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Machine learning integration 
identifying an eight-gene 
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Background: Acute mountain sickness (AMS) is highly prevalent at high altitudes, 
with estimated incidence rates ranging from 25 to 90%. However, current AMS 
diagnosis primarily relies on self-reported questionnaires, highlighting the need 
for reliable biomarkers. Thus, we aimed to establish a diagnostic model for AMS.
Methods: We applied scRNA-seq (n = 10) and bulk RNA-seq (n = 192) to identify 
AMS-associated genes. Then, we constructed AMS diagnostic model by machine 
learning. We also assessed the expression levels of AMS-related gene signatures 
using Quantitative PCR. Finally, we explored the mechanism of AMS-associated 
signatures by epigenetic analyses and KEGG pathway enrichment.
Results: We analyzed cellular heterogeneity through scRNA-seq data, revealing 
significant enrichment of myeloid (MD) and platelet (PLT) cells during AMS 
progression. Subsequently, we  identified 526 differentially expressed genes 
(DEGs) associated with the progression of AMS using pseudobulk differential 
expression analysis on the MD and PLT subsets between the AMS and control 
groups. We  further screened for AMS-associated genes using bulk RNA-seq 
based differential analysis and WGNCA. Finally, we  screened 12 AMS-related 
genes using scRNA-seq and bulk-RNA-seq data. These genes were utilized as 
features across 113 distinct combinations of machine learning models to develop 
an AMS diagnostic model. The model of Stepglm[both] + NaiveBayes (ATP6V0C, 
BCL2A1, CD52, CSTA, GZMA, HINT1, PFDN5, and RNF11) demonstrated optimal 
diagnostic accuracy. It obtained an AUC of 0.948 on the training cohort (n = 160) 
and maintained robust performance on external validation cohorts, with AUCs of 
0.818 (GSE103940 = 22) and 0.760 (GSE75665 = 10). Using qPCR, we confirmed 
that the mRNA levels of the model genes were aligned with the transcriptome 
data (p < 0.05). Based on the epigenetic analyses, we found the AMS signatures 
might regulate by the histone and m6A methylation. Furthermore, pathway 
analysis revealed significant enrichment of these signature genes in immune-
related signaling pathways and oxidative stress (adjusted p < 0.05).
Conclusion: Using machine learning, we  identified and validated a minimal 
blood biomarker signature for AMS diagnosis. This approach offered a practical 
approach for the early detection of AMS, especially in resource-limited 
populations residing in high-altitude regions.
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Introduction

Annually, over 40 million individuals visit high-altitude areas 
(>2,500 m), and approximately 140 million people permanently reside 
in such regions (1). This accessibility is largely due to the expansion of 
modern transportation infrastructure. Acute mountain sickness 
(AMS) is the most prevalent altitude-related condition, with estimated 
incidence rates ranging from 25 to 90% (2, 3). However, the diagnosis 
of AMS primarily relies on subjective scoring systems, which can 
result in misdiagnosis and delayed treatment (4). Therefore, there is 
an urgent need to develop an objective diagnostic method to enhance 
the accuracy and timeliness of AMS diagnosis.

The diagnosis of AMS currently relies on the subjective 
symptom scores from the internationally recognized Lake Louise 
Scoring (LLS) system (5). However, dependence on subjective 
symptoms makes diagnosis susceptible to interference from 
multiple factors. Although researches have explored using 
objective indicators (6, 7) (e.g., physiological, biochemical, 
psychological, genetic, altitude, and geographic factors) to support 
AMS diagnosis, these methods generally require professional 
equipment and the participation of experienced physicians, 
resulting in implementation difficulties in high-altitude 
environments. Recent advances demonstrated that applying high-
throughput sequencing data significantly enhanced precision 
oncology (8, 9). Notably, integrated multi-omics analyses 
developed robust prognostic signatures across malignancies (e.g., 
glioma, pancreatic cancer) (10, 11). Ensemble machine learning 
frameworks outperform conventional indicators and biomarkers 
(mean C-index > 0.7; AUC > 0.78), identified clinically actionable 
signatures to diagnose diseases. Together, previous studies 
established a methodological basis for developing an accurate 
AMS diagnostic model through the combined application of 
omics data and machine learning techniques.

In this study, we elucidated critical pathogenic mediators driving 
AMS progression, through systematic integration of scRNA-seq and 
bulk RNA-seq. Subsequently, we  constructed a robust diagnostic 
signature for AMS using the machine learning methods. Finally, 
we  applied two independent cohort datasets to validate the AMS 
signature. This study provided a practical model for AMS diagnoses 
in the resource-limited high-altitude regions.

