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Radiation oncology is undergoing a transformative shift toward precision
medicine through unprecedented advances in imaging technologies that enable
increasingly personalized and adaptive cancer treatment. This comprehensive
review synthesizes the underlying physical principles, current clinical
applications, technical challenges, and quality assurance requirements across the
complete spectrum of emerging imaging-guided radiation therapy approaches.
We examine magnetic resonance-guided radiotherapy systems that enable
daily soft-tissue visualization and online plan adaptation, positron emission
tomography-quided platforms that allow real-time tracking of metabolically
active tumor regions, advanced cone beam computed tomography systems
supporting rapid adaptive workflows through artificial intelligence-enhanced
image generation, and novel applications including Cherenkov radiation imaging
and stereoscopic guidance with surface tracking. For proton therapy, we address
innovations spanning dual-energy computed tomography, proton computed
tomography, and in-vivo range verification that tackle fundamental range
uncertainty limitations. In theranostics, we explore sophisticated quantitative
imaging for personalized radiopharmaceutical dosimetry. Our analysis reveals
that while these technologies converge to enable increasingly adaptive and
biology-informed dose delivery, realizing their full clinical potential requires
rigorous multicenter validation, standardized quality assurance protocols,
integration of multi-omics with functional imaging, trustworthy automation with
continuous performance monitoring, interoperable data pipelines, enhanced
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workforce training, and attention to equitable access across diverse patient
populations. This integrated perspective provides a forward-looking framework
to guide clinicians, medical physicists, and researchers in navigating the rapidly
evolving landscape of precision radiotherapy while ensuring safe and effective
implementation of these transformative technologies.

KEYWORDS

magnetic resonance imaging guided radiotherapy, positron emission tomography,
stereoscopic imaging and surface guidance, cone beam computed tomography,
generative image synthesis, Cherenkov radiation imaging, imaging innovations in proton
therapy, advanced quantitative imaging

1 Introduction

Radiation oncology is experiencing a transformative shift
toward precision medicine, driven by unprecedented advances
in imaging technologies that enable increasingly personalized
and adaptive cancer treatment. Traditional anatomical imaging
approaches are rapidly being complemented and, in some cases,
superseded by sophisticated modalities that integrate functional,
molecular, and real-time biological information into treatment
planning and delivery. This evolution represents a paradigm shift
from static, one-size-fits-all radiation therapy toward dynamic,
patient-specific approaches that can adapt to tumor biology,
anatomical changes, and treatment response in real-time.

The emergence of magnetic resonance-guided radiotherapy
(MRgRT) systems has enabled daily soft-tissue visualization
and online plan adaptation, particularly transforming treatment
of mobile targets, such as pancreatic and gastrointestinal
malignancies. Simultaneously, the integration of positron emission
tomography (PET) with linear accelerators has introduced
biology-guided radiotherapy (BgRT), allowing real-time tracking
of metabolically active tumor regions. Advanced cone beam
computed tomography (CBCT) systems now support online
adaptive workflows through rapid, high-quality imaging and
Novel
applications, such as Cherenkov radiation imaging, stereoscopic

artificial intelligence (AI)-enhanced CT generation.
guidance with surface tracking, and generative Al-based image
synthesis, are further expanding the precision radiotherapy
toolkit. In proton therapy, innovations spanning dual-energy CT,
proton CT, and in vivo range verification address fundamental
range uncertainty limitations, while theranostics applications
demand sophisticated quantitative imaging for personalized
radiopharmaceutical dosimetry.

This comprehensive review aims to provide a critical, integrated
assessment of emerging and advanced imaging technologies that
are reshaping precision radiotherapy. Unlike previous reviews
that examine individual modalities in isolation, we synthesize
the underlying physical principles, current clinical applications,
technical challenges, and quality assurance requirements across
the complete spectrum of imaging-guided radiation therapy (RT)
approaches. Our analysis encompasses workflow considerations,
automation potential, and standardization needs while highlighting
how these technologies converge to enable increasingly adaptive,
biology-informed dose delivery.
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This article addresses a critical gap in the literature by
providing the first comprehensive, cross-platform analysis
of how diverse imaging modalities complement each other
within modern precision RT workflows. We emphasize practical
implementation

challenges—including  geometric  accuracy

requirements, quantitative imaging uncertainties, workflow
optimization, and workforce training needs—that are essential
for successful clinical translation but often underemphasized
in technology-focused reviews. Furthermore, we outline a
forward-looking framework that integrates multi-omics data with
functional and anatomical imaging, supported by trustworthy Al
automation and standardized quality assurance protocols. This
integrated perspective is designed to guide clinicians, medical
physicists, and researchers in navigating the rapidly evolving
landscape of precision radiotherapy while ensuring safe, equitable,
and effective implementation of these transformative technologies

across diverse patient populations.

2 Magnetic resonance imaging-guided
radiotherapy

Magnetic resonance imaging (MRI)-guided radiotherapy
(MRgRT) allows for direct visualization of soft tissue anatomy
during treatment and supports online plan adaptation. Two
commercial systems have been deployed clinically. The ViewRay
(Oakwood Village OH, USA) MRIdian platform combines a
0.35T split magnet and was initially designed to utilize three
cobalt sources, (1) but it has more recently incorporated a
6 MV linear accelerator (linac) (2). The Elekta (Stockholm,
Sweden) Unity platform (3) couples a 1.5T MRI with a 7MV
linac. Both systems incorporate MRI into the treatment room
geometry but differ in field strength, system architecture, and
clinical workflow. The MRIdian enables real-time beam gating
using multiplanar cine imaging from a balanced steady-state
free precession (bSSFP) sequence (4), while Unity employs
high-resolution imaging and supports plan adaptation through
structured workflows that include “Adapt to Position” and “Adapt
(5). These capabilities have enabled a shift toward
online adaptive planning, where a new radiation treatment plan is

to Shape”

created each day, accounting for inter-fractional changes in patient
anatomy (6).
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2.1 Technological challenges

The technological requirements for MRgRT are non-trivial.
Radiation delivery hardware must function reliably in the presence
of magnetic fields, and MRI performance must remain stable
during beam-on conditions. Integration requires mitigation of
mutual interference between linac and MR subsystems, attention
to magnetic shielding, and spatial coordination of isocenters. In the
case of MRIdian, the split-magnet design permits radiation beam
access perpendicular to the BO field, while modifications to RF
shielding and gradient coil structure support simultaneous imaging
and irradiation (2). The Unity platform adopts a different approach,
positioning the linac outside the magnet bore and delivering
radiation along the bore axis (3). These design choices reflect
different approaches to managing electromagnetic interference,
gradient performance, and beam access geometry (7). Differences
in image quality arise largely not only due to differences in field
strength (0.35T for MRIdian vs. 1.5T for Unity) but also from
available sequences and system constraints related to simultaneous
imaging and treatment. Sequences such as T2-weighted fast spin
echo (FSE) and bSSFP have reduced acquisition times to fit within
clinical workflows while preserving the image quality and spatial
accuracy required for planning and guidance.

2.2 Clinical applications of MRgRT

In clinical practice, the most commonly used workflow
on the MRIdian system involves daily acquisition of a bSSFP
image, followed by manual or semi-automated recontouring, re-
optimization of the treatment plan, and delivery with respiratory
gating. When performed sequentially, the entire process takes
approximately 45 min, though newer software versions (A3i) have
enabled partial parallelization of workflow steps to reduce overall
treatment time (8). Gating is based on direct visualization of the
target or a surrogate structure in the cine image, with beam delivery
suspended if the structure location exits a predefined boundary.
On Unity, adaptation decisions are based on comparison between
the reference and daily MR images. In the “Adapt to Position”
workflow, the original plan is rigidly shifted, while in “Adapt to
Shape” a new plan is generated based on the recontouring of
both target and critical structures (5). Unity now supports real-
time gating, though this feature was only introduced after several
years of clinical use. Its higher field strength enables improved
soft tissue contrast and may also facilitate integration of functional
imaging (9).

Pancreatic cancer has emerged as a primary disease site in
which MRgRT has had a measurable clinical impact, particularly
with the MRIdian system, which possesses a much longer gating
functionality. Computed tomography (CT)-based planning for
pancreatic tumors is limited by poor soft tissue visibility and
motion of adjacent gastrointestinal organs, which limits how
aggressively they can be treated (10). MR guidance permits
direct visualization of the tumor and organs at risk (OARs)
at the time of treatment, enabling tighter margins and more
aggressive dose prescriptions (11). Initial retrospective series
demonstrated the feasibility of delivering 50 Gy in five fractions
with acceptable toxicity and local control (12). These results
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were tested prospectively in the SMART trial, which enrolled 136
patients with locally advanced or borderline resectable pancreatic
cancer and treated them using the MRIdian system. The primary
endpoint was gastrointestinal toxicity, which was observed in fewer
than 5% of patients. Median overall survival exceeded 14 months,
and 2-year survival was over 40% (13). These outcomes compare
favorably to historical controls and have contributed to the growing
interest in MRgRT for tumors in anatomically complex or mobile
sites. The pancreas is not the only area of application. There is
also emerging evidence in the liver, lung, and prostate, where
online adaptation and motion mitigation may offer advantages in
selected patients (14, 15). In CNS tumors, although not one of
the common applications is present for MRgRT, daily MRI may
support tighter margins and improved alignment with evolving
anatomical changes during long courses of therapy (16). MRgRT
enables treatment in anatomically complex or mobile sites where
soft tissue visualization, motion management, or daily adaptation
is required.

2.3 Geometric distortion in MRgRT

Geometric accuracy remains a foundational requirement for
MRgRT. MRI is inherently prone to spatial distortion from
static field inhomogeneities, gradient non-linearities, and magnetic
susceptibility differences (17). These distortions can result in
discrepancies between the true anatomical position and its
appearance on MR images, particularly at the edges of the field
of view and in the presence of air-tissue interfaces (18). The
magnitude of distortion varies by sequence, field strength, and
choice of imaging parameters. The MRIdian system exhibits
relatively low distortion due to its low field strength (19, 20). The
Unity system, owing to its higher field strength, exhibits greater
distortion but benefits from more robust gradient performance and
improved signal-to-noise ratio (21). The International Commission
on Radiation Units and Measurements (ICRU) recommends a
geometric accuracy of 2 mm or better for MRI used in radiotherapy
planning and emphasizes the need for routine QA to assess image
fidelity (22). These recommendations are particularly relevant for
stereotactic treatments (23), with sharp-dose gradients, and for
intracranial cases, where millimeter-level accuracy is clinically
consequential. Institutions adopting MRgRT should incorporate
distortion assessment into their commissioning protocols and
account for potential residual uncertainties when defining margins.

2.4 Emerging MRI functional-guided RT

MRI enables the non-invasive interrogation of some biological
functions in vivo (24-27). Incorporating these capabilities into
MR-guided radiotherapy remains an area of active investigation
and represents a potential future direction for adaptive treatment.
Functional MRI techniques, such as diffusion-weighted imaging
(28), dynamic contrast-enhanced MRI (29, 30), and MR
spectroscopy (31), offer the possibility of quantifying tumor
biology in real time. These approaches are of particular interest
in adaptive strategies where the dose may be modulated based on
early treatment response. Diffusion imaging has received the most
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attention due to its relatively short acquisition times and growing
evidence of its correlation with cellular density and therapeutic
response (32). Changes in apparent diffusion coefficient (ADC)
during treatment have been proposed as an early biomarker of
response and may support biologically driven adaptation (33). A
recent clinical trial exemplifies this approach using mid-treatment
ADC changes along with changes in perfusion to stratify patients
with soft tissue sarcoma into dose escalation arms (34). These
efforts are preliminary, and further validation is needed to establish
the reproducibility and prognostic value of such biomarkers
across disease sites and platforms. Nonetheless, the capacity of
MRgRT to support quantitative imaging during the course of
therapy positions it as a candidate platform for future biologically
adaptive radiotherapy (35, 36). Challenges remain in sequence
standardization, motion management during functional imaging,
and integration with planning software, but these are areas of
active investigation (37).

2.5 Summary

MR-guided radiotherapy has created new possibilities for daily
adaptation, motion management, and soft tissue visualization.
Its clinical use has expanded most rapidly in tumors where
conventional image guidance has been limited and intra-
fractional motion is substantial, particularly in pancreas and other
gastrointestinal malignancies. MR-guided systems enable daily
adaptation and motion management while offering a platform for
future integration of biologically informed planning. As the field
moves toward more precise and personalized therapy, MRgRT
offers a platform that supports both current adaptation strategies
and future functional imaging applications (38). Its full clinical
impact will depend on continued technical refinement, validation
of emerging biomarkers, and systematic incorporation into disease-
specific treatment paradigms.

3 PET-guided RT: advancing precision
in oncology

Positron emission tomography (PET) has revolutionized
oncology by providing functional and molecular insights into
tumor biology, complementing traditional anatomical imaging.
The integration of PET with radiation therapy (RT) has led to
the emergence of PET-guided RT, a sophisticated approach aimed
at enhancing treatment precision, optimizing dose delivery, and
improving patient outcomes (39, 40). This review explores the
fundamental principles of PET imaging, its evolution, and diverse
applications in radiation oncology, including target delineation,
adaptive radiotherapy, and dose painting. It also delves into the
development of integrated PET-Linac systems that enable real-
time guidance. Furthermore, this addresses the current challenges
and limitations in the clinical implementation of PET-guided RT,
such as image quantification issues and logistical complexities,
while highlighting promising future directions, including the role
of artificial intelligence and novel radiotracers.

