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Background: Myopia is a growing health concern, especially among children,

with Orthokeratology (OK) lenses showing promising results in myopia control.

However, treatment outcomes vary significantly among individuals, highlighting

the need for personalized approaches. This study aimed to develop and validate

a predictive model for OK therapy outcomes in myopic children.

Methods: This retrospective cohort study included 439 myopic patients fitted

with OK lenses. Patients were randomly divided into training (n = 308) and

test (n = 131) sets. Least absolute shrinkage and selection operator regression

was used for variable selection, followed by logistic regression to construct

the predictive model. A nomogram was developed to visualize individual risk

predictions. Model performance was assessed using calibration plots, receiver

operating characteristic (ROC) curves, and decision curve analysis (DCA).

Results: Four variables were identified as significant predictors: age, parental

myopia, white-to-white distance, and spherical refraction. The model

demonstrated good discriminatory ability with areas under the ROC curve of

0.831 (95% CI: 0.786–0.877) in the training set and 0.820 (95% CI: 0.742–0.899)

in the test set. Sensitivity and specificity were 75.6 and 72.8% in the training set,

and 79.3 and 75.0% in the test set. Calibration plots and DCA confirmed the

model’s potential clinical utility across a range of threshold probabilities.

Conclusion: This study developed a predictive model for OK therapy outcomes

in myopic children. The model demonstrated good discriminatory ability in both

training and test datasets. This predictive approach might contribute to risk

stratification in myopia management. Further validation through prospective

studies across diverse populations is needed before such models could

potentially inform clinical decision-making and resource allocation in myopia

control practice.
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Introduction 

Myopia is a pervasive global health issue, with East Asia 
showing the highest prevalence rates globally, reaching 69% among 
15-year-olds and up to 86% among Singaporean-Chinese children 
(1). The global prevalence of myopia increased from 24.32% in 
1990 to 35.81% in 2023 and is projected to reach 39.80% by 
2050, exceeding 740 million cases worldwide (2). High myopia 
is associated with serious ocular complications such as retinal 
detachment, macular degeneration, glaucoma, and cataracts, which 
can lead to irreversible vision loss (3, 4). These complications 
contribute not only to individual visual impairment but also to 
substantial economic and social burdens, particularly in regions 
with high myopia prevalence (5, 6). The increasing prevalence 
among younger populations, combined with the severe long-term 
consequences of myopia, underscores the urgent need for early 
intervention and eective management strategies (7). Controlling 
axial length (AL) elongation is a key strategy to mitigate these risks 
and reduce the impact of myopia (8, 9). 

Orthokeratology (OK) lenses, which are rigid gas-permeable 
lenses worn overnight to temporarily reshape the cornea, have 
gained widespread acceptance as an eective intervention to slow 
AL elongation, particularly in children and adolescents (10, 11). 
Studies have shown that OK lenses can reduce annual AL growth 
by 59% compared to untreated controls (12). Their non-invasive 
nature and potential for good compliance make them suitable for 
pediatric populations. Furthermore, additional interventions, such 
as low-concentration atropine eye drops and defocus-incorporated 
multiple segment lenses, have demonstrated eÿcacy in reducing 
myopia progression (13–15). Notably, combining OK lenses with 
low-concentration atropine has shown potential synergistic eects, 
further enhancing AL control (16, 17). These complementary 
methods present opportunities for tailored treatment plans that can 
address individual patient needs (18). However, the eectiveness 
of OK lenses and other interventions varies considerably among 
patients due to factors such as age, baseline AL, and refractive error, 
highlighting the limitations of standardized treatment protocols 
that fail to account for individual dierences (10). 

Current management strategies for OK therapy often rely 
on fixed follow-up protocols, which overlook key patient-
specific factors (11). As a result, clinicians face challenges in 
proactively addressing variable outcomes, such as rapid AL 
elongation or rebound eects following treatment discontinuation 
(19). Identifying high-risk patients, particularly younger children 
or those with rapid AL growth, is critical for optimizing 
follow-up schedules and implementing timely interventions (20, 
21). Conversely, reducing unnecessary monitoring for low-risk 
patients can help conserve healthcare resources while maintaining 
eÿciency (22). Recent research highlights the potential of 
predictive models that integrate multiple variables, including 
demographic, ocular, and environmental factors, to enhance risk 

Abbreviations: AL, Axial length; AIC, Akaike information criterion; AUC, 
Area under the curve; BIC, Bayesian information criterion; DCA, Decision 
curve analysis; Flat-K, Flat keratometry; IOP, Intraocular pressure; LASSO, 
Least absolute shrinkage and selection operator; OK, Orthokeratology; 
ROC, Receiver operating characteristic; SER, Spherical equivalent refraction; 
SRI, Surface regularity index; Steep-K, Steep keratometry; WTW, White-to-
white distance. 

stratification and treatment personalization (23–25). Such models 
could transform clinical practice by facilitating individualized 
management strategies and improving outcomes (26). 