Materials and methods

Sample collection

All subjects of training cohort transported to Thirty-li Barracks 
Medical Station (altitude of 3,700 m) from Chengdu (altitude of 
500 m) via air and ground transportation (the total journey lasted 
2 days). Acute Mountain Sickness (AMS) was assessed 6 h after 
passive ascent to an altitude of 3,700 m according to the 2018 Lake 
Louise Scoring System (LLS), with AMS defined as headache 

accompanied by a total LLS score ≥3. To perform scRNA-seq and 
bulk RNA-seq, we  isolated peripheral blood mononuclear cells 
(PBMCs) from patients with AMS and healthy volunteers. Detailed 
clinical characteristics of all participants were summarized in 
Table 1. We performed scRNA-seq on five AMS and five healthy 
PBMC samples. Bulk RNA-seq was also conducted on corresponding 
samples from 80 AMS patients and 80 healthy controls. 
Furthermore, 32 Bulk RNA-seq samples from the GSE103940 and 
GSE6565 datasets were downloaded to validate the AMS 
diagnostic model.

Analysis of single-cell transcriptome 
profiles

The PBMC samples were processed using established protocols (12, 
13). The single cells (>90% viability) were isolated on the 10x 
Chromium platform (10x Genomics) to generate raw data. The count 
matrix of features was generated by CellRanger (v8.0.0), standardized 
using the SCTransform method (v0.3.5), and batch-integrated via 
Harmony (v0.1.1) (13). The following quality control criteria were 
applied using Seurat (v4.0.2): cells with >500 detected genes, <4,000 
detected genes, and <10% mitochondrial gene content (14). Canonical 
markers were used to annotate major cell types (15). Finally, 
pseudobulk differential expression analysis employed thresholds of 
|log2(fold change)| > 0.2 and adjusted p < 0.05 to identify the 
DEGs (16).

Identification of AMS-associated genes 
using bulk RNA-seq

We performed bulk RNA-seq on 96 AMS patients and 96 
healthy controls to identify genes related to AMS. First, sequencing 
libraries were prepared using high-quality RNA (RIN > 7.0) and 
sequenced on the Illumina platform. Next, the count matrix was 
obtained by STAR software (v2.7.2a) (17) and htseq-count (v2.05) 
(18). Finally, DEGs were identified by DESeq2 (v1.40.2) (19) with 
the cutoff of adjusted p < 0.05 and |log2(fold change)| > 0.5 
(20, 21).

We also identified genes associated with AMS using WGCNA 
(20). Modules were constructed using topological overlap matrix 
(TOM)-based dissimilarity with dynamic tree cutting, applying the 
following parameters: β = 16, minModuleSize = 50, 
mergeCutHeight = 0.15, and deepSplit = 2. The module most 
significantly correlated with AMS was then identified based on the 
highest absolute correlation coefficient and p < 0.05 (20). The genes in 
this module were designated as putative AMS-associated genes. 
Finally, genes shared across scRNA-seq data, differentially expressed 
genes, and WGCNA modules were selected as candidate genes related 
with AMS.
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TABLE 1  The clinical characteristics of samples.

Group LLS Age (year) BMI (kg/m2) SpO2(%) Altitude (m) Timing Timing of blood draws