RT is a cornerstone of cancer treatment, aiming to deliver
a precise dose of radiation to malignant cells while sparing
surrounding healthy tissues. The evolution of RT has been driven
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by continuous advancements in imaging technologies, allowing for
increasingly accurate tumor localization and treatment delivery.
PET, a nuclear imaging technique, has emerged as a critical tool
in oncology, offering unique functional insights by visualizing
metabolic and molecular processes within the body. Unlike
conventional imaging modalities, such as CT and MRI, which
primarily provide anatomical information, PET can detect changes
at the cellular level, potentially identifying disease in its earliest
stages and assessing treatment response (41).

The integration of PET imaging into the RT workflow has
paved the way for PET-guided RT, a paradigm shift toward
more personalized and biologically informed cancer treatment.
This review aims to provide a comprehensive overview of PET-
guided RT, covering its underlying principles, clinical applications,
technological advancements, current challenges, and prospects.

3.1 Principles of PET imaging and
PET-guided radiotherapy

3.1.1 Biophysics of PET

Imaging PET operates on the principle of detecting radiation
emitted from radiopharmaceuticals (also known as radiotracers)
injected intravenously into a patient. These radiotracers are
molecules labeled with a small amount of radioactive material,
designed to accumulate in specific tissues or bind to particular
proteins, such as those found in tumors or areas of inflammation.
The process involves positron emission, annihilation, coincidence
detection, and image reconstruction.

3.1.2 PET Radiotracers in oncology

The utility of PET in oncology is significantly enhanced by
the availability of various radiotracers that target specific biological
processes or cancer types. Fluorine-18 Fluorodeoxyglucose (‘*F
FDG) remains the primary, FDA-cleared radiotracer for SCINTIX
BgRT in lung and bone tumors (42). It enables real-time
PET-based treatment adaptation using tumor metabolism as a
dynamic fiducial marker. Gallium-68/Fluorine-18 Prostate-Specific
Membrane Antigen (Ga-68 PSMA/F-18 PSMA) has been shown
to enable PET-guided treatment planning for prostate cancer
metastases, including bone lesions, within RefleXion® ’s BgRT
workflow (43-45). It offers superior sensitivity for detecting
recurrent disease and precise localization of metastatic lesions, even
at low PSA levels. A brief BgRT tracer is summarized in Table 1, in
addition to the tracers utilized in the clinic.

3.2 Clinical applications of PET-guided
radiotherapy

PET has become increasingly important in oncology,
offering molecular-level visualization and quantification of tumor
characteristics that extend beyond conventional morphologic
imaging (7). These data enable (1) precise delineation of
radiotherapy (RT) target volumes; (2) ongoing assessment of
treatment response and effectiveness; (3) prediction of failure

patterns by identifying sub-regions at high risk of recurrence;
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TABLE 1 A summary of the BgRT tracer and its utilization in the clinic.

Tracer (Radiopharmaceutical)

Indication /Tumor types

10.3389/fmed.2025.1686593

Role in BgRT

BEEDG Lung and bone tumors Standard tracer for real-time PET-guided BgRT
(primary/metastatic) (FDA-cleared for SCINTIX BgRT in lung and bone cancers)
68Ga-PSMA Prostate cancer with bone metastases Feasibility demonstrated for SCINTIX BgRT treatment in
metastatic prostate cancer
I8R_FES ER+ breast cancer lesions Pilot study comparing FES and FDG PET metrics for BgRT

(FES = Fluoroestradiol)

eligibility in breast cancer

64Cu-ATSM

Locally advanced rectal cancer

Studied for hypoxia-guided dose painting in BgRT-like
planning (for Phase I feasibility planning only)

FAPI-based tracers (e.g., 68Ga-FAP-CHX,
I8E-NOTA-FAPI, 68Ga-FAPI-JH04)

Various epithelial cancers

Promising for tumor microenvironment-guided dose
targeting; ongoing dosimetry and biodistribution studies

Nectin-4/avp3-targeting tracers (e.g., 68Ga-N188,
I8E_FAPI-RGD)

PD-L1/angiogenic tumors

and (4) individualized dose adaptation, allowing escalation or
de-escalation, where clinically warranted.

3.2.1 Target delineation and treatment planning

PET imaging, often combined with CT (PET/CT) (46, 47) or
MRI (PET/MRI) (48), provides comprehensive insights into tumor
biology, improving diagnostic accuracy and enhancing patient
positioning for RT. PET/CT has become a standard tool for cancer
detection and staging, helping to identify tumors not visible on
anatomical imaging and assessing tumor activity. PET/MRI, due to
its high soft tissue contrast, offers unique advantages in T-staging of
various cancers and is superior in finding lymph node and distant
metastases compared to CT, MRI, and PET/CT.

3.2.2 Adaptive radiotherapy (ART)

Adaptive radiotherapy (ART) is a refined approach that adjusts
treatment plans to dynamic anatomical and physiological shifts
within a patient’s body during therapy. Through frequent imaging,
including PET-guided ART (49, 50), it allows specialists to visualize
changes like tumor shrinkage or organ movement, enabling precise
modification of the radiation dose.

There are three levels of adaptation. (a) Offline ART:
Involves adjusting treatment plans between sessions based on
periodic imaging assessments. (b) Online ART: Modifies treatment
plans immediately before delivery using on-couch imaging, with
advanced software and AI facilitating rapid adjustments to daily
anatomical variations. (c) Real-Time ART: Continuously adjusts
treatment delivery based on real-time changes, creating a “living”
picture for immediate detection of changes and ensuring optimal
targeting. ReﬂeXion® X1 platform integrates PET imaging before
and during treatment sessions, and it is the pioneer that can carry
out the above-mentioned offline and real-time ART.

3.3 Integrated PET-linac systems
The integration of PET detectors with linear accelerators

represents a technological advancement in RT (51, 52). The
ReﬂeXion® X1 system (53, 54), for example, is characterized by its
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Novel targets being tested via imaging trials; potential for
BgRT guidance in immuno-oncology

split arc design, employing two 90° PET arcs to guide therapeutic
radiation beams in real-time with sub-second latency. This system
also incorporates an onboard fan-beam kVCT for anatomical
capabilities, offering a hybrid platform for both biologic and
anatomic guidance. The workflow for BgRT involves radiotracer
injections and X1 PET scans as part of treatment planning,
and immediately before and during each fraction for real-time
guidance (55). This real-time guidance allows for improved motion
management for dose delivery accuracy (56, 57). Figure 1 shows the
major components of RefleXion® X1 PET/CT linac.

3.4 Challenges and limitations

3.4.1 Image quality and quantification spatial
resolution and noise

Despite the significant advancements, several challenges and
limitations persist in the widespread clinical implementation of
PET-guided RT.

Image Quality and Quantification Spatial Resolution and Noise:
PET images often suffer from low spatial resolution and high
noise characteristics, which can make accurate delineation of target
regions problematic. The spatial resolution of PET systems is
typically limited to around 5 mm.

Image Segmentation: Accurately segmenting tumors from
blurred and noisy functional PET images is a difficult issue
for PET-based treatment planning. While various segmentation
approaches exist (e.g., thresholding, edge detection, and deep
learning), their reliable performance on clinically relevant tasks
requires objective, task-based evaluation. Inaccuracies can arise
from variations in biological processes governing tracer uptake and
physical/acquisition phenomena.

Quantitative Accuracy: Fundamental trade-offs between
resolution and noise, along with challenges in scatter correction
and attenuation correction, affect the quantitative accuracy of
PET measurements.

3.4.2 Specificity of radiopharmaceuticals
While radiotracers like 18F-FDG are highly sensitive to many
cancer types, they are not always specific to malignant disease,
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FIGURE 1

Major components: KVCT, PET detector arcs/MLC, MV, and 60 rpm gantry (Courtesy of RefleXion® Medical).

as uptake can occur in other processes with increased glucose
turnover, such as infection and inflammation. This can hamper
the differentiation between inflammatory changes and neoplastic
tissue, or between benign lesions and well-differentiated malignant
lesions with low FDG avidity. Although more specific tracers like
Ga-68 PSMA have been developed, sources of false positive or
negative findings can still exist.

While radiotracers like ®F-FDG are highly sensitive to many
cancer types, they are not always specific to malignant disease,
as uptake can occur in other processes with increased glucose
turnover, such as infection and inflammation. This can hamper
the differentiation between inflammatory changes and neoplastic
tissue, or between benign lesions and well-differentiated malignant
lesions with low FDG avidity. Although more specific tracers like
Ga-68 PSMA have been developed, sources of false positive or
negative findings can still exist.

The involvement of radiopharmaceuticals in PET-guided
radiotherapy and the short half-life of many radiopharmaceuticals,
particularly "®F-FDG (110 min), necessitates that cyclotrons be
located close to the radiation oncology department. The increased
patient treatment time and complexity of the entire BgRT workflow
require extra labor forces and seamless coordination among
physicians, nurses, nuclear medicine technicians, therapists, and
others. Regulation and guidelines, such as task group reports from
the American Association of Physicists in Medicine (AAPM), are
under development and improvement (58).

3.5 Future directions

The field of PET-guided RT is continuously evolving, with
several promising avenues for future development:

e Novel radiotracers: Research is expanding to include available
and novel tracers targeting tumor metabolism, hypoxia,
vascularity, and proliferation, enabling more precise dose
painting and adaptive strategies.

e Artificial Intelligence (AI) and Machine Learning (ML):
In PET-guided adaptive radiotherapy, artificial intelligence
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and machine learning are being applied through several
complementary approaches that directly address clinical
bottlenecks. Deep learning models, such as 3D U-Net
(59), V-Net (60), and residual networks, integrate PET’s
metabolic data with CT’s anatomical details to generate
accurate tumor and organ-at-risk contours, reducing the
variability and time associated with manual delineation
while overcoming challenges of physiologic uptake and
heterogeneous tumor activity (61). Radiomics-based methods
further enhance treatment personalization by extracting
quantitative texture and wavelet features from PET scans
to predict response and guide adaptation, including delta-
radiomics analyses that track metabolic changes during
treatment (62). Together, these Al tools aim to transform PET-
based radiotherapy from a labor-intensive, subjective process
into a standardized and adaptive workflow that supports real-
time clinical decision-making.

e Multiomics Integration: Combining PET imaging with
genomic, proteomic, and other omics data to provide
more comprehensive biological insights for tailored
treatment strategies.

e Polymetastatic Patient Treatment: The ambition to extend
BgRT to polymetastatic patients in the future, potentially in
conjunction with systemic therapy, represents a significant
area of growth.

e Clinical Validation: Standardized segmentation protocols and
prospective clinical trials are needed to validate clinical

benefits and establish PET-guided RT in routine care.

3.6 Summary

PET-guided RT represents a significant leap forward in
precision oncology, moving beyond anatomical targeting to
incorporate real-time biological information for optimized
treatment delivery. By leveraging the functional insights provided
by PET imaging and advanced radiotracers, clinicians can achieve
more accurate tumor delineation, implement adaptive treatment
strategies, and explore dose painting techniques to personalize
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therapy. While challenges related to image quantification,
radiotracer specificity, and logistical complexities remain, ongoing
technological advancements, particularly in integrated PET-linac
systems and the application of AI, are poised to overcome
these hurdles. The continued evolution of PET-guided RT holds
immense promise for improving disease control, minimizing
toxicity to healthy tissues, and ultimately enhancing the quality of
life for cancer patients.

4 Stereoscopic imaging and surface
guidance techniques for central
nervous system tumors

Stereoscopic imaging represents a paradigm shift in precision
radiotherapy for central nervous system (CNS) tumors, enabling
submillimeter positioning accuracy through dual oblique X-
ray imaging systems. Unlike conventional single-plane imaging,
stereoscopic techniques provide target localization by triangulating
anatomical landmarks from two simultaneously acquired oblique
projections. Commercially available systems currently include
ExacTrac (Brainlab, Munich, Germany), SyncTraX (Shimadzu,
Kyoto, Japan), and CyberKnife (Accuray, Sunnyvale, CA, USA)
(63). Among these systems, ExacTrac is the most used as an add-
on imaging system to a medical linear accelerator. Stereoscopic
imaging has become particularly crucial for intracranial stereotactic
radiosurgery (SRS) and spinal stereotactic body RT (SBRT),
where high-dose single or hypo-fractionated treatments demand
exceptional geometric precision to accurately deliver therapeutic
doses to lesions while sparing adjacent critical structures (64-66).

4.1 Technical principles and system
architecture

The fundamental architecture of the ExacTrac imaging
system consists of two kilovoltage (kV) X-ray sources recessed
into the treatment room floor and the corresponding ceiling-
mounted amorphous silicon flat panel detectors positioned
in an oblique configuration (67). Other stereoscopic imaging
systems use some variation of this geometric arrangement. The
stereoscopic imaging system is calibrated such that its imaging
coordinates are accurately matched to the linac’s coordinates.
This oblique geometric arrangement enables the acquisition of
two instantaneous stereoscopic images without source-detector
repositioning, facilitating continuous monitoring throughout
treatment delivery, even at non-coplanar patient couch angles
where conventional linac-based onboard imaging systems face
geometric limitations and the risk of gantry-couch collision.

