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Background: Graft-versus-host disease (GVHD) is a life-threatening
complication of allogeneic hematopoietic stem cell transplantation that impairs
clinical outcomes. Existing classification systems for GVHD biomarkers remain
fragmented, which limits cross-study data integration and clinical translation,
creating an urgent need for a systematic classification framework.

Materials and methods: In this review, a predefined search strategy was used to
systematically evaluate the classification systems of GVHD biomarkers. For the
search, a systematic literature retrieval was conducted in the PubMed and Web
of Science databases, covering the time range from 2012 to 2025, with keywords
including “GVHD,” “biomarkers,” and “classification and summarization.” The
inclusion criteria for studies were as follows, focusing on the classification or
clinical application of GVHD biomarkers: peer-reviewed original articles, reviews,
or multicenter trials, and human subjects or well-validated mouse models. After
screening, a total of 139 articles were included in this review.

Conclusion: This review integrates GVHD biomarkers into a three-dimensional
system, including pathophysiological mechanismes, clinical application scenarios,
and molecular characteristics. It identifies key challenges in biomarker research
and application, and proposes feasible integration pathways. This work provides
a foundational framework for precision medicine in GVHD management.

KEYWORDS

graft-versus-host disease, biomarker, classification system, integration pathways,
allogeneic hematopoietic stem cell transplantation, precision medicine

1 Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) usually serves as a primary
therapeutic modality for hematological diseases; however, graft-versus-host disease (GVHD)
remains a major barrier to improving treatment outcomes (1). Biomarkers, which function as
indicators of normal physiological processes, pathological conditions, or responses to
interventions such as exposure, are widely applied in disease diagnosis, monitoring, and the
development of therapeutic approaches (2). They have become critical tools for guiding GVHD
diagnosis, prognostic stratification, and treatment response monitoring, yet inconsistencies in
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their classification severely compromise clinical utility (3). For instance,
interleukin-6 (IL-6) is defined as an inflammation-driven marker in
preclinical mechanistic studies of GVHD; in clinical cohort studies,
however, it is classified as a diagnostic marker for ocular graft-versus-
host disease (0GVHD)—such classification discrepancies impede the
integration of cross-study data.

Although numerous reviews on GVHD biomarkers have been
published, most focus on individual molecules or single application
scenarios and fail to address the core issue of “fragmented
classification” by proposing targeted solutions. This research gap limits
the translation of biomarker research into standardized clinical
practice, as clinicians lack a unified framework for interpreting and
applying these biomarkers (4). Therefore, by systematically
synthesizing existing evidence, the present review aims to describe a
coherent, multi-dimensional classification system for GVHD
biomarkers, with the goal of resolving classification inconsistencies
and facilitating their reliable application in clinical decision-making.

2 An overview of the pathogenesis of
GVHD

2.1 Acute GVHD (aGVHD): innate
immunity-driven inflammatory cascade

The pathogenic process of aGVHD is centered on a three-stage
“initiation-activation-effector” cascade, which proceeds as follows (5)
(Figure 1):

Initiation stage: pretransplant conditioning induces tissue
damage in recipients, triggering the release of damage-associated
molecular patterns (DAMPs) (6) that subsequently activate antigen-
presenting cells (APCs).

Activation stage: activated APCs present recipient alloantigens,
which drive the differentiation of donor naive T cells into effector T
cell subsets, such as T-helper 1 (Th1) and T-helper 17 (Th17) cells.
Notably, interleukin-12 (IL-12) secreted by APCs during this stage
acts as a biomarker for early inflammatory activation in aGVHD.

10.3389/fmed.2025.1690221

Effector stage: effector T cells, along with cytokines interferon-y
(IFN-y) (7), tumor necrosis factor-a (TNF-a), secrete and infiltrate
target organs, including the intestine, skin, and liver, and mediate
tissue damage. Among these, regenerating islet-derived protein 3a
(REG3a)—which is elevated upon intestinal epithelial injury—and
Elafin—associated with skin injury—serve as specific tissue damage
biomarkers for intestinal and cutaneous involvement in aGVHD,
respectively.

The stage-specific immune drivers of aGVHD primarily revolve
around the TNF-a/IL-1/IL-6 axis. During the initiation phase, TNF-a
and IL-1 are produced by activated innate immune cells, which not
only induce local inflammatory responses but also promote immune
cell recruitment by upregulating the expression of vascular
endothelial cell adhesion molecules (8). IL-6 exhibits pleiotropic
effects: it not only promotes T cell proliferation and differentiation
but also participates in the synthesis of hepatic acute-phase proteins,
exacerbating systemic inflammatory responses. In the activation and
effector phases, sustained high expression of these cytokines
maintains a “cytokine storm,” further activating effector T cells and
enhancing their cytotoxic activity, while exacerbating damage to
vascular endothelial cells and target organ cells, leading to tissue
necrosis (9).