AMS1 4 25 23.7 98 3,700 2 days Within 24 h of diagnosis

AMS2 5 26 21.3 97 3,700 2 days Within 24 h of diagnosis

AMS3 3 28 23.4 97 3,700 2 days Within 24 h of diagnosis

AMS4 5 25 21 95 3,700 2 days Within 24 h of diagnosis

AMS5 9 25 20.5 97 3,700 2 days Within 24 h of diagnosis

AMS6 7 24 19.9 98 3,700 2 days Within 24 h of diagnosis

AMS7 6 27 21.3 97 3,700 2 days Within 24 h of diagnosis

AMS8 3 25 22.6 97 3,700 2 days Within 24 h of diagnosis

AMS9 3 25 22.7 95 3,700 2 days Within 24 h of diagnosis

AMS10 4 25 20.9 96 3,700 2 days Within 24 h of diagnosis

AMS11 5 26 24.9 96 3,700 2 days Within 24 h of diagnosis

AMS12 5 29 22.7 98 3,700 2 days Within 24 h of diagnosis

AMS13 4 26 24.4 97 3,700 2 days Within 24 h of diagnosis

AMS14 4 25 22.8 96 3,700 2 days Within 24 h of diagnosis

AMS15 8 27 20.1 99 3,700 2 days Within 24 h of diagnosis

AMS16 3 26 21.2 97 3,700 2 days Within 24 h of diagnosis

AMS17 6 26 23.2 99 3,700 2 days Within 24 h of diagnosis

AMS18 6 26 20.4 97 3,700 2 days Within 24 h of diagnosis

AMS19 5 25 23.9 99 3,700 2 days Within 24 h of diagnosis

AMS20 3 27 21.6 96 3,700 2 days Within 24 h of diagnosis

AMS21 5 26 22.7 97 3,700 2 days Within 24 h of diagnosis

AMS22 3 27 20.6 98 3,700 2 days Within 24 h of diagnosis

AMS23 4 25 23.9 99 3,700 2 days Within 24 h of diagnosis

AMS24 5 26 21.7 97 3,700 2 days Within 24 h of diagnosis

AMS25 5 27 21.8 96 3,700 2 days Within 24 h of diagnosis

AMS26 3 27 21.3 97 3,700 2 days Within 24 h of diagnosis

AMS27 5 27 20.2 95 3,700 2 days Within 24 h of diagnosis

AMS28 3 24 21 97 3,700 2 days Within 24 h of diagnosis

AMS29 6 28 21.3 96 3,700 2 days Within 24 h of diagnosis

AMS30 3 25 23.8 98 3,700 2 days Within 24 h of diagnosis

AMS31 6 26 23.1 97 3,700 2 days Within 24 h of diagnosis

AMS32 3 27 20.3 96 3,700 2 days Within 24 h of diagnosis

(Continued)
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TABLE 1  (Continued)

Group LLS Age (year) BMI (kg/m2) SpO2(%) Altitude (m) Timing Timing of blood draws

AMS33 3 26 22.4 97 3,700 2 days Within 24 h of diagnosis

AMS34 5 26 21.5 95 3,700 2 days Within 24 h of diagnosis

AMS35 6 25 19 96 3,700 2 days Within 24 h of diagnosis

AMS36 3 24 21 99 3,700 2 days Within 24 h of diagnosis

AMS37 3 23 22.5 98 3,700 2 days Within 24 h of diagnosis

AMS38 3 25 21.8 95 3,700 2 days Within 24 h of diagnosis

AMS39 5 28 20.7 96 3,700 2 days Within 24 h of diagnosis

AMS40 5 26 23.4 95 3,700 2 days Within 24 h of diagnosis

AMS41 5 27 21.2 95 3,700 2 days Within 24 h of diagnosis

AMS42 3 26 22 97 3,700 2 days Within 24 h of diagnosis

AMS43 3 28 21.5 96 3,700 2 days Within 24 h of diagnosis

AMS44 6 26 23.4 95 3,700 2 days Within 24 h of diagnosis

AMS45 5 28 20.9 98 3,700 2 days Within 24 h of diagnosis

AMS46 4 27 21.8 97 3,700 2 days Within 24 h of diagnosis

AMS47 3 25 25.8 99 3,700 2 days Within 24 h of diagnosis

AMS48 5 27 22.7 95 3,700 2 days Within 24 h of diagnosis

AMS49 4 26 21.7 99 3,700 2 days Within 24 h of diagnosis

AMS50 6 28 23.3 96 3,700 2 days Within 24 h of diagnosis

AMS51 6 24 22.2 96 3,700 2 days Within 24 h of diagnosis

AMS52 5 26 20.4 99 3,700 2 days Within 24 h of diagnosis

AMS53 5 25 21.6 96 3,700 2 days Within 24 h of diagnosis

AMS54 3 27 20.7 95 3,700 2 days Within 24 h of diagnosis

AMS55 3 25 23 95 3,700 2 days Within 24 h of diagnosis

AMS56 3 29 19.8 96 3,700 2 days Within 24 h of diagnosis

AMS57 4 26 21.4 99 3,700 2 days Within 24 h of diagnosis

AMS58 4 27 22.2 96 3,700 2 days Within 24 h of diagnosis

AMS59 3 27 21.4 96 3,700 2 days Within 24 h of diagnosis

AMS60 3 26 23.7 97 3,700 2 days Within 24 h of diagnosis

AMS61 3 27 21.5 96 3,700 2 days Within 24 h of diagnosis

AMS62 4 27 23.1 95 3,700 2 days Within 24 h of diagnosis

AMS63 3 24 25.3 97 3,700 2 days Within 24 h of diagnosis

AMS64 4 27 20.8 96 3,700 2 days Within 24 h of diagnosis

(Continued)

https://doi.org/10.3389/fmed.2025.1688025
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yan
g

 et al.�
10

.3
3

8
9

/fm
ed

.2
0

2
5.16

8
8

0
2

5

Fro
n

tie
rs in

 M
e

d
icin

e
0

5
fro

n
tie

rsin
.o

rg

TABLE 1  (Continued)

Group LLS Age (year) BMI (kg/m2) SpO2(%) Altitude (m) Timing Timing of blood draws

