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orthokeratology
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Yiran Hu?, Jianing Ying?, Xiang Li' and Yeshuang Wu'*

Yuyao Maternity and Child Health Care Hospital (Yuyao Second People’s Hospital), Ningbo, China,
2Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China

Background: Myopia is a growing health concern, especially among children,
with Orthokeratology (OK) lenses showing promising results in myopia control.
However, treatment outcomes vary significantly among individuals, highlighting
the need for personalized approaches. This study aimed to develop and validate
a predictive model for OK therapy outcomes in myopic children.

Methods: This retrospective cohort study included 439 myopic patients fitted
with OK lenses. Patients were randomly divided into training (n = 308) and
test (n = 131) sets. Least absolute shrinkage and selection operator regression
was used for variable selection, followed by logistic regression to construct
the predictive model. A nomogram was developed to visualize individual risk
predictions. Model performance was assessed using calibration plots, receiver
operating characteristic (ROC) curves, and decision curve analysis (DCA).

Results: Four variables were identified as significant predictors: age, parental
myopia, white-to-white distance, and spherical refraction. The model
demonstrated good discriminatory ability with areas under the ROC curve of
0.831 (95% Cl: 0.786-0.877) in the training set and 0.820 (95% CI: 0.742-0.899)
in the test set. Sensitivity and specificity were 75.6 and 72.8% in the training set,
and 79.3 and 75.0% in the test set. Calibration plots and DCA confirmed the
model's potential clinical utility across a range of threshold probabilities.

Conclusion: This study developed a predictive model for OK therapy outcomes
in myopic children. The model demonstrated good discriminatory ability in both
training and test datasets. This predictive approach might contribute to risk
stratification in myopia management. Further validation through prospective
studies across diverse populations is needed before such models could
potentially inform clinical decision-making and resource allocation in myopia
control practice.
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Introduction

Myopia is a pervasive global health issue, with East Asia
showing the highest prevalence rates globally, reaching 69% among
15-year-olds and up to 86% among Singaporean-Chinese children
(1). The global prevalence of myopia increased from 24.32% in
1990 to 35.81% in 2023 and is projected to reach 39.80% by
2050, exceeding 740 million cases worldwide (2). High myopia
is associated with serious ocular complications such as retinal
detachment, macular degeneration, glaucoma, and cataracts, which
can lead to irreversible vision loss (3, 4). These complications
contribute not only to individual visual impairment but also to
substantial economic and social burdens, particularly in regions
with high myopia prevalence (5, 6). The increasing prevalence
among younger populations, combined with the severe long-term
consequences of myopia, underscores the urgent need for early
intervention and effective management strategies (7). Controlling
axial length (AL) elongation is a key strategy to mitigate these risks
and reduce the impact of myopia (8, 9).

Orthokeratology (OK) lenses, which are rigid gas-permeable
lenses worn overnight to temporarily reshape the cornea, have
gained widespread acceptance as an effective intervention to slow
AL elongation, particularly in children and adolescents (10, 11).
Studies have shown that OK lenses can reduce annual AL growth
by 59% compared to untreated controls (12). Their non-invasive
nature and potential for good compliance make them suitable for
pediatric populations. Furthermore, additional interventions, such
as low-concentration atropine eye drops and defocus-incorporated
multiple segment lenses, have demonstrated efficacy in reducing
myopia progression (13-15). Notably, combining OK lenses with
low-concentration atropine has shown potential synergistic effects,
further enhancing AL control (16, 17). These complementary
methods present opportunities for tailored treatment plans that can
address individual patient needs (18). However, the effectiveness
of OK lenses and other interventions varies considerably among
patients due to factors such as age, baseline AL, and refractive error,
highlighting the limitations of standardized treatment protocols
that fail to account for individual differences (10).

Current management strategies for OK therapy often rely
on fixed follow-up protocols, which overlook key patient-
specific factors (11). As a result, clinicians face challenges in
proactively addressing variable outcomes, such as rapid AL
elongation or rebound effects following treatment discontinuation
(19). Identifying high-risk patients, particularly younger children
or those with rapid AL growth, is critical for optimizing
follow-up schedules and implementing timely interventions (20,
21). Conversely, reducing unnecessary monitoring for low-risk
patients can help conserve healthcare resources while maintaining
efficiency (22). Recent research highlights the potential of
predictive models that integrate multiple variables, including
demographic, ocular, and environmental factors, to enhance risk

Abbreviations: AL, Axial length; AIC, Akaike information criterion; AUC,
Area under the curve; BIC, Bayesian information criterion; DCA, Decision
curve analysis; Flat-K, Flat keratometry; IOP, Intraocular pressure; LASSO,
Least absolute shrinkage and selection operator; OK, Orthokeratology;
ROC, Receiver operating characteristic; SER, Spherical equivalent refraction;
SRI, Surface regularity index; Steep-K, Steep keratometry; WTW, White-to-
white distance
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stratification and treatment personalization (23-25). Such models
could transform clinical practice by facilitating individualized
management strategies and improving outcomes (26).

This study introduces a new approach to address the lack
of predictive tools for individualizing OK therapy. It combines
least absolute shrinkage and selection operator (LASSO) regression
with logistic regression to identify key predictive variables.
The primary target variable of our predictive model is the
annual AL growth rate in children undergoing OK therapy,
with a growth rate > 0.19 mm/year defined as an adverse
outcome (27). A nomogram was created to visually display risk
predictions, making it easier to apply in clinical settings. The
model’s performance was validated using calibration plots, receiver
operating characteristic (ROC) curves, and decision curve analysis
(DCA) in both training and validation datasets. These steps
ensure the models reliability and robustness. The model may
provide information that clinicians could potentially use to identify
high-risk patients early and generate individualized predictions
of adverse outcomes. Based on these predictions, clinicians can
then make informed decisions to optimize follow-up schedules
and treatment strategies, addressing the current limitations of
standardized protocols.

Materials and methods

Research design and study population

This study was a single-center retrospective cohort study
conducted at Yuyao Maternity and Child Health Hospital. The
data were collected from patient records between January 2015 and
December 2021. The study included myopic patients who were
fitted with OK lenses at the hospital. Ethical approval was obtained
from the Ethics Committee of Yuyao Maternity and Child Health
Hospital (Approval No. 2024YPTO01), and all procedures complied
with the Declaration of Helsinki. Written informed consent was
obtained from all participants and their legal guardian(s).

Inclusion and Exclusion Criteria: Patients were included if
they met the following criteria: (1) were aged 8-14 years; (2) had
spherical equivalent refraction between —0.75D and —6.00D; (3)
had astigmatism < 2.00D; (4) had AL between 22.0 and 26.0
mm; (5) had intraocular pressure (IOP) < 21 mmHg; (6) had
corneal curvature between 40.00D and 46.00D; and (7) had no
history of wearing contact lenses or OK lenses previously. Patients
were excluded if they: (1) had any ocular or systemic diseases;
(2) their guardians refused follow-ups or phone inquiries; (3)
had undergone other myopia treatments before OK lenses; (4)
developed chronic diseases, tumors, or experienced severe trauma
with unstable vital signs during treatment; or (5) had poor-quality
corneal topography sampling, suboptimal lens fitting, or conditions
such as color blindness or color weakness (11, 28, 29). During the
study period, 527 patients were initially screened for eligibility.
Eighty-three patients were excluded based on pre-specified criteria,
including baseline parameters not meeting inclusion requirements
(n = 30), guardian refusal of follow-up participation (n = 23),
previous myopia control treatments (n = 18), and pre-existing
diseases or poor examination quality (n = 12). The remaining 444
patients were enrolled and initiated OK lens treatment. During the
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first year of follow-up, five patients (1.1%) were lost to follow-
up due to relocation (n = 2) and inability to maintain contact
(n = 3). The final analysis included 439 patients who completed
all required visits within the first year. The reported 292 adverse
outcomes (66.5%) represent complete data from these 439 patients
with complete follow-up data for all key variables.