This study introduces a new approach to address the lack 
of predictive tools for individualizing OK therapy. It combines 
least absolute shrinkage and selection operator (LASSO) regression 
with logistic regression to identify key predictive variables. 
The primary target variable of our predictive model is the 
annual AL growth rate in children undergoing OK therapy, 
with a growth rate > 0.19 mm/year defined as an adverse 
outcome (27). A nomogram was created to visually display risk 
predictions, making it easier to apply in clinical settings. The 
model’s performance was validated using calibration plots, receiver 
operating characteristic (ROC) curves, and decision curve analysis 
(DCA) in both training and validation datasets. These steps 
ensure the model’s reliability and robustness. The model may 
provide information that clinicians could potentially use to identify 
high-risk patients early and generate individualized predictions 
of adverse outcomes. Based on these predictions, clinicians can 
then make informed decisions to optimize follow-up schedules 
and treatment strategies, addressing the current limitations of 
standardized protocols. 

Materials and methods 

Research design and study population 

This study was a single-center retrospective cohort study 
conducted at Yuyao Maternity and Child Health Hospital. The 
data were collected from patient records between January 2015 and 
December 2021. The study included myopic patients who were 
fitted with OK lenses at the hospital. Ethical approval was obtained 
from the Ethics Committee of Yuyao Maternity and Child Health 
Hospital (Approval No. 2024YPT01), and all procedures complied 
with the Declaration of Helsinki. Written informed consent was 
obtained from all participants and their legal guardian(s). 

Inclusion and Exclusion Criteria: Patients were included if 
they met the following criteria: (1) were aged 8–14 years; (2) had 
spherical equivalent refraction between −0.75D and −6.00D; (3) 
had astigmatism ≤ 2.00D; (4) had AL between 22.0 and 26.0 
mm; (5) had intraocular pressure (IOP) < 21 mmHg; (6) had 
corneal curvature between 40.00D and 46.00D; and (7) had no 
history of wearing contact lenses or OK lenses previously. Patients 
were excluded if they: (1) had any ocular or systemic diseases; 
(2) their guardians refused follow-ups or phone inquiries; (3) 
had undergone other myopia treatments before OK lenses; (4) 
developed chronic diseases, tumors, or experienced severe trauma 
with unstable vital signs during treatment; or (5) had poor-quality 
corneal topography sampling, suboptimal lens fitting, or conditions 
such as color blindness or color weakness (11, 28, 29). During the 
study period, 527 patients were initially screened for eligibility. 
Eighty-three patients were excluded based on pre-specified criteria, 
including baseline parameters not meeting inclusion requirements 
(n = 30), guardian refusal of follow-up participation (n = 23), 
previous myopia control treatments (n = 18), and pre-existing 
diseases or poor examination quality (n = 12). The remaining 444 
patients were enrolled and initiated OK lens treatment. During the 
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first year of follow-up, five patients (1.1%) were lost to follow-
up due to relocation (n = 2) and inability to maintain contact 
(n = 3). The final analysis included 439 patients who completed 
all required visits within the first year. The reported 292 adverse 
outcomes (66.5%) represent complete data from these 439 patients 
with complete follow-up data for all key variables. 

Lenses 

All patients underwent standard anterior segment and 
refractive assessments. Cycloplegic refraction was performed 
using 1% tropicamide eye drops administered twice at 5-min 
intervals, with measurements taken 30 min after the first drop. 
Autorefraction was measured with the NIDEK AR-310A under 
cycloplegia. Baseline corneal topography was performed using the 
SW6000 topographer (ensuring corneal exposure ≥ 95% and a 
curvature control error within ± 0.25D). AL was measured using 
the IOL Master 500 (five repeated measurements averaged), and 
IOP was measured with the CT-800. Pupillary dilation and OCT 
were performed as needed to confirm fundus status. Lenses were 
prescribed based on corneal topography and refractive data, trial-
fitted to ensure proper alignment, and then dispensed. 

Data collection 

All patients were followed according to a standardized protocol, 
which included follow-up visits at 1 month, 3 months, 6 months, 
and 1 year after OK lenses fitting. After the first year, patients 
were followed every 6 months until the end of the study period. 
Patients were required to have at least these four follow-up 
visits to be included in the analysis. The maximum follow-
up duration was set at 3 years. This study analyzed data 
from the right eye of each participant (30). All data were 
obtained through standardized equipment measurements and 
patient medical records, supplemented by telephone interviews 
when necessary. The collected variables included demographic 
information, clinical characteristics, and ocular parameters. 

The demographic information consisted of age, sex, and 
parental myopia status. Clinical characteristics included the time 
spent outdoors (hours per day). Ocular parameters encompassed 
spherical refraction, cylindrical refraction, spherical equivalent 
refraction (SER), flat keratometry (Flat-K), steep keratometry 
(Steep-K), white-to-white distance (WTW), eccentricity, axial 
length (AL), intraocular pressure (IOP), astigmatism, and surface 
regularity index (SRI). 