AMS65 3 27 19.8 95 3,700 2 days Within 24 h of diagnosis

AMS66 4 24 23.3 97 3,700 2 days Within 24 h of diagnosis

AMS67 5 26 21.5 98 3,700 2 days Within 24 h of diagnosis

AMS68 4 27 22.6 97 3,700 2 days Within 24 h of diagnosis

AMS69 3 27 21.2 99 3,700 2 days Within 24 h of diagnosis

AMS70 3 26 19.7 99 3,700 2 days Within 24 h of diagnosis

AMS71 4 27 24 99 3,700 2 days Within 24 h of diagnosis

AMS72 3 25 23.8 99 3,700 2 days Within 24 h of diagnosis

AMS73 3 26 19.3 97 3,700 2 days Within 24 h of diagnosis

AMS74 6 26 19.2 99 3,700 2 days Within 24 h of diagnosis

AMS75 8 28 20.9 98 3,700 2 days Within 24 h of diagnosis

AMS76 4 26 19.8 98 3,700 2 days Within 24 h of diagnosis

AMS77 6 26 23.8 95 3,700 2 days Within 24 h of diagnosis

AMS78 3 25 25.2 99 3,700 2 days Within 24 h of diagnosis

AMS79 7 26 23.2 96 3,700 2 days Within 24 h of diagnosis

AMS80 5 26 21.3 96 3,700 2 days Within 24 h of diagnosis

Control1 0 26 20.9 95 3,700 2 days Within 24 h of diagnosis

Control2 0 24 20.3 96 3,700 2 days Within 24 h of diagnosis

Control3 0 28 20.1 97 3,700 2 days Within 24 h of diagnosis

Control4 0 24 21.1 99 3,700 2 days Within 24 h of diagnosis

Control5 1 26 23.3 95 3,700 2 days Within 24 h of diagnosis

Control6 0 26 21.9 95 3,700 2 days Within 24 h of diagnosis

Control7 0 25 23.2 98 3,700 2 days Within 24 h of diagnosis

Control8 0 23 20.5 95 3,700 2 days Within 24 h of diagnosis

Control9 0 25 21.1 98 3,700 2 days Within 24 h of diagnosis

Control10 0 25 21.5 95 3,700 2 days Within 24 h of diagnosis

Control11 0 26 22.4 96 3,700 2 days Within 24 h of diagnosis

Control12 0 24 17.5 98 3,700 2 days Within 24 h of diagnosis

Control13 1 27 22.6 98 3,700 2 days Within 24 h of diagnosis

Control14 0 25 21.9 99 3,700 2 days Within 24 h of diagnosis

Control15 0 25 21.2 96 3,700 2 days Within 24 h of diagnosis

Control16 0 26 22.2 96 3,700 2 days Within 24 h of diagnosis

(Continued)
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TABLE 1  (Continued)

Group LLS Age (year) BMI (kg/m2) SpO2(%) Altitude (m) Timing Timing of blood draws

Control17 0 26 19.5 95 3,700 2 days Within 24 h of diagnosis

Control18 0 25 21.5 96 3,700 2 days Within 24 h of diagnosis

Control19 1 25 21.2 97 3,700 2 days Within 24 h of diagnosis

Control20 1 23 21.5 98 3,700 2 days Within 24 h of diagnosis

Control21 2 24 20.3 97 3,700 2 days Within 24 h of diagnosis

Control22 0 24 22.1 95 3,700 2 days Within 24 h of diagnosis

Control23 0 24 23 99 3,700 2 days Within 24 h of diagnosis

Control24 0 25 21.5 95 3,700 2 days Within 24 h of diagnosis

Control25 1 25 20.4 96 3,700 2 days Within 24 h of diagnosis

Control26 0 24 18.6 96 3,700 2 days Within 24 h of diagnosis

Control27 0 26 20 95 3,700 2 days Within 24 h of diagnosis

Control28 1 25 21.4 95 3,700 2 days Within 24 h of diagnosis

Control29 0 24 21 98 3,700 2 days Within 24 h of diagnosis

Control30 0 26 22.2 97 3,700 2 days Within 24 h of diagnosis

Control31 0 24 20.3 95 3,700 2 days Within 24 h of diagnosis

Control32 0 25 19.8 97 3,700 2 days Within 24 h of diagnosis

Control33 0 25 21.5 97 3,700 2 days Within 24 h of diagnosis

Control34 0 24 22.3 99 3,700 2 days Within 24 h of diagnosis

Control35 1 25 21 99 3,700 2 days Within 24 h of diagnosis

Control36 0 25 21.4 95 3,700 2 days Within 24 h of diagnosis

Control37 0 26 21.1 99 3,700 2 days Within 24 h of diagnosis

Control38 1 25 23.2 98 3,700 2 days Within 24 h of diagnosis

Control39 0 26 20.4 97 3,700 2 days Within 24 h of diagnosis

Control40 1 25 21.3 98 3,700 2 days Within 24 h of diagnosis

Control41 0 24 22.2 95 3,700 2 days Within 24 h of diagnosis

Control42 0 25 20.2 95 3,700 2 days Within 24 h of diagnosis

Control43 0 25 20.6 96 3,700 2 days Within 24 h of diagnosis

Control44 0 26 17.7 99 3,700 2 days Within 24 h of diagnosis

Control45 0 25 20.8 95 3,700 2 days Within 24 h of diagnosis

Control46 0 25 21.2 97 3,700 2 days Within 24 h of diagnosis

Control47 0 24 20 98 3,700 2 days Within 24 h of diagnosis

Control48 0 26 20.7 97 3,700 2 days Within 24 h of diagnosis

(Continued)
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TABLE 1  (Continued)