The dual X-ray generator configuration produces high-
resolution stereoscopic images with adjustable kilovoltage, and the
tube current parameters are optimized for different anatomical
structures and imaging requirements. Typically, 90 kVp and
10 mAs are used for cranial applications, and 120 kVp
and 20 mAs are used for spinal applications, though these
parameters can be adjusted according to patient size and anatomy.
Advancements such as higher heat capacity X-ray tubes support
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more frequent automated imaging sequences, while enhanced soft
tissue contrast and improved readout speeds minimize motion
blurring artifacts. Modern systems incorporate larger imaging
panels that visualize extended anatomical regions, improving
image interpretation and anatomical orientation. Advanced image
fusion algorithms match acquired stereoscopic projections with
digitally reconstructed radiographs (DRRs) from planning CT
datasets, enabling precise six-degrees-of-freedom (6DOF) patient
positioning corrections (67).

4.2 Evolution from infrared tracking to
thermal surface guidance

Early ExacTrac systems utilized infrared-reflective spheres
mounted on patient positioning arrays: a cranial matrix integrated
with a face mask or reflective markers attached directly to the
mask for intracranial treatments and a reference U-shaped array
mounted on the couch sidebar for extracranial applications.
Reflective markers can also be directly attached to other
immobilization devices or the patient’s skin. While effective, this
approach required rigid body assumptions and was limited to
tracking discrete marker points rather than comprehensive patient
surface geometry. The accuracy of the infrared tracking depends
on the quality and stability of the reflective markers, which fade
with time. The positioning array served merely as a surrogate
for patient motion, and its movement could not accurately
reflect the patient’s actual anatomical displacement. Additionally,
the mechanical connection of the U-shaped array to the couch
sidebar was inherently unstable, with potential for disconnection or
displacement during treatment delivery, which could compromise
motion monitoring reliability.

The
implements markerless surface tracking through 4D thermal

advancement to the ExacTrac Dynamic system
camera technology. This system correlates patient heat signatures
with reconstructed three-dimensional surface structures, acquiring
approximately 300,000 surface points matched to thermal
signatures. Thermal surface guidance provides comprehensive
patient surface monitoring that eliminates the need for positioning

arrays while maintaining submillimeter accuracy.

4.3 Clinical implementation in CNS
stereotactic treatments

4.3.1 Initial patient setup and positioning

Patient positioning begins with the placement of the patient
on the treatment couch using appropriate immobilization devices.
Surface/thermal imaging provides rough initial alignment to
the planning CT-generated patient surface contour. After initial
stereoscopic X-ray images are acquired, suggested shifts are
calculated automatically by matching the X-ray images to the
reference DRRs generated from the CT simulation dataset. The
calculated shifts will be sent to the 6DOF robotic couch to
achieve optimal patient alignment. When positional deviations
exceed system correction capabilities, manual patient repositioning
is required before re-imaging. This iterative process continues
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until all translational and rotational parameters fall within preset
tolerance thresholds, which are institution-specific and may vary
based on treatment site and clinical experience. For example,
tolerances of 0.5 mm/0.5° are commonly used for cranial
applications, while spinal treatments may require larger tolerances
(e.g., 0.7 mm/0.8°) due to the inherent challenges of reproducing
exact spinal curvature and the difficulty of achieving submillimeter
precision for vertebral positioning.

4.3.2 Additional verification of positioning
accuracy with onboard imagers

Images acquired using the linac onboard imaging system can
serve as secondary confirmation of patient positioning accuracy.
For cranial cases, a kV/kV image pair acquired at couch angles
near zero degrees can be used since it provides optimal anatomical
visualization for skull-based registration. Spinal treatments utilize a
more comprehensive verification imaging approach, incorporating
kV/MV image pairs alongside cone-beam computed tomography
(CBCT) to improve vertebral anatomy visualization and account
for potential differences in spinal curvature between simulation
and treatment setup. This secondary imaging confirmation is
particularly crucial for spinal treatments, where vertebral bodies
may appear similar on stereoscopic projections, and can reduce
the risk of patient setup on incorrect vertebral levels. CBCT
imaging allows careful review of the spinal cord canal position
relative to the target, providing critical safety verification. In
addition, CBCT or kV/MV imaging can also help visualize
anatomical changes and patient weight loss/gain. While many
centers do not routinely use secondary imaging with ExacTrac,
this additional verification step can prevent targeting errors and
enhance treatment safety. Deviations detected by onboard imaging
are not used to adjust patient positioning. Usually, for CNS cases,
only ExacTrac stereoscopic X-ray images are used to calculate and
apply couch shifts for patient repositioning. However, this practice
is institution-specific and may vary based on treatment site and
clinical experience.

4.3.3 Multi-disciplinary image review process

All acquired images undergo systematic review by qualified
medical physicists and radiation oncologists to ensure treatment
accuracy and patient safety (64, 65). This verification process
includes assessment of daily anatomical variation and image
registration quality, evaluation of target positioning accuracy,
and confirmation of critical structure avoidance. The radiation
oncologist provides final approval through the Record and Verify
system, while the medical physicist independently verifies all beam
parameters and delivery settings before treatment initiation.

4.3.4 Pre-beam and intra-fractional verification
protocol

Prior to the delivery of each treatment beam, verification of
stereoscopic images is acquired to confirm the maintained patient
alignment. When deviations exceed tolerance thresholds but
remain within treatment system correction capabilities, calculated
shifts are applied, followed by acquisition of confirmatory
stereoscopic images. Only after verifying that all positioning

Frontiersin Medicine

10.3389/fmed.2025.1686593

parameters are within preset tolerances can treatment beam
delivery start. Once positioning verification is achieved, new
baseline thermal surface images are created using the 4D
thermal camera system, establishing the reference patient surface
geometry for subsequent motion monitoring during the selected
treatment beam delivery. Figures 2a, b illustrate the verification of
stereoscopic images for a cranial and a spinal case, respectively.

4.3.5 Real-time motion monitoring during
treatment

Throughout the treatment, continuous thermal surface
tracking monitors patient motion in real time. The user defines
specific regions of interest for surface tracking based on treatment
site and clinical requirements. When patient motion exceeds
preset tolerances within these monitored regions, automatic
beam-hold functionality is immediately triggered to interrupt the
treatment delivery. Surface tracking tolerances of 2.0 mm/2.0°
are commonly used for cranial applications. However, for spinal
treatments, the threshold may be relaxed since surface tracking is
affected by respiratory motion, while the target vertebral structures
themselves do not move with respiration. This respiratory artifact
may require larger motion tolerances (>1cm) before beam gating
is triggered, limiting the clinical utility of surface monitoring
for spinal cases. ExacTrac systems also allow automated X-ray
triggering during treatment based on predefined gantry angles
or monitor unit intervals, although this feature may not be
utilized in all clinical scenarios due to practical considerations,
such as limited arc ranges used for certain spine treatments. This
continuous monitoring capability ensures maintained positioning
accuracy throughout the entire treatment fraction, particularly
crucial for lengthy stereotactic procedures where patient comfort
and positioning stability may become challenging. Figures 3a, b
illustrate the real-time surface motion tracking alongside the
pre-beam verification stereoscopic X-ray images for a cranial and a
spinal case, respectively.

4.4 Current limitations and future directions

Despite significant advances, stereoscopic imaging maintains
inherent limitations as a projection-based technique. Two-
dimensional projections may obscure anatomical details compared
to volumetric imaging modalities, and the rigid body assumption
underlying motion tracking may not capture subtle non-rigid
patient movements. Thermal surface tracking may not accurately
represent the motion of internal organs and can be affected
by environmental factors, such as room temperature variations,
air conditioning drafts, patient perspiration, and variations in
patient skin temperature, which may alter thermal signatures and
compromise tracking accuracy. Patient comfort considerations,
particularly with tight-fitting immobilization masks, remain
challenging for extended treatment sessions, although different
types of masks (basic, open-face, and stereotactic) are available to
meet different clinical needs.

Future developments might focus on enhanced thermal surface
tracking algorithms that are more robust to environmental and
physiological variations, improved soft tissue contrast capabilities,
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FIGURE 2
X-ray verification of stereoscopic images for a cranial (a) and a spinal (b) case.

and integration with X-ray and/or magnetic resonance-guided
volumetric imaging platforms. Advanced motion prediction
algorithms and artificial intelligence-enhanced image fusion
represent promising avenues for further improving positioning
accuracy and workflow efficiency.

4.5 Summary

In summary, stereoscopic imaging and surface guidance
techniques have fundamentally transformed precision radiotherapy
for CNS tumors, enabling submillimeter accuracy essential for
safe dose escalation in SRS/SBRT applications. The evolution
from purely X-ray-based imaging systems to hybrid thermal-
surface guidance platforms demonstrates continued technological
advancement toward optimal patient positioning and motion
management. These innovations directly support the clinical goal
of maximizing tumor control while minimizing normal tissue
toxicity, particularly crucial for treating lesions adjacent to critical
neurological structures.

Frontiersin Medicine

5 Online adaptive radiotherapy using
Ethos

The Ethos linear accelerator (Figure 4) is an online adaptive
radiotherapy (OART) system with a ring-shaped gantry and
an AI platform. As the FDA-cleared CBCT-guided OART
device, Ethos enables high-quality, fast CBCT acquisition
and on-couch treatment planning focused on patients’ daily
anatomical changes.

Ethos utilizes a single energy of 6 MV flattening filter free (FFF)
beam and features a dual-layer multi-leaf collimator (MLC) design
with staggered leaves, giving an effective 5mm MLC thickness.
The dosimetric leaf gap (DLG) is in the range of tenths of a
millimeter, and the leaf transmission coeflicient is around 0.01%,
which is much smaller than the single-layer MLC design in a
conventional C-arm linac. The maximum field size is 28 cm with
the full MLC travel range of 28cm. The bore size is Im in
diameter, and the couch has three degrees of freedom (DOF).
The closed bore and compact design allow for four revolutions
per minute (RPM), enabling fast treatment and minimal collision
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FIGURE 3
Real-time surface motion tracking alongside the pre-beam verification stereoscopic X-ray images for a cranial (a) and a spinal (b) case.

risk (68). Compared to the conventional C-arm linac, Ethos
has no field light, no optical distance indicator (ODI), and no
laser marking at the treatment isocenter. Instead, it relies on
external lasers for patient alignment and automated shifts in the
software. Compared to conventional kV CBCT imaging, Ethos
HyperSight provides metal artifact reduction, more accurate HU
values, fast acquisition, and superior imaging quality with an extra-
large kV imager (~70cm) and a high-precision iterative CBCT
reconstruction algorithm.

Furthermore, Ethos has a dedicated treatment planning
system with a pre-configured beam model, an Al-driven
automatic contouring, and a plan optimization algorithm

called the intelligent optimization engine (IOE) (69).
Some Ethos linacs are also equipped with a surface-
guided imaging system for motion management and
a Mobius quality assurance (QA) system for gamma

analysis. All those features in the Ethos platform enable
the efficient and
radiotherapy workflows.

accurate on-couch patient adaptive
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5.1 Advanced imaging technology of Ethos
OART

In traditional adaptive workflows, such as head and neck re-
planning, subsequent CT is acquired after noticeable anatomical
changes are observed in the daily CBCT image. Different treatment
plans based on patient anatomy changes are created when patients
are off-the-couch. Subsequently, daily CBCT images are obtained
prior to treatment delivery to verify patient positioning for
new plans. This is called image-guided radiotherapy (IGRT) or
offline/off-the-couch adaptive radiotherapy. In contrast, Ethos
online adaptive process starts with the patient’s daily CBCT imaging
to visualize anatomy change, followed by recontouring of organs
at risk (OAR) and targets, and eventually planning optimization
based on that day’s patient anatomy while the patient is on
the couch. The fundamental difference between the Ethos and
traditional RT workflows lies in the timing of CT acquisition for
treatment planning. The Ethos system generates adaptive plans
based on daily CT scans obtained on each treatment day, whereas
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FIGURE 4
The all-in-one Ethos LINAC system, which can be used for CT-simulation, CBCT imaging, Al contours, GPU-based planning, surface guided imaging,
QA, and treatment delivery.

traditional adaptive RT relies on CT scans acquired weeks before
new adaptive treatment begins. Theoretically, this allows for better
OAR sparing and potential target dose escalation than the non-
adaptive workflow because a new plan is created every day based
on the evolving spatial relationship between tumor and normal
tissue. Many body sites can benefit from OART, such as the male
and female pelvic region (70-72), the upper abdomen region (73),
breast cancer (74, 75), and lung cancer (76) due to variable organ
volume or the daily motion. CBCT adaptive therapy is also useful
for areas of anticipated weight loss, such as the head and neck (77).
A recent study demonstrated that compared to traditional adaptive
workflows, the Ethos OART system enables feasible daily adaptive
treatments with reduced margins while enhancing target coverage
and reducing OAR doses by up to 12 Gy for head and neck patients
with oropharynx and larynx cancers (78).