Lenses

All patients underwent standard anterior segment and
refractive assessments. Cycloplegic refraction was performed
using 1% tropicamide eye drops administered twice at 5-min
intervals, with measurements taken 30 min after the first drop.
Autorefraction was measured with the NIDEK AR-310A under
cycloplegia. Baseline corneal topography was performed using the
SW6000 topographer (ensuring corneal exposure > 95% and a
curvature control error within & 0.25D). AL was measured using
the IOL Master 500 (five repeated measurements averaged), and
IOP was measured with the CT-800. Pupillary dilation and OCT
were performed as needed to confirm fundus status. Lenses were
prescribed based on corneal topography and refractive data, trial-
fitted to ensure proper alignment, and then dispensed.

Data collection

All patients were followed according to a standardized protocol,
which included follow-up visits at 1 month, 3 months, 6 months,
and 1 year after OK lenses fitting. After the first year, patients
were followed every 6 months until the end of the study period.
Patients were required to have at least these four follow-up
visits to be included in the analysis. The maximum follow-
up duration was set at 3 years. This study analyzed data
from the right eye of each participant (30). All data were
obtained through standardized equipment measurements and
patient medical records, supplemented by telephone interviews
when necessary. The collected variables included demographic
information, clinical characteristics, and ocular parameters.

The demographic information consisted of age, sex, and
parental myopia status. Clinical characteristics included the time
spent outdoors (hours per day). Ocular parameters encompassed
spherical refraction, cylindrical refraction, spherical equivalent
refraction (SER), flat keratometry (Flat-K), steep keratometry
(Steep-K), white-to-white distance (WTW), eccentricity, axial
length (AL), intraocular pressure (IOP), astigmatism, and surface
regularity index (SRI).

Definition of adverse outcomes

The primary outcome of this study was the annual AL growth
rate. An annual growth rate < 0.19 mm was defined as a favorable
outcome, while a growth rate > 0.19 mm was classified as an
adverse outcome, this cutoff has been used in previous OK-related
myopia control studies as a clinically meaningful threshold beyond
which treatment effect is considered suboptimal (27, 31, 32).
The annual AL growth rate was calculated by dividing the AL
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increase during the follow-up period by the number of follow-
up months, then multiplying by 12. Based on this calculation,
patients were categorized into the favorable outcome group or the
adverse outcome group.

Statistical analysis

All statistical analyses were performed using R software
(version 4.4.1) and SPSS software (version 26.0), with a significance
level set at p < 0.05. Continuous variables with a normal
distribution were expressed as mean =+ standard deviation and
compared using independent t-tests. Non-normally distributed
continuous variables were presented as median (interquartile
range) and compared using Mann-Whitney U tests. Categorical
variables were expressed as proportions and compared using chi-
square tests.

The data were randomly divided into training and test sets
in a 7:3 ratio using stratified splitting based on the primary
outcome (favorable vs. adverse). This stratification technique
ensured balanced distribution of outcome categories between
the training and test sets, maintaining similar prevalence of
adverse outcomes in both datasets and thereby enhancing model
generalizability. The 7:3 ratio for training and test set allocation
was selected to balance between having adequate data for model
training (70%) while retaining sufficient cases for model validation
(30%), which is widely used in predictive modeling research.
Sample size determination was based on the generally accepted
rule for predictive modeling that requires at least 10 events per
predictor variable (33, 34). Our sample of 439 participants (with 292
adverse outcomes) provided sufficient statistical power for model
development and validation.

In the training set, LASSO regression was applied for variable
selection, using 10-fold cross-validation to determine the optimal
penalty parameter ()). L1 regularization was employed to retain
the most relevant variables. Subsequently, a logistic regression
model was constructed based on the selected variables, and a
nomogram was developed to visually represent the predictive
results. Model validation was conducted in both the training
and test sets, including calibration plots, ROC curves, and DCA.
The Hosmer-Lemeshow test was performed to evaluate model
calibration. Calibration plots assessed the agreement between
predicted probabilities and observed outcomes. ROC curves
quantified the model’s discriminatory ability through the area
under the curve (AUC). DCA evaluated the clinical utility of the
model across various threshold probabilities.

Results

Baseline characteristics comparison

A total of 439 participants were included (308 in training set,
131 in test set). The baseline characteristics of the two groups are
summarized in Table 1. The mean age was 10.85 £ 1.76 years,
with 48.52% males. Parental myopia was common, with 53.99%
having both parents myopic, 32.80% having one myopic parent,
and 13.21% having no parental myopia. All demographic variables,
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TABLE 1 Baseline characteristics of participants in training and test sets.

Variables

10.3389/fmed.2025.1686204

Total Training Test t/Z/x>?
(n = 439) (n = 308) (n =131)
0.00

Outcome, n(%) 0.976

Favorable outcome 147 (33.49) 103 (33.44) 44 (33.59)

Adverse outcome 292 (66.51) 205 (66.56) 87 (66.41)
Age, mean £ SD 10.85 + 1.76 10.80 + 1.75 10.98 + 1.79 —0.95 0.341
Sex, n(%) 1.35 0.246

Male 213 (48.52) 155 (50.32) 58 (44.27)

Female 226 (51.48) 153 (49.68) 73 (55.73)
Parental myopia, n(%) 2.07 0.356

Neither myopic 58 (13.21) 45 (14.61) 13 (9.92)

One myopic 144 (32.80) 97 (31.49) 47 (35.88)

Both myopic 237 (53.99) 166 (53.90) 71 (54.20)
Time spent outdoors (hours), M (Q1, Q3) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) 1.50 (1.00, 1.75) —1.70 0.088
Flat K, Mean + SD 42.90 £ 1.08 42.92 £ 1.10 42.87 +1.05 0.42 0.677
Steep K, Mean + SD 43.96 £ 1.15 4398 £ 1.15 4391+ 1.16 0.64 0.523
WTW, Mean £ SD 11.89 +0.28 11.89 +0.28 11.90 4 0.29 —0.21 0.834
Eccentricity, mean & SD 0.60 £ 0.08 0.60 £ 0.08 0.60 £ 0.09 —-0.29 0.771
AL, mean + SD 24.90 £ 0.68 24.89 £ 0.68 24.90 £ 0.69 —0.14 0.892
IOP, M (Q1, Q3) 16.00 (15.00, 19.00) 17.00 (15.00, 19.00) 16.00 (15.00, 19.00) —0.12 0.905
Astigmatism, M (Q1, Q3) 1.02 (0.76, 1.30) 1.02 (0.77, 1.32) 1.02 (0.70, 1.25) —0.47 0.640
Spherical refraction, M (Q1, Q3) —2.75(—3.75, —1.75) —2.75(—3.75, —1.94) —2.75(—3.75, —1.75) —0.16 0.876
Cylindrical refraction, M (Q1, Q3) —0.50 (—0.75, —0.25) —0.50 (—0.75, —0.25) —0.50 (—0.75, —0.25) —0.39 0.698
SER, M (Q1, Q3) —3.00 (—4.00, —2.12) —3.00 (—4.00, —2.12) —3.12 (—4.00, —2.12) —0.09 0.927
SRL, M (Q1, Q3) 0.33(0.32, 0.34) 0.33(0.32, 0.34) 0.33 (0.32,0.34) —1.12 0.261
Follow—up time (months), M (Q1, Q3) 26.00 (24.00, 29.00) 26.00 (24.00, 29.00) 27.00 (23.00, 28.00) —0.34 0.736