Group LLS Age (year) BMI (kg/m2) SpO2(%) Altitude (m) Timing Timing of blood draws

Control49 2 24 20.4 97 3,700 2 days Within 24 h of diagnosis

Control50 0 24 22.1 98 3,700 2 days Within 24 h of diagnosis

Control51 1 26 20.8 98 3,700 2 days Within 24 h of diagnosis

Control52 2 25 18.5 99 3,700 2 days Within 24 h of diagnosis

Control53 0 26 21.6 97 3,700 2 days Within 24 h of diagnosis

Control54 2 26 20.7 97 3,700 2 days Within 24 h of diagnosis

Control55 0 26 20.4 96 3,700 2 days Within 24 h of diagnosis

Control56 2 25 20.8 95 3,700 2 days Within 24 h of diagnosis

Control57 1 26 20.2 97 3,700 2 days Within 24 h of diagnosis

Control58 1 26 20.6 97 3,700 2 days Within 24 h of diagnosis

Control59 0 25 21.4 99 3,700 2 days Within 24 h of diagnosis

Control60 1 23 20 97 3,700 2 days Within 24 h of diagnosis

Control61 1 27 19.8 96 3,700 2 days Within 24 h of diagnosis

Control62 1 26 21.7 95 3,700 2 days Within 24 h of diagnosis

Control63 0 26 19.8 95 3,700 2 days Within 24 h of diagnosis

Control64 1 26 20.8 96 3,700 2 days Within 24 h of diagnosis

Control65 0 24 20.8 95 3,700 2 days Within 24 h of diagnosis

Control66 1 27 22.1 97 3,700 2 days Within 24 h of diagnosis

Control67 0 26 23.4 99 3,700 2 days Within 24 h of diagnosis

Control68 0 26 22.1 98 3,700 2 days Within 24 h of diagnosis

Control69 1 25 21 95 3,700 2 days Within 24 h of diagnosis

Control70 1 22 23.2 96 3,700 2 days Within 24 h of diagnosis

Control71 1 26 20.4 96 3,700 2 days Within 24 h of diagnosis

Control72 1 25 21.2 95 3,700 2 days Within 24 h of diagnosis

Control73 1 25 21 95 3,700 2 days Within 24 h of diagnosis

Control74 0 26 18.9 96 3,700 2 days Within 24 h of diagnosis

Control75 0 26 21 95 3,700 2 days Within 24 h of diagnosis

Control76 1 26 21 96 3,700 2 days Within 24 h of diagnosis

Control77 0 27 20.8 98 3,700 2 days Within 24 h of diagnosis

Control78 0 25 23.5 99 3,700 2 days Within 24 h of diagnosis

Control79 0 26 22.7 96 3,700 2 days Within 24 h of diagnosis

Control80 0 24 19.4 96 3,700 2 days Within 24 h of diagnosis
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Identification of the AMS diagnostic 
signature using machine learning

We developed 113 diagnostic models for AMS based on 
combinations of 10 machine-learning algorithms based on the 
previous studies (8, 9). Subsequently, model performance was 
evaluated on two independent datasets, GSE103940 and GSE75665, 
employing the concordance index (C-index), confusion matrices, 
Brier scores, and the Hosmer-Lemeshow test.

Validation of AMS-associated signatures

We evaluated the expression levels of model genes using 
quantitative real-time PCR (qPCR) in six AMS and six control 
samples, with each sample run in six technical replicates (21). Samples 
were blinded during RNA processing and QPCR setup. The primers 
were summarized in Supplementary Table S1. qPCR amplification was 
performed under standardized cycling conditions: initial denaturation 
at 95 °C for 3 min, followed by 40 cycles of denaturation at 95 °C for 
10 s and annealing/extension at 60 °C for 30 s. For normalization, the 
GAPDH served as the endogenous control. Finally, relative 
quantification was performed using the comparative threshold cycle 
(2−ΔΔCt) method.

Identifying the mechanism of 
AMS-associated signatures

To identify the upstream mechanisms of the AMS-associated 
signature, we defined the AMS score as the average expression of eight 
signature genes (ATP6V0C, BCL2A1, CD52, CSTA, GZMA, HINT1, 
PFDN5, RNF11). Subsequently, we  identified potential regulators 
associated with this signature by calculating pairwise Spearman 
correlation based on the AMS score. We  then explored the 
downstream mechanisms of the AMS signature using KEGG pathway 
enrichment with the cutoff of adjusted p < 0.05.