Definition of adverse outcomes 

The primary outcome of this study was the annual AL growth 
rate. An annual growth rate ≤ 0.19 mm was defined as a favorable 
outcome, while a growth rate > 0.19 mm was classified as an 
adverse outcome, this cuto has been used in previous OK-related 
myopia control studies as a clinically meaningful threshold beyond 
which treatment eect is considered suboptimal (27, 31, 32). 
The annual AL growth rate was calculated by dividing the AL 

increase during the follow-up period by the number of follow-
up months, then multiplying by 12. Based on this calculation, 
patients were categorized into the favorable outcome group or the 
adverse outcome group. 

Statistical analysis 

All statistical analyses were performed using R software 
(version 4.4.1) and SPSS software (version 26.0), with a significance 
level set at p < 0.05. Continuous variables with a normal 
distribution were expressed as mean ± standard deviation and 
compared using independent t-tests. Non-normally distributed 
continuous variables were presented as median (interquartile 
range) and compared using Mann-Whitney U tests. Categorical 
variables were expressed as proportions and compared using chi-
square tests. 

The data were randomly divided into training and test sets 
in a 7:3 ratio using stratified splitting based on the primary 
outcome (favorable vs. adverse). This stratification technique 
ensured balanced distribution of outcome categories between 
the training and test sets, maintaining similar prevalence of 
adverse outcomes in both datasets and thereby enhancing model 
generalizability. The 7:3 ratio for training and test set allocation 
was selected to balance between having adequate data for model 
training (70%) while retaining suÿcient cases for model validation 
(30%), which is widely used in predictive modeling research. 
Sample size determination was based on the generally accepted 
rule for predictive modeling that requires at least 10 events per 
predictor variable (33, 34). Our sample of 439 participants (with 292 
adverse outcomes) provided suÿcient statistical power for model 
development and validation. 

In the training set, LASSO regression was applied for variable 
selection, using 10-fold cross-validation to determine the optimal 
penalty parameter (λ). L1 regularization was employed to retain 
the most relevant variables. Subsequently, a logistic regression 
model was constructed based on the selected variables, and a 
nomogram was developed to visually represent the predictive 
results. Model validation was conducted in both the training 
and test sets, including calibration plots, ROC curves, and DCA. 
The Hosmer-Lemeshow test was performed to evaluate model 
calibration. Calibration plots assessed the agreement between 
predicted probabilities and observed outcomes. ROC curves 
quantified the model’s discriminatory ability through the area 
under the curve (AUC). DCA evaluated the clinical utility of the 
model across various threshold probabilities. 

Results 

Baseline characteristics comparison 

A total of 439 participants were included (308 in training set, 
131 in test set). The baseline characteristics of the two groups are 
summarized in Table 1. The mean age was 10.85 ± 1.76 years, 
with 48.52% males. Parental myopia was common, with 53.99% 
having both parents myopic, 32.80% having one myopic parent, 
and 13.21% having no parental myopia. All demographic variables, 

Frontiers in Medicine 03 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1686204
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1686204 November 10, 2025 Time: 15:11 # 4

Fu et al. 10.3389/fmed.2025.1686204 

TABLE 1 Baseline characteristics of participants in training and test sets. 

Variables Total 
(n = 439) 

Training 
(n = 308) 

Test 
(n = 131) 

t/Z/χ2 p 

Outcome, n(%) 0.00 0.976 

Favorable outcome 147 (33.49) 103 (33.44) 44 (33.59) 

Adverse outcome 292 (66.51) 205 (66.56) 87 (66.41) 

Age, mean ± SD 10.85 ± 1.76 10.80 ± 1.75 10.98 ± 1.79 −0.95 0.341 

Sex, n(%) 1.35 0.246 

Male 213 (48.52) 155 (50.32) 58 (44.27) 

Female 226 (51.48) 153 (49.68) 73 (55.73) 

Parental myopia, n(%) 2.07 0.356 

Neither myopic 58 (13.21) 45 (14.61) 13 (9.92) 

One myopic 144 (32.80) 97 (31.49) 47 (35.88) 

Both myopic 237 (53.99) 166 (53.90) 71 (54.20) 

Time spent outdoors (hours), M (Q1, Q3) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) 1.50 (1.00, 1.75) −1.70 0.088 

Flat K, Mean ± SD 42.90 ± 1.08 42.92 ± 1.10 42.87 ± 1.05 0.42 0.677 

Steep K, Mean ± SD 43.96 ± 1.15 43.98 ± 1.15 43.91 ± 1.16 0.64 0.523 

WTW, Mean ± SD 11.89 ± 0.28 11.89 ± 0.28 11.90 ± 0.29 −0.21 0.834 

Eccentricity, mean ± SD 0.60 ± 0.08 0.60 ± 0.08 0.60 ± 0.09 −0.29 0.771 

AL, mean ± SD 24.90 ± 0.68 24.89 ± 0.68 24.90 ± 0.69 −0.14 0.892 

IOP, M (Q1, Q3) 16.00 (15.00, 19.00) 17.00 (15.00, 19.00) 16.00 (15.00, 19.00) −0.12 0.905 

Astigmatism, M (Q1, Q3) 1.02 (0.76, 1.30) 1.02 (0.77, 1.32) 1.02 (0.70, 1.25) −0.47 0.640 