Flat K, flat corneal curvature; Steep K, steep corneal curvature; WTW, white-to-white distance; AL, axial length; IOP, intraocular pressure; SER, spherical equivalent refraction; SRI, surface

regularity index.

including age and sex, showed no significant differences between
training and test sets. Similarly, all ocular parameters including
WTW, eccentricity, AL, IOP, astigmatism, and refractive measures
were comparable between groups (all p > 0.05). The median follow-
up time was 26.00 months (IQR: 24.00-29.00) for the entire cohort.
Adverse outcomes occurred in 66.51% of participants, with similar
rates in both training (66.56%) and test (66.41%) sets (p = 0.976).
This balanced distribution confirms appropriate randomization for
model development and validation.

Baseline characteristics of favorable and
adverse outcome groups in the training
set

The baseline characteristics of the favorable and adverse
outcome groups in the training set are presented in Table 2.
Among the 308 patients in the training set, 103 (33.44%) had
favorable outcomes and 205 (66.56%) had adverse outcomes.
Significant age differences were observed between the groups,
with patients in the favorable outcome group being older
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(11.81 & 1.70 years) compared to those in the adverse outcome
group (10.30 £ 1.55 years; p < 0.001).

Parental myopia status showed significant differences between
the groups (p < 0.001). In the favorable outcome group, 26.21% had
no myopic parents, 37.86% had one myopic parent, and 35.92% had
both parents with myopia. In contrast, the adverse outcome group
showed a higher proportion of patients with both myopic parents
(62.93%) and lower rates of non-myopic parents (8.78%).

Regarding ocular parameters, mean AL was significantly longer
in the favorable outcome group (25.07 £ 0.66 mm) compared
to the adverse outcome group (24.80 + 0.67 mm; p < 0.001).
WTW was also significantly greater in the favorable outcome group
(11.94 £ 0.29 mm vs. 11.87 £ 0.28 mm; p = 0.026).

Refractive parameters showed significant differences, with the
favorable outcome group having more myopic spherical refraction
(median: —3.25 D vs. —2.50 D; p < 0.001) and SER (median: —3.50
D vs. —2.75 D; p < 0.001).

No significant differences were observed between the groups
in terms of gender distribution, time spent outdoors, keratometry
values, eccentricity, IOP, astigmatism, cylindrical refraction, SRI, or
follow-up duration (all p > 0.05).
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TABLE 2 Baseline comparison between favorable and adverse outcome groups.

10.3389/fmed.2025.1686204

Variables Total (n = 308) Favorable Adverse
outcome outcome
(n =103) (n = 205)
Age, mean % SD 10.80 + 1.75 11.81 £ 1.70 1030 + 1.55 7.80 <0.001
Sex, n(%) 027 0.601
Male 155 (50.32) 54 (52.43) 101 (49.27)
Female 153 (49.68) 49 (47.57) 104 (50.73)
Parental myopia, n(%) 25.53 < 0.001
Neither myopic 45 (14.61) 27 (26.21) 18 (8.78)
One myopic 97 (31.49) 39(37.86) 58 (28.29)
Both myopic 166 (53.90) 37(35.92) 129 (62.93)
Time spent outdoors (hours), M (Q1, Q3) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) —0.53 0.594
Flat K, Mean + SD 42,92+ 1.10 42.94+1.04 4290 £1.13 0.26 0.797
Steep K, mean =+ SD 43.98 £ 1.15 44.06 + 1.04 43.94 £ 1.21 0.91 0.366
WTW, Mean = SD 11.89+0.28 11.94 £ 029 11.87 £0.28 224 0.026
Eccentricity, mean &= SD 0.60 £ 0.08 0.59 £ 0.07 0.60 £ 0.08 —1.30 0.194
AL, mean =+ SD 24.89 + 0.68 25.07 £ 0.66 24.80 £ 0.67 3.34 < 0.001
IOP, M (Q1, Q3) 17.00 (15.00, 19.00) 16.00 (15.00, 19.00) 17.00 (15.00, 18.00) —0.47 0.636
Astigmatism, M (Q1, Q3) 1.02(0.77, 1.32) 1.03 (0.80, 1.34) 1.02 (0.76, 1.32) ~0.19 0.846
Spherical refraction, M (Q1, Q3) —2.75(=3.75, —1.94) —3.25 (—4.25, —2.25) ~2.50 (—3.50, —1.75) —4.25 < 0.001
Cylindrical refraction, M (Q1, Q3) —0.50 (~0.75, —0.25) —0.50 (=0.75, —0.25) —0.50 (=0.75, —0.25) ~1.27 0.203
SER, M (Q1, Q3) ~3.00 (—4.00, —2.12) ~3.50 (—4.50, —2.62) ~2.75 (—3.75, —2.00) —4.03 <0.001
SRI, M (Q1, Q3) 0.33 (0.32, 0.34) 0.33 (0.32, 0.34) 033 (0.32, 0.34) —0.98 0329
Follow-up time (months), M (Q1, Q3) 26.00 (24.00, 29.00) 26.00 (24.00, 28.00) 27.00 (24.00, 29.00) —0.47 0.635
LASSO variable selection
13 11 8 2
The results of the LASSO regression are illustrated in o I’
Figures 1, 2. Variable selection was performed using LASSO ; .
regression with 10-fold cross-validation to determine the optimal e -
penalty parameter (). Figure 1 displays the coefficient path of £ S i — — 7
each variable as A changes, where each colored line represents £ 3 H ) v
a different predictor variable, and the numbers at the top of S 2 //
the plot indicate the number of non-zero coefficients at each o | 7
) value. As the regularization parameter )\ increases (moving ; _
from left to right), the coefficient trajectories show how variables Yl , , ,
are progressively eliminated with increasing regularization, with -8 -6 -4 -2
coefficients shrinking toward zero. Figure 2 presents the cross- Log Lambda
validation curve showing the relationship between binomial FIGURE 1
deviance (mean-squared error) and log()), where red dots LASSO coefficient path for variable selection.
represent the cross-validation error at each \ value, error bars

indicate the standard error, and the numbers at the top denote
the number of variables included in the model at each point.
The two vertical dashed lines indicate h.min (left) representing
the N\ value with minimum cross-validation error, and \0.1lse
(right) representing the A value within one standard error of the
minimum.