Statistical analysis

We performed statistical analyses by R (v4.3.3). First, data 
normality was assessed via the Shapiro–Wilk test and variance 
homogeneity evaluated using Levene’s test prior to parametric testing. 
Subsequently, unpaired two-tailed Student’s t-tests were applied to 
comparisons satisfying these assumptions. Statistical significance was 
defined as p value < 0.05.

Results

Identification of AMS related genes 
through scRNA-seq

We generated a single-cell transcriptomic atlas consisting of 
26,169 single cells derived from five AMS patients and five healthy 
controls (Figure  1A). Subsequently, we  applied unsupervised 
clustering to identify 12 distinct clusters (Figure 1B). These clusters 

were then annotated into five major cell types (Figure  1B) using 
canonical markers (Figure 1C). Based on cell proportion analysis, 
we found that myeloid-derived (MD) cells and platelet (PLT) cells 
were increased in AMS patients compared to healthy controls. This 
increase indicated that MD and PLT cells played a critical role in the 
progression of AMS. Consequently, to identify the potential candidates 
associated with AMS, we screened for differentially expressed genes 
(DEGs) in MD (Supplementary Table S2) and PLT cells 
(Supplementary Table S3) between the AMS and control groups using 
pseudobulk differential expression analysis.

Identification of AMS-associated genes by 
differential gene expression analysis of bulk 
RNA-Seq data

To improve the accuracy of identifying AMS-associated genes, 
we first integrated our in-house AMS bulk RNA-seq dataset with data 
from public repositories using the ComBat algorithm, resulting in a 
consolidated dataset comprising 96 AMS samples and 96 controls 
(Figure  2A). Subsequently, we  performed differential expression 
analysis on this integrated dataset to screen for AMS-related gene sets. 
By applying predefined thresholds for DEGs (|log2 (fold change)| > 0.5 
and adjusted p < 0.05), we identified 419 significantly differentially 
expressed genes (Figure 2B; Supplementary Table S4). Additionally, 
using the ssizeRNA package (v1.3.3) (22), we estimated a minimum 
requirement of 69 samples to achieve 80% statistical power, given the 
specified parameters (proportion of non-differentially expressed genes 
π₀ = 0.98; fold change thresholds fold change = 1.4 or 1.5). The actual 
cohort size of 96 exceeds this minimum, ensuring that the sampling 
design provides sufficient power for robust detection of target DEGs 
with reliable false discovery rate control.

Identification of AMS-associated genes by 
WGCNA based on bulk RNA-Seq

To further screen AMS-related genes, we performed WGCNA 
based on bulk RNA-seq data. This analysis identified three gene 
co-expression modules based on module-trait relationships 
(Figure 3A). The turquoise module exhibited a strong association with 
the AMS group, using a cutoff of the highest absolute correlation 
coefficient and p < 0.05 (Figure  3A). The genes in the turquoise 
module were designated as candidate AMS-associated genes. Finally, 
we identified the final set of candidate AMS-associated genes as the 
intersection of genes derived from WGCNA, different gene expression 
and scRNA-seq (Figure 3B; Supplementary Table S5).

Development, validation, and assessment 
of the AMS diagnostic model

The 12 AMS related genes were screened via both scRNA-seq and 
bulk RNA-seq analyses served as input features for 113 distinct 
machine learning model combinations to construct a diagnostic 
model for AMS. The models were trained on a cohort comprising 80 
AMS patients and 80 controls. For external validation, datasets 
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GSE103940 (10 AMS cases and 10 healthy controls) and GSE75665 (5 
AMS cases and 5 healthy controls) were used. To assess performance, 
model efficacy was quantified via the concordance index (C-index) 
and the area under the curve (AUC) value (Figure 4A). Among the 
113 combinations, the Stepglm[both] + NaiveBayes algorithm 
achieved the highest mean C-index of 0.842 and an AUC of 0.948 in 
the training cohort (Figure  4B). Furthermore, during external 
validation, this algorithm maintained robust performance, with AUC 
values of 0.818 (for GSE103940) and 0.760 (for GSE75665), 
respectively (Figures 4C,D). The Brier scores for both training and 
validation sets were below 0.25. Moreover, the Hosmer-Lemeshow test 
p value was greater than 0.05 (Supplementary Table S6). Together, 
these results suggested excellent model calibration. Model 
performance was further evaluated using the confusion matrix 
(Supplementary Figure S1) and standard metrics including accuracy, 
precision, recall, and F1-score (Supplementary Table S7). Accuracy 
reached 90% (training set), 81.8% (GSE103940), and 80% (GSE75665), 
with all datasets achieving ≥80%. Similarly, recall (88.1, 88.9, 80.0%) 
and F1-scores (all ≥80%) surpassed the 80% threshold consistently. 
These results demonstrate low false negative rates and support the 
model’s utility in early disease screening. The final 
Stepglm[both] + NaiveBayes model incorporated eight biomarker 
genes: ATP6V0C, BCL2A1, CD52, CSTA, GZMA, HINT1, PFDN5, 
RNF11. Additionally, we confirmed the expression of these genes by 
qPCR (Supplementary Figure S2).