Spherical refraction, M (Q1, Q3) −2.75 (−3.75, −1.75) −2.75 (−3.75, −1.94) −2.75 (−3.75, −1.75) −0.16 0.876 

Cylindrical refraction, M (Q1, Q3) −0.50 (−0.75, −0.25) −0.50 (−0.75, −0.25) −0.50 (−0.75, −0.25) −0.39 0.698 

SER, M (Q1, Q3) −3.00 (−4.00, −2.12) −3.00 (−4.00, −2.12) −3.12 (−4.00, −2.12) −0.09 0.927 

SRI, M (Q1, Q3) 0.33 (0.32, 0.34) 0.33 (0.32, 0.34) 0.33 (0.32, 0.34) −1.12 0.261 

Follow−up time (months), M (Q1, Q3) 26.00 (24.00, 29.00) 26.00 (24.00, 29.00) 27.00 (23.00, 28.00) −0.34 0.736 

Flat K, flat corneal curvature; Steep K, steep corneal curvature; WTW, white-to-white distance; AL, axial length; IOP, intraocular pressure; SER, spherical equivalent refraction; SRI, surface 
regularity index. 

including age and sex, showed no significant dierences between 
training and test sets. Similarly, all ocular parameters including 
WTW, eccentricity, AL, IOP, astigmatism, and refractive measures 
were comparable between groups (all p > 0.05). The median follow-
up time was 26.00 months (IQR: 24.00–29.00) for the entire cohort. 
Adverse outcomes occurred in 66.51% of participants, with similar 
rates in both training (66.56%) and test (66.41%) sets (p = 0.976). 
This balanced distribution confirms appropriate randomization for 
model development and validation. 

Baseline characteristics of favorable and 
adverse outcome groups in the training 
set 

The baseline characteristics of the favorable and adverse 
outcome groups in the training set are presented in Table 2. 
Among the 308 patients in the training set, 103 (33.44%) had 
favorable outcomes and 205 (66.56%) had adverse outcomes. 
Significant age dierences were observed between the groups, 
with patients in the favorable outcome group being older 

(11.81 ± 1.70 years) compared to those in the adverse outcome 
group (10.30 ± 1.55 years; p < 0.001). 

Parental myopia status showed significant dierences between 
the groups (p < 0.001). In the favorable outcome group, 26.21% had 
no myopic parents, 37.86% had one myopic parent, and 35.92% had 
both parents with myopia. In contrast, the adverse outcome group 
showed a higher proportion of patients with both myopic parents 
(62.93%) and lower rates of non-myopic parents (8.78%). 

Regarding ocular parameters, mean AL was significantly longer 
in the favorable outcome group (25.07 ± 0.66 mm) compared 
to the adverse outcome group (24.80 ± 0.67 mm; p < 0.001). 
WTW was also significantly greater in the favorable outcome group 
(11.94 ± 0.29 mm vs. 11.87 ± 0.28 mm; p = 0.026). 

Refractive parameters showed significant dierences, with the 
favorable outcome group having more myopic spherical refraction 
(median: −3.25 D vs. −2.50 D; p < 0.001) and SER (median: −3.50 
D vs. −2.75 D; p < 0.001). 

No significant dierences were observed between the groups 
in terms of gender distribution, time spent outdoors, keratometry 
values, eccentricity, IOP, astigmatism, cylindrical refraction, SRI, or 
follow-up duration (all p > 0.05). 
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TABLE 2 Baseline comparison between favorable and adverse outcome groups. 

Variables Total (n = 308) Favorable 
outcome 
(n = 103) 

Adverse 
outcome 
(n = 205) 

t/Z/χ2 p 

Age, mean ± SD 10.80 ± 1.75 11.81 ± 1.70 10.30 ± 1.55 7.80 < 0.001 

Sex, n(%) 0.27 0.601 

Male 155 (50.32) 54 (52.43) 101 (49.27) 

Female 153 (49.68) 49 (47.57) 104 (50.73) 

Parental myopia, n(%) 25.53 < 0.001 

Neither myopic 45 (14.61) 27 (26.21) 18 (8.78) 

One myopic 97 (31.49) 39 (37.86) 58 (28.29) 

Both myopic 166 (53.90) 37 (35.92) 129 (62.93) 

Time spent outdoors (hours), M (Q1, Q3) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) 1.50 (1.00, 2.00) −0.53 0.594 