We carefully evaluated both A.min (minimum mean cross-
validated error) and X0.1se (one standard error rule) approaches to
determine the most appropriate model. While A.min (A = 0.012)
initially identified nine variables (age, parental myopia history,
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baseline WTW, baseline spherical refraction, outdoor activity time,
baseline IOP, baseline flat keratometry, baseline steep keratometry,
and baseline cylindrical refraction), we ultimately selected the
2\0.1se approach (h = 0.036), which retained only four key
variables: age, parental myopia history, baseline WTW, and
baseline spherical refraction.

This decision was guided by model parsimony principles
and information criteria comparisons. The Akaike Information
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Cross-validation curve for optimal lambda selection in LASSO.

Criterion (AIC), which estimates prediction error by balancing
goodness of fit against model complexity, was 297.63 for the
reduced model versus 299.14 for the full model. Similarly, the
Bayesian Information Criterion (BIC), which imposes a more
stringent penalty for additional parameters than AIC, was 320.01
for the reduced model compared to 340.17 for the full model. The
lower values for both AIC and BIC in the reduced model indicate
superior performance when accounting for model complexity.
Furthermore, when we applied optimal subset selection to the
full nine-variable model, we obtained the same four variables,
further validating our approach. This convergence of selection
methods reinforces the importance of these four variables as the
most significant predictors while minimizing redundancy and
multicollinearity in the final model.

Logistic regression analysis and
nomogram

The variables selected through LASSO regression were
subjected to logistic regression analysis, with the results presented
in Table 3. Age emerged as a significant protective factor against
adverse outcomes (OR = 0.552, 95% CI: 0.458-0.667, p < 0.001),
indicating that older patients had substantially reduced risk of
adverse outcomes. Parental myopia demonstrated a strong dose-
dependent relationship with myopia progression, with both one
myopic parent (OR = 5.428, 95% CI: 2.184-13.491, p < 0.001) and
two myopic parents (OR = 12.462, 95% CI: 5.098-30.463, p < 0.001)

10.3389/fmed.2025.1686204

significantly increasing the risk of adverse outcomes compared to
children with no parental myopia.

WTW was identified as another protective factor (OR = 0.201,
95% CI: 0.072-0.560, p = 0.002), with larger WTW associated with
a markedly lower risk of adverse outcomes. Conversely, spherical
refraction was a significant risk factor (OR = 1.697, 95% CI: 1.301-
2.214, p < 0.001), with higher (less negative) refraction values
associated with increased risk of adverse outcomes.

Based on the logistic regression model, a nomogram (Figure 3)
was constructed to predict individual risk of adverse outcomes
in children undergoing OK therapy. The nomogram integrates
all predictive variables identified in the analysis. Each variable
corresponds to a specific point value on the nomogram, and the
total points, calculated by summing the individual variable points,
correlates with the predicted probability of adverse outcomes.

Model validation

The predictive model was validated using calibration plots,
ROC curves, and DCA in both the training and test sets.

Calibration plots (Figure 4) were used to assess the agreement
between predicted probabilities and observed outcomes. These
plots showed good calibration in both the training and test
sets, with the calibration curves following the ideal diagonal
line reasonably well. The Hosmer-Lemeshow test supported these
findings, with non-significant results in both the training set
(p = 0.504) and the test set (p = 0.863), indicating adequate model
calibration.

ROC curves (Figure 5) were used to evaluate the discriminatory
ability of the predictive model. The area under the curve (AUC)
was 0.831 (95% CI: 0.786-0.877) for the training set and 0.820
(95% CI: 0.742-0.899) for the test set, suggesting good predictive
performance. Sensitivity and specificity metrics of 75.6 and 72.8%
in the training set, and 79.3 and 75.0% in the validation set
further support the model’s ability to correctly classify both positive
and negative outcomes. These values indicate that the model has
reasonable ability to distinguish between favorable and adverse
outcomes. The similar performance across both datasets suggests
that the model maintains its predictive capability when applied to
new data.

DCA curves (Figure 6) evaluated the clinical utility of the model
across various threshold probabilities. The results showed that the
net benefit curve of the model generally exceeded the “treat-all” and
“treat-none” baselines across a range of clinically relevant threshold
probabilities in both datasets. This suggests potential clinical value
in using the model to guide decision-making regarding monitoring

TABLE 3 Multivariable logistic regression analysis for predicting adverse outcomes.

—0.593 0.096

Ceribles ——_p__SE__ | wWad | p
Age

Parental myopia (ref = Neither myopic)

One myopic 1.692 0.465
Both myopic 2.523 0.456
WTW —1.605 0.523
Spherical refraction 0.529 0.136
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OR (95%Cl)

38.185 < 0.001 0.552 (0.458, 0.667)

13.259 < 0.001 5.428 (2.184,13.491)
30.603 < 0.001 12.462 (5.098, 30.463)
9.408 0.002 0.201 (0.072, 0.560)
15.183 < 0.001 1.697 (1.301, 2.214)
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and intervention strategies for children undergoing OK therapy. [Discussion

Collectively, these validation results indicate that our predictive

model demonstrates promising discriminatory ability, satisfactory This study attempted to develop and validate a predictive model
calibration, and potential clinical utility, which may contribute to  for OK therapy outcomes, which showed promising discriminatory

risk stratification approaches in pediatric myopia management. ability in our sample. The model achieved an AUC of 0.831 in
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Decision curve analysis for the predictive model in the training and test sets.

the training set and 0.820 in the validation set, consistent with
another study that reported an AUC around 0.8 (35). Sensitivity
and specificity metrics of 75.6 and 72.8% in the training set,
and 79.3 and 75.0% in the validation set, further confirm the
model’s reliability across datasets. These preliminary results suggest
the model might have potential for clinical applications, though
further validation is necessary before implementation in myopia
management approaches.

The random splitting of the data into training and validation
sets was effective, this balanced split ensures that the model’s
performance is not biased by uneven distributions of key
predictors, enhancing its generalizability (36). Table 2 provides
insights into the differences between favorable and adverse
outcome groups within the training set. Significant differences
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in variables such as baseline AL, spherical refraction, and SER
highlight their relevance to myopia progression. However, given
the strong correlation among these variables, LASSO regression
was employed to select the most predictive and non-redundant
variables. By determining the optimal A value, LASSO regression
attempted to address multicollinearity, suggesting four variables
that may have value in forecasting adverse outcomes (37).

The exclusion of five variables (outdoor activity time,
baseline IOP, flat keratometry, steep keratometry, and cylindrical
refraction) at 70.1se warrants discussion. The 10.1se approach
applies stricter regularization to eliminate variables with weaker
predictive power or redundancy with retained predictors. Outdoor
activity time may have been excluded due to collinearity
with age, as behavioral patterns vary across age groups in
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pediatric populations. The exclusion of both corneal keratometry
measurements while retaining WTW likely reflects redundancy
among these corneal anatomical parameters. Baseline IOP and
cylindrical refraction likely demonstrated modest independent
effect sizes. This interpretation is supported by our model
comparison results, where the four-variable model showed superior
performance metrics (AIC = 297.63, BIC = 320.01) compared
to the nine-variable model (AIC = 299.14, BIC = 340.17).
These patterns align with LASSO’s statistical properties, which
eliminate redundant or weakly predictive variables while preserving
those with the strongest independent associations with the
outcome. The convergence with optimal subset selection further
validates this approach.