Pre-transplant conditioning in recipients eradicates malignant
cells but also inflicts damage on normal tissues, triggering the release
of DAMPs and PAMPs. These molecular patterns mobilize and
activate neutrophils, natural killer (NK) cells, and APCs. Once
activated, APCs enhance the expression of MHC class II and
co-stimulatory molecules, and secrete pro-inflammatory cytokines
such as IL-1, IL-6, IL-12, and IL-23, which serve as essential adjuvant
signals for T cell activation. Subsequently, donor-derived APCs
recognize recipient alloantigens, and through the interaction between
MHC class IT and T cell receptors (TCRs) during antigen presentation,
naive T cells are activated. These activated T cells then differentiate
into Thl, Th2, and Th17 subsets, releasing cytokines like IFN-y,
TNF-a, IL-17, and GM-CSE These cytokines orchestrate
inflammatory reactions that ultimately cause tissue injury in target
organs. Created with BioGDP.com (10).
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FIGURE 1
Pathogenic cascade of aGVHD.
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2.2 cGVHD: adaptive immune dysregulation
and fibrotic remodeling

Chronic graft-versus-host disease (cGVHD) is characterized by
immune homeostasis dysregulation and tissue fibrotic remodeling as
key features. Its disease course progresses in three phases (11) (Figure 2).

Early Inflammation and Tissue Injury: Tissue damage induced by
transplantation preconditioning releases DAMP/PAMP, which
activates APCs to upregulate MHC class II molecules and
costimulatory molecules, and secrete IL-12. Donor T cells differentiate
into Th1/Th17 subsets under the action of IL-6 and TGF-f, and
secrete IL-17, IFN-y, and IL-17 exacerbate epithelial/endothelial
damage, thereby forming a proinflammatory microenvironment.
IL-12, IL-6, and other factors are not only regulatory factors, but also
inflammation-related biomarkers (12).

Chronic Inflammation and Immunodysregulation: it is centered
on abnormal B-cell activation and impaired regulatory T-cell (Treg)
function—B cells overproduce autoantibodies and rely on B-cell
activating factor (BAFF) for survival, and elevated BAFF levels are
closely associated with cGVHD activity (13).

Fibrosis and Tissue Remodeling (14): Myofibroblasts highly
express a-smooth muscle actin (a-SMA) and connective tissue growth
factor (CTGF), leading to collagen deposition. ROCK2 activation
upregulates Th17 transcription via STAT3, suppresses Regulatory T
cells, and regulates actin polymerization to reinforce fibrosis.
Persistent cytokine secretion by Th17 maintains a vicious cycle of
inflammation and fibrosis (14).

The stage-specific immune drivers of cGVHD include B-cell
hyperactivity, Tth cell expansion, and fibrosis-related factors. B-cell
hyperactivity manifests as clonal proliferation and autoantibody

10.3389/fmed.2025.1690221

production, with these autoantibodies targeting multiple tissue
antigens to induce immune-mediated damage in target organs (15).
Tth cell expansion serves as a key driver of B cell activation: Tth cells
promote B cell differentiation and antibody production through direct
cell-cell interactions and cytokine secretion (16). In terms of fibrosis,
cytokines such as TGF-p and PDGF not only drive fibroblast
activation and proliferation but also suppress immune cell functions,
creating an immunosuppressive microenvironment that impedes
normal immune regulation and further accelerates fibrotic
progression (17).

3 Current status of multiple _
classification criteria for biomarkers in
GVHD

Currently, the classification of GVHD biomarkers is based on
multiple perspectives; however, there exists a certain degree of
overlap and exclusivity among these classification methods. This
article provides a review and integrative discussion of the current
GVHD biomarker classification systems from the perspectives of
clinical scenarios, and

pathophysiology, application

molecular characteristics.

3.1 Pathophysiological perspective

Synthesizing previous studies, from the pathophysiological
perspective, biomarkers can be subdivided into three major categories:
inflammation-driven, tissue damage-related, and immunoregulatory.

[} CD80
MHC 1438

uonenusIap
—

FIGURE 2

__release @1

2
_— —_
4 e TCR IL-21
differentiation

D IL17

~CD40
DAMPs "
@ t recruitment h“‘&‘ —
Pre-treatment § ¥ 4 Induction activate
Cancer . EANEs: T cell selection
Recipient Thymic s defect
tissue
damage Autologous/allogeneic T cells
released to the outside
Graft ™™
( P
Blood ) % >
Cells — 28 X L
’% activate
Blood
Cancer
Donor Recipient

—_ O — 4 — TEE'B gastroiﬁteslinal tract
IL-17 > . — @I'm — secretion @ CSF-1 polarization secretion — @
~—~ { PDGF-a
IL-13 Macrophage

D BAFFT
oo
BAFFR

Q

S skin
s

' liver
3

Fibroblast differentiation
Collagen deposition
Tissue and organ fibrosis

BCR ™

M2 Macrophage
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presentation, forming a pathogenic feedback loop. Created with BioGDP.com (10).
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3.1.1 Inflammation-driven biomarkers