The HyperSight CBCT system has enhanced hardware and
software components that contribute to improved scan quality
and contour accuracy. The panel utilizes cesium iodide (CsI)
scintillator material for higher conversion efficiency and fast
readout. Compared to the prior generation of imaging panel, the
HyperSight system has twice the active detector area (86cm x
43 cm) with no lateral offset. This allows for a full-fan trajectory
to be used, enabling an image acquisition time of 6s. This
faster scan time has been shown to provide reduced motion
artifacts on the planning image (79). Since a plan is created based
on daily contours, visualization of targets and OARs is critical
to optimizing, calculating, and delivering the plan accurately.
Prior to the introduction of HyperSight CBCT, the plan was
calculated on a synthetic CT that mapped Hounsfield units (HU)
from the simulation CT to the daily CBCT with deformable
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image registration. With the introduction of HyperSight on Ethos
version 2.0, plans may be calculated directly on CBCT images
(79). Reconstruction of CBCT images can be performed with
the analytical Feldkamp-Davis-Kress algorithm or the iterative
CBCT algorithm (iCBCT). An improved metal artifact reduction
reconstruction algorithm, iCBCT Acuros MAR, is also included
as a reconstruction mode for kV CBCT. Studies have shown that
HyperSight CBCT image quality and HU accuracy are comparable
to those of CT simulation images, suggesting the utility of the image
data for direct dose calculation in adaptive workflows (80). Figure 5
demonstrates a CBCT-based prostate SBRT, where the adapted plan
is selected over the scheduled plan for treatment because the target
coverage is superior based on the specific bladder and rectal filling
prior to treatment on that day.

One promise of direct dose calculation on CBCT is the use of
the Ethos linac for simulation-plan-treatment workflows. This CT-
simulation free workflow has been suggested for abdominal (81)
and spine SBRT (82). By utilizing library plans or diagnostic images
or even phantom plans as a “pre-plan,” we can acquire the patient’s
CBCT image and create an adaptive plan on the day of treatment.
Therefore, there is a reduction in planning time, with some sessions
involving only a single visit (83).

5.2 Planning and workflow considerations
for online adaptive radiotherapy
Although most patients theoretically can benefit from adaptive

radiotherapy, judicious use of planning and machine time resources
is important. Adaptive treatments require extended time on the
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machine to allow for contour generation and plan review, leading
to potential patient discomfort and movement. In addition, there
are additional planning considerations in the Ethos system that
require additional dosimetry or physics FTE (84). Workflows vary
by clinic, with some having dosimetrists in a traditional role and
others utilizing physicists for all Ethos planning (85). During
planning, physics and dosimetry must consider visualization of
the anatomy at the machine, accuracy of reference targets and
structures with their derivations, and the robustness of planning
goals to changes in daily patient anatomy. Planning images from
simulation should ideally be free of contrast to avoid any issues with
synthetic CT (86) or image registration and large enough to cover
the anatomy of interest, but small enough for efficient optimization
during planning. The Ethos system utilizes daily auto-contouring
of patient anatomy to help aid in on-session planning speed, so
accurate delineation of these organs at the time of initial planning
is important for accurate deformable image registration and target
delineation at the time of treatment.

The Ethos intelligent optimization engine (IOE) translates
clinical goals input by the planner into planning optimization
objectives in a piecewise continuous “quality” function (87). It
then iterates the quality function on a priority-quality plane until
a goal point is met and does not contribute to lower priority
functions. In practice, clinical goals are grouped into priorities, the
order of which influences this optimization process greatly. Due
to this, the planning goals and their order need to be carefully
considered, both on the planning image from simulation CT and
with foresight on potential anatomical changes on the CBCT. With
robust planning templates, online adaptive radiotherapy has been
shown to have dosimetric benefits in several sites, such as breast
(75), prostate (88), and lung (80). For example, it has been reported

Frontiersin Medicine

that the adaptive plan was the preference in 95% of fractions for
prostate radiotherapy. Online adaptive radiotherapy may allow us
to reduce the target margin while maintaining the tumor coverage
and sparing critical organs nearby (88).

5.3 Summary

In summary, the high-quality CBCT imaging-guided online
adaptive radiotherapy represents a unique opportunity for
delivering customized plans based on daily patient anatomy.
It uses high-performance kV imaging to visualize a patients
daily changing relationship between tumor and OAR, which
is integrated with efficient contouring, intelligent optimization,
and precise dose calculation. Therefore, kV CBCT-based online
adaptive radiotherapy has great clinical potential for dose escalation
in the tumor to enhance the local control, while sparing the
critical structures or lowering the toxicity to OAR with reduced
target margins.

6 Image synthesis in RT

Generative deep-learning-based image synthesis is an
increasingly active area of research in radiation oncology. These
techniques can create one imaging modality from another,
offering new ways to streamline clinical workflows. CT remains
the standard for simulation and treatment planning (89). CT
volumes are reconstructed by inverting measurements of the linear

attenuation coeflicient () collected at multiple projection angles
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with the Radon transform (90). As voxel values map directly to
electron density, CT is indispensable for accurate dose calculation.

Other modalities, such as MRI, PET, and ultrasound, provide
complementary information that can guide accurate dose delivery.
However, acquiring these additional scans is often time-consuming,
costly, or—under some circumstances—simply impractical for
clinicians and patients. Recent advances in deep learning
mitigate these barriers by enabling high-quality cross-modal image
synthesis, thereby reducing the need for multiple acquisitions and
opening new avenues for truly personalized RT.

6.1 Deep learning networks in medical
images

Deep learning (DL)—a branch of machine learning built on
multi-layered artificial neural networks—now underpins many
techniques for generating synthetic images in RT. Recent review
articles (91-95) survey the principal DL architectures applied
in this field, with convolutional neural networks (CNNs),
generative adversarial networks (GANs), and diffusion-based
models emerging as the most widely used.

CNNs are a class of deep-learning models inspired by the
hierarchical organization of neurons in the human visual cortex
(96-98). Purpose-built for grid-like data, they have become
ubiquitous in medical imaging applications (99-102). Each
convolutional layer deploys a bank of learnable filters that scan
the input, capturing local patterns—such as edges and textures—
while sharing parameters across the field of view to curb model
complexity and ensure translation invariance. Stacking multiple
convolutional layers with non-linear activation yields progressively
abstract, hierarchical feature representations (103-105). Pooling
(106) and other down-sampling operations (107) further condense
contextual information, whereas random dropout (108) regularizes
the network and mitigates overfitting. By learning features directly
from data rather than relying on hand-crafted descriptors, CNNs
have become the backbone of image analysis and synthesis tasks
in RT. One of the most well-known CNN models is the U-shaped
net (U-Net) proposed by Ronneberger et al. (1) (Figure 6). One
important modification of the U-Net is direct skip connections
between the encoder and the decoder. The U-Net does not have
any fully connected layers. Instead, it only uses the valid part of
each convolution, which allows the network to propagate context
information to the up-sampling layers.

GAN was introduced by Goodfellow et al. (109). Compared
to the image generated by the CNNs, it further improves the
image quality. GANs learn to synthesize realistic data through a
game-theoretic contest between two neural networks: a generator
(G) and a discriminator (D). The generator tries to produce
realistic images that resemble the real training distribution, while
the discriminator simultaneously learns to distinguish generated
images from genuine ones. During training, each network improves
in response to the other’s progress: the generator refines its outputs
to fool the discriminator, and the discriminator improves its ability
to detect fake images, creating a dynamic “adversarial” loop that
gradually drives the generator toward high-fidelity outputs. This
framework has enabled breakthroughs in photorealistic image
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synthesis. Derivative networks, such as Conditional GANs (110,
111), CycleGAN (112, 113), and StyleGAN (114, 115), extend the
idea to guided generation, unpaired domain translation, and finely
controllable synthesis, making GANs one of the most versatile and
influential tools in modern machine learning.

Another category of generative model is the diffusion model,
which was first introduced in 2015 by Sohl-Dickstein et al. (116).
Diffusion models generate images by gradually contaminating
training data with Gaussian noise and then learning to reverse this
process iteratively. Instead of learning the image itself, the model is
trained to learn the contaminated noise, which effectively denoises
the dataset into realistic samples. Their iterative nature yields high-
fidelity detail and inherent diversity, making them more robust to
noise contamination in the training dataset. Recent studies show
that denoising diffusion probabilistic models can synthesize 3-
D MRI and CT volumes with realistic image quality (117, 118).
Emerging “foundation” approaches such as MedDiff-FM aim to
unify multiple tasks—synthesis, reconstruction, and denoising—
within a single large diffusion backbone, pointing toward versatile,
privacy-preserving generative pipelines across modalities (119).
These advances collectively position diffusion models as a core
engine for safe, scalable medical image synthesis.

6.2 Application of image synthesis in RT

Substantial progress has been achieved in image synthesis
applications for RT. Notable examples include MRI to synthetic CT
(sCT) conversion (120-125) and synthetic MRI (sMRI) (126-134),
synthetic PET (sPET) (127, 135, 136), and CBCT to sCT conversion
(137, 138).

In recent years, interest in MRI-guided RT has grown
substantially within the radiation oncology community. Compared
with CT, MRI offers superior soft-tissue contrast and exposes
patients to no additional ionizing radiation. This advantage allows
more precise delineation of tumors and organs at risk, such as the
bowel and optic nerves. MRI signal intensity, however, depends on
sequence-specific parameters—e.g., repetition time (TR), echo time
(TE), flip angle, and inversion time (TT) (139)—and therefore lacks
a direct, one-to-one correlation with electron density. As a result,
MRI alone cannot support accurate dose calculation. To address
this limitation, generative AI models are now used to synthesize
sCT images from MRI data, making MRI-only treatment planning
feasible (140, 141). Several studies have quantified the dosimetric
differences between sCT and the reference planning CT (125, 142—
145). In photon therapy, the mean dose deviation is approximately
1% (142). By contrast, proton therapy is more sensitive: reported
proton-beam range shifts reach 5.6 mm in liver cancer (125) and
7.5mm in prostate cancer (145), which can translate into clinically
significant dose errors.

Synthetic MRI leverages advanced machine learning models—
most commonly CNNs (96), GANs (109), or diffusion models
(116)—to rapidly generate high fidelity MR-like images from either
undersampled k-space data or alternative inputs such as CT,
quantitative maps, or single contrast scans (127, 146). By learning
the complex, non-linear relationship between tissue properties
and MR signal formation, these models can synthesize multiple
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FIGURE 6
Architecture of the U-Net. Reprinted from Maas et al. (104).

output
i Segmentation

1 map

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv Ix1

contrasts (e.g., T1, T2, or FLAIR weighted images) (147) in a
single inference step, standardize intensity across patients, and
even predict quantitative relaxation parameters (148). The result
is a dramatic reduction in acquisition time and patient motion
artifacts, more consistent image quality, and the potential to
extend MRI-level soft tissue visualization to scenarios where full
MRI is impractical—such as RT workflows that rely primarily
on CT (149). As the techniques mature, synthetic MRI is poised
to streamline imaging protocols, lower costs, and enable new
precision medicine applications ranging from adaptive treatment
planning to longitudinal disease monitoring.

PET is already a powerful tool in radiation oncology, which
provides functional information about the metabolism of the
tissues, but practical and technical barriers keep it from being
used whenever it would add value. Synthetic PET imaging is
driven by deep learning generators that learn to translate structural
or low-count inputs into realistic tracer uptake maps (150).
The field began with 3-D U-Nets that capture the global, non-
linear correlation between whole-brain MRI volumes and FDG
activity (151) and quickly moved to conditional GANs—such as
the globally and locally aware GLA GAN (152)—which combine
adversarial, pixel-wise, and structural similarity index measure
(SSIM) losses so both coarse context and fine lesion details are
recovered. Further refinements include frequency-aware U-Nets
(153) that process low- and high-frequency bands separately to
sharpen edges and textures, and bidirectional or reversible GANs
(154, 155) that embed PET semantics in a shared latent space
to enforce cycle consistency and boost perceptual fidelity. More
recent architectures add Transformer attention to fuse multi-
modal MRI/PET cues and model long-range dependencies (156) or
adopt diffusion models that iteratively denoise random noise under
MRI or textual guidance to yield high-fidelity standardized uptake
values (SUVs) (157). These innovations underpin applications
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such as synthesizing full dose scans from low dose PET or from
MRI alone (127, 158, 159), mitigating noise while preserving
quantitative accuracy and thereby reducing radiation burden
for patients.

CBCT acquired on the treatment machine employs a cone-
shaped beam and a flat panel detector; scatter from the whole
patient therefore overwhelms the signal, creating streaking,
cupping, and other artifacts that corrupt HU (160) accuracy
and compromise dose calculation (161). Deep learning pipelines
now correct these limitations by translating CBCT into synthetic
CT (sCT) volumes with calibrated HUs. Two complementary
strategies dominate: projection domain correction (162), in which
CNN or GAN models clean hundreds of 2 D x ray projections
before reconstruction—leveraging the rich (>300) projection set to
converge quickly and bypass many image domain artifacts—and
image domain translation (163), where architectures such as U-
Net (1), CycleGAN, (112, 113) or attention GAN (137) act directly
on the reconstructed CBCT to recover CT-like contrast and bone
detail. Projection domain networks can even be trained on non-
anthropomorphic phantom projections to learn scatter patterns,
enhancing generalizability, while many image domain studies
rigidly register CBCT and planning CT to minimize geometric
mismatch during training. By restoring HU fidelity, these DL-based
CBCT to sCT techniques enable accurate daily dose recalculation,
adaptive replanning, and auto contouring, transforming CBCT
from a positioning aid into a quantitative backbone for modern
image-guided radiotherapy.