Our findings underscore the multifactorial nature of myopia
progression and the complex interplay between various predictors.
Age emerged as a significant protective factor, with older children
showing reduced risk of adverse outcomes. This aligns with
established understanding that younger children experience faster
AL elongation due to active ocular growth (30). The protective
role of age in our model may be attributed to several factors.
Firstly, the rate of eye growth tends to slow down as children
approach adolescence, which could contribute to better OK therapy
outcomes in older children (38). Secondly, older children may have
better compliance with lens wear and care instructions, potentially
enhancing treatment efficacy.

Peripheral retinal mechanisms play a crucial role in
emmetropization and myopia development. While the direct
relationship between WIW distance and OK therapy outcomes
is not yet fully established, corneal parameters have been shown
to influence OK lenses fitting and centration (39, 40). The
WTW distance, as a measure of corneal diameter, may affect
the mechanical interaction between the lens and corneal surface,
thereby potentially influencing lens positioning and the resulting
treatment zone characteristics. Studies have demonstrated that
OK lenses induce changes in peripheral refraction, which may
contribute to myopia control effects (41). These findings contribute
to our understanding of the factors influencing AL growth, which
is critical in modulating myopia progression (42).

We found that children with milder myopia at baseline may
be at higher risk of faster AL elongation. This observation aligns
with previous research, which reported that subjects with lower
initial myopia showed greater axial elongation over 2 years of OK
treatment (43). Further studies have supported this relationship
between initial refraction and myopia progression rate in OK
therapy (11). Children with lower initial myopia experienced
faster axial elongation during OK treatment compared to those
with higher initial myopia. While this observation might initially
appear unexpected, it is important to note that children with
milder myopia in our cohort tended to be younger, and age
emerged as a significant protective factor in our model. The faster
axial elongation in children with milder myopia may therefore
be partly attributable to their younger age and the associated
more active phase of ocular growth. Nevertheless, this finding
emphasizes the need for careful monitoring and potentially more
aggressive treatment strategies in cases of mild myopia, particularly
in younger children.

The inclusion of parental myopia history as a significant risk
factor highlights the genetic predisposition to myopia progression.
Our findings revealed a notable dose-dependent relationship,
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with children having both myopic parents demonstrating
substantially higher risk compared to children with no parental
myopia. Similarly, children with only one myopic parent showed
significantly increased risk compared to those with no parental
myopia. This finding corroborates previous research on the
heritability of refractive errors and suggests that genetic factors
may influence not only the onset of myopia but also its progression
rate during OK therapy (44). The strong association with parental
myopia in our model emphasizes the importance of considering
family history when assessing risk profiles for myopia progression
in children undergoing OK therapy.

From a clinical perspective, our predictive model may
potentially serve as a tool for tailoring interventions based on
individualized risk profiles, though clinical validation is still
required. The nomogram may help clinicians identify patients
who could benefit from more intensive monitoring and potential
adjunctive treatments alongside OK therapy (45, 46). For example,
a younger child with mild myopia, smaller WIW, and two
myopic parents would likely have higher risk scores, suggesting
more careful follow-up may be warranted. Conversely, an older
adolescent with larger WTW and no family history of myopia
might require less intensive monitoring. This approach could
potentially optimize both patient care and resource allocation
in clinical settings by directing more attention to higher-risk
individuals while reducing unnecessary follow-ups for those at
lower risk (47). The notable influence of parental myopia in our
model suggests that family history assessment should be considered
when developing monitoring strategies. This may be particularly
relevant in regions with high myopia prevalence, where efficient
allocation of clinical resources is important. The incorporation
of our predictive model into clinical practice may help enhance
the management of pediatric myopia. By offering a quantitative
assessment of individual risk, clinicians could potentially have
more informed discussions with patients and their families about
the possible outcomes of OK therapy (7). This more personalized
approach might contribute to treatment adherence and patient
satisfaction through better expectation management. The model
may also assist in identifying higher-risk individuals earlier in the
treatment process, which could allow for more timely adjustments
to management strategies. While further validation is needed, such
approaches represent a step toward more individualized care in
myopia management.

Our predictive model may also inform treatment selection
among myopia control modalities. Orthokeratology slows myopia
through peripheral myopic defocus (41). Alternative approaches
include low-concentration atropine, which acts via muscarinic
receptor pathways (48), and repeated low-level red-light therapy,
which increases choroidal thickness through photobiomodulation
(49). High-risk patients identified by our model might benefit
from combination therapies or alternative interventions tailored to
individual risk profiles.

Our findings also have implications for the design of future
clinical trials in myopia control. The identification of key predictive
factors can inform patient selection criteria and stratification
strategies in randomized controlled trials, potentially leading
to more efficient and targeted studies. For example, future
trials could focus on evaluating the efficacy of combination
therapies in high-risk individuals identified by our model, or
investigate novel interventions specifically tailored to patients
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with certain risk profiles (50). The role of corneal parameters
in our model, particularly the WTW distance, highlights the
importance of considering anterior segment characteristics in
myopia management. While much of the recent focus in myopia
research has been on retinal and choroidal factors, our findings
suggest that corneal biomechanics and topography play a crucial
role in determining OK therapy outcomes (51). This underscores
the need for comprehensive anterior segment evaluation in myopic
children, not only for OK lenses fitting but also for predicting
treatment response. Our model’s performance in predicting OK
therapy outcomes raises interesting questions about the underlying
mechanisms of myopia progression and the mode of action of OK
lenses. The complex interplay between demographic, ocular, and
genetic factors in determining treatment outcomes suggests that
myopia progression is not a uniform process across all individuals
(52). Instead, it appears to be influenced by a combination of
eye growth patterns, corneal biomechanics, and possibly systemic
factors that are yet to be fully elucidated (53).

From a public health perspective, our model holds promise
for integration into large-scale screening programs. By stratifying
patients by risk, community health initiatives can prioritize
high-risk groups for intensive interventions, potentially reducing
long-term complications and associated healthcare costs. For
example, school-based screening programs could incorporate this
model to identify children at greatest risk, guiding resource
allocation and treatment decisions at a population level. This
approach could be particularly impactful in regions with limited
healthcare resources, allowing for more efficient targeting of
myopia control interventions.

The development of our predictive model also contributes
to the broader field of personalized medicine in ophthalmology.
As we move toward more individualized treatment approaches,
predictive models like ours will play a crucial role in tailoring
interventions to patient-specific factors (54). This shift toward
precision medicine in myopia management aligns with similar
trends in other areas of ophthalmology, such as glaucoma and
age-related macular degeneration, where risk prediction models
are increasingly being used to guide treatment decisions (55,
56). In the context of the growing global prevalence of myopia,
our predictive model represents a significant step toward more
effective and efficient myopia management strategies. If further
validated, such models might contribute to the earlier identification
of high-risk individuals and potentially assist in personalizing
treatment approaches, which could help address the long-term
burden of myopia-related complications. As research in this field
continues to evolve, integration of additional factors such as
environmental variables, detailed genetic profiles, and advanced
imaging biomarkers could further enhance the predictive power
and clinical utility of such models.

Limitations

While our study provides valuable insights into predicting OK
therapy outcomes, several limitations should be acknowledged.
The single-center, retrospective design introduces potential center-
specific bias and inherent risks of missing data and selection
bias, which may limit generalizability. The model was validated
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using an internal test set rather than an independent external
cohort, limiting assessment of its performance across diverse
populations. Future multi-center prospective studies with external
validation are warranted to confirm the model’s generalizability.
The relatively short follow-up period restricts our ability to assess
long-term outcomes. Although we included key demographic and
ocular parameters, environmental factors and detailed genetic
information were not fully explored. Future research incorporating
these additional variables and external validation cohorts could
further enhance the model’s predictive power and clinical utility.