The core function of this category of biomarkers is to mediate the
inflammatory cascade in GVHD. Studies have shown that the gene
expression levels of cytokines in peripheral blood mononuclear cells
(PBMC:s) of GVHD patients are upregulated, including IFN-y, TNE,
and interleukins (18). IL-6 and IFN-y regulate immune cell function
by activating the Janus kinase 1 (JAK1) signaling pathway (19). When
the selective JAKI inhibitor itacitinib is used in haploidentical
hematopoietic stem cell transplantation (HSCT), it reduces the
incidence of acute and chronic GVHD without causing severe
complications—this finding has been validated in multicenter clinical
trials (20). TNF-a, a key mediator of the inflammatory response,
exhibits elevated serum levels in patients with aGVHD, a characteristic
observed in single-center cohort studies (21). As a member of the
interleukin-1 receptor family, growth-stimulated expressed gene 2
protein (ST2) plays a crucial role in inflammatory signaling pathways
(22). The signaling axis formed by ST2 and interleukin-33 (IL-33) is
closely associated with treatment-refractory aGVHD and non-relapse
mortality (NRM) (23). Serum ST2 levels in patients with aGVHD are
higher than those in control populations, and this difference has been
confirmed by single-center controlled studies (24).

3.1.2 Tissue damage-related biomarkers

This category of biomarkers directly reflects damage to GVHD
target organs. REG3a, secreted by intestinal Paneth cells, is a specific
biomarker for gastrointestinal GVHD (25). REG3a concentrations
were 3-fold higher at the time of GVHD diagnosis in patients who had
no response to therapy at 4 weeks than in patients who experienced a
complete or partial response; patients responding to therapy still
exhibited REG3a concentrations more than 3 times that of
non-GVHD controls. And it can predict NRM at 4 weeks and 1 year
post-transplantation—this clinical value has been confirmed in
multicenter cohort studies (26). Hartwell et al. developed an
innovative biomarker analysis algorithm based on single-center
cohort data to evaluate blood samples collected on day 7 post-
transplantation; this algorithm employs a dual-biomarker model
consisting of ST2 and REG3a (27, 28). Galectin-3 (Gal-3) is a
fundamental component of the galectin family (29). It induces T cell
exhaustion by activating the nuclear factor of activated T cells (NFAT)
signaling pathway (30), thereby alleviating tissue damage in
aGVHD. The expression intensity of Gal-3 in CD4* T cells is negatively
correlated with intestinal pathological scores, and this association was
derived from single-center clinical biopsy analyses (31). On day 15
post-haplocytotoxic HSCT, plasma Elafin levels are elevated in
patients with severe cutaneous aGVHD. However, this result exhibits
heterogeneity due to differences in donor characteristics and
conditioning regimens, and it is only based on a single-center
“discovery cohort-validation cohort” design—relevant data were
obtained from single-center dual-cohort studies (32).

3.1.3 Immunoregulatory biomarkers

This category of biomarkers reflects dynamic changes in the GVHD
immunoregulatory system. During aGVHD onset, there is an increase
in the number of effector memory T cells (TEM), a decrease in naive T
cells, and enhanced proliferative activity of Treg with abnormal
expression of functional markers. These dynamic changes were
observed in a single-center longitudinal monitoring study at 3 months
post-transplantation (33), providing evidence for immune dysregulation
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inaGVHD. In cGVHD, the number of follicular Tth in peripheral blood
decreases, while the number of peripheral helper T cells (Tph) increases;
additionally, tissue-resident helper T cells (Trh) undergo clonal
expansion in target organs. This conclusion was first mechanistically
confirmed in animal models and subsequently preliminarily validated
in single-center samples from patients with moderate-to-severe
c¢GVHD, representing an integrated study combining animal models
and single-center clinical correlation (34). The dynamic changes in these
T cell subsets during GVHD pathogenesis profoundly reflect the
disruption of the body’s immunoregulatory network, are closely
associated with prognosis, and provide important evidence for GVHD
treatment based on immunoregulatory mechanisms.

3.2 Clinical application scenario
perspective

Based on the National Institutes of Health (NIH) Biomarkers,
Endpoints, and Surrogate Targets (BEST) Resource, GVHD
biomarkers can be further subdivided into diagnostic, predictive,
response, prognostic, and risk biomarkers to meet the needs of
precision medicine in different clinical scenarios (35).