Flat K, Mean ± SD 42.92 ± 1.10 42.94 ± 1.04 42.90 ± 1.13 0.26 0.797 

Steep K, mean ± SD 43.98 ± 1.15 44.06 ± 1.04 43.94 ± 1.21 0.91 0.366 

WTW, Mean ± SD 11.89 ± 0.28 11.94 ± 0.29 11.87 ± 0.28 2.24 0.026 

Eccentricity, mean ± SD 0.60 ± 0.08 0.59 ± 0.07 0.60 ± 0.08 −1.30 0.194 

AL, mean ± SD 24.89 ± 0.68 25.07 ± 0.66 24.80 ± 0.67 3.34 < 0.001 

IOP, M (Q1, Q3) 17.00 (15.00, 19.00) 16.00 (15.00, 19.00) 17.00 (15.00, 18.00) −0.47 0.636 

Astigmatism, M (Q1, Q3) 1.02 (0.77, 1.32) 1.03 (0.80, 1.34) 1.02 (0.76, 1.32) −0.19 0.846 

Spherical refraction, M (Q1, Q3) −2.75 (−3.75, −1.94) −3.25 (−4.25, −2.25) −2.50 (−3.50, −1.75) −4.25 < 0.001 

Cylindrical refraction, M (Q1, Q3) −0.50 (−0.75, −0.25) −0.50 (−0.75, −0.25) −0.50 (−0.75, −0.25) −1.27 0.203 

SER, M (Q1, Q3) −3.00 (−4.00, −2.12) −3.50 (−4.50, −2.62) −2.75 (−3.75, −2.00) −4.03 < 0.001 

SRI, M (Q1, Q3) 0.33 (0.32, 0.34) 0.33 (0.32, 0.34) 0.33 (0.32, 0.34) −0.98 0.329 

Follow-up time (months), M (Q1, Q3) 26.00 (24.00, 29.00) 26.00 (24.00, 28.00) 27.00 (24.00, 29.00) −0.47 0.635 

LASSO variable selection 

The results of the LASSO regression are illustrated in 
Figures 1, 2. Variable selection was performed using LASSO 
regression with 10-fold cross-validation to determine the optimal 
penalty parameter (λ). Figure 1 displays the coeÿcient path of 
each variable as λ changes, where each colored line represents 
a dierent predictor variable, and the numbers at the top of 
the plot indicate the number of non-zero coeÿcients at each 
λ value. As the regularization parameter λ increases (moving 
from left to right), the coeÿcient trajectories show how variables 
are progressively eliminated with increasing regularization, with 
coeÿcients shrinking toward zero. Figure 2 presents the cross-
validation curve showing the relationship between binomial 
deviance (mean-squared error) and log(λ), where red dots 
represent the cross-validation error at each λ value, error bars 
indicate the standard error, and the numbers at the top denote 
the number of variables included in the model at each point. 
The two vertical dashed lines indicate λ.min (left) representing 
the λ value with minimum cross-validation error, and λ0.1se 
(right) representing the λ value within one standard error of the 
minimum. 

We carefully evaluated both λ.min (minimum mean cross-
validated error) and λ0.1se (one standard error rule) approaches to 
determine the most appropriate model. While λ.min (λ = 0.012) 
initially identified nine variables (age, parental myopia history, 

FIGURE 1 

LASSO coefficient path for variable selection. 

baseline WTW, baseline spherical refraction, outdoor activity time, 
baseline IOP, baseline flat keratometry, baseline steep keratometry, 
and baseline cylindrical refraction), we ultimately selected the 
λ0.1se approach (λ = 0.036), which retained only four key 
variables: age, parental myopia history, baseline WTW, and 
baseline spherical refraction. 

This decision was guided by model parsimony principles 
and information criteria comparisons. The Akaike Information 
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FIGURE 2 

Cross-validation curve for optimal lambda selection in LASSO. 

Criterion (AIC), which estimates prediction error by balancing 
goodness of fit against model complexity, was 297.63 for the 
reduced model versus 299.14 for the full model. Similarly, the 
Bayesian Information Criterion (BIC), which imposes a more 
stringent penalty for additional parameters than AIC, was 320.01 
for the reduced model compared to 340.17 for the full model. The 
lower values for both AIC and BIC in the reduced model indicate 
superior performance when accounting for model complexity. 
Furthermore, when we applied optimal subset selection to the 
full nine-variable model, we obtained the same four variables, 
further validating our approach. This convergence of selection 
methods reinforces the importance of these four variables as the 
most significant predictors while minimizing redundancy and 
multicollinearity in the final model. 

Logistic regression analysis and 
nomogram 

The variables selected through LASSO regression were 
subjected to logistic regression analysis, with the results presented 
in Table 3. Age emerged as a significant protective factor against 
adverse outcomes (OR = 0.552, 95% CI: 0.458–0.667, p < 0.001), 
indicating that older patients had substantially reduced risk of 
adverse outcomes. Parental myopia demonstrated a strong dose-
dependent relationship with myopia progression, with both one 
myopic parent (OR = 5.428, 95% CI: 2.184–13.491, p < 0.001) and 
two myopic parents (OR = 12.462, 95% CI: 5.098–30.463, p < 0.001) 

significantly increasing the risk of adverse outcomes compared to 
children with no parental myopia. 