6.3 Summary

Generative image synthesis is moving from proof of concept
to a practical enabler in RT. More broadly, machine learning is
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reshaping the field, but clinical adoption must confront persistent
risks of overfitting and domain shift. In radiation oncology,
accuracy alone is not enough: even small rates of false negatives
or false positives can have serious consequences. Addressing
these risks requires rigorous validation, uncertainty reporting,
and continuous quality assurance, with medical physicists playing
a central role in understanding model limitations, monitoring
performance, and integrating these rapidly evolving tools into safe,
reliable workflows.

7 Cherenkov radiation imaging:
emerging applications in modern RT

Cherenkov radiation emerges when charged particles traverse
dielectric media at velocities exceeding the local speed of light.
This phenomenon, characterized by its distinctive blue glow,
occurs across the electromagnetic spectrum from ultraviolet to
near-infrared wavelengths. In RT contexts, Cherenkov emission is
generated whenever high-energy radiation interacts with tissue or
water-equivalent phantoms, making it an intrinsic component of
dose delivery processes (164-166).

The fundamental physics governing Cherenkov production
follows well-established principles. The threshold condition
requires f > 1/n, where B represents the particle velocity
relative to light speed and n denotes the medium’s refractive
index. For electrons in liquid water, this threshold corresponds
to approximately 260 MeV, with characteristic emission angles of
~41°. The Frank-Tamm formula describes Cherenkov intensity as
proportional to 1/X (2) in the wavelength domain, resulting in the
characteristic-blue-weighted spectrum (167).

Under conditions of transient charged particle equilibrium,
local Cherenkov intensity demonstrates strong proportionality to
absorbed dose for both photon and electron beams (168-171).
The presence of Cherenkov emission from radiotherapeutic proton
beams has also been investigated (172). However, this relationship
becomes complex due to factors including beam quality variations,
spectral changes from beam hardening, and anisotropic secondary
particle distributions. Furthermore, for in vivo applications, the
optical transport of Cherenkov photons is dependent on patient-
specific spatially heterogeneous tissue optical properties. These
complications necessitate correction methodologies for accurate
dosimetric applications.

7.1 Physics and detection considerations

The anisotropic nature of Cherenkov emission presents both
challenges and opportunities for RT applications. In transparent
media like water, Monte Carlo simulations and polarization
imaging techniques can provide corrections to account for
directional dependencies (169, 173). Alternatively, fluorophore
doping can convert anisotropic Cherenkov light to more isotropic
fluorescence, simplifying measurements while maintaining dose
proportionality (174, 175).

In biological tissues, Cherenkov transport depends critically
on optical properties, particularly absorption and scattering
coefficients. The effective sampling depth is typically limited
to several millimeters beneath tissue surfaces, with sensitivity
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decreasing exponentially with depth (164, 176-178). Unlike
native Cherenkov spectra, tissue-emergent radiation exhibits red-
shifted characteristics due to preferential absorption of shorter
wavelengths (177).

Detection technologies have advanced significantly, enabling
practical Cherenkov measurements in clinical environments.
Modern systems employ intensified CMOS cameras to capture
the relatively weak Cherenkov signals (on the level of WW cm-
2 per Gy s~! for external beam therapy), the sensitivity, and
noise characteristics, which have been reported in the literature
(179-183). Spectral filtering of ambient lighting and temporal
gating synchronized to radiation pulses effectively suppresses
ambient light interference, particularly valuable in low-duty cycle
applications (184-186).

7.2 Dosimetric applications in phantom
studies

Camera-based Cherenkov imaging has demonstrated
significant utility for beam characterization and quality assurance
in phantom studies. Two-dimensional projection imaging enables
rapid profiling of electron and photon beams with excellent spatial
resolution (165, 174). Tomographic reconstruction techniques
allow three-dimensional dose distribution mapping, validated for
intensity-modulated RT (IMRT) and volumetric modulated arc
therapy (VMAT) quality assurance (187, 188).

The

with Cherenkov imaging addresses critical needs in modern

exceptional spatiotemporal resolution achievable
RT. Advanced techniques, such as stereotactic radiosurgery,
microbeam therapy, and stereotactic body RT, demand precise
characterization of small fields with steep dose gradients.
Cherenkov imaging provides sub-millimeter spatial resolution in
both 2D projection and 3D tomographic modes (175, 189). These
favorable properties have been leveraged in the applications of
Cherenkov imaging to routing quality assurance, including for MR
linacs (190-193).

Ultra-high dose rate (UHDR) RT, known as FLASH-RT,
presents unique dosimetric challenges due to dose rates exceeding
40 Gy/s—several orders of magnitude above conventional delivery
rates (~2-6 Gy/min). Traditional dosimeters often exhibit dose-
rate dependencies that compromise accuracy under UHDR
conditions. Cherenkov imaging, combined with fast electronics
and feedback systems, has successfully addressed these challenges,
enabling dosimetry, monitoring, and control applications in
FLASH-RT (194-196).

7.3 Chemical and biological sensing
applications

Cherenkov emission spectroscopy has emerged as a powerful
tool for non-invasive chemical sensing, particularly for tissue
oxygenation monitoring (197) (Figure 7). Conventional oxygen
measurement techniques are often invasive and complex, limiting
their clinical utility. Cherenkov-based approaches leverage spectral
characteristics that correlate with tissue optical properties at
varying oxygenation concentrations (198, 199). Multi-channel
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Reprinted from Vasyltsiv et al. (200).

Spectral characteristics of tissue-emitted light are primarily determined by the absorption features of oxyhemoglobin, deoxyhemoglobin, water, and
lipids, together with the general wavelength dependence of tissue scattering (A). Simulated Cherenkov emission spectra originating from a 5mm
depth are shown for fatty tissue (composition: 90% fat, 9.5% water, 0.5% blood containing equal parts Hb and HbO;) and for radiodense tissue
(mixtures of water and blood in varying ratios, again with equal Hb/HbO, contribution) (B). Changes in blood oxygenation within radiodense tissue
containing 2% blood modify the Cherenkov spectrum owing to the distinct absorption profiles of oxy- and deoxyhemoglobin (C). Finally, (D)
illustrates how varying emission depth in radiodense tissue (2% blood) influences the resulting Cherenkov emission observed at the surface.
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spectral Cherenkov imaging is an emerging technology that can
provide additional contrast for subsurface features by leveraging
the impact of tissue composition on the emitted Cherenkov
spectrum (200). This approach was also used to generate the first
color images of Cherenkov emission from patients (197).

The development luminescence
techniques has expanded sensing capabilities beyond direct

of Cherenkov-excited

spectroscopic methods. By introducing oxygen-sensitive optical
probes that can be stimulated by Cherenkov light, researchers
have demonstrated real-time measurements of partial pressure of
oxygen (pO,), both in vitro and in vivo (201, 202). Diffuse optical
tomography with radiation beam-optimized excitation patterns
enables three-dimensional oxygen distribution reconstruction to
depths of several centimeters (203, 204).

Cherenkov-excited luminescence scanned imaging (CELSI)
represents another jump forward in Cherenkov-based biological
sensing. This technique utilizes two-dimensional radiation sheets
to generate Cherenkov emission, which subsequently excites
luminescence probes distributed throughout biological tissues.
By incorporating prior knowledge of beam positioning, three-
dimensional optical signal distributions can be reconstructed with
high spatial resolution (205-207).

7.4 In-vivo clinical applications
Human Cherenkov imaging was first demonstrated in patients

with breast cancer receiving external beam RT. Synchronization
of frame capture with radiation pulses enabled real-time,
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background-subtracted imaging at rates exceeding 10 frames
per second (166, 208). These proof-of-concept studies revealed
field segments projected onto patient surfaces, with intensity
correlations to subsequent erythema development.

Clinical applications have expanded to encompass multiple
treatment sites and techniques, including total skin electron
therapy, head and neck VMAT, and frame-based intracranial
stereotactic radiosurgery (209-214). Primary applications focus
on motion monitoring, coverage validation, and treatment
verification, though quantitative dose remains
challenging due to patient-specific factors, such as tissue optical

correlation

properties, beam geometry, and treatment modality.

Significant progress has been made in addressing quantitative
limitations through patient-specific corrections, with a particular
focus on breast RT. Spatial frequency domain imaging (SFDI)
enables measurement of skin optical properties for Cherenkov
intensity correction (215). Additionally, X-ray attenuation values
extracted from planning CT scans show a strong correlation with
optical absorption, providing an alternative correction approach
that utilizes readily available imaging data (216, 217). The
patients skin tone has been incorporated into the correction
paradigm by leveraging the intensity of the paired time-delayed
images used for online Cherenkov-background subtraction (218).
Cherenkov images have been used to monitor and analyze
match line quality in half-beam blocked or multi-isocenter
treatments (219-221), and there are ongoing attempts to utilize
biological features in the images as fiducial markers to track
setup accuracy, leveraging classical and deep learning-based image
analysis techniques (222-224).
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Examples of unintended dose delivery are illustrated for Cases 1, 2, and 3. (A—C, Case 1) depict incorrect arm positioning during 7 of 10 fractions,
resulting in approximately 4.5 Gy exposure from an exit beam. (D-F, Case 2) show suboptimal hand placement that produced a small unintended
dose in one of the ten fractions. (G-I, Case 3) demonstrate additional dose to the left axillary region caused by a slight displacement of the left arm in
one of sixteen fractions. For all cases, surface-dose maps derived from the treatment plan were projected onto the corresponding patient CT
surface, with red arrows marking the affected regions. Reprinted from Jarvis et al. (228).
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Despite quantitative challenges, Cherenkov imaging offers
unique advantages as a “free” signal present during any megavoltage
RT without additional dose or time requirements. With the
introduction of commercially available clinical Cherenkov imaging
systems (BeamSite, DoseOptics, Lebanon NH, and DoseRT, Vision
RT, London UK), there has been an effort to use the live Cherenkov
video feed and the post-treatment cumulative image to monitor
beam shape and improve or avoid non-ideal planning, delivery, or
setup conditions (225, 226). Published studies on cohorts of 64 to
over 600 patients have shown incident rates between 1.5% and 9%
that were uniquely identified with Cherenkov imaging (227, 228)
(Figure 8). Additionally, there are recent efforts to use Cherenkov
images to guide the placement of in vivo dosimeters for surface
dose measurements on the contralateral breast or verification of
implanted electronic device dose limits (229, 230).

Future developments focus on automated anomaly detection
through machine learning applications. The large-scale data
availability from always-on Cherenkov imaging enables several
promising applications, including deep image denoising, motion
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estimation, automated patient alignment verification, and real-time
treatment anomaly detection (210, 211).

7.5 Emerging applications and future
directions

FLASH-RT applications represent a rapidly expanding frontier
for Cherenkov imaging. The instantaneous nature of Cherenkov
emission makes it ideally suited for monitoring UHDR deliveries
that typically occur within fractions of a second. Real-time
Cherenkov imaging has been successfully demonstrated in large
animal FLASH studies, providing quality assurance and delivery
control capabilities (196, 231).

Advanced imaging techniques continue to evolve, including
multi-spectral Cherenkov imaging for physiological parameter
estimation. Time-gated, three-channel cameras have enabled
color Cherenkov emission

analysis, potentially providing
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FIGURE 9
Visualization of segmented bio-morphological structures derived from Cherenkov imaging in ten representative breast cancer patients. (A-J) display
the outputs of a fine-tuned SegResNet model, showing enhanced-edge segmentations of surface features overlaid transparently on the
corresponding Cherenkov images. The segmented features primarily represent subcutaneous vasculature on the breast surface, with occasional
inclusion of other anatomical details such as scars or nipples. Red arrows in (B, E, F, I) highlight segmentation errors involving scars and nipples,
whereas white arrows in (C, G, H, J) indicate accurate segmentation results where vascular structures are correctly isolated. Reprinted from
Alexander et al. (227).

information about oxygen saturation, blood volume, and tissue
composition (197).

Machine learning integration promises to enhance Cherenkov
imaging capabilities significantly. Applications under development
include automated treatment verification, real-time anomaly
detection, patient-specific dose estimation, and physiological
parameter extraction from spectral Cherenkov data (224, 232)
(Figure 9).

7.6 Summary

Cherenkov radiation imaging has matured from a laboratory
curiosity to a clinically viable technology with diverse applications
in RT. While challenges remain in establishing quantitative
dose correlations, particularly for in vivo applications, the
technology offers unique advantages, such as real-time monitoring
capabilities, excellent spatiotemporal resolution, and compatibility
with emerging UHDR techniques. Continued technological
development and clinical validation will likely expand Cherenkov
imaging applications in quality assurance, biological monitoring,
and treatment verification across conventional and advanced
RT modalities.

8 Challenges in precision proton
therapy

The popularity of proton therapy is derived from its capacity
to spare healthy tissue while providing excellent dose conformity
to the tumor due to proton physical properties, particularly the
Bragg peak, where protons deposit their maximum energy at the
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end of their path at a precise depth. Thus, proton therapy is
advantageous in pediatric oncology and tumors located near critical
organs and structures. However, this unique characteristic comes as
a double-edge sword: the precision of proton therapy is vulnerable
to any uncertainties contained within the workflow of proton
therapy. Even small inaccuracies during this process could lead to
significant change in target coverage or unintended irradiation to
the normal tissue.