3.2.1 Diagnostic biomarkers

This category of biomarkers is used to confirm the presence of
GVHD and involvement of target organs (3). Regulatory B cells
(Bregs) exhibit significant potential in GVHD diagnosis due to their
ability to maintain Treg homeostasis, promote Treg proliferation, and
inhibit proinflammatory cytokine secretion (36). CD1c* Bregs are
induced via the PKA-CREB signaling axis. Post-HSCT, a decrease in
the number of CD1c* Bregs is accompanied by enhanced effector T
cell activity and reduced immunosuppression, which can assist in
GVHD diagnosis. Currently, evidence supporting this diagnostic
potential is derived from single-center cellular function exploration
studies (37). o GVHD severely impairs patients’ quality of life and
visual function (38). Combined detection of IL-6, IL-10, and TNF-«
improves diagnostic accuracy for oGVHD. Among these, the
diagnostic value of IL-6 for oGVHD-associated dry eye has been
confirmed by single-center receiver operating characteristic (ROC)
curve analysis (39); further validation via a single-center small-sample
correlation study of ocular surface indices demonstrated that
combined detection of the three biomarkers enhances diagnostic
efficacy (40). The CSF-IR inhibitor pexidartinib reduces T cell
infiltration into the skin and alleviates cognitive impairment in a
cGVHD mouse model, with relevant mechanisms validated in
preclinical animal experiments (41). Chemokine biomarkers are a
group of small-molecule cytokines or signaling proteins secreted by
cells (42), and they are particularly important in GVHD diagnosis
(43). Plasma levels of chemokine ligand 15 (CCL15) are elevated in
c¢GVHD patients and correlate with NRM. This association was cross-
validated using animal models and single-center human plasma
samples (44), providing a new direction for cGVHD diagnosis.

3.2.2 Predictive biomarkers

As  measurable indicators reflecting the underlying
pathophysiological processes of diseases, predictive biomarkers hold
critical value in predicting disease progression and assessing dynamic

evolution (45). C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C
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motif chemokine ligand 10 (CXCL10) regulate immunopathological
processes via the C-X-C chemokine receptor 3 (CXCR3). Early post-
transplant serum CXCL9 levels are positively correlated with cGVHD
severity, and this correlation is modulated by single-nucleotide
polymorphisms (SNPs) in CXCR3 ligand genes—this finding was
confirmed by multicenter cohort analysis (46). The predictive value of
soluble ST2 is time-dependent: on post-transplant day 7, it can predict
severe aGVHD, with an area under the curve (AUC) of 0.8125, an
optimal cut-off value of 2,363 pg/mL, a sensitivity of 83.3%, and a
specificity of 75.0%; on day 14, its predictive efficacy for gastrointestinal
aGVHD reaches a peak, showing an AUC of 0.8007, a cut-off value of
3,419 pg/mL, a sensitivity of 81.8%, and a specificity of 82.1%; and on
day 21, its predictive accuracy for overall aGVHD improves, with an
AUC 0f 0.7092, a cut-off value of 3,464 pg/mL, a sensitivity of 65.0%,
and a specificity of 80.0%. These time-dependent characteristics were
derived from single-center time-series measurements. These time-
dependent characteristics were derived from single-center time-series
measurements (47), suggesting that dynamic monitoring is required in
clinical practice to enhance predictive accuracy. Combined detection of
effector CD4* conventional T cells (Tconv) and CXCL9 on post-
transplant day 28 can predict aGVHD, and this prediction model has
been jointly validated using multicenter samples (48), providing a
feasible tool for early risk stratification of aGVHD.

3.2.3 Prognostic biomarkers

This category of biomarkers is used to estimate the expected
disease course in patients with clinically significant conditions (49).
Tumor necrosis factor receptor 1 (TNFR1), a member of the TNF
receptor superfamily, is widely expressed on cell surfaces and plays
important roles in anti-tumor activity and apoptosis regulation (50).
Its plasma levels are elevated in aGVHD patients, and the AUC of
TNFR1 at aGVHD onset is 0.71—relevant data were obtained from
single-center multi-time-point detection analyses (51).

3.2.4 Response biomarkers

This category of biomarkers is used to assess the efficacy of GVHD
treatment. BAFF levels increase after cGVHD onset, and it enhances
B-cell receptor (BCR) reactivity by upregulating NOTCH2 expression.
Changes in BAFF levels can reflect treatment response in cGVHD: the
mechanistic component was elucidated using animal models, and
clinical relevance was established based on correlation analysis between
BAFF levels and disease manifestations in single-center cGVHD
patients (52). Syk inhibitors can inhibit B-cell proliferation in cGVHD
patients, and BAFF levels are positively correlated with BCR signaling
pathway activity, suggesting that BAFF may serve as a potential response
biomarker for cGVHD treatment. This hypothesis is currently
supported by single-center mechanistic exploration studies (53).

3.2.5 Risk biomarkers

This category of biomarkers is used to predict the risk of GVHD
development. Osteopontin (OPN) exacerbates tissue fibrosis by
promoting epithelial-mesenchymal transition (EMT). Its plasma levels
are upregulated in ¢cGVHD patients, and the biomarker panel
consisting of OPN, ST2, CXCL9, and matrix metalloproteinase 3
(MMP3) achieves an AUC of 0.89 for distinguishing cGVHD in the
validation cohort. Its value in risk stratification has been validated in
multicenter cohorts (54) (see Table 1).
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3.3 Molecular characteristic perspective