WTW was identified as another protective factor (OR = 0.201, 
95% CI: 0.072–0.560, p = 0.002), with larger WTW associated with 
a markedly lower risk of adverse outcomes. Conversely, spherical 
refraction was a significant risk factor (OR = 1.697, 95% CI: 1.301– 
2.214, p < 0.001), with higher (less negative) refraction values 
associated with increased risk of adverse outcomes. 

Based on the logistic regression model, a nomogram (Figure 3) 
was constructed to predict individual risk of adverse outcomes 
in children undergoing OK therapy. The nomogram integrates 
all predictive variables identified in the analysis. Each variable 
corresponds to a specific point value on the nomogram, and the 
total points, calculated by summing the individual variable points, 
correlates with the predicted probability of adverse outcomes. 

Model validation 

The predictive model was validated using calibration plots, 
ROC curves, and DCA in both the training and test sets. 

Calibration plots (Figure 4) were used to assess the agreement 
between predicted probabilities and observed outcomes. These 
plots showed good calibration in both the training and test 
sets, with the calibration curves following the ideal diagonal 
line reasonably well. The Hosmer-Lemeshow test supported these 
findings, with non-significant results in both the training set 
(p = 0.504) and the test set (p = 0.863), indicating adequate model 
calibration. 

ROC curves (Figure 5) were used to evaluate the discriminatory 
ability of the predictive model. The area under the curve (AUC) 
was 0.831 (95% CI: 0.786–0.877) for the training set and 0.820 
(95% CI: 0.742–0.899) for the test set, suggesting good predictive 
performance. Sensitivity and specificity metrics of 75.6 and 72.8% 
in the training set, and 79.3 and 75.0% in the validation set 
further support the model’s ability to correctly classify both positive 
and negative outcomes. These values indicate that the model has 
reasonable ability to distinguish between favorable and adverse 
outcomes. The similar performance across both datasets suggests 
that the model maintains its predictive capability when applied to 
new data. 

DCA curves (Figure 6) evaluated the clinical utility of the model 
across various threshold probabilities. The results showed that the 
net benefit curve of the model generally exceeded the “treat-all” and 
“treat-none” baselines across a range of clinically relevant threshold 
probabilities in both datasets. This suggests potential clinical value 
in using the model to guide decision-making regarding monitoring 

TABLE 3 Multivariable logistic regression analysis for predicting adverse outcomes. 

Variables β S.E. Wald p OR (95%CI) 

Age −0.593 0.096 38.185 < 0.001 0.552 (0.458, 0.667) 

Parental myopia (ref = Neither myopic) 

One myopic 1.692 0.465 13.259 < 0.001 5.428 (2.184, 13.491) 

Both myopic 2.523 0.456 30.603 < 0.001 12.462 (5.098, 30.463) 

WTW −1.605 0.523 9.408 0.002 0.201 (0.072, 0.560) 

Spherical refraction 0.529 0.136 15.183 < 0.001 1.697 (1.301, 2.214) 
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FIGURE 3 

Nomogram for predicting the risk of adverse outcomes. 

FIGURE 4 

Calibration plots for the predictive model in the training and test sets. 

and intervention strategies for children undergoing OK therapy. 

Collectively, these validation results indicate that our predictive 

model demonstrates promising discriminatory ability, satisfactory 

calibration, and potential clinical utility, which may contribute to 

risk stratification approaches in pediatric myopia management. 

Discussion 

This study attempted to develop and validate a predictive model 

for OK therapy outcomes, which showed promising discriminatory 

ability in our sample. The model achieved an AUC of 0.831 in 
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FIGURE 5 

ROC curves for the predictive model in the training and test sets. 

FIGURE 6 

Decision curve analysis for the predictive model in the training and test sets. 

the training set and 0.820 in the validation set, consistent with 

another study that reported an AUC around 0.8 (35). Sensitivity 

and specificity metrics of 75.6 and 72.8% in the training set, 
and 79.3 and 75.0% in the validation set, further confirm the 

model’s reliability across datasets. These preliminary results suggest 
the model might have potential for clinical applications, though 

further validation is necessary before implementation in myopia 

management approaches. 
The random splitting of the data into training and validation 

sets was eective, this balanced split ensures that the model’s 
performance is not biased by uneven distributions of key 

predictors, enhancing its generalizability (36). Table 2 provides 
insights into the dierences between favorable and adverse 

outcome groups within the training set. Significant dierences 

in variables such as baseline AL, spherical refraction, and SER 

highlight their relevance to myopia progression. However, given 

the strong correlation among these variables, LASSO regression 

was employed to select the most predictive and non-redundant 
variables. By determining the optimal λ value, LASSO regression 

attempted to address multicollinearity, suggesting four variables 
that may have value in forecasting adverse outcomes (37). 