Exploring the potential mechanism of AMS 
associated signatures

To identify underlying mechanisms upstream of the 
AMS-associated signature, we defined an AMS score based on the 
average expression of eight signature genes (ATP6V0C, BCL2A1, 
CD52, CSTA, GZMA, HINT1, PFDN5, RNF11). This AMS score 
negatively correlated with the expression of two key epigenetic 
regulators: the histone methylation regulator PRDM4 and the m6A 
methylation regulator YTHDF3 (Figure 5A). These results indicated 
that AMS progression might be epigenetically regulated. Furthermore, 
pathway analysis revealed significant enrichment of these signature 
genes in immune-related signaling pathways and oxidative stress 
(adjusted p < 0.05) (Figure 5B).

Discussion

AMS is the most common disease encountered at high altitudes, 
which typically occurs shortly after a rapid ascent to a hypoxic 
environment. However, the diagnosis of AMS mainly depends on a 
self-questionnaire, revealing the need for reliable biomarkers for AMS 
(23). Therefore, early, rapid, and accurate diagnosis of AMS is essential 
to effectively alleviate symptoms and prevent disease progression. In 
this study, we  established a robust diagnostic model through a 

FIGURE 1

Identifying the heterogeneity of AMS microenvironment by scRNA-seq. (A) Schematic workflow illustrated the procedures of scRNA-seq. (B) The 
UMAP showed cluster identity (left) and major cell types (right) for 26,169 cells obtained from 10 specimens (5 Control and 5 AMS). (C) These results 
were depicted in a two-layered heatmap highlighting selected canonical markers for each cell type. The upper layer presented the mean expression of 
these markers, whereas the lower layer displayed a relative expression map for the corresponding marker genes. The relative expression values were 
scaled via mean centering and transformed to a range of −2 to 2.
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FIGURE 2

Identification of AMS-Associated genes by differential gene expression analysis of bulk RNA-Seq Data. (A) We reduced non-biological technical batch 
effects using the ComBat method. (B) The DEGs between the AMS and control groups (AMS = 96 and the control = 96) were visualized as a volcano 
plot. Horizontal and vertical gray dotted lines indicated the threshold of |log2(fold change)| > 0.5 and adjusted p < 0.05. The Red (green) dots indicated 
significantly upregulated (downregulated) genes. DEGs: the differentially expressed genes.

computational framework integrating single-cell RNA sequencing 
(scRNA-seq) and bulk RNA-seq data via machine 
learning methodologies.

To identify genes associated with AMS, we employed an integrated 
approach utilizing both bulk RNA-seq and single-cell RNA-seq 
(scRNA-seq) data. Our initial characterization of the AMS immune 
microenvironment revealed elevated levels of both myeloid-derived 

cells (MD) and platelet (PLT) activity compared to normal controls. 
This finding aligns with recent peripheral blood scRNA-seq studies of 
AMS (24). Myeloid cells, primarily neutrophils and monocytes/
macrophages, played a crucial role in immune defense and coagulation 
homeostasis (25, 26). In the progress of AMS, these cells became 
activated and mediate associated inflammatory responses (27, 28). 
Similarly, platelets undergo significant activation upon rapid ascent to 

FIGURE 3

Identification of AMS-Associated genes by WGCNA of bulk RNA-Seq Data. (A) The correlation of each module with the clinical trait was visualized as a 
heatmap. The correlation coefficient and the p values are included in each cell. Each module was labeled with different colors. (B) Overlapping genes 
were identified by multi-omics approaches.
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high altitude, characterized by elevated levels of the activation markers 
CD62P (P-selectin) and TXB2 (thromboxane B2) (29, 30). This 
activation promotes microthrombus formation and vasoconstriction, 
thereby exacerbating AMS symptoms like headache and pulmonary 
edema. Importantly, platelet activation levels have been shown to 
be markedly higher in patients with high-altitude pulmonary edema 
(31, 32). Given the central role of these cellular changes in AMS 
pathophysiology, we sought to define a robust set of AMS-associated 
genes from the DEGs among MD and PLT. To enhance the reliability 
of the candidate gene set identified from the scRNA-seq analysis, 
we  performed additional screening using an independent bulk 

RNA-seq dataset. Together, we screened the AMS related genes for 
establishing diagnostic by scRNA-seq and bulk RNA-seq data.