3.3.1 Protein biomarkers

Protein biomarkers play an indispensable role in disease
diagnosis and assessment of disease severity (55), and they can
serve as potential targets for drug development (56) (Figure 3).
Interleukin-2 receptor (IL-2R) is upregulated due to donor T cell
activation in GVHD, and monitoring its expression levels can
assist in the early diagnosis of aGVHD (57). Takehitolmado et al.
conducted preclinical studies in a GVHD mouse model and
found that hepatocyte growth factor (HGF) gene transfection
improves mouse survival and alleviates intestinal and thymic
epithelial cell damage—this protective effect is hypothesized to
be associated with the anti-apoptotic biological properties of
HGF (58). HGF alleviates intestinal epithelial damage via anti-
apoptotic effects, and its serum levels are elevated in aGVHD
patients—based on single-center small-sample serum level
detection (59). Extracellular vesicles (EVs) are secreted by
various cell types and play a critical role in the secretion of
soluble factors such as cytokines, growth factors, chemokines,
and hormones (60). They have emerged as potential novel
biomarkers for multiple diseases, including aGVHD (61). Human
mesenchymal stem cell-derived exosomes alleviate aGVHD by
regulating the miR-16-5p/activating transcription factor 6
(ATF6)/C/EBP  homologous (CHOP)
mechanism has been confirmed by in vitro cellular experiments

protein axis—this

and animal models (62).

3.3.2 Transcriptomic biomarkers

The core of this category of biomarkers is microRNAs
(miRNAs)—a class of non-coding single-stranded RNA molecules
encoded by endogenous genes (63). miRNA-155 is upregulated in
effector T cells of aGVHD animal models (64), and inhibiting its
expression reduces aGVHD severity. Relevant mechanistic exploration
was conducted using preclinical animal models (65). miRNAs activate
Toll-like receptors 7/8 (TLR7/8) in target cells via endocytosis, thereby
inducing dendritic cell maturation and donor T cell proliferation. The
conclusion that this pathway is associated with target organ damage
in aGVHD was derived from pathway exploration in animal
models (6).

3.3.3 Metabolomic biomarkers

Metabolomic biomarkers are small-molecule metabolites
produced by bodily metabolic activities, including amino acids,
sugars, lipids, nucleotides, and their derivatives (66). The serum
stearic acid/palmitic acid (SA/PA) ratio decreases on post-transplant
day 7, which can diagnose grade II-IV aGVHD. Its efficacy in
predicting aGVHD prognosis has been validated via multicenter
metabolomic analysis (67), demonstrating potential for clinical
application. The gut microbiota is a complex and important
microecosystem in the human body, and it has been confirmed to
participate in immune system development and influence host
susceptibility to aGVHD (68, 69). Butyrate, a metabolite of the gut
microbiota, exerts a protective effect on GVHD target organs—this
protective effect was confirmed in animal models (70). In human
samples, only an association between gut microbiota composition and
MHC-II expression in intestinal epithelial cells has been observed,
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TABLE 1 Classification table of current mainstream GVHD biomarkers.
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Type of Acute graft-versus-host disease Chronic graft-versus-host disease
biomarker e : e
Type of Clinical significance Type of biomarker Clinical significance
biomarker
Diagnostic Skins Elafin (93) Produced by skin keratinocytes CXCL9 (94) Exacerbates local immune
biomarker elevate at the onset of cutaneous CCL17 (95) responses in the skin by
aGVHD chemotaxis of immune cells,
leading to skin tissue damage.
Gastrointestinal Reg3a (96) Elevated concentrations in patients CD34 (98) Concentration correlates with
tract TIM3 (97) with intestinal aGVHD gastrointestinal cGVHD, aids in
diagnosis
Whole body/ IL2R (99) Closely related to immune SsBAFF (102) All of these levels are influenced by
plasma HGE (100) activation and inflammatory ST2 (103) a variety of factors and the
IL-8 (64) TNFR-1 (65) response. CXCL9 (54) combined application of aids in
Tregs (101) OPN (103) the diagnosis of cGVHD.
Th17 (13) CXCL10 (103) CCL19 (44)
MMP 3(103)
Pulmonary MMP3 (104) Not yet widely used and needs to / /
be diagnosed in combination with
other markers.
Predictive Whole body/ ST2 (105) ST2 and Reg3a levels are usually ST2 (103) Predicting treatment resistance or
biomarker plasma Reg3a (105) elevated during exacerbations CXCL9 (103) disease progression.
Reactive Gastrointestinal REG3a (106) Concentration changes reflect SsBAFF (107) Treatment response assessment
biomarker tract steroid resistance 1L-10 (76)
Whole body/ TIM3 (108) Dynamic changes in their levels TNF-a (113) Reflecting the immune
plasma ST2 (109) reflect whether T cell activation is ST2 (114) inflammatory state in patients with
TNEFR1 (110) effectively regulated or not. chronic GVHD
IL-2R (111)
Tregs (112)
Th17 (112)
Prognostic Gastrointestinal REG3a (115) High concentration associated MMP9 (116) Predicting disease progression.
biomarker tract with 1-year non-recurrent Reg3a (117)
mortality rate.
Whole body/ ST2 (115) 14-day post-transplantation level CD163 (118) Associated with moderate/severe
plasma predicts 6-month mortality. ST2(119) c¢GVHD progression.
CXCL9 (120)
Risk biomarker Whole body/ ST2(115) Early post-transplant elevations Reg3a (117) CXCL10 Potential value in predicting the
plasma REG3a (115) suggest high risk and high (121) risk of developing chronic GVHD.
concentrations suggest the risk of ST2 (103)
treatment failure MMP3 (121)
CXCL9 (120)
OPN (103)
Novel biomarker Whole body/ MiRNA (122) Assessing severity and trends in IgG glycosylation (124) The different levels of immune
plasma Extracellular vesicles aGVHD miRNA (125) regulation, gene expression
(EVs) (123) EVs (126) regulation, and intercellular
communication (EVs),
respectively, provide new
perspectives for understanding the
pathological process of cGVHD.
Gastrointestinal Gut microflora (127) Flora imbalance can further Gut microflora (128) Based on the results of gut
tract increase the risk of infection. microflora testing, targeted
treatments are possible.
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"o Microbial flora o
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FIGURE 3