Conclusion

This study proposed a predictive model for OK therapy
outcomes in myopic children with promising initial validation
results. By integrating multiple patient-specific factors, including
age, ocular parameters, and family history, the model showed
encouraging discriminatory ability in identifying patients at risk
of adverse outcomes. The nomogram may offer clinicians a
potential tool for individualized risk assessment and treatment
planning. This approach to myopia management, if validated
in larger prospective studies, might contribute to optimizing
patient care, resource allocation, and potentially enhance myopia
control strategies.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics
Committee of Yuyao Maternity and Child Health Hospital. The
studies were conducted in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required from the participants or the
participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements.

Author contributions

XF: Writing - original draft, Writing - review & editing. QY:
Writing — original draft, Writing - review & editing. XM: Writing -
original draft, Writing — review & editing. SZ: Writing - original
draft, Writing - review & editing. FH: Writing - original draft,
Writing - review & editing. QZ: Writing - original draft, Writing -
review & editing. ZD: Writing — original draft, Writing — review &
editing. XP: Writing — original draft, Writing — review & editing.
YH: Writing — original draft, Writing — review & editing. JY:
Writing - original draft, Writing - review & editing. XL: Writing —
original draft, Writing - review & editing. YW: Writing — original
draft, Writing - review & editing.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1686204
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Fu et al.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
by funding from the Ningbo Public Welfare Research Program
(grant no. 2024S176), the Zhejiang Medical and Health Science and
Technology Project (grant no. 2025KY1492), the Ningbo Health
Science and Technology Program (grant no. 2023Y74), and the
Yuyao Health and Wellness Science and Technology Program
(grant no. 2024YPTO1).

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.
References

1. Rudnicka A, Kapetanakis V, Wathern A, Logan N, Gilmartin B, Whincup P, et al.
Global variations and time trends in the prevalence of childhood myopia, a systematic
review and quantitative meta-analysis: implications for aetiology and early prevention.
Br ] Ophthalmol. (2016) 100:882-90. doi: 10.1136/bjophthalmol-2015-307724

2. Liang J, Pu 'Y, Chen J, Liu M, Ouyang B, Jin Z, et al. Global prevalence, trend and
projection of myopia in children and adolescents from 1990 to 2050: a comprehensive
systematic review and meta-analysis. Br ] Ophthalmol. (2024) 109:362-71. doi: 10.1136/
bjo-2024-325427

3. TIkuno Y. Overview of the complications of high myopia. Retina. (2017) 37:2347-
51. doi: 10.1097/TAE.0000000000001489

4. Sankaridurg P, Tahhan N, Kandel H, Naduvilath T, Zou H, Frick K, et al. Imi
impact of myopia. Invest Ophthalmol Vis Sci. (2021) 62:2. doi: 10.1167/i0vs.62.5.2

5. Naidoo K, Fricke T, Frick K, Jong M, Naduvilath T, Resnikoff S, et al. Potential
lost productivity resulting from the global burden of myopia: systematic review, meta-
analysis, and modeling. Ophthalmology. (2019) 126:338-46. doi: 10.1016/j.ophtha.
2018.10.029

6. Foo L, Lanca C, Wong C, Ting D, Lamoureux E, Saw S, et al. Cost of myopia
correction: a systematic review. Front Med. (2021) 8:718724. doi: 10.3389/fmed.2021.
718724

7. Brennan N, Toubouti Y, Cheng X, Bullimore M. Efficacy in myopia control. Prog
Retin Eye Res. (2021) 83:100923. doi: 10.1016/j.preteyeres.2020.100923

8. Chamberlain P, Lazon de la Jara P, Arumugam B, Bullimore MA. Axial length
targets for myopia control. Ophthalmic Physiol Opt. (2021) 41:523-31. doi: 10.1111/
0po.12812

9. Tideman J, Polling J, Jaddoe V, Vingerling J, Klaver C. Environmental risk factors
can reduce axial length elongation and myopia incidence in 6- to 9-year-old children.
Ophthalmology. (2019) 126:127-36. doi: 10.1016/j.0phtha.2018.06.029

10. Lin W, Li N, Lu K, Li Z, Zhuo X, Wei R. The relationship between baseline
axial length and axial elongation in myopic children undergoing orthokeratology.
Ophthalmic Physiol Opt. (2023) 43:122-31. doi: 10.1111/0p0.13070

11. Wang B, Naidu R, Qu X. Factors related to axial length elongation and myopia
progression in orthokeratology practice. PLoS One. (2017) 12:e0175913. doi: 10.1371/
journal.pone.0175913

12. Jakobsen T, Moller F. Control of myopia using orthokeratology lenses in
scandinavian children aged 6 to 12 years. eighteen-month data from the danish
randomized study: clinical study of near-sightedness; treatment with orthokeratology
lenses (control study). Acta Ophthalmol. (2022) 100:175-82. doi: 10.1111/a0s.14911

13. Yam J, Zhang X, Zhang Y, Yip B, Tang E Wong E, et al. Effect of low-
concentration atropine eyedrops vs placebo on myopia incidence in children: the
lamp2 randomized clinical trial. JAMA. (2023) 329:472-81. doi: 10.1001/jama.2022.
24162

14. Lu W, Ji R, Jiang D, Shi L, Ding W, Tian Y, et al. Different efficacy in myopia
control: comparison between orthokeratology and defocus-incorporated multiple

Frontiers in Medicine

11

10.3389/fmed.2025.1686204

Generative Al statement

The authors declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

segment lenses. Cont Lens Anterior Eye. (2024) 47:102122. doi: 10.1016/j.clae.2024.
102122

15. Liu J, Lu Y, Huang D, Yang J, Fan C, Chen C, et al. The efficacy of defocus
incorporated multiple segments lenses in slowing myopia progression: results from
diverse clinical circumstances. Ophthalmology. (2023) 130:542-50. doi: 10.1016/j.
ophtha.2023.01.007

16. Tsai H, Wang J, Huang H, Chen T, Chen P, Chiu C. Efficacy of atropine,
orthokeratology, and combined atropine with orthokeratology for childhood myopia:
a systematic review and network meta-analysis. ] Formos Med Assoc. (2022) 121:2490-
500. doi: 10.1016/j.jfma.2022.05.005

17. Wan L, Wei C, Chen C, Chang C, Lin C, Chen J, et al. The synergistic effects of
orthokeratology and atropine in slowing the progression of myopia. J Clin Med. (2018)
7:259. doi: 10.3390/jcm7090259

18. Zheng N, Tan K. The synergistic efficacy and safety of combined low-
concentration atropine and orthokeratology for slowing the progression of myopia:
a meta-analysis. Ophthalmic Physiol Opt. (2022) 42:1214-26. doi: 10.1111/0p0.13029

19. Sartor L, Hunter D, Vo M, Samarawickrama C. Benefits and risks of
orthokeratology treatment: a systematic review and meta-analysis. Int Ophthalmol.
(2024) 44:239. doi: 10.1007/s10792-024-03175-w