We constructed a machine learning model to predict AMS using 
transcriptomic data. After systematically quantifying 113 
combinations of machine learning algorithms (33, 34), we identified 
the Stepglm[both] + NaiveBayes diagnostic model as the best 
performer. This model achieved outstanding accuracy, with an AUC 
of 0.948 in the training cohort, and maintained clinical validity in 
external validation (AUC = 0.818 and 0.760). Moreover, calibration 
measures demonstrated robustness, featuring Brier scores below 0.25 
and a Hosmer-Lemeshow p > 0.05 for both training and validation 

FIGURE 4

Development, validation, and assessment of the AMS Diagnostic Model. (A) The combination of machine learning predictive models calculated the 
C-index for each model on the training set (n = 160) and the validation sets (GSE103940 = 22; GSE75665 = 10). (B–D) The ROC curves showed the 
prediction accuracy of the diagnostic model in the training cohort (B), GSE103940 cohort (C), and GSE75665 cohort (D).

https://doi.org/10.3389/fmed.2025.1688025
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al.� 10.3389/fmed.2025.1688025

Frontiers in Medicine 12 frontiersin.org

sets. For model comparison, we  systematically reviewed AMS 
diagnostic models from the past 5 years, categorizing them into six 
groups: clinical, physiological/biochemical, transcriptomic, 
metabolomic, proteomic, and combined indicators 
(Supplementary Table S8). While objective indicators (e.g., clinical 
and physiological/biochemical) have been explored, they often require 
specialized equipment and expert involvement, limiting practicality 
in high-altitude settings. Although peripheral capillary oxygen 
saturation (SpO₂) shows promise as an early warning parameter, 
significant individual variability precludes its use as a definitive 
diagnostic criterion (35). Transcriptomics offers distinct advantages 
in plateau research, supported by the mature application of portable 
sequencers in field studies (36–38) and the demonstrated efficacy of 
our machine learning framework for early disease diagnosis. However, 
to enhance widespread adoption and ensure reliability, further large-
scale validation across multi-center settings is essential.

The diagnostic model identified eight key genes (ATP6V0C, 
BCL2A1, CD52, CSTA, GZMA, HINT1, PFDN5, RNF11) implicated 
in immune homeostasis, extracellular matrix (ECM) remodeling, and 
signal transduction. Their expression profiles accurately reflect 
pathophysiological alterations induced by high-altitude hypoxia. First, 
the hypoxic environment disrupts immune homeostasis via a 
synergistic network involving BCL2A1, CD52, and GZMA. BCL2A1 
suppresses mitochondrial apoptosis, prolonging neutrophil and 
monocyte survival and amplifying inflammation (39). CD52 regulates 
T-cell activation and migration, while GZMA mediates cytotoxic 
responses against damaged cells (40, 41). Together, they sustain 
pathological immune responses, potentially relevant to interventions 
such as transfusion therapy. Second, severe acute mountain sickness 
(AMS) involves vascular basement membrane degradation and 
endothelial barrier dysfunction, primarily mediated by ATP6V0C and 
CSTA through ECM remodeling and protease cascades (42). 
ATP6V0C also maintains intracellular pH and enhances red blood cell 
deformability under hypoxia – a mechanism related to recombinant 
human erythropoietin (rHuEpo) treatment for AMS (43). Finally, 

cellular adaptation to hypoxia relies on hypoxia-inducible factor 
(HIF)-mediated transcriptional reprogramming, coordinated by 
HINT1, PFDN5, and RNF11. Specifically, HINT1 attenuates activator 
protein 1 (AP-1) activation and inhibits HIF-1α-induced transcription 
(44); PFDN5 stabilizes HIF structural integrity (45); and RNF11 
modulates HIF-1α ubiquitination and degradation (46). Additionally, 
our findings demonstrated that m6A methylation regulated model 
genes, aligning with previous studies (47–49). This epigenetic 
mechanism is crucial for human adaptation to high-altitude 
environments and the pathogenesis of plateau-related diseases.

While our study demonstrated promising findings, two limitations 
warrant consideration. First, mechanistic studies using experiments were 
warranted to clarify the biological foundations of the eight-gene diagnostic 
signature in AMS pathogenesis. Second, High-altitude medical studies 
frequently encounter challenges in participant recruitment and stringent 
ethical requirements, resulting in a relatively small validation cohort 
sample size in the present study. Despite these limitations, this study 
established a conceptual framework for AMS diagnosis and offers 
significant implications for developing personalized treatment approaches.

Conclusion

We developed a machine learning-based diagnostic model for 
AMS by integrating scRNA-seq and bulk RNA-seq data. This model 
advanced strategies to improve the diagnosis and management of 
AMS patients.
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FIGURE 5

Exploring the potential mechanism of AMS associated signatures. (A) Spearman correlation of the expression of known epigenetic regulators with AMS 
scores (average expression of ATP6V0C, BCL2A1, CD52, CSTA, GZMA, HINT1, PFDN5, and RNF11) in 96 AMS samples. (B) The KEGG enrichment of AMS 
associated signatures. The significantly enrichment pathways were identified by the cutoff of adj p < 0.05.
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