Multi-view classification of GVHD biomarkers. This figure integrates the classification of GVHD biomarkers from three perspectives: pathophysiological
mechanisms, clinical scenarios, and molecular characterization. The pathophysiological mechanism perspective covers immunomodulatory,
inflammation-driven, and tissue damage biomarkers; the clinical application scenario perspective is categorized into diagnostic, prognostic, response,
risk, and predictive biomarkers; and the molecular characterization perspective includes metabolomics, transcriptomics, and protein biomarkers. The
classification of different perspectives intersects with each other, which comprehensively demonstrates the diversity of GVHD biomarkers and helps to
understand their different roles in the diagnosis and treatment of the disease. Created with BioGDP.com (10).

with relevant analyses derived from an integrated study combining  biomarker for cutaneous aGVHD, elastase exhibits variations in

animal models and single-center microbiota research (71). plasma level cutoffs and diagnostic efficacy across different studies due
to differences in donor characteristics and conditioning regimens;

furthermore, the small sample sizes in these studies result in
4 Challenges to basic research and
clinical application of GVHD
biomarkers

insufficient stability of the findings. Consequently, further validation
and optimization of biomarker combinations are necessary to enhance
the accuracy of diagnostic and prognostic evaluations.

4.1 Specificity and sensitivity of biomarkers
4.2 Dynamics and time dependence of
Despite the identification of numerous potential biomarkers for ~ biomarkers
GVHD, their specificity and sensitivity remain inadequate for clinical

application (72) (Figure 4). Although TNF-a is elevated in the serum GVHD is characterized by a dynamic pathological process, where

of patients with aGVHD, it is also highly expressed in other
inflammatory conditions, such as post-transplant sepsis, and thus
cannot be used alone to distinguish aGVHD (73). As a candidate
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biomarker expression levels fluctuate over time.
Consequently, a single biomarker assessment may not adequately
capture disease progression and treatment response, as it reflects only
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a specific temporal snapshot and fails to encompass the disease’s  and treatment experience both prior to and following transplantation
dynamic nature. The predictive value of soluble ST2 is time-  may influence biomarker expression levels (75). The degree of donor-
dependent; relying solely on detection at a single time point easily ~ recipient human leukocyte antigen (HLA) matching influences the
leads to missed identification of specific organ involvement or  expression of C-X-C motif CXCL9. Variations in conditioning
misjudgment of disease severity. REG3a is elevated during the onset  regimens alter the serum levels of HGF: patients who receive total
of gastrointestinal aGVHD and decreases following effective  body irradiation (TBI) have higher HGF levels than those undergoing
treatment. The lack of dynamic monitoring for REG3a may resultin ~ chemotherapy-based conditioning. Notably, HGF levels show no
missed early intervention windows or incorrect assessment of  direct correlation with the incidence of aGVHD, which can easily
treatment response. To more accurately assess the status of GVHD, it interfere with risk assessment. Additionally, patients’ underlying
is imperative to establish a dynamic monitoring system capable of  diseases can increase OPN levels, weakening the correlation between
real-time tracking of biomarker fluctuations and generating OPN and the degree of fibrosis in ¢cGVHD. Therefore, when
continuous data. Integrating these data with clinical symptoms and ~ developing personalized biomarker testing protocols, these individual
treatment protocols for comprehensive evaluation can enhance  differences must be fully considered.
physicians’ understanding of disease evolution (74), facilitate timely
adjustments to therapeutic strategies, and ultimately improve
treatment efficacy and patient prognosis. 4 4 Clinical validation and standardization
of biomarkers

4.3 Individual differences and Numerous potential biomarkers for GVHD remain in the
hete rogeneity of biomarkers research phase and have not yet undergone extensive clinical
validation (76). Although exosomes have emerged as novel

Significant individual differences and heterogeneity among  biomarkers for aGVHD, their miRNA expression profiles associated
patients with GVHD present challenges for biomarker research and ~ with the disease have only been validated in single-center small-
its applications. Variations in immune response, genetic background,  sample studies, and no multicenter validation has been conducted.

The applications of mach
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FIGURE 4

GVHD Biomarker Integration Pathway Advocacy. This figure presents the integration path of GVHD biomarkers. Multi-omics joint analysis integrates
genomics, transcriptomics, and other multi-omics data to comprehensively analyze the pathogenesis; machine learning and artificial intelligence are
used to analyze the biomarker data, mine potential markers, and monitor their dynamic changes; clinical and basic research are closely integrated to
validate the validity and feasibility of the biomarkers and to promote the translation of the results; and a standardized classification system is established
to unify the testing methods and standards and to improve the clinical application value. These paths provide a direction for solving the current
challenges of biomarker research. Created with BioGDP.com (10).

Frontiers in Medicine 08 frontiersin.org


https://doi.org/10.3389/fmed.2025.1690221
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://BioGDP.com

Yu et al.

Protein biomarkers are commonly detected using enzyme-linked
immunosorbent assay (ELISA), while metabolomic biomarkers rely
on mass spectrometry (MS) for detection. Differences in these
technical platforms result in variations in clinical accessibility of these
biomarkers. It is imperative to establish standardized testing protocols
and validation procedures to enhance the clinical applicability of
these biomarkers (77).

5 Suggested integration pathways for
GVHD biomarkers

In basic research and practical clinical applications, it is not
difficult to find that the three classification methods of GVHD
biomarkers based on different perspectives have various limitations:

The classification of GVHD biomarkers
pathophysiological mechanisms is grounded in scientific and

according to

theoretical principles; however, it presents certain limitations. A single
marker, such as ST2, may be involved in multiple pathways, resulting
in ambiguous classification (78). Various biomarker types interact and
exert cross-influences (79), such as inflammatory factors impacting
tissue damage and immune regulation. Focusing on a single marker
while neglecting its synergistic effects and dynamic changes within the
pathological process fails to fully capture the complex pathological
nature of GVHD.

Biomarkers for GVHD, when considered from the perspective of
clinical application scenarios, hold significant potential in the realms
of diagnosis, prediction, prognosis, and the assessment of response
and risk. However, they encounter challenges in practical
implementation. The functionality of these biomarkers may vary
throughout the disease course; initially, they may enhance immune
response and disease progression, thereby aiding in diagnosis. In later
stages, they may contribute to immune homeostasis or facilitate tissue
repair, thus aiding in the prediction of patient survival (80),
demonstrating their dual efficacy as biomarkers. For instance, the
levels of BAFF may be influenced by the stage of the disease,
therapeutic interventions, and other immunological factors, with its
predictive value and risk assessment potentially evolving over time.

There are differences in the technology platforms required for the
detection of GVHD biomarkers based on molecular characterization.
For example, protein-based markers are commonly detected using
ELISA (81), whereas metabolomic markers mostly rely on mass
spectrometry (82). This dependence on technological platforms leads
to differences in the clinical accessibility of different markers and
affects their widespread use.

5.1 Joint multi-omics analysis

Joint multi-omics analysis involves the integration and
examination of genomics, transcriptomics, proteomics, metabolomics,
and other multi-omics data (83). An allo-HSCT cohort encompassing
subgroups of aGVHD, cGVHD, and non-GVHD was selected, and
genomic data, transcriptomic data, proteomic data, and metabolomic
data were collected simultaneously from this cohort (84). After
processing the data using batch correction methods, core variables
were screened via LASSO regression, and a correlation network was
constructed using weighted gene co-expression network analysis
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(WGCNA). Finally, the efficacy of the integrated panel was validated
in independent multicenter cohorts to ensure its ability to distinguish
between GVHD and non-GVHD, as well as to identify different target
organ involvement scenarios. This work aims to further advance the
clinical pilot application of the panel. This approach enables a
comprehensive understanding of the pathogenesis of GVHD at
various levels and facilitates the identification of additional potential
biomarkers (85). Furthermore, combined multi-omics analysis can
uncover the interrelationships and synergistic effects among different
markers, thereby providing a theoretical foundation for the
development of a standardized biomarker classification system (85).

5.2 Applications of machine learning and
artificial intelligence

Machine learning and artificial intelligence technologies are
increasingly employed in biomarker research. Through the
application of machine learning algorithms, extensive biomarker
datasets can be analyzed and mined to identify potential
biomarkers (86). For instance, a study utilized machine learning
algorithms to analyze TCR sequencing data, thereby revealing the
dynamic changes in T cell clones of varying grades in GVHD
patients (48). With biomarker data and clinical indicators from
multicenter cohorts used as input variables, a logistic regression
algorithm was employed to construct the model, which outputs
GVHD development risk scores and treatment response
probabilities. Following this, the model was validated in multiple
independent centers, and risk score thresholds were set to guide
the formulation of clear decisions during the clinical translation
phase. It realizes the transformation from biomarkers to
individualized treatment decisions through machine learning,
providing a new paradigm for precision management of
aGVHD (87).

5.3 Close integration of clinical and basic
research

The integration of clinical and basic research is crucial for
enhancing the clinical applicability of biomarkers (88). Clinical
research serves to verify the validity and feasibility of biomarkers in
practical settings, while basic research offers theoretical support for
their discovery and application. Mechanisms of biomarkers were
validated using cGVHD mouse models: BAFF regulates B cell
activation, Gal-3 affects T cell cytotoxicity via the NFAT signaling
pathway (88). Meanwhile, the levels of corresponding biomarkers were
measured in clinical cohorts to confirm their correlation coefficients
with disease activity. Furthermore, close integration of clinical and
basic research facilitates the translational application of these
biomarkers and accelerates the clinical translation of research findings.

5.4 Establishment of a standardized
biomarker classification system

Establishing a standardized biomarker classification system is
essential for enhancing the clinical utility of biomarkers (89). The
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MAGIC consortium has developed a biomarker-based classification
system for evaluating the severity of aGVHD (90).

Inclusion thresholds for various types of biomarkers should
be defined: for example, inflammation-driven biomarkers need
to be demonstrated to have a correlation coefficient of no less
than 0.5 with GVHD inflammatory indicators in at least two
multicenter cohorts, while diagnostic biomarkers should have an
AUC of no less than 0.75 when detected alone. Unified technical
protocols for detection should be established: ELISA should
be adopted for protein biomarkers, and standardized mass
spectrometry parameters should be used for metabolomic
biomarkers. Application guidelines should be developed based on
clinical scenarios; for instance, the diagnosis of gastrointestinal
aGVHD requires combined detection of REG3waand ST2.
Furthermore, a standardized biomarker classification system
should consider the interrelationships and synergistic effects
between different biomarkers to enhance the clinical utility of
these biomarkers.

6 Discussion on current standard
protocols for the clinical application
of biomarkers

Currently, despite significant progress in the discovery and
validation of biomarkers, there remains a lack of widely
recognized and uniformly applied standardized clinical practice
guidelines for the use of biomarkers in the management of
GVHD following allo-HSCT. A variety of promising biomarkers
(91)—such as ST2 and REG3a for GVHD, and CXCL9 and
soluble BAFF for cGVHD—have been validated in at least two
independent cohorts via large-scale proteomics and reproducible
detection methods. However, consensus has not been reached on
key clinical parameters, including optimal detection time points,
unified cut-off values, and standards for combining biomarkers
with clinical indicators. This has hindered their integration into
routine standardized clinical practice (92).

Currently, in clinical practice, the application of biomarkers
remains primarily in the exploratory and experimental phase rather
than in standardized use. For instance, patients with standard-risk
aGVHD are stratified to receive treatment with sirolimus or
prednisone; some centers continuously monitor ST2 to assess
treatment response in steroid-refractory aGVHD. Nevertheless, such
practices are limited to specific clinical trials or single-center
protocols, lacking multi-institutional validation and regulatory
approval (76).

Establishing standardized clinical practice guidelines for
biomarker use requires prioritizing prospective, multicenter
studies to address existing gaps. These studies should focus on
validating well-established biomarkers to develop standardized
protocols—including optimal sampling timings days 7-14 post-
allo-HSCT for aGVHD risk stratification and day 100 post-allo-
HSCT for ¢cGVHD screening, clinically meaningful cut-off
values, and algorithms that combine biomarkers with clinical
assessments. Maintaining consistent consensus standards for
biomarker identification is crucial for translating promising
into

biomarkers reproducible, widely applicable clinical
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standards. This will facilitate improved risk stratification,
treatment decision-making, and post-transplant outcomes.

7 Conclusion

This review systematically examines the current state of research
on GVHD biomarkers, including their classification systems and
associated challenges. The analysis encompasses multiple dimensions,
such as pathophysiological mechanisms, clinical application scenarios,
and molecular properties, highlighting the fragmentation within the
existing biomarker classification system and underscoring the urgent
need for its integration. Furthermore, the paper identifies challenges
related to specificity, sensitivity, dynamic changes, individual
differences, and clinical validation in current research. It proposes
feasible approaches, including multi-omics joint analysis, the
application of machine learning and artificial intelligence, the
integration of clinical and basic research, and the establishment of a
standardized classification system.

Despite notable advancements in the investigation of GVHD
biomarkers, their clinical implementation continues to encounter
several obstacles. Future research should focus on the integration
and analysis of multi-omics data in conjunction with machine
learning and artificial intelligence technologies to enhance the
specificity and sensitivity of these biomarkers. Furthermore, large-
scale clinical validation and the development of standardized
assays are essential for advancing the clinical application of
biomarkers. A limitation of this review is that, although an
integrated classification framework was proposed, specific
implementation and validation data were not provided. Future
research should build upon this foundation, further refine the
classification criteria, and validate their efficacy through
multicenter clinical studies to offer a more reliable basis for the
precise diagnosis and treatment of GVHD.
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