Imaging plays an essential role in every step of proton
therapy: from simulation, treatment planning, daily imaging-
guided patient setup during treatment, and to potential adaptive
planning (Figure 10). This section will first focus on imaging-
related challenges in simulation and imaging guidance during daily
treatment and then summarize emerging technologies and their
future clinical implications.

8.1 Simulation imaging and planning
accuracy

8.1.1 Patient positioning and immobilization

Like photon-based treatments, proton therapy treatment
begins with simulation, during which high-quality volumetric
images, typically a CT scan, are acquired to define tumor target
volumes and organs at risk (OARs) and used for dose calculation
during treatment planning. Thus, reproducibility of patient setup
during simulation is essential to ensure the patient position
can be consistently and accurately recreated during treatments.
Uncertainties introduced at this stage propagate throughout the
entire workflow of the treatment.

Immobilization devices, such as thermoplastic masks for brain
and head and neck tumors, VacLok® for other sites, and indexed
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Imaging workflow in proton therapy

positioning systems, aid in minimizing variations in patient
position. Special attention must be paid to all items that may vary in
thickness and location. Changes of these items during the treatment
course would significantly impact the dose distribution during daily
treatment if placed within a beam path.

8.1.2 CT HU to stopping power ratio (SPR)
conversion

The cornerstone of proton therapy planning is the conversion
of CT HUs to the stopping power ratio (SPR), which is used to
calculate proton dose deposition. Uncertainties in this conversion
are the major source of range uncertainty, which is estimated to be
2%—3% and more than 5% in the lung tissue (233, 234).

The standard clinical approach to address range uncertainty
is the stoichiometric method, which involves acquiring single-
energy CT (SECT) scans of various materials to establish a
calibration curve. However, this curve is scanner- and protocol-
dependent and assumes consistent image quality and minimal
artifacts. Artifacts from metal implants or motion (e.g., respiration)
introduce errors in SPR estimation, which ultimately propagate
into dose calculation.

8.1.3 Advanced CT imaging techniques

To improve SPR accuracy, the feasibility of using dual-energy
CT (DECT) for proton treatment planning is being explored in
research and clinical settings (235, 236). DECT acquires two images
at different X-ray energies, enabling the calculation of effective
atomic number and electron density. This provides a more accurate
pathway to SPR estimation than the stoichiometric method. Studies
have shown that DECT implementation reduces range uncertainty
by more than 1% compared to conventional CT.

Four-dimensional CT (4DCT) is critical in thoracic and
abdominal sites where the tumor moves due to respiration and
peristalsis. 4DCT allows breathing phase-based sorting of images
to capture motion and inform strategies, such as internal target
volume (ITV) creation or beam gating. Nowadays, treatment
planning system allows users to incorporate different breathing
phases during optimization, which greatly reduces the impact of
breathing motion on daily dose delivery (237, 238). Proper motion
management strategy reduces inter- and intra-fractional motion
while improving the robustness of the proton treatment plan.
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8.2 Image guidance during treatment in
proton therapy

8.2.1 Imaging modalities

Table 2 compares different image modalities in proton therapy.
Compared to photon therapy, which is inherently more forgiving
for setup inaccuracies, proton therapy is highly sensitive to changes
in water equivalent thickness (WET) along the proton beam path
due to the finite range. Image-guided RT (IGRT) plays a vital role
in verifying patient setup and minimizing uncertainties.

Common IGRT techniques include orthogonal kV radiographs
and CBCT. Radiographs are quick and efficient for bony
alignment but lack soft tissue visualization. CBCT offers
volumetric information but suffers from lower image quality
and longer acquisition time. Moreover, CBCT has poor HU
accuracy, making it unreliable for proton range calculations
(239). Nonetheless, it is superior in anatomy visualization,
providing more reliable couch correction to align the anatomy
on the treatment day with the simulation CT, reducing the
setup uncertainties.

Surface-guided RT (SGRT) is an emerging modality used for
patient positioning in superficial tumors or sites with minimal
internal motion and for gating or breath-hold cases. It avoids
ionizing radiation and provides real-time feedback. However,
special attention needs to be paid when relying on SGRT to align
the patient since it lacks internal anatomical correlation.

CT-on-Rails (CToR) has been adopted for IGRT modality in
proton therapy to address the limitations of CBCT. The image
quality of CBCT systems integrated into proton gantries is often
compromised due to extended source-to-imager distance (SID)
and limited mechanical clearance. In contrast, CToR provides
diagnostic-quality volumetric imaging, offering superior soft
tissue visualization and improved target delineation, which
are requisite for accurate image registration and adaptive dose
calculation. When implemented clinically, alignment between
the CToR imaging isocenter and the treatment isocenter is
critical. This alignment must be established during system
installation and commissioning and maintained through
routine quality assurance checks. Notably, during imaging,
the treatment couch must be rotated or translated away
from the treatment position to allow access to the CToR
gantry—introducing the potential for setup variability if not
properly managed.
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TABLE 2 Comparison of imaging modalities in proton therapy.

Modality Phase of Strengths Limitations
use
SECT (CT) Simulation Widely available; HU-to-SPR uncertainty;
used for HU-SPR artifact sensitivity
conversion
DECT Simulation Better SPR Limited clinical
accuracy; material | adoption; more
decomposition complex workflow
4DCT Simulation Captures Motion artifacts; longer
respiratory simulation time
motion
CBCT IGRT/ Volumetric Poor HU accuracy; not
Verification guidance ideal for replanning; not
widely available in all
proton centers
CToR IGRT/ High-resolution, Set up shift required;
Verification diagnostic-quality | space-consuming
imaging
pCT Simulation Direct SPR Still under
measurement development; resolution
and workflow
MRI Simulation/ Excellent soft No intrinsic SPR; image
Planning tissue contrast registration needed
PET Verification In vivo dose Biological washout;
verification logistical and temporal
limits
Prompt- Verification Real-time range Limited resolution;
Gamma verification detector development
ongoing
SGRT IGRT Non-ionizing; Limited to external
real-time surface
monitoring

8.2.2 Adaptive proton therapy

Given the sensitivity of proton beams to anatomical changes,

adaptive therapy is a growing area of interest. Adaptive strategies
rely on periodic or daily imaging to assess the impact of changes
in patient anatomy on dose delivery and adjust the treatment
plan when deemed necessary. Recent research on synthetic CT
generation from CBCT using deformable registration or Al
techniques holds promise in overcoming its limitation of poor HU
reliability (240). CToR images show superior HU accuracy, which
would be readily used for adaptive proton treatment planning.
Adaptive therapy can improve target coverage and OAR

sparing, particularly in long-course treatments. However,
it requires additional clinical resources, including time
for recontouring and plan evaluation, making routine

implementation challenging.

8.3 Emerging technologies for imaging
accuracy

8.3.1 Proton radiography and proton CT

Table 3 summarizes the emerging image techniques for proton
therapy. Proton radiography and proton CT (pCT) are imaging
modalities that use protons themselves, rather than X-rays, to
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generate images of patient anatomy. Proton radiography provides
2D images and has been used in research settings for patient
alignment and range verification (241). Proton CT, still under
clinical development, offers 3D volumetric imaging and direct
SPR mapping (242). Studies suggest that pCT can reduce range
uncertainty to within 1%, though issues such as limited spatial
resolution, longer acquisition times, and system integration remain
barriers to clinical implementation.

8.3.2 Prompt gamma and PET imaging for in-vivo
verification

Due to its finite range, it is impossible to measure the
exit dose from proton delivery during treatment, compared to
photon treatment. To verify proton beam delivery during or after
treatment, prompt gamma imaging (PGI) and proton-induced PET
are under active investigation.

PGI detects gamma photons emitted almost instantaneously as
protons interact with nuclei in the patient. The spatial distribution
of prompt gammas correlates with the proton range, offering a
method for real-time verification. PGI systems are being tested
clinically with encouraging results, though detector design and
resolution constraints limit full clinical integration (243).

PET isotopes
generated by proton-nucleus interactions. Post-treatment PET

imaging leverages the positron-emitting
can visualize areas where protons deposited energy. However, its
clinical utility is limited by biological washout, low signal-to-noise
ratios, and logistical challenges, such as the need for on-site PET
scanners (243).

8.3.3 Artificial intelligence in imaging accuracy
Al and ML are increasingly being applied to enhance imaging
in proton therapy. Applications include:

- Synthetic CT generation from MRI or CBCT, enabling MR-
based planning or CBCT-based adaptation with reliable
HU/SPR mapping (244).

- Automated segmentation of targets and OARs, reducing
variability and speeding up planning.

- Image registration improvements, particularly deformable
registration across modalities.

- Artifact correction in CT and CBCT, especially for motion and
metal-induced artifacts.

Al tools are being developed to predict anatomical changes
and guide adaptive decision-making, potentially reducing the need
for daily manual planning and review. As these tools mature, they
could enhance the accuracy and efficiency of imaging workflows
throughout the proton therapy process.

8.4 Summary

In summary, new technologies are improving the accuracy of
proton therapy. Precision is limited by range uncertainty from
HU-to-stopping-power conversion, setup/motion, and imaging
artifacts. Dual-energy CT tightens SPR estimates, while 4DCT
characterizes respiratory motion for robust planning. For image
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TABLE 3 Emerging technologies and clinical readiness.

10.3389/fmed.2025.1686593

Technology Purpose Advantages Current limitations Clinical maturity
Dual-energy CT Improve SPR estimation Reduced range uncertainty Needs new calibration and Moderate

workflow
Proton CT (pCT) Direct SPR measurement <1% range uncertainty Resolution, speed, system Low (R&D)

availability

Prompt gamma imaging

In vivo range verification

Real-time feedback

Detector complexity, resolution

Low-Moderate

Synthetic CT (from CBCT) Adaptive planning Enables CBCT-based Needs Al or deformable Moderate
replanning registration

Al-based auto-segmentation Planning/Adaptive Efficiency, consistency Validation and generalizability Moderate

In-room PET Post-treatment range Biological dose imaging Washout, timing, scanner access Low

verification

guidance, kV radiographs and CBCT improve daily alignment,
SGRT provides non-ionizing motion monitoring, and CT-on-
rails offers diagnostic-quality volumetric updates. Adaptive proton
therapy leverages periodic or daily imaging to replan when
anatomy changes. In vivo verification via prompt-gamma and
PET supplies range feedback, and pCT can directly inform water-
equivalent thickness modeling. Al further enables synthetic CT,
automated segmentation, deformable registration, and artifact
mitigation. Broad clinical impact will hinge on rigorous validation,
standardized QA/reporting, interoperable data pipelines, and
staffing/training to sustain adaptive, verification-rich practice.

9 Advanced imaging and dosimetry in
theranostics

Radiopharmaceutical therapy (RPT) is a form of internal
radiation treatment that combines tumor-targeting molecules
with radioactive isotopes to deliver cytotoxic radiation directly
to cancer cells. Unlike external beam radiotherapy (EBRT),
which delivers radiation from outside the body, RPT administers
radiation systemically, typically via the bloodstream, allowing
it to target both primary tumors and metastatic sites. This
targeted, systemic approach makes RPT particularly well-suited for
treating widespread metastatic disease. When used in combination
with other therapies, demonstrated promising efficacy and a
favorable toxicity profile, often outperforming conventional RPT
has systemic treatments in clinical trials (245, 246).

A defining feature of RPT is its compatibility with personalized
medicine. As the distribution of radioactive agents can be visualized
within the body using imaging—either after administration or
through surrogate imaging—the treatment can be precisely tailored
to each patient. This imaging capability enables real-time tracking
of drug biodistribution and supports individualized dosing based
on organ uptake and tumor burden. The term “theranostics”
describes this integration of targeted therapy (thera-) with
diagnostic imaging (-nostics) (247) and has led to a resurgence in
the development and clinical use of RPT over the past two decades.

Theranostics involves the use of molecular imaging, typically
with PET/CT or SPECT/CT, to guide patient selection and optimize
treatment strategies. A common theranostic approach uses isotope
pairs that are chemically identical but differ in their radio-physical
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properties, such as 1237/ 12417 1317 3pd 86Y/ 207, In these cases,
one isotope is used for imaging to assess biodistribution and
receptor targeting, while the other is used for therapeutic radiation
delivery. Additionally, theranostic approaches can utilize different
elements that can be chelated to the same targeting molecules,
such as %8Ga for imaging and '”’Lu for therapy, when bound
to identical targeting vectors like DOTA-peptides. An alternative
strategy involves administering a trace amount of the therapeutic
agent and imaging it directly using SPECT/CT to predict the drug’s
distribution during the treatment. These methods enable clinicians
to better evaluate treatment feasibility and personalize RPT to
achieve maximum efficacy with minimal toxicity.

9.1 Current RPTs administered in the clinic

Several RPTs have received FDA approval for treating a range of
cancers, reflecting the growing role of targeted radionuclide therapy
in oncology. Among the most widely used radionuclides in RPT are
beta (B~)-emitters, such as iodine-131 (*'1), yttrium-90 (*°Y), and
lutetium-177 (177Lu). These isotopes are favored for their tissue-
penetrating radiation range and ability to induce DNA damage in
tumor cells, ultimately leading to cell death.