The exclusion of five variables (outdoor activity time, 
baseline IOP, flat keratometry, steep keratometry, and cylindrical 
refraction) at λ0.1se warrants discussion. The λ0.1se approach 

applies stricter regularization to eliminate variables with weaker 

predictive power or redundancy with retained predictors. Outdoor 

activity time may have been excluded due to collinearity 

with age, as behavioral patterns vary across age groups in 
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pediatric populations. The exclusion of both corneal keratometry 
measurements while retaining WTW likely reflects redundancy 
among these corneal anatomical parameters. Baseline IOP and 
cylindrical refraction likely demonstrated modest independent 
eect sizes. This interpretation is supported by our model 
comparison results, where the four-variable model showed superior 
performance metrics (AIC = 297.63, BIC = 320.01) compared 
to the nine-variable model (AIC = 299.14, BIC = 340.17). 
These patterns align with LASSO’s statistical properties, which 
eliminate redundant or weakly predictive variables while preserving 
those with the strongest independent associations with the 
outcome. The convergence with optimal subset selection further 
validates this approach. 

Our findings underscore the multifactorial nature of myopia 
progression and the complex interplay between various predictors. 
Age emerged as a significant protective factor, with older children 
showing reduced risk of adverse outcomes. This aligns with 
established understanding that younger children experience faster 
AL elongation due to active ocular growth (30). The protective 
role of age in our model may be attributed to several factors. 
Firstly, the rate of eye growth tends to slow down as children 
approach adolescence, which could contribute to better OK therapy 
outcomes in older children (38). Secondly, older children may have 
better compliance with lens wear and care instructions, potentially 
enhancing treatment eÿcacy. 

Peripheral retinal mechanisms play a crucial role in 
emmetropization and myopia development. While the direct 
relationship between WTW distance and OK therapy outcomes 
is not yet fully established, corneal parameters have been shown 
to influence OK lenses fitting and centration (39, 40). The 
WTW distance, as a measure of corneal diameter, may aect 
the mechanical interaction between the lens and corneal surface, 
thereby potentially influencing lens positioning and the resulting 
treatment zone characteristics. Studies have demonstrated that 
OK lenses induce changes in peripheral refraction, which may 
contribute to myopia control eects (41). These findings contribute 
to our understanding of the factors influencing AL growth, which 
is critical in modulating myopia progression (42). 

We found that children with milder myopia at baseline may 
be at higher risk of faster AL elongation. This observation aligns 
with previous research, which reported that subjects with lower 
initial myopia showed greater axial elongation over 2 years of OK 
treatment (43). Further studies have supported this relationship 
between initial refraction and myopia progression rate in OK 
therapy (11). Children with lower initial myopia experienced 
faster axial elongation during OK treatment compared to those 
with higher initial myopia. While this observation might initially 
appear unexpected, it is important to note that children with 
milder myopia in our cohort tended to be younger, and age 
emerged as a significant protective factor in our model. The faster 
axial elongation in children with milder myopia may therefore 
be partly attributable to their younger age and the associated 
more active phase of ocular growth. Nevertheless, this finding 
emphasizes the need for careful monitoring and potentially more 
aggressive treatment strategies in cases of mild myopia, particularly 
in younger children. 

The inclusion of parental myopia history as a significant risk 
factor highlights the genetic predisposition to myopia progression. 
Our findings revealed a notable dose-dependent relationship, 

with children having both myopic parents demonstrating 
substantially higher risk compared to children with no parental 
myopia. Similarly, children with only one myopic parent showed 
significantly increased risk compared to those with no parental 
myopia. This finding corroborates previous research on the 
heritability of refractive errors and suggests that genetic factors 
may influence not only the onset of myopia but also its progression 
rate during OK therapy (44). The strong association with parental 
myopia in our model emphasizes the importance of considering 
family history when assessing risk profiles for myopia progression 
in children undergoing OK therapy. 

From a clinical perspective, our predictive model may 
potentially serve as a tool for tailoring interventions based on 
individualized risk profiles, though clinical validation is still 
required. The nomogram may help clinicians identify patients 
who could benefit from more intensive monitoring and potential 
adjunctive treatments alongside OK therapy (45, 46). For example, 
a younger child with mild myopia, smaller WTW, and two 
myopic parents would likely have higher risk scores, suggesting 
more careful follow-up may be warranted. Conversely, an older 
adolescent with larger WTW and no family history of myopia 
might require less intensive monitoring. This approach could 
potentially optimize both patient care and resource allocation 
in clinical settings by directing more attention to higher-risk 
individuals while reducing unnecessary follow-ups for those at 
lower risk (47). The notable influence of parental myopia in our 
model suggests that family history assessment should be considered 
when developing monitoring strategies. This may be particularly 
relevant in regions with high myopia prevalence, where eÿcient 
allocation of clinical resources is important. The incorporation 
of our predictive model into clinical practice may help enhance 
the management of pediatric myopia. By oering a quantitative 
assessment of individual risk, clinicians could potentially have 
more informed discussions with patients and their families about 
the possible outcomes of OK therapy (7). This more personalized 
approach might contribute to treatment adherence and patient 
satisfaction through better expectation management. The model 
may also assist in identifying higher-risk individuals earlier in the 
treatment process, which could allow for more timely adjustments 
to management strategies. While further validation is needed, such 
approaches represent a step toward more individualized care in 
myopia management. 

