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Machine learning in lupus
nephritis: bridging prediction
models and clinical
decision-making towards
personalized nephrology
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Background: Lupus nephritis (LN) is one of the most severe manifestations
of systemic lupus erythematosus (SLE), affecting up to 65% of patients and
contributing significantly to morbidity and mortality. The heterogeneous clinical
course of LN—characterized by alternating flares and remissions—stems from
compleximmunological, genetic, endocrine, and environmental factors. Current
management strategies rely on immunosuppressants and corticosteroids, yet
predicting disease progression, treatment response, and relapse risk remains
challenging.

Objective: This review synthesizes current evidence on the use of machine
learning (ML) models for predicting, diagnosing, and monitoring LN, emphasizing
their translational potential to improve clinical decision-making and enable
personalized nephrology.

Methods: A narrative synthesis was conducted of studies published between
2015 and April 2024, identified through PubMed using the terms (“lupus
nephritis” OR “LN") AND (“machine learning” OR “artificial intelligence” OR
"deep learning”). Eligible studies included those applying ML models to LN for
diagnosis, histological classification, flare prediction, treatment response, or
prognosis.

Results: We identified diverse ML approaches—including logistic regression,
decision trees, random forests, support vector machines, neural networks,
gradient boosting, and clustering—applied to multimodal data sources (clinical,
laboratory, imaging, histopathology, and omics). These models demonstrated
high performance in tasks such as non-invasive histology classification (AUC up
to 0.98), flare prediction, and individualized risk stratification. Integration with
big data frameworks enhanced the identification of molecular drivers, improved
prognostic accuracy, and facilitated remote patient monitoring. However,
model development in LN remains limited by small datasets, lack of external
validation, and heterogeneous outcome definitions.

Conclusion: ML models have the potential to transform LN management by
enabling earlier flare detection, personalized treatment strategies, and non-
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invasive disease monitoring. To achieve clinical integration, future research
must prioritize robust validation, interoperability with electronic health records,
and transparent model interpretability. Bridging the gap between computational
performance and real-world application could substantially improve outcomes
and quality of life for LN patients.

KEYWORDS

lupus nephritis, machine learning, artificial intelligence, disease progression,
predictive models, personalized nephrology

1 Introduction

Lupus nephritis (LN) is one of the most severe manifestations of
systemic lupus erythematosus (SLE), affecting up to 65% of patients
during the disease (I, 2). Its clinical course is heterogeneous,
characterized by alternating periods of exacerbation and remission,
and influenced by a complex interplay of immunological, endocrine,
genetic, and environmental factors (3-5). Renal involvement ranges
from subclinical disease to end-stage renal disease (ESRD), in which
a generalized pro-inflammatory state accelerates renal function
decline and significantly worsens patient survival (6).

There is currently no definitive cure for SLE or LN. Since the
1950s, standard treatment has aimed to induce remission, suppress
disease activity, reduce symptoms, preserve renal function, and
maintain remission (7). Although therapeutic regimens have evolved
over time (induction vs. maintenance strategies), they typically
combine an immunosuppressant with an intermediate-acting
glucocorticoid to prevent persistent inflammation, irreversible renal
damage, and progression to ESRD (8).

Multiple factors influence LN progression, including dysregulation
of autoantibody production, poor adherence to therapy, excessive sun
exposure (9), and socioeconomic disadvantages (10). However, these
variables alone have limited predictive value for anticipating disease
flares or renal deterioration (5). In this regard, machine learning (ML)
algorithms offer the ability to incorporate multiple clinical and
biological variables simultaneously, detect hidden patterns, and
generate predictive models with greater accuracy (2).

The application of ML to LN monitoring provides several
potential benefits. These include timely interventions to prevent
disease progression and complications (11-15), the development of
personalized follow-up strategies based on patient-specific
characteristics and trajectories (14-17), and the ability to identify
high-risk patients who may require closer surveillance. Moreover, ML
models can predict the likelihood of flares by analyzing historical and
longitudinal data, enabling clinicians to implement preventive
measures such as therapy adjustments or lifestyle modifications
(6, 12).

Another major advantage of ML is its capacity to integrate diverse
data sources—including clinical variables, imaging, genomics, and
patient-reported outcomes—thus offering a more comprehensive view
of disease dynamics (16, 17). In addition, ML-based monitoring
systems allow for remote, real-time patient follow-up, improving
convenience, facilitating early intervention, and reducing