One of the earliest and most established forms of RPT is
radioactive iodine (RAI) therapy, which has been used clinically
for nearly a century, particularly for the treatment of differentiated
thyroid cancer and benign thyroid disorders such as Graves’ disease
and toxic multinodular goiter (248). RAI therapy exploits the
sodium iodide symporter (NIS)—a transmembrane protein that
facilitates active transport of iodide ions into thyroid follicular
cells. This transporter is highly expressed in differentiated thyroid
cancers, allowing for the selective accumulation of radioactive
iodine within malignant tissues.

Beyond therapy, radioactive iodine isotopes are also used for
diagnostic imaging. Sodium iodide labeled with 231 (Na!2%I) is
commonly used for SPECT/CT imaging due to its favorable gamma
photon energy and shorter half-life, which minimizes radiation
dose to the patient. Na'?*I is a positron-emitting isotope of
iodine, which is used for PET/CT imaging, providing higher spatial
resolution and quantitative accuracy (249, 250).

Radium-223 dichloride (***RaCl,) was approved by the FDA
in 2013 for the treatment of castration-resistant prostate cancer
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(CRPC) with symptomatic bone metastases. As an alkaline earth
metal, 22RaCl, mimics calcium and selectively localizes to areas of
increased bone turnover, particularly at sites of metastatic lesions.
Patients with metastatic prostate cancer often exhibit elevated bone
remodeling activity driven by osteoblasts and osteoclasts, making
them ideal candidates for therapies involving calcium mimetics,
such as 22RaCl, (251).

223Ra undergoes a six-stage decay process, emitting four alpha
particles per decay. These alpha particles account for approximately
95% of the total decay energy, making 2*’Ra a highly potent
source of localized radiation. The emitted alpha particles have
high linear energy transfer (LET), which means they deposit a
substantial amount of energy along short tracks. This results in
efficient induction of DNA double-strand breaks, which are lethal
to tumor cells. However, due to their short range (approximately
10-100 pm), the cytotoxic effects of alpha particles are confined to
a radius of 2-10 cells, thereby minimizing damage to surrounding
healthy tissue.

Meta-iodo-benzyl-guanidine (mIBG) is a norepinephrine
analog that targets the adrenergic tissue. When labeled with
iodine-131 (3'I), mIBG has been used for decades to treat
neuroblastoma and other pediatric tumors (252). Despite its
long history of clinical use, standard '3'T -mIBG does not have
formal FDA approval and is therefore prescribed by physicians
under investigational or compassionate use protocols (253). One
should keep in mind that the prescribed activity for '3'I-mIBG
is based on patient body weight and is typically much higher
than other RPT drugs since pediatric patients can better tolerate
bone marrow suppression and can also receive stem cell support
following treatment.

More recently, a new formulation known as high-specific-
activity (HSA) 13'1-MIBG has been developed. This version features
a much higher proportion of the mIBG molecules labeled with
311, significantly increasing its specific activity—the amount of
radioactivity per unit mass of drug (254). In standard '*'I-mIBG
preparations, only about 1% of mIBG molecules are radiolabeled
(~123.3 MBg/mg), whereas in HSA *'I-mIBG, nearly 100%
of the molecules are labeled (~92,500 MBgq/mg) (255). HSA
BI_mIBG received FDA approval in 2018 for the treatment of
patients with locally advanced or metastatic pheochromocytoma or
paraganglioma who require systemic anticancer therapy. However,
the manufacturer of HSA '3'1-mIBG discontinued production of
the drug in 2023.

77Lu-DOTATATE was approved by the FDA in 2018 for
the treatment of gastroenteropancreatic neuroendocrine tumors
(GEP-NETs), which are neuroendocrine tumors originating in the
pancreas or gastrointestinal tract. GEP-NETs are the most common
subtype of well-differentiated neuroendocrine tumors, accounting
for more than 70% of cases (256-259). '7’Lu-DOTATATE targets
somatostatin receptors, which are overexpressed in GEP-NETs. The
radiopharmaceutical consists of a somatostatin receptor agonist
(SSA), the chelator DOTA, and the therapeutic radionuclide
77Lu (259). To identify appropriate candidates for treatment,
the companion diagnostic ®*Ga-DOTATATE is used for PET
imaging to confirm somatostatin receptor expression in tumors.
The standard prescribed activity of '””Lu-DOTATATE is 7.4 GBgq,
which is administered every 8 weeks for a total of four doses.
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The FDA approved '77Lu-PSMA-617 in 2022 for the treatment
of castration-resistant prostate cancers (CRPCs) in patients whose
tumors overexpress the transmembrane protein prostate-specific
membrane antigen (PSMA). PSMA is an ideal therapeutic target
due to its high expression on prostate cancer cells and its cell
surface localization, which makes it readily accessible to targeted
agents. PSMA-617 is a small-molecule PSMA inhibitor that binds
specifically to this protein, allowing for targeted delivery of the
radioactive isotope 7’ Lu to cancer cells (260).

The FDA has also approved multiple PSMA-targeted PET
radiotracers for identifying patients eligible for !7’Lu-PSMA-
617 therapy by detecting PSMA expression in tumors. These
companion diagnostics are critical in guiding treatment decisions
and selecting appropriate candidates for radioligand therapy.
Among these, ®®Ga-gozetotide (also known as ®®Ga-PSMA-11)
was the first to receive FDA approval in 2020 for use in PSMA
PET/CT imaging. It remains the most extensively studied and
widely used radiotracer for PSMA-targeted imaging. In addition,
the FDA approved two '8F-labeled tracers: ['F]DCFPyL in 2021
and ["®F]rhPSMA-7 in 2023, further expanding the toolbox of
PSMA-targeted imaging agents. These radiotracers offer advantages
in image resolution and logistical flexibility due to the longer
half-life of '®F compared to %3Ga.

Interestingly, the prescribed activity of !7Lu-PSMA-617 is 7.4
GBq per cycle, which matches the dose used for !””Lu-DOTATATE
despite targeting entirely different tumors. The treatment is
administered every 6 weeks, for up to six cycles, or until disease
progression or unacceptable toxicity occurs.

It is increasingly evident that radiopharmaceutical therapy
(RPT) is becoming a viable treatment option for a wide range
of late-stage cancers. In some cases, RPT may also be used
earlier in the course of disease, either as a standalone treatment
or in combination with other therapeutic agents. Notably, with
the exception of "*'I-mIBG and HSA '3'I-mIBG, the toxicity
profiles observed in clinical trials of approved RPT agents are
substantially lower than those associated with many conventional
cancer therapies. This suggests that a significant proportion of
patients may be clinically underdosed, highlighting an opportunity
to optimize treatment delivery. All currently approved RPT agents
emit radiation that can be imaged using SPECT/CT, enabling
patient-specific dosimetry. This capability allows clinicians to
personalize the administered activity for each patient based on
their individual biodistribution and organ sensitivity, which is an
approach that can be leveraged to maximize therapeutic efficacy
while minimizing toxicity.

9.2 Advanced quantitative imaging in
radiopharmaceutical therapy

Theranostics relies heavily on advanced imaging modalities to
guide and monitor treatment with radiopharmaceuticals. The most
commonly used imaging techniques in RPT are positron PET/CT
and SPECT/CT. PET/CT, often using °®Ga- or '8F-labeled tracers,
offers high sensitivity and spatial resolution for detecting molecular
targets such as PSMA or somatostatin receptors, enabling
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precise patient selection and treatment planning. SPECT/CT,
used with gamma-emitting isotopes, such as !'T or 177Lu,
allows for real-time visualization of therapeutic agents and
supports quantitative dosimetry to tailor treatment to individual
patients. These hybrid imaging techniques not only confirm target
expression before therapy but also assess biodistribution, monitor
therapeutic response, and detect toxicity—making them essential
tools in the practice of personalized medicine within RPT and
nuclear oncology.

9.2.1 PET/CT

PET/CT imaging is an advanced medical imaging technique
that combines the functional insights of PET with the detailed
anatomical information of CT. By integrating these two modalities
into a single imaging session, PET/CT provides a comprehensive
view of both physiological activity and structural abnormalities
within the body. This dual capability has made PET/CT an essential
tool in clinical practice, enhancing diagnostic accuracy, guiding
treatment planning, and improving overall patient management.
The technology continues to advance, with ongoing research aimed
at improving image quality, optimizing protocols, and expanding
its clinical applications.

PET/CT plays a central role in theranostics by enabling both the
selection of appropriate patients for radiopharmaceutical therapy
(RPT) and the personalization of treatment. One of its most
critical uses is identifying whether a patients tumor expresses
the molecular target required for specific RPTs. For example,
%8Ga-PSMA PET/CT is used to detect prostate-specific membrane
antigen (PSMA) expression in patients with metastatic prostate
cancer, guiding the use of '7/Lu-PSMA-617 therapy. Similarly,
%8Ga-DOTATATE PET/CT is used to confirm somatostatin
receptor expression in patients with neuroendocrine tumors before
initiating I””Lu-DOTATATE treatment.

Beyond patient selection, PET/CT is also valuable for treatment
planning and dosimetry. By using diagnostic isotopes such as Ga
or 13F, clinicians can estimate how therapeutic agents like 177140 or
Y will distribute throughout the body. This information allows
for patient-specific dosimetry calculations, which help determine
the optimal therapeutic dose while minimizing toxicity to healthy
tissues. PET/CT 1is also routinely used to monitor treatment
response by measuring changes in tracer uptake over time. A
decrease in uptake on follow-up PET/CT scans can indicate a
reduction in tumor activity or burden, supporting continued
therapy or adjustment of the treatment plan.

Additionally, PET/CT enables early detection of disease
progression or recurrence, often before structural changes are
evident. For instance, ®®Ga-PSMA PET/CT is highly sensitive
for identifying biochemical recurrence in prostate cancer, even
at low PSA levels, allowing for earlier intervention. Finally,
PET/CT can help evaluate off-target uptake, such as accumulation
in the kidneys, salivary glands, or bone marrow, which may
signal potential toxicity risks. This information is essential for
refining treatment protocols and protecting critical organs. Overall,
PET/CT is a cornerstone of theranostic practice, offering a
combination of molecular insight and anatomical precision to
guide effective and personalized cancer care.
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9.2.2 SPECT/CT

SPECT/CT imaging is a hybrid imaging technique that
combines the molecular imaging capabilities of single photon
emission computed tomography (SPECT) with the anatomical
precision of CT. This integration allows for the simultaneous
assessment of functional processes and structural features within
the body, enhancing the localization and interpretation of
radiopharmaceutical uptake. SPECT/CT has become a valuable
tool in clinical practice, particularly in oncology, cardiology,
and endocrinology, where it supports accurate diagnosis, guides
therapeutic decisions, and aids in treatment response monitoring.
Its utility in radiopharmaceutical therapy (RPT) is especially
notable, as it enables real-time visualization of therapeutic agent
distribution and facilitates quantitative dosimetry. Continuous
advancements in detector technology, image reconstruction
algorithms, and radiotracer development are further expanding the
clinical applications and diagnostic performance of SPECT/CT.

SPECT/CT plays a critical role in theranostics by enabling
both the visualization and quantification of radiopharmaceutical
distribution, particularly for therapies involving gamma-emitting
isotopes. One of its key uses is in patient-specific dosimetry for
radiopharmaceutical therapies such as 13!1, 77 Lu-DOTATATE, and
223RaCl, (298). By providing three-dimensional functional imaging
overlaid with anatomical detail, SPECT/CT allows clinicians to
assess how the therapeutic agent distributes across tumors and
normal organs, enabling precise calculation of absorbed radiation
doses. This supports personalized treatment planning aimed at
maximizing efficacy while minimizing toxicity. SPECT/CT is also
used to monitor treatment response by evaluating changes in
radiotracer uptake over time, which can indicate tumor regression
or progression. In some cases, a trace amount of the therapeutic
agent is administered and imaged with SPECT/CT prior to full-
dose therapy to predict biodistribution and assess treatment
feasibility. Additionally, SPECT/CT can identify off-target uptake,
helping to detect and mitigate potential risks to critical organs such
as the kidneys, salivary glands, or bone marrow. Its accessibility,
compatibility with a wide range of therapeutic isotopes, and ability
to support real-time imaging of therapy delivery make SPECT/CT
an important tool in the theranostic workflow.

9.3 Challenges with quantitative imaging

Accurate quantitative PET/CT or SPECT/CT imaging is
essential in theranostics because it directly informs critical
aspects of personalized treatment planning and clinical decision-
making. In theranostics, imaging is not only used for diagnosis
and staging but also to measure the in vivo distribution
of radiopharmaceuticals, enabling patient-specific dosimetry.
Precise quantification allows clinicians to calculate the absorbed
radiation doses to tumors and normal organs, which is key to
balancing efficacy with safety. Inaccurate quantification could
lead to underdosing, which reduces therapeutic effectiveness, or
overdosing, which increases the risk of toxicity to healthy tissues.