20. Mackey D, Lee S. Emerging role of axial length trajectories in the management of
myopia. JAMA Ophthalmol. (2024) 142:94-5. doi: 10.1001/jamaophthalmol.2023.6087

21. Prousali E, Haidich A, Fontalis A, Ziakas N, Brazitikos P, Mataftsi A. Efficacy
and safety of interventions to control myopia progression in children: an overview of
systematic reviews and meta-analyses. BMC Ophthalmol. (2019) 19:106. doi: 10.1186/
s12886-019-1112-3

22. Foo L, Lim G, Lanca C, Wong C, Hoang Q, Zhang X, et al. Deep learning system
to predict the 5-year risk of high myopia using fundus imaging in children. NPJ Digit
Med. (2023) 6:10. doi: 10.1038/s41746-023-00752-8

23. Han X, Liu C, Chen Y, He M. Myopia prediction: a systematic review. Eye. (2022)
36:921-9. doi: 10.1038/541433-021-01805-6

24.Li S, Ren M, Gan J, Zhang S, Kang M, Li H, et al. Machine learning to determine
risk factors for myopia progression in primary school children: the anyang childhood
eye study. Ophthalmol Ther. (2022) 11:573-85. doi: 10.1007/s40123-021-00450-2

25. Guggenheim J, Ghorbani Mojarrad N, Williams C, Flitcroft D. Genetic
prediction of myopia: prospects and challenges. Ophthalmic Physiol Opt. (2017)
37:549-56. doi: 10.1111/0p0.12403

26.Lin H, Long E, Ding X, Diao H, Chen Z, Liu R, et al. Prediction of
myopia development among chinese school-aged children using refraction data from
electronic medical records: a retrospective, multicentre machine learning study. PLoS
Med. (2018) 15:€1002674. doi: 10.1371/journal.pmed.1002674

27. Fang ], Zheng Y, Mou H, Shi M, Yu W, Du C. Machine learning for predicting
the treatment effect of orthokeratology in children. Front Pediatr. (2022) 10:1057863.
doi: 10.3389/fped.2022.1057863

frontiersin.org


https://doi.org/10.3389/fmed.2025.1686204
https://doi.org/10.1136/bjophthalmol-2015-307724
https://doi.org/10.1136/bjo-2024-325427
https://doi.org/10.1136/bjo-2024-325427
https://doi.org/10.1097/IAE.0000000000001489
https://doi.org/10.1167/iovs.62.5.2
https://doi.org/10.1016/j.ophtha.2018.10.029
https://doi.org/10.1016/j.ophtha.2018.10.029
https://doi.org/10.3389/fmed.2021.718724
https://doi.org/10.3389/fmed.2021.718724
https://doi.org/10.1016/j.preteyeres.2020.100923
https://doi.org/10.1111/opo.12812
https://doi.org/10.1111/opo.12812
https://doi.org/10.1016/j.ophtha.2018.06.029
https://doi.org/10.1111/opo.13070
https://doi.org/10.1371/journal.pone.0175913
https://doi.org/10.1371/journal.pone.0175913
https://doi.org/10.1111/aos.14911
https://doi.org/10.1001/jama.2022.24162
https://doi.org/10.1001/jama.2022.24162
https://doi.org/10.1016/j.clae.2024.102122
https://doi.org/10.1016/j.clae.2024.102122
https://doi.org/10.1016/j.ophtha.2023.01.007
https://doi.org/10.1016/j.ophtha.2023.01.007
https://doi.org/10.1016/j.jfma.2022.05.005
https://doi.org/10.3390/jcm7090259
https://doi.org/10.1111/opo.13029
https://doi.org/10.1007/s10792-024-03175-w
https://doi.org/10.1001/jamaophthalmol.2023.6087
https://doi.org/10.1186/s12886-019-1112-3
https://doi.org/10.1186/s12886-019-1112-3
https://doi.org/10.1038/s41746-023-00752-8
https://doi.org/10.1038/s41433-021-01805-6
https://doi.org/10.1007/s40123-021-00450-2
https://doi.org/10.1111/opo.12403
https://doi.org/10.1371/journal.pmed.1002674
https://doi.org/10.3389/fped.2022.1057863
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Fuetal.

28. Xiong R, Wang W, Tang X, He M, Hu Y, Zhang J, et al. Myopia control
effect of repeated low-level red-light therapy combined with orthokeratology: a
multicenter randomized controlled trial. Ophthalmology. (2024) 131:1304-13. doi:
10.1016/j.0ophtha.2024.05.015

29.Li B, YuS, Gao S, Sun G, Pang X, Li X, et al. Effect of 0.01% atropine combined
with orthokeratology lens on axial elongation: a 2-year randomized, double-masked,
placebo-controlled, cross-over trial. Front Med. (2024) 11:1358046. doi: 10.3389/fmed.
2024.1358046

30. Cho P, Cheung S. Retardation of myopia in orthokeratology (Romio) study: a
2-year randomized clinical trial. Invest Ophthalmol Vis Sci. (2012) 53:7077-85. doi:
10.1167/iovs.12-10565

31. Chen C, Cheung S, Cho P. Myopia control using toric orthokeratology (to-see
study). Invest Ophthalmol Vis Sci. (2013) 54:6510-7. doi: 10.1167/iovs.13-12527

32. Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of
overnight orthokeratology on axial length elongation in childhood myopia: a 5-year
follow-up study. Invest Ophthalmol Vis Sci. (2012) 53:3913-9. doi: 10.1167/iovs.11-
8453

33. Peduzzi P, Concato J, Kemper E, Holford T, Feinstein AR. A simulation study
of the number of events per variable in logistic regression analysis. J Clin Epidemiol.
(1996) 49:1373-9. doi: 10.1016/50895-4356(96)00236- 3

34. Vittinghoff E, McCulloch C. Relaxing the rule of ten events per variable in logistic
and cox regression. Am ] Epidemiol. (2006) 165:710-8. doi: 10.1093/aje/kwk052

35. MuJ, Zhong H, Jiang M. Machine-learning models to predict myopia in children
and adolescents. Front Med. (2024) 11:1482788. doi: 10.3389/fmed.2024.1482788

36. Qi ], Lei J, Li N, Huang D, Liu H, Zhou K, et al. Machine learning models to
predict in-hospital mortality in septic patients with diabetes. Front Endocrinol. (2022)
13:1034251. doi: 10.3389/fendo.2022.1034251

37. Wang Q, Qiao W, Zhang H, Liu B, Li ], Zang C, et al. Nomogram established on
account of lasso-cox regression for predicting recurrence in patients with early-stage
hepatocellular carcinoma. Front Immunol. (2022) 13:1019638. doi: 10.3389/fimmu.
2022.1019638

38. Mutti D, Hayes ], Mitchell G, Jones L, Moeschberger M, Cotter S, et al. Refractive
error, axial length, and relative peripheral refractive error before and after the onset of
myopia. Invest Ophthalmol Vis Sci. (2007) 48:2510-9. doi: 10.1167/i0vs.06-0562

39. Chen Z, Xue E Zhou ], Qu X, Zhou X. Prediction of orthokeratology lens
decentration with corneal elevation. Optom Vis Sci. (2017) 94:903-7. doi: 10.1097/
OPX.0000000000001109

