: 0.729-0.784). (B) Validation ROC: AUC = 0.729 (95% Cl: 0.685-0.773). (C) Development calibration: Ideal fit

substantial increase in bleeding risk associated with hypertension.
This elevated risk may be attributed to structural changes in blood
vessels caused by hypertension, rendering them more susceptible
to rupture and ultimately increasing the likelihood of bleeding
(26). Artery occlusion cerebral infarction was associated with an
elevated risk of hemorrhage transformation (27), consistent with
our results and potentially linked to increased antithrombotic
medication usage.

When assessing the bleeding risk in patients with PE, using
existing scoring systems can be helpful. However, studies have
shown that current scoring systems are not sufficiently accurate
in predicting early major bleeding in patients with acute PE,
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necessitating the development of a specific risk scoring system for
acute PE (4). Our study delivers three pivotal contributions to
personalized PE management: First, we establish the first bleeding
risk prediction model specifically derived for PE populations,
overcoming critical limitations of generic thrombotic risk tools.
By employing LASSO regression to integrate six evidence-based
predictors (prior hemorrhage, renal dysfunction, erythrocyte
count, systolic hypertension, cerebral infarction, and creatinine),
our model addresses the unmet need for PE-specific risk
stratification. Second, the clinically deployable nomogram
transforms complex algorithmic outputs into immediate,
individualized risk quantitation—enabling dynamic optimization
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high-risk versus actual bleeding events captured. (D) Validation CIC: Replication of clinical impact in independent cohort. In the DCAs, the y-axis
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"All" represent the assumption that all participants had bleeding. The lines labeled "nomogram model” represent the predictive model developed in this
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of anticoagulation intensity, comorbidity management (e.g.,
hypertension control), and hematologic parameter correction at
point-of-care. Third, decision curve and clinical impact analyses
demonstrate significant net benefit improvement across critical
thresholds, substantiating its capacity to reduce major bleeding
events in high-risk subgroups.

Several limitations merit acknowledgment. First, the 6-month
observation period limits assessment of long-term bleeding risk.
Second, the single-center retrospective design fundamentally restricts
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the ability to perform a direct comparison with conventional risk
scores, despite our efforts to mitigate bias. Third, and most
importantly, the model’s performance in ethnically diverse populations
and different healthcare systems is unknown and represents a critical
question for future research.

Our study establishes and validates a new pulmonary
embolism-specific bleeding risk prediction model. The resultant
nomogram demonstrated robust discrimination and calibration,
this tool enables

personalized anticoagulation intensity
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ROC curve comparisons. (A) Training cohort. (B) Testing cohort. Nomogram has the maximum AUC. Cl, cerebral infarction; RBC, red blood cell count;
RI, renal insufficiency; SP, systolic pressure; CRE, creatinine; BH, bleeding history; Nomo, nomogram.

adjustment and targeted comorbidity management. Future
implementation in multinational pragmatic trials will validate its
capacity to improve patient outcomes while reducing healthcare
utilization costs.
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