Our predictive model may also inform treatment selection 
among myopia control modalities. Orthokeratology slows myopia 
through peripheral myopic defocus (41). Alternative approaches 
include low-concentration atropine, which acts via muscarinic 
receptor pathways (48), and repeated low-level red-light therapy, 
which increases choroidal thickness through photobiomodulation 
(49). High-risk patients identified by our model might benefit 
from combination therapies or alternative interventions tailored to 
individual risk profiles. 

Our findings also have implications for the design of future 
clinical trials in myopia control. The identification of key predictive 
factors can inform patient selection criteria and stratification 
strategies in randomized controlled trials, potentially leading 
to more eÿcient and targeted studies. For example, future 
trials could focus on evaluating the eÿcacy of combination 
therapies in high-risk individuals identified by our model, or 
investigate novel interventions specifically tailored to patients 
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with certain risk profiles (50). The role of corneal parameters 
in our model, particularly the WTW distance, highlights the 
importance of considering anterior segment characteristics in 
myopia management. While much of the recent focus in myopia 
research has been on retinal and choroidal factors, our findings 
suggest that corneal biomechanics and topography play a crucial 
role in determining OK therapy outcomes (51). This underscores 
the need for comprehensive anterior segment evaluation in myopic 
children, not only for OK lenses fitting but also for predicting 
treatment response. Our model’s performance in predicting OK 
therapy outcomes raises interesting questions about the underlying 
mechanisms of myopia progression and the mode of action of OK 
lenses. The complex interplay between demographic, ocular, and 
genetic factors in determining treatment outcomes suggests that 
myopia progression is not a uniform process across all individuals 
(52). Instead, it appears to be influenced by a combination of 
eye growth patterns, corneal biomechanics, and possibly systemic 
factors that are yet to be fully elucidated (53). 

From a public health perspective, our model holds promise 
for integration into large-scale screening programs. By stratifying 
patients by risk, community health initiatives can prioritize 
high-risk groups for intensive interventions, potentially reducing 
long-term complications and associated healthcare costs. For 
example, school-based screening programs could incorporate this 
model to identify children at greatest risk, guiding resource 
allocation and treatment decisions at a population level. This 
approach could be particularly impactful in regions with limited 
healthcare resources, allowing for more eÿcient targeting of 
myopia control interventions. 

The development of our predictive model also contributes 
to the broader field of personalized medicine in ophthalmology. 
As we move toward more individualized treatment approaches, 
predictive models like ours will play a crucial role in tailoring 
interventions to patient-specific factors (54). This shift toward 
precision medicine in myopia management aligns with similar 
trends in other areas of ophthalmology, such as glaucoma and 
age-related macular degeneration, where risk prediction models 
are increasingly being used to guide treatment decisions (55, 
56). In the context of the growing global prevalence of myopia, 
our predictive model represents a significant step toward more 
eective and eÿcient myopia management strategies. If further 
validated, such models might contribute to the earlier identification 
of high-risk individuals and potentially assist in personalizing 
treatment approaches, which could help address the long-term 
burden of myopia-related complications. As research in this field 
continues to evolve, integration of additional factors such as 
environmental variables, detailed genetic profiles, and advanced 
imaging biomarkers could further enhance the predictive power 
and clinical utility of such models. 

Limitations 

While our study provides valuable insights into predicting OK 
therapy outcomes, several limitations should be acknowledged. 
The single-center, retrospective design introduces potential center-
specific bias and inherent risks of missing data and selection 
bias, which may limit generalizability. The model was validated 

using an internal test set rather than an independent external 
cohort, limiting assessment of its performance across diverse 
populations. Future multi-center prospective studies with external 
validation are warranted to confirm the model’s generalizability. 
The relatively short follow-up period restricts our ability to assess 
long-term outcomes. Although we included key demographic and 
ocular parameters, environmental factors and detailed genetic 
information were not fully explored. Future research incorporating 
these additional variables and external validation cohorts could 
further enhance the model’s predictive power and clinical utility. 

Conclusion 

This study proposed a predictive model for OK therapy 
outcomes in myopic children with promising initial validation 
results. By integrating multiple patient-specific factors, including 
age, ocular parameters, and family history, the model showed 
encouraging discriminatory ability in identifying patients at risk 
of adverse outcomes. The nomogram may oer clinicians a 
potential tool for individualized risk assessment and treatment 
planning. This approach to myopia management, if validated 
in larger prospective studies, might contribute to optimizing 
patient care, resource allocation, and potentially enhance myopia 
control strategies. 
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