40. Gu T, Gong B, Lu D, Lin W, Li N, He Q, et al. Influence of corneal topographic
parameters in the decentration of orthokeratology. Eye Contact Lens. (2019) 45:372-6.
doi: 10.1097/ICL.0000000000000580

41. Kang P, Swarbrick H. Peripheral refraction in myopic children wearing
orthokeratology and gas-permeable lenses. Optom Vis Sci. (2011) 88:476-82. doi: 10.
1097/0PX.0b013e31820f16fb

42. Smith E, Hung L, Arumugam B. Visual regulation of refractive development:
insights from animal studies. Eye. (2014) 28:180-8. doi: 10.1038/eye.2013.277

Frontiers in Medicine

12

10.3389/fmed.2025.1686204

43. Charm J, Cho P. High myopia-partial reduction ortho-K: a 2-year randomized
study. Optom Vis Sci. (2013) 90:530-9. doi: 10.1097/OPX.0b013e318293657d

44. Kurtz D, Hyman L, Gwiazda J, Manny R, Dong L, Wang Y, et al. Role of parental
myopia in the progression of myopia and its interaction with treatment in comet
children. Invest Ophthalmol Vis Sci. (2007) 48:562-70. doi: 10.1167/i0vs.06-0408

45. Wu ], Zhang H, Li L, Hu M, Chen L, Xu B, et al. A nomogram for predicting
overall survival in patients with low-grade endometrial stromal sarcoma: a population-
based analysis. Cancer Commun. (2020) 40:301-12. doi: 10.1002/cac2.12067

46. Kinoshita N, Konno Y, Hamada N, Kanda Y, Shimmura-Tomita M, Kakehashi A.
Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing
axial elongation in children with myopia: first year results. Jpn J Ophthalmol. (2018)
62:544-53. doi: 10.1007/s10384-018-0608-3

47. Saw S, Matsumura S, Hoang Q. Prevention and management of myopia and
myopic pathology. Invest Ophthalmol Vis Sci. (2019) 60:488-99. doi: 10.1167/iovs.18-
25221

48. Horn D, Salzano A, Jenewein E, Weise K, Schaeffel F, Mathis U, et al. Topical
review: potential mechanisms of atropine for myopia control. Optom Vis Sci. (2025)
102:260-70. doi: 10.1097/OPX.0000000000002249

49. Liu Y, Zhu M, Yan X, Li M, Xiang Y. The effect of repeated low-level red-
light therapy on myopia control and choroid. Transl Vis Sci Technol. (2024) 13:29.
doi: 10.1167/tvst.13.10.29

50. Lawrenson J, Shah R, Huntjens B, Downie L, Virgili G, Dhakal R, et al.
Interventions for myopia control in children: a living systematic review and
network meta-analysis. Cochrane Database Syst Rev. (2023) 2:CD014758. doi: 10.1002/
14651858.CD014758.pub2

51. Gonzélez-Méijome J, Villa-Collar C, Queirds A, Jorge J, Parafita M. Pilot study
on the influence of corneal biomechanical properties over the short term in response
to corneal refractive therapy for myopia. Cornea. (2008) 27:421-6. doi: 10.1097/1CO.
0b013e318164e49d

52. Tideman J, Polling J, Vingerling J, Jaddoe V, Williams C, Guggenheim J, et al.
Axial length growth and the risk of developing myopia in European children. Acta
Ophthalmol. (2018) 96:301-9. doi: 10.1111/a0s.13603

53. Hlitcroft D, He M, Jonas J, Jong M, Naidoo K, Ohno-Matsui K, et al. Imi - defining
and classifying myopia: a proposed set of standards for clinical and epidemiologic
studies. Invest Ophthalmol Vis Sci. (2019) 60:M20-30. doi: 10.1167/iovs.18-
25957

54. Zadnik K, Sinnott L, Cotter S, Jones-Jordan L, Kleinstein R, Manny R, et al.
Prediction of juvenile-onset myopia. JAMA Ophthalmol. (2015) 133:683-9. doi: 10.
1001/jamaophthalmol.2015.0471

55.Li E Su Y, Lin E Li Z, Song Y, Nie S, et al. A deep-learning system predicts
glaucoma incidence and progression using retinal photographs. J Clin Invest. (2022)
132:€157968. doi: 10.1172/JCI157968

56. Yan Q, Weeks D, Xin H, Swaroop A, Chew E, Huang H, et al. Deep-learning-
based prediction of late age-related macular degeneration progression. Nat Mach Intell.
(2020) 2:141-50. doi: 10.1038/s42256-020-0154-9

frontiersin.org


https://doi.org/10.3389/fmed.2025.1686204
https://doi.org/10.1016/j.ophtha.2024.05.015
https://doi.org/10.1016/j.ophtha.2024.05.015
https://doi.org/10.3389/fmed.2024.1358046
https://doi.org/10.3389/fmed.2024.1358046
https://doi.org/10.1167/iovs.12-10565
https://doi.org/10.1167/iovs.12-10565
https://doi.org/10.1167/iovs.13-12527
https://doi.org/10.1167/iovs.11-8453
https://doi.org/10.1167/iovs.11-8453
https://doi.org/10.1016/s0895-4356(96)00236-3
https://doi.org/10.1093/aje/kwk052
https://doi.org/10.3389/fmed.2024.1482788
https://doi.org/10.3389/fendo.2022.1034251
https://doi.org/10.3389/fimmu.2022.1019638
https://doi.org/10.3389/fimmu.2022.1019638
https://doi.org/10.1167/iovs.06-0562
https://doi.org/10.1097/OPX.0000000000001109
https://doi.org/10.1097/OPX.0000000000001109
https://doi.org/10.1097/ICL.0000000000000580
https://doi.org/10.1097/OPX.0b013e31820f16fb
https://doi.org/10.1097/OPX.0b013e31820f16fb
https://doi.org/10.1038/eye.2013.277
https://doi.org/10.1097/OPX.0b013e318293657d
https://doi.org/10.1167/iovs.06-0408
https://doi.org/10.1002/cac2.12067
https://doi.org/10.1007/s10384-018-0608-3
https://doi.org/10.1167/iovs.18-25221
https://doi.org/10.1167/iovs.18-25221
https://doi.org/10.1097/OPX.0000000000002249
https://doi.org/10.1167/tvst.13.10.29
https://doi.org/10.1002/14651858.CD014758.pub2
https://doi.org/10.1002/14651858.CD014758.pub2
https://doi.org/10.1097/ICO.0b013e318164e49d
https://doi.org/10.1097/ICO.0b013e318164e49d
https://doi.org/10.1111/aos.13603
https://doi.org/10.1167/iovs.18-25957
https://doi.org/10.1167/iovs.18-25957
https://doi.org/10.1001/jamaophthalmol.2015.0471
https://doi.org/10.1001/jamaophthalmol.2015.0471
https://doi.org/10.1172/JCI157968
https://doi.org/10.1038/s42256-020-0154-9
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Nomogram-based prediction of continued axial elongation in children undergoing orthokeratology
	Introduction
	Materials and methods
	Research design and study population
	Lenses
	Data collection
	Definition of adverse outcomes
	Statistical analysis

	Results
	Baseline characteristics comparison
	Baseline characteristics of favorable and adverse outcome groups in the training set
	LASSO variable selection
	Logistic regression analysis and nomogram
	Model validation

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