Moreover, quantitative imaging is vital for monitoring
treatment response. Changes in standardized uptake values (SUVs)
or other quantitative metrics over time provide objective evidence
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of how well a tumor is responding to therapy. This helps guide
decisions about whether to continue, adjust, or stop treatment. It
is also crucial for assessing biodistribution in advance of therapy,
especially when using a diagnostic surrogate or microdose of the
therapeutic agent to predict how the full treatment will behave.
Without accurate quantitative imaging, these predictive models
become unreliable.

quantitative PET/CT and SPECT/CT play an
important role in clinical research and regulatory approval, where

Finally,

reproducible, measurable outcomes are needed to validate new
theranostic agents and protocols. In short, accuracy in quantitative
imaging underpins the safety, effectiveness, and precision that
define modern theranostic approaches.

Quantifying the distribution of radiopharmaceutical activity
within the body is a foundational step in theranostics, as it
directly informs absorbed dose calculations and guides patient-
specific treatment planning and treatment response assessment.
However, achieving accurate quantification is inherently complex
and subject to multiple sources of uncertainty. These include
limitations in imaging system resolution and sensitivity, patient
movement, image noise, and challenges in correcting photon
attenuation and scatter. Additionally, variability in segmentation,
registration, and calibration processes further complicates the
measurement of activity, particularly in small regions of interest,
with a heterogeneous uptake (e.g., lesions). Understanding and
addressing these sources of uncertainty is critical for improving
the accuracy, reproducibility, and clinical utility of quantitative
imaging in theranostics. The following sections explore the major
technical and procedural factors that contribute to uncertainty in
activity quantification.

9.3.1 Quantification of activity

Uncertainty in quantifying activity distribution refers to the
challenges and potential sources of error in measuring how a
radiopharmaceutical is distributed within the body, especially
within specific organs, tissues, or lesions. Accurate quantification
is essential in theranostics because it directly impacts dosimetry
calculations and, ultimately, the determination of the absorbed
radiation dose. Several factors contribute to this uncertainty,
including the limited spatial resolution and sensitivity of the
imaging system, partial volume effects (which can lead to
underestimation of activity in small structures), and inaccuracies
in attenuation and scatter correction. Calibration errors in
the imaging system can also affect the reliability of activity
measurements. Reducing these uncertainties is critical to ensure
precise, patient-specific treatment planning in theranostics.

Spatial resolution: Imaging systems such as SPECT and PET
have limited spatial resolution, which means they cannot accurately
differentiate fine details in small structures. As a result, activity
within small organs or lesions may be underestimated due to the
partial volume effect (PVE)—a phenomenon where the true activity
appears diluted across neighboring voxels, making small structures
appear less intense than they actually are. This loss of detail leads
to PVE-related inaccuracies in the reconstructed images, which is a
well-known limitation of nuclear medicine cameras (261-264).

Sensitivity: The sensitivity of imaging systems varies and refers
to the ability of PET or SPECT scanners to detect photons emitted
by the radiopharmaceutical. However, no system detects all emitted
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photons perfectly. Some photons are scattered, absorbed, or missed
entirely, which can result in underestimation of total activity and
contribute to quantification errors (255, 265, 266).

Noise in Imaging: The signal-to-noise ratio (SNR) plays a
critical role in the accuracy of quantitative imaging. Noise can
arise from several factors, including limited scan duration, low
radiopharmaceutical dose, and patient movement. High noise
levels, particularly in areas of low radiotracer uptake (such
as surrounding healthy tissue), make it difficult to accurately
measure activity. Although increasing scan time and applying noise
reduction techniques can improve accuracy, these solutions may
reduce patient comfort and limit scanner throughput (255).

Patient motion: Motion during image acquisition, such as
respiratory or involuntary movement, can blur the observed
activity distribution and introduce quantification errors. This is
especially problematic when imaging small structures. For example,
one simulation study using *°Y bremsstrahlung SPECT showed
that respiratory motion reduced the recovery coefficient of a tumor
from 90% to 66% (267, 268).

Calibration: Accurate activity quantification depends on proper
calibration of the imaging system, which involves translating
detected photon counts into units of radioactivity. This is typically
done using radioactive phantoms with known activity distributions.
The system is then adjusted to match these known values,
establishing a reference for interpreting patient scans. Calibration
errors—caused by system performance variability, improper
calibration procedures, or aging hardware—can significantly
impact quantitative accuracy (255, 269).

9.3.2 Attenuation and scatter correction

During nuclear imaging, photons emitted from
radiopharmaceuticals can be absorbed or scattered by tissues
as they pass through the body. This process, known as attenuation,
is particularly pronounced in denser structures like bone or organs
and can lead to underestimation of activity in deeper tissues if not
properly corrected. While attenuation correction algorithms are
routinely applied, they introduce uncertainty—especially when the
patient’s anatomy deviates from standard models.

Photon scatter further complicates quantification by reducing
image contrast. Scattered photons contribute a diffuse background
signal, which can overestimate activity in low-uptake regions and
underestimate activity in high-uptake areas like tumors (269).
Various scatter correction methods are used to address this, but
all introduce potential sources of error depending on imaging
conditions, radiopharmaceutical properties, and patient-specific
factors (255, 269).

In SPECT imaging, energy window-based methods such
as double energy window (DEW) and triple energy window
(TEW) are approaches

scatter from adjacent energy windows and subtract it from

commonly used. These estimate
the primary signal. However, their accuracy depends on proper
window placement and assumptions about scatter distribution.
Misestimation can result in over- or under-correction, affecting
final quantification (270-274). For instance, phantom studies
have shown that TEW improves contrast-to-noise ratio
over DEW in 13!T and ”7Lu SPECT, but may produce lower
recovery coeflicients, suggesting underestimation of true activity
(275, 276).
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More advanced approaches, such as Monte Carlo (MC)-
based scatter correction, simulate individual photon interactions
within the patient using detailed physical models (277, 278).
These methods account for tissue composition, density, and
photon transport, providing more accurate scatter estimation.
Comparative studies have shown that MC methods outperform
TEW for radionuclides like #™Tc, 1n, and 77Lu, with TEW
overestimating activity by up to 11% in ”’Lu imaging due
to its inability to capture patient-specific activity distribution
(277, 279, 280).

9.3.3 Partial volume effects

The partial volume effect (PVE) occurs when the spatial
resolution of an imaging system is insufficient to accurately capture
activity within small structures. As a result, activity appears blurred
between adjacent regions, leading to underestimation in small,
high-uptake areas (e.g., tumors or lymph nodes) and potential
overestimation in surrounding low-uptake tissues (261, 262).
Structures such as the thyroid, bone marrow, and small tumors are
especially vulnerable because their dimensions often fall below the
system’s resolution, causing activity “spillover” into adjacent areas.

In addition to size, heterogeneous radiopharmaceutical uptake
within tumors or organs can be distorted by PVE, obscuring the
true distribution of activity. The magnitude of this effect is often
characterized using recovery coefficients (RCs), which are derived
from phantom studies that measure how much of the true activity is
recovered in structures of various sizes and positions. RCs can vary
widely—from below 0.1 to above 0.9—depending on factors such
as isotope, object size, scanner type, and imaging settings (281).
Placement within the field of view also affects RCs; one study using
77Lu demonstrated significantly different RCs for the same sphere
size depending on its location in the phantom (281).

To better assess PVE in anatomically relevant settings,
anthropomorphic phantoms have been developed for organs such
as the kidney (262, 282), liver (283), and the head and neck
region (40), allowing more realistic estimation of recovery in
complex geometries.

9.3.4 Segmentation

Accurate volume delineation is a critical yet time-consuming
step in radiopharmaceutical therapy (RPT) dosimetry and is
increasingly complex due to the need to register and interpret
multi-timepoint and multimodality imaging (263, 284-286). Inter-
observer variability (IOV) in segmentation is widely recognized as
the largest source of uncertainty in the dosimetry process (287),
potentially impacting both treatment efficacy and toxicity, as well
as consistency across clinical centers.

Empirical studies have assessed the impact of segmentation
variability by applying controlled changes (e.g., expansions or
contractions) to segmented regions of interest (ROIs) and
observing the resulting variability in mean absorbed dose (288,
289). These studies show that for organs and large tumors,
contour variability is the dominant source of uncertainty, while
for small tumors, sensitivity to the recovery coeflicient becomes
more significant.
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Another approach involves directly comparing contours
generated by multiple observers. For example, a recent Society of
Nuclear Medicine and Molecular Imaging (SNMMI) “Dosimetry
Challenge” analyzed dose estimates from 178 participants using
common 7’Lu-DOTATATE patient data (290-292). The study
found segmentation to be a major contributor to dose variability,
with normalized activity variability in healthy organs at 7% and
lesion variability ranging from 6.7% to 24% (293). These findings
support the development of standardized segmentation guidelines
to reduce variability and improve the accuracy and reproducibility
of RPT dosimetry.

9.3.5 Registration

Accurate image registration is essential for reliable dosimetry
in radiopharmaceutical therapy (RPT), yet it remains an
underexplored area in the literature. Studies have shown that
even small misregistrations—such as translations under 9 mm or
rotations under 5°-can cause absorbed dose errors of up to 90%
in tumor regions, especially when lesions are located away from
the center of the SPECT field of view (294-297). These findings
underscore the sensitivity of dose calculations to registration
accuracy, particularly in tumor volumes.

While early studies focused on SPECT-only datasets, more
recent research has evaluated registration techniques in multi-
timepoint SPECT/CT. Comparisons between rigid and non-rigid
(deformable) registration methods consistently show that non-
rigid approaches provide greater alignment accuracy, especially in
complex datasets. CT-based registration—where the CT images
guide alignment and the corresponding SPECT data is adjusted—
has shown better consistency in activity quantification than SPECT-
based methods (296).

Simulated phantom studies further highlight the benefits of
non-rigid registration, showing substantial reductions in alignment
errors. For instance, spleen and liver misalignments dropped
from 15.5% to 2.1% and from 7.3% to 0.2%, respectively, when
using deformable registration instead of rigid methods (297).
Patient studies echo these findings: in ”7Lu-DOTATATE therapy,
deformable registration resulted in higher absorbed dose estimates
compared to rigid registration, with differences in kidney dose
ranging from —19% to 4% and in tumor dose from —67.2% to
100.7% (295).

Proper patient positioning is also critical during multi-
timepoint imaging. Movement between scans introduces alignment
errors that can persist even after registration, leading to further
uncertainties in dosimetry. These findings emphasize the need
for careful registration method selection and consistent patient
positioning to improve the accuracy of dose estimates in RPT.

9.4 Summary

Radiopharmaceutical therapy (RPT)
important modality in oncology, offering targeted, systemic

is an increasingly
radiation delivery using tumor-seeking molecules labeled with

radioactive isotopes. Unlike external beam radiotherapy, RPT can
treat both primary and metastatic disease sites with relatively low
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toxicity profiles, making it a promising option for patients with
late-stage or refractory cancers. A hallmark of RPT is its integration
into theranostics—combining diagnostic imaging with therapy to
enable personalized treatment planning based on patient-specific
biodistribution and molecular target expression.

Multiple RPT agents have gained FDA approval, including
BIT for thyroid cancer, 2>RaCl, for prostate cancer with bone
metastases, 17’Lu-DOTATATE for neuroendocrine tumors, and
77Lu-PSMA-617 for prostate cancer. These therapies leverage
diagnostic counterparts, such as 68Ga- or !3F-labeled PET tracers,
to guide patient selection and assess target expression. Quantitative
imaging using PET/CT and SPECT/CT plays a pivotal role in
RPT by enabling individualized dosimetry, monitoring therapeutic
response, and identifying potential off-target toxicity.

However, accurate quantification of radiopharmaceutical
distribution remains technically complex. Sources of uncertainty
include limited spatial resolution, sensitivity loss, partial volume
effects, attenuation and scatter artifacts, segmentation variability,
and image registration inaccuracies. Advances in imaging
technologies, standardized protocols, and sophisticated correction
algorithms are essential to improve reproducibility and optimize
treatment delivery. As RPT continues to evolve, the ability to
reduce these uncertainties will be critical to fully realizing the
potential of precision medicine in nuclear oncology.

10 Conclusion

In conclusion, emerging technologies are rapidly reshaping
the landscape of radiation oncology. Across the RT workflow,
advanced imaging is enabling finer target definition, smarter
motion management, and increasingly adaptive, biology-informed
dose delivery. MR-guided RT brings daily soft-tissue visualization
and online adaptation; PET-guided strategies and integrated PET-
linac concepts extend guidance to the molecular scale; stereoscopic
X-ray with thermal surface guidance supports sub-millimeter CNS
positioning; and CBCT-based online adaptation (e.g., HyperSight-
enabled workflows) turns daily anatomy into actionable plans. In
parallel, generative Al for image synthesis is shortening acquisition
chains and improving quantitation, while Cherenkov imaging
offers real-time treatment verification and new avenues for QA and
FLASH monitoring. In proton therapy, better HU to SPR mapping
through DECT, robust motion imaging (4DCT, CToR), and in vivo
range verification (prompt-gamma, PET) are converging on tighter
range uncertainty. Beyond external beam, theranostics couples
diagnostic specificity with patient-specific dosimetry to personalize
radiopharmaceutical therapy.

Realizing these gains at scale will require rigorous multicenter
validation, standardized QA and reporting, integration of multi-
omics with functional/quantitative imaging, and trustworthy
automation with continuous performance monitoring. Equally
important are interoperable data pipelines, workforce training
(especially for medical physicists), and attention to access and
equity so that precision benefits reach diverse patient populations.
Together, these advances point toward safer, more adaptive, and
genuinely personalized RT.
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