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Machine learning integration
iIdentifying an eight-gene
diagnostic signature for acute
mountain sickness
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Xiaofeng Wang'* and Rui Wang'*
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Background: Acute mountain sickness (AMS) is highly prevalent at high altitudes,
with estimated incidence rates ranging from 25 to 90%. However, current AMS
diagnosis primarily relies on self-reported questionnaires, highlighting the need
for reliable biomarkers. Thus, we aimed to establish a diagnostic model for AMS.
Methods: We applied scRNA-seq (n = 10) and bulk RNA-seq (n = 192) to identify
AMS-associated genes. Then, we constructed AMS diagnostic model by machine
learning. We also assessed the expression levels of AMS-related gene signatures
using Quantitative PCR. Finally, we explored the mechanism of AMS-associated
signatures by epigenetic analyses and KEGG pathway enrichment.

Results: We analyzed cellular heterogeneity through scRNA-seq data, revealing
significant enrichment of myeloid (MD) and platelet (PLT) cells during AMS
progression. Subsequently, we identified 526 differentially expressed genes
(DEGs) associated with the progression of AMS using pseudobulk differential
expression analysis on the MD and PLT subsets between the AMS and control
groups. We further screened for AMS-associated genes using bulk RNA-seq
based differential analysis and WGNCA. Finally, we screened 12 AMS-related
genes using scRNA-seq and bulk-RNA-seq data. These genes were utilized as
features across 113 distinct combinations of machine learning models to develop
an AMS diagnostic model. The model of Stepglm[both] + NaiveBayes (ATP6VOC,
BCL2A1, CD52, CSTA, GZMA, HINT1, PFDNS5, and RNF11) demonstrated optimal
diagnostic accuracy. It obtained an AUC of 0.948 on the training cohort (n = 160)
and maintained robust performance on external validation cohorts, with AUCs of
0.818 (GSE103940 = 22) and 0.760 (GSE75665 = 10). Using qPCR, we confirmed
that the mRNA levels of the model genes were aligned with the transcriptome
data (p < 0.05). Based on the epigenetic analyses, we found the AMS signatures
might regulate by the histone and m6A methylation. Furthermore, pathway
analysis revealed significant enrichment of these signature genes in immune-
related signaling pathways and oxidative stress (adjusted p < 0.05).

Conclusion: Using machine learning, we identified and validated a minimal
blood biomarker signature for AMS diagnosis. This approach offered a practical
approach for the early detection of AMS, especially in resource-limited
populations residing in high-altitude regions.
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Introduction

Annually, over 40 million individuals visit high-altitude areas
(>2,500 m), and approximately 140 million people permanently reside
in such regions (1). This accessibility is largely due to the expansion of
modern transportation infrastructure. Acute mountain sickness
(AMS) is the most prevalent altitude-related condition, with estimated
incidence rates ranging from 25 to 90% (2, 3). However, the diagnosis
of AMS primarily relies on subjective scoring systems, which can
result in misdiagnosis and delayed treatment (4). Therefore, there is
an urgent need to develop an objective diagnostic method to enhance
the accuracy and timeliness of AMS diagnosis.

The diagnosis of AMS currently relies on the subjective
symptom scores from the internationally recognized Lake Louise
Scoring (LLS) system (5). However, dependence on subjective
symptoms makes diagnosis susceptible to interference from
multiple factors. Although researches have explored using
objective indicators (6, 7) (e.g., physiological, biochemical,
psychological, genetic, altitude, and geographic factors) to support
AMS diagnosis, these methods generally require professional
equipment and the participation of experienced physicians,
in high-altitude
environments. Recent advances demonstrated that applying high-

resulting in implementation difficulties
throughput sequencing data significantly enhanced precision
oncology (8, 9). Notably, integrated multi-omics analyses
developed robust prognostic signatures across malignancies (e.g.,
glioma, pancreatic cancer) (10, 11). Ensemble machine learning
frameworks outperform conventional indicators and biomarkers
(mean C-index > 0.7; AUC > 0.78), identified clinically actionable
signatures to diagnose diseases. Together, previous studies
established a methodological basis for developing an accurate
AMS diagnostic model through the combined application of
omics data and machine learning techniques.

In this study, we elucidated critical pathogenic mediators driving
AMS progression, through systematic integration of scRNA-seq and
bulk RNA-seq. Subsequently, we constructed a robust diagnostic
signature for AMS using the machine learning methods. Finally,
we applied two independent cohort datasets to validate the AMS
signature. This study provided a practical model for AMS diagnoses
in the resource-limited high-altitude regions.

Materials and methods
Sample collection

All subjects of training cohort transported to Thirty-li Barracks
Medical Station (altitude of 3,700 m) from Chengdu (altitude of
500 m) via air and ground transportation (the total journey lasted
2 days). Acute Mountain Sickness (AMS) was assessed 6 h after
passive ascent to an altitude of 3,700 m according to the 2018 Lake
Louise Scoring System (LLS), with AMS defined as headache
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accompanied by a total LLS score >3. To perform scRNA-seq and
bulk RNA-seq, we isolated peripheral blood mononuclear cells
(PBMCs) from patients with AMS and healthy volunteers. Detailed
clinical characteristics of all participants were summarized in
Table 1. We performed scRNA-seq on five AMS and five healthy
PBMC samples. Bulk RNA-seq was also conducted on corresponding
samples from 80 AMS patients and 80 healthy controls.
Furthermore, 32 Bulk RNA-seq samples from the GSE103940 and
GSE6565 datasets were downloaded to validate the AMS
diagnostic model.

Analysis of single-cell transcriptome
profiles

The PBMC samples were processed using established protocols (12,
13). The single cells (>90% viability) were isolated on the 10x
Chromium platform (10x Genomics) to generate raw data. The count
matrix of features was generated by CellRanger (v8.0.0), standardized
using the SCTransform method (v0.3.5), and batch-integrated via
Harmony (v0.1.1) (13). The following quality control criteria were
applied using Seurat (v4.0.2): cells with >500 detected genes, <4,000
detected genes, and <10% mitochondrial gene content (14). Canonical
markers were used to annotate major cell types (15). Finally,
pseudobulk differential expression analysis employed thresholds of
[log2(fold change)| > 0.2 and adjusted p < 0.05 to identify the
DEGs (16).

Identification of AMS-associated genes
using bulk RNA-seq

We performed bulk RNA-seq on 96 AMS patients and 96
healthy controls to identify genes related to AMS. First, sequencing
libraries were prepared using high-quality RNA (RIN > 7.0) and
sequenced on the Illumina platform. Next, the count matrix was
obtained by STAR software (v2.7.2a) (17) and htseq-count (v2.05)
(18). Finally, DEGs were identified by DESeq2 (v1.40.2) (19) with
the cutoff of adjusted p <0.05 and |log2(fold change)|> 0.5
(20, 21).

We also identified genes associated with AMS using WGCNA
(20). Modules were constructed using topological overlap matrix
(TOM)-based dissimilarity with dynamic tree cutting, applying the
p=16, minModuleSize = 50,
mergeCutHeight = 0.15, and deepSplit=2. The module most

following parameters:
significantly correlated with AMS was then identified based on the
highest absolute correlation coeflicient and p < 0.05 (20). The genes in
this module were designated as putative AMS-associated genes.
Finally, genes shared across scRNA-seq data, differentially expressed
genes, and WGCNA modules were selected as candidate genes related
with AMS.
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TABLE 1 The clinical characteristics of samples.

Age (year) BMI (kg/m?) SpO2(%) Altitude (m) Timing of blood draws
AMS1 4 25 23.7 98 3,700 2 days Within 24 h of diagnosis
AMS2 5 26 21.3 97 3,700 2 days Within 24 h of diagnosis
AMS3 3 28 234 97 3,700 2 days Within 24 h of diagnosis
AMS4 5 25 21 95 3,700 2 days Within 24 h of diagnosis
AMS5 9 25 20.5 97 3,700 2 days Within 24 h of diagnosis
AMS6 7 24 19.9 98 3,700 2 days Within 24 h of diagnosis
AMS7 6 27 21.3 97 3,700 2 days Within 24 h of diagnosis
AMS8 3 25 226 97 3,700 2 days Within 24 h of diagnosis
AMS9 3 25 227 95 3,700 2 days Within 24 h of diagnosis
AMSI10 4 25 20.9 96 3,700 2 days Within 24 h of diagnosis
AMSI11 5 26 249 96 3,700 2 days Within 24 h of diagnosis
AMSI12 5 29 227 98 3,700 2 days Within 24 h of diagnosis
AMS13 4 26 24.4 97 3,700 2 days Within 24 h of diagnosis
AMS14 4 25 22.8 96 3,700 2 days Within 24 h of diagnosis
AMS15 8 27 20.1 99 3,700 2 days Within 24 h of diagnosis
AMS16 3 26 21.2 97 3,700 2 days Within 24 h of diagnosis
AMS17 6 26 232 99 3,700 2 days Within 24 h of diagnosis
AMSI18 6 26 20.4 97 3,700 2 days Within 24 h of diagnosis
AMSI19 5 25 239 99 3,700 2 days Within 24 h of diagnosis
AMS20 3 27 21.6 96 3,700 2 days Within 24 h of diagnosis
AMS21 5 26 227 97 3,700 2 days Within 24 h of diagnosis
AMS22 3 27 20.6 98 3,700 2 days Within 24 h of diagnosis
AMS23 4 25 239 99 3,700 2 days Within 24 h of diagnosis
AMS24 5 26 21.7 97 3,700 2 days Within 24 h of diagnosis
AMS25 5 27 21.8 96 3,700 2 days Within 24 h of diagnosis
AMS26 3 27 21.3 97 3,700 2 days Within 24 h of diagnosis
AMS27 5 27 20.2 95 3,700 2 days Within 24 h of diagnosis
AMS28 3 24 21 97 3,700 2 days Within 24 h of diagnosis
AMS29 6 28 21.3 96 3,700 2 days Within 24 h of diagnosis
AMS30 3 25 23.8 98 3,700 2 days Within 24 h of diagnosis
AMS31 6 26 23.1 97 3,700 2 days Within 24 h of diagnosis
AMS32 3 27 20.3 96 3,700 2 days Within 24 h of diagnosis

(Continued)
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TABLE 1 (Continued)

Age (year) SpO2(%) Altitude (m) Timing of blood draws
AMS33 26 224 97 3,700 2 days Within 24 h of diagnosis
AMS34 26 21.5 95 3,700 2 days Within 24 h of diagnosis
AMS35 25 19 96 3,700 2 days Within 24 h of diagnosis
AMS36 24 21 99 3,700 2 days Within 24 h of diagnosis
AMS37 23 22,5 98 3,700 2 days Within 24 h of diagnosis
AMS38 25 21.8 95 3,700 2 days Within 24 h of diagnosis
AMS39 28 20.7 96 3,700 2 days Within 24 h of diagnosis
AMS40 26 234 95 3,700 2 days Within 24 h of diagnosis
AMS41 27 212 95 3,700 2 days Within 24 h of diagnosis
AMS42 26 22 97 3,700 2 days Within 24 h of diagnosis
AMS43 28 21.5 96 3,700 2 days Within 24 h of diagnosis
AMS44 26 234 95 3,700 2 days Within 24 h of diagnosis
AMS45 28 20.9 98 3,700 2 days Within 24 h of diagnosis
AMS46 27 21.8 97 3,700 2 days Within 24 h of diagnosis
AMS47 25 25.8 99 3,700 2 days Within 24 h of diagnosis
AMS48 27 22.7 95 3,700 2 days Within 24 h of diagnosis
AMS49 26 21.7 99 3,700 2 days Within 24 h of diagnosis
AMS50 28 233 96 3,700 2 days Within 24 h of diagnosis
AMS51 24 222 96 3,700 2 days Within 24 h of diagnosis
AMS52 26 20.4 99 3,700 2 days Within 24 h of diagnosis
AMS53 25 21.6 96 3,700 2 days Within 24 h of diagnosis
AMS54 27 20.7 95 3,700 2 days Within 24 h of diagnosis
AMS55 25 23 95 3,700 2 days Within 24 h of diagnosis
AMS56 29 19.8 96 3,700 2 days Within 24 h of diagnosis
AMS57 26 214 99 3,700 2 days Within 24 h of diagnosis
AMS58 27 222 96 3,700 2 days Within 24 h of diagnosis
AMS59 27 21.4 96 3,700 2 days Within 24 h of diagnosis
AMS60 26 23.7 97 3,700 2 days Within 24 h of diagnosis
AMS61 27 215 96 3,700 2 days Within 24 h of diagnosis
AMS62 27 23.1 95 3,700 2 days Within 24 h of diagnosis
AMS63 24 253 97 3,700 2 days Within 24 h of diagnosis
AMS64 27 20.8 96 3,700 2 days Within 24 h of diagnosis
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TABLE 1 (Continued)

Age (year) BMI (kg/m?) SpO2(%) Altitude (m) Timing of blood draws
AMS65 27 19.8 95 3,700 2 days Within 24 h of diagnosis
AMS66 24 23.3 97 3,700 2 days Within 24 h of diagnosis
AMS67 26 215 98 3,700 2 days Within 24 h of diagnosis
AMS68 27 22.6 97 3,700 2 days Within 24 h of diagnosis
AMS69 27 21.2 99 3,700 2 days Within 24 h of diagnosis
AMS70 26 19.7 99 3,700 2 days Within 24 h of diagnosis
AMS71 27 24 99 3,700 2 days Within 24 h of diagnosis
AMS72 25 23.8 99 3,700 2 days Within 24 h of diagnosis
AMS73 26 19.3 97 3,700 2 days Within 24 h of diagnosis
AMS74 26 19.2 99 3,700 2 days Within 24 h of diagnosis
AMS75 28 20.9 98 3,700 2 days Within 24 h of diagnosis
AMS76 26 19.8 98 3,700 2 days Within 24 h of diagnosis
AMS77 26 23.8 95 3,700 2 days Within 24 h of diagnosis
AMS78 25 252 99 3,700 2 days Within 24 h of diagnosis
AMS79 26 232 96 3,700 2 days Within 24 h of diagnosis
AMS80 26 21.3 96 3,700 2 days Within 24 h of diagnosis
Controll 26 20.9 95 3,700 2 days Within 24 h of diagnosis
Control2 24 20.3 96 3,700 2 days Within 24 h of diagnosis
Control3 28 20.1 97 3,700 2 days Within 24 h of diagnosis
Control4 24 21.1 99 3,700 2 days Within 24 h of diagnosis
Control5 26 233 95 3,700 2 days Within 24 h of diagnosis
Control6 26 219 95 3,700 2 days Within 24 h of diagnosis
Control7 25 232 98 3,700 2 days Within 24 h of diagnosis
Control8 23 20.5 95 3,700 2 days Within 24 h of diagnosis
Control9 25 21.1 98 3,700 2 days Within 24 h of diagnosis
Control10 25 21.5 95 3,700 2 days Within 24 h of diagnosis
Control11 26 224 96 3,700 2 days Within 24 h of diagnosis
Control12 24 17.5 98 3,700 2 days Within 24 h of diagnosis
Control13 27 22.6 98 3,700 2 days Within 24 h of diagnosis
Control14 25 21.9 99 3,700 2 days Within 24 h of diagnosis
Controll5 25 212 96 3,700 2 days Within 24 h of diagnosis
Control16 26 222 96 3,700 2 days Within 24 h of diagnosis

(Continued)
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TABLE 1 (Continued)

Age (year) SpO2(%) Altitude (m) Timing of blood draws
Controll7 26 19.5 95 3,700 2 days Within 24 h of diagnosis
Control18 25 21.5 96 3,700 2 days Within 24 h of diagnosis
Control19 25 212 97 3,700 2 days Within 24 h of diagnosis
Control20 23 21.5 98 3,700 2 days Within 24 h of diagnosis
Control21 24 20.3 97 3,700 2 days Within 24 h of diagnosis
Control22 24 221 95 3,700 2 days Within 24 h of diagnosis
Control23 24 23 99 3,700 2 days Within 24 h of diagnosis
Control24 25 21.5 95 3,700 2 days Within 24 h of diagnosis
Control25 25 20.4 96 3,700 2 days Within 24 h of diagnosis
Control26 24 18.6 96 3,700 2 days Within 24 h of diagnosis
Control27 26 20 95 3,700 2 days Within 24 h of diagnosis
Control28 25 21.4 95 3,700 2 days Within 24 h of diagnosis
Control29 24 21 98 3,700 2 days Within 24 h of diagnosis
Control30 26 222 97 3,700 2 days Within 24 h of diagnosis
Control31 24 20.3 95 3,700 2 days Within 24 h of diagnosis
Control32 25 19.8 97 3,700 2 days Within 24 h of diagnosis
Control33 25 215 97 3,700 2 days Within 24 h of diagnosis
Control34 24 223 99 3,700 2 days Within 24 h of diagnosis
Control35 25 21 99 3,700 2 days Within 24 h of diagnosis
Control36 25 21.4 95 3,700 2 days Within 24 h of diagnosis
Control37 26 21.1 99 3,700 2 days Within 24 h of diagnosis
Control38 25 232 98 3,700 2 days Within 24 h of diagnosis
Control39 26 20.4 97 3,700 2 days Within 24 h of diagnosis
Control40 25 21.3 98 3,700 2 days Within 24 h of diagnosis
Control41 24 222 95 3,700 2 days Within 24 h of diagnosis
Control42 25 20.2 95 3,700 2 days Within 24 h of diagnosis
Control43 25 20.6 96 3,700 2 days Within 24 h of diagnosis
Control44 26 17.7 99 3,700 2 days Within 24 h of diagnosis
Control45 25 20.8 95 3,700 2 days Within 24 h of diagnosis
Control46 25 21.2 97 3,700 2 days Within 24 h of diagnosis
Control47 24 20 98 3,700 2 days Within 24 h of diagnosis
Control48 26 20.7 97 3,700 2 days Within 24 h of diagnosis
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TABLE 1 (Continued)

Age (year) BMI (kg/m?) SpO2(%) Altitude (m) Timing of blood draws
Control49 24 20.4 97 3,700 2 days Within 24 h of diagnosis
Control50 24 22.1 98 3,700 2 days Within 24 h of diagnosis
Control51 26 20.8 98 3,700 2 days Within 24 h of diagnosis
Control52 25 18.5 99 3,700 2 days Within 24 h of diagnosis
Control53 26 21.6 97 3,700 2 days Within 24 h of diagnosis
Control54 26 20.7 97 3,700 2 days Within 24 h of diagnosis
Control55 26 20.4 96 3,700 2 days Within 24 h of diagnosis
Control56 25 20.8 95 3,700 2 days Within 24 h of diagnosis
Control57 26 20.2 97 3,700 2 days Within 24 h of diagnosis
Control58 26 20.6 97 3,700 2 days Within 24 h of diagnosis
Control59 25 21.4 99 3,700 2 days Within 24 h of diagnosis
Control60 23 20 97 3,700 2 days Within 24 h of diagnosis
Control61 27 19.8 96 3,700 2 days Within 24 h of diagnosis
Control62 26 21.7 95 3,700 2 days Within 24 h of diagnosis
Control63 26 19.8 95 3,700 2 days Within 24 h of diagnosis
Control64 26 20.8 96 3,700 2 days Within 24 h of diagnosis
Control65 24 20.8 95 3,700 2 days Within 24 h of diagnosis
Control66 27 22.1 97 3,700 2 days Within 24 h of diagnosis
Control67 26 234 99 3,700 2 days Within 24 h of diagnosis
Control68 26 221 98 3,700 2 days Within 24 h of diagnosis
Control69 25 21 95 3,700 2 days Within 24 h of diagnosis
Control70 22 232 96 3,700 2 days Within 24 h of diagnosis
Control71 26 20.4 96 3,700 2 days Within 24 h of diagnosis
Control72 25 21.2 95 3,700 2 days Within 24 h of diagnosis
Control73 25 21 95 3,700 2 days Within 24 h of diagnosis
Control74 26 18.9 96 3,700 2 days Within 24 h of diagnosis
Control75 26 21 95 3,700 2 days Within 24 h of diagnosis
Control76 26 21 96 3,700 2 days Within 24 h of diagnosis
Control77 27 20.8 98 3,700 2 days Within 24 h of diagnosis
Control78 25 235 99 3,700 2 days Within 24 h of diagnosis
Control79 26 227 96 3,700 2 days Within 24 h of diagnosis
Control80 24 19.4 96 3,700 2 days Within 24 h of diagnosis
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Identification of the AMS diagnostic
signature using machine learning

We developed 113 diagnostic models for AMS based on
combinations of 10 machine-learning algorithms based on the
previous studies (8, 9). Subsequently, model performance was
evaluated on two independent datasets, GSE103940 and GSE75665,
employing the concordance index (C-index), confusion matrices,
Brier scores, and the Hosmer-Lemeshow test.

Validation of AMS-associated signatures

We evaluated the expression levels of model genes using
quantitative real-time PCR (qPCR) in six AMS and six control
samples, with each sample run in six technical replicates (21). Samples
were blinded during RNA processing and QPCR setup. The primers
were summarized in Supplementary Table S1. QPCR amplification was
performed under standardized cycling conditions: initial denaturation
at 95 °C for 3 min, followed by 40 cycles of denaturation at 95 °C for
10 s and annealing/extension at 60 °C for 30 s. For normalization, the
GAPDH served as the endogenous control. Finally, relative
quantification was performed using the comparative threshold cycle
(2724¢) method.

Identifying the mechanism of
AMS-associated signatures

To identify the upstream mechanisms of the AMS-associated
signature, we defined the AMS score as the average expression of eight
signature genes (ATP6VOC, BCL2A1, CD52, CSTA, GZMA, HINT],
PEDNS5, RNF11). Subsequently, we identified potential regulators
associated with this signature by calculating pairwise Spearman
correlation based on the AMS score. We then explored the
downstream mechanisms of the AMS signature using KEGG pathway
enrichment with the cutoff of adjusted p < 0.05.

Statistical analysis

We performed statistical analyses by R (v4.3.3). First, data
normality was assessed via the Shapiro-Wilk test and variance
homogeneity evaluated using Levene’s test prior to parametric testing.
Subsequently, unpaired two-tailed Student’s t-tests were applied to
comparisons satisfying these assumptions. Statistical significance was
defined as p value < 0.05.

Results

Identification of AMS related genes
through scRNA-seq

We generated a single-cell transcriptomic atlas consisting of
26,169 single cells derived from five AMS patients and five healthy
controls (Figure 1A). Subsequently, we applied unsupervised
clustering to identify 12 distinct clusters (Figure 1B). These clusters
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were then annotated into five major cell types (Figure 1B) using
canonical markers (Figure 1C). Based on cell proportion analysis,
we found that myeloid-derived (MD) cells and platelet (PLT) cells
were increased in AMS patients compared to healthy controls. This
increase indicated that MD and PLT cells played a critical role in the
progression of AMS. Consequently, to identify the potential candidates
associated with AMS, we screened for differentially expressed genes
(DEGs) in MD (Supplementary Table S2) and PLT cells
(Supplementary Table S3) between the AMS and control groups using
pseudobulk differential expression analysis.

Identification of AMS-associated genes by
differential gene expression analysis of bulk
RNA-Seq data

To improve the accuracy of identifying AMS-associated genes,
we first integrated our in-house AMS bulk RNA-seq dataset with data
from public repositories using the ComBat algorithm, resulting in a
consolidated dataset comprising 96 AMS samples and 96 controls
(Figure 2A). Subsequently, we performed differential expression
analysis on this integrated dataset to screen for AMS-related gene sets.
By applying predefined thresholds for DEGs (|log2 (fold change)| > 0.5
and adjusted p < 0.05), we identified 419 significantly differentially
expressed genes (Figure 2B; Supplementary Table S4). Additionally,
using the ssizeRNA package (v1.3.3) (22), we estimated a minimum
requirement of 69 samples to achieve 80% statistical power, given the
specified parameters (proportion of non-differentially expressed genes
7o = 0.98; fold change thresholds fold change = 1.4 or 1.5). The actual
cohort size of 96 exceeds this minimum, ensuring that the sampling
design provides sufficient power for robust detection of target DEGs
with reliable false discovery rate control.

Identification of AMS-associated genes by
WGCNA based on bulk RNA-Seq

To further screen AMS-related genes, we performed WGCNA
based on bulk RNA-seq data. This analysis identified three gene
co-expression modules based on module-trait relationships
(Figure 3A). The turquoise module exhibited a strong association with
the AMS group, using a cutoff of the highest absolute correlation
coefficient and p < 0.05 (Figure 3A). The genes in the turquoise
module were designated as candidate AMS-associated genes. Finally,
we identified the final set of candidate AMS-associated genes as the
intersection of genes derived from WGCNA, different gene expression
and scRNA-seq (Figure 3B; Supplementary Table S5).

Development, validation, and assessment
of the AMS diagnostic model

The 12 AMS related genes were screened via both scRNA-seq and
bulk RNA-seq analyses served as input features for 113 distinct
machine learning model combinations to construct a diagnostic
model for AMS. The models were trained on a cohort comprising 80
AMS patients and 80 controls. For external validation, datasets
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GSE103940 (10 AMS cases and 10 healthy controls) and GSE75665 (5
AMS cases and 5 healthy controls) were used. To assess performance,
model efficacy was quantified via the concordance index (C-index)
and the area under the curve (AUC) value (Figure 4A). Among the
113 combinations, the Stepglm[both] + NaiveBayes algorithm
achieved the highest mean C-index of 0.842 and an AUC of 0.948 in
the training cohort (Figure 4B). Furthermore, during external
validation, this algorithm maintained robust performance, with AUC
values of 0.818 (for GSE103940) and 0.760 (for GSE75665),
respectively (Figures 4C,D). The Brier scores for both training and
validation sets were below 0.25. Moreover, the Hosmer-Lemeshow test
p value was greater than 0.05 (Supplementary Table S6). Together,
these results suggested excellent model calibration. Model
performance was further evaluated using the confusion matrix
(Supplementary Figure S1) and standard metrics including accuracy,
precision, recall, and F1-score (Supplementary Table S7). Accuracy
reached 90% (training set), 81.8% (GSE103940), and 80% (GSE75665),
with all datasets achieving >80%. Similarly, recall (88.1, 88.9, 80.0%)
and F1-scores (all >80%) surpassed the 80% threshold consistently.
These results demonstrate low false negative rates and support the
utility  in screening. 'The final
Stepglm[both] + NaiveBayes model incorporated eight biomarker
genes: ATP6VOC, BCL2A1, CD52, CSTA, GZMA, HINTI, PFDNS5,
RNF11. Additionally, we confirmed the expression of these genes by

model’s early disease

qPCR (Supplementary Figure S2).
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Exploring the potential mechanism of AMS
associated signatures

To identify upstream of the
AMS-associated signature, we defined an AMS score based on the
average expression of eight signature genes (ATP6VOC, BCL2A1,
CD52, CSTA, GZMA, HINT1, PFDN5, RNF11). This AMS score
negatively correlated with the expression of two key epigenetic
regulators: the histone methylation regulator PRDM4 and the m6A
methylation regulator YTHDEF3 (Figure 5A). These results indicated
that AMS progression might be epigenetically regulated. Furthermore,

underlying mechanisms

pathway analysis revealed significant enrichment of these signature
genes in immune-related signaling pathways and oxidative stress
(adjusted p < 0.05) (Figure 5B).

Discussion

AMS is the most common disease encountered at high altitudes,
which typically occurs shortly after a rapid ascent to a hypoxic
environment. However, the diagnosis of AMS mainly depends on a
self-questionnaire, revealing the need for reliable biomarkers for AMS
(23). Therefore, early, rapid, and accurate diagnosis of AMS is essential
to effectively alleviate symptoms and prevent disease progression. In
this study, we established a robust diagnostic model through a
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FIGURE 2

Identification of AMS-Associated genes by differential gene expression analysis of bulk RNA-Seq Data. (A) We reduced non-biological technical batch
effects using the ComBat method. (B) The DEGs between the AMS and control groups (AMS = 96 and the control = 96) were visualized as a volcano
plot. Horizontal and vertical gray dotted lines indicated the threshold of [log2(fold change)| > 0.5 and adjusted p < 0.05. The Red (green) dots indicated
significantly upregulated (downregulated) genes. DEGs: the differentially expressed genes.
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FIGURE 3

Identification of AMS-Associated genes by WGCNA of bulk RNA-Seq Data. (A) The correlation of each module with the clinical trait was visualized as a
heatmap. The correlation coefficient and the p values are included in each cell. Each module was labeled with different colors. (B) Overlapping genes

were identified by multi-omics approaches.

WGCNA

computational framework integrating single-cell RNA sequencing
(scRNA-seq) and bulk RNA-seq data via machine
learning methodologies.

To identify genes associated with AMS, we employed an integrated
approach utilizing both bulk RNA-seq and single-cell RNA-seq
(scRNA-seq) data. Our initial characterization of the AMS immune
microenvironment revealed elevated levels of both myeloid-derived

Frontiers in Medicine 10

cells (MD) and platelet (PLT) activity compared to normal controls.
This finding aligns with recent peripheral blood scRNA-seq studies of
AMS (24). Myeloid cells, primarily neutrophils and monocytes/
macrophages, played a crucial role in immune defense and coagulation
homeostasis (25, 26). In the progress of AMS, these cells became
activated and mediate associated inflammatory responses (27, 28).
Similarly, platelets undergo significant activation upon rapid ascent to
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FIGURE 4
Development, validation, and assessment of the AMS Diagnostic Model. (A) The combination of machine learning predictive models calculated the
C-index for each model on the training set (n = 160) and the validation sets (GSE103940 = 22; GSE75665 = 10). (B—D) The ROC curves showed the
prediction accuracy of the diagnostic model in the training cohort (B), GSE103940 cohort (C), and GSE75665 cohort (D).

high altitude, characterized by elevated levels of the activation markers
CDG62P (P-selectin) and TXB, (thromboxane B,) (29, 30). This
activation promotes microthrombus formation and vasoconstriction,
thereby exacerbating AMS symptoms like headache and pulmonary
edema. Importantly, platelet activation levels have been shown to
be markedly higher in patients with high-altitude pulmonary edema
(31, 32). Given the central role of these cellular changes in AMS
pathophysiology, we sought to define a robust set of AMS-associated
genes from the DEGs among MD and PLT. To enhance the reliability
of the candidate gene set identified from the scRNA-seq analysis,
we performed additional screening using an independent bulk
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RNA-seq dataset. Together, we screened the AMS related genes for
establishing diagnostic by scRNA-seq and bulk RNA-seq data.

We constructed a machine learning model to predict AMS using
transcriptomic  data. After systematically quantifying 113
combinations of machine learning algorithms (33, 34), we identified
the Stepglm[both] + NaiveBayes diagnostic model as the best
performer. This model achieved outstanding accuracy, with an AUC
of 0.948 in the training cohort, and maintained clinical validity in
external validation (AUC = 0.818 and 0.760). Moreover, calibration
measures demonstrated robustness, featuring Brier scores below 0.25
and a Hosmer-Lemeshow p > 0.05 for both training and validation
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Exploring the potential mechanism of AMS associated signatures. (A) Spearman correlation of the expression of known epigenetic regulators with AMS
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associated signatures. The significantly enrichment pathways were identified by the cutoff of adj p < 0.05.
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sets. For model comparison, we systematically reviewed AMS
diagnostic models from the past 5 years, categorizing them into six
clinical,  physiological/biochemical,

groups: transcriptomic,

metabolomic, proteomic, and combined indicators
(Supplementary Table S8). While objective indicators (e.g., clinical
and physiological/biochemical) have been explored, they often require
specialized equipment and expert involvement, limiting practicality
in high-altitude settings. Although peripheral capillary oxygen
saturation (SpO,) shows promise as an early warning parameter,
significant individual variability precludes its use as a definitive
diagnostic criterion (35). Transcriptomics offers distinct advantages
in plateau research, supported by the mature application of portable
sequencers in field studies (36-38) and the demonstrated efficacy of
our machine learning framework for early disease diagnosis. However,
to enhance widespread adoption and ensure reliability, further large-
scale validation across multi-center settings is essential.

The diagnostic model identified eight key genes (ATP6VOC,
BCL2A1, CD52, CSTA, GZMA, HINT1, PFDN5, RNF11) implicated
in immune homeostasis, extracellular matrix (ECM) remodeling, and
signal transduction. Their expression profiles accurately reflect
pathophysiological alterations induced by high-altitude hypoxia. First,
the hypoxic environment disrupts immune homeostasis via a
synergistic network involving BCL2A1, CD52, and GZMA. BCL2A1
suppresses mitochondrial apoptosis, prolonging neutrophil and
monocyte survival and amplifying inflammation (39). CD52 regulates
T-cell activation and migration, while GZMA mediates cytotoxic
responses against damaged cells (40, 41). Together, they sustain
pathological immune responses, potentially relevant to interventions
such as transfusion therapy. Second, severe acute mountain sickness
(AMS) involves vascular basement membrane degradation and
endothelial barrier dysfunction, primarily mediated by ATP6V0C and
CSTA through ECM remodeling and protease cascades (42).
ATP6VOC also maintains intracellular pH and enhances red blood cell
deformability under hypoxia - a mechanism related to recombinant

human erythropoietin (rHuEpo) treatment for AMS (43). Finally,
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cellular adaptation to hypoxia relies on hypoxia-inducible factor
(HIF)-mediated transcriptional reprogramming, coordinated by
HINT1, PFDNS5, and RNF11. Specifically, HINT1 attenuates activator
protein 1 (AP-1) activation and inhibits HIF-1a-induced transcription
(44); PFDNG5 stabilizes HIF structural integrity (45); and RNF11
modulates HIF-1a ubiquitination and degradation (46). Additionally,
our findings demonstrated that m6A methylation regulated model
genes, aligning with previous studies (47-49). This epigenetic
mechanism is crucial for human adaptation to high-altitude
environments and the pathogenesis of plateau-related diseases.
While our study demonstrated promising findings, two limitations
warrant consideration. First, mechanistic studies using experiments were
warranted to clarify the biological foundations of the eight-gene diagnostic
signature in AMS pathogenesis. Second, High-altitude medical studies
frequently encounter challenges in participant recruitment and stringent
ethical requirements, resulting in a relatively small validation cohort
sample size in the present study. Despite these limitations, this study
established a conceptual framework for AMS diagnosis and offers
significant implications for developing personalized treatment approaches.

Conclusion

We developed a machine learning-based diagnostic model for
AMS by integrating scRNA-seq and bulk RNA-seq data. This model
advanced strategies to improve the diagnosis and management of
AMS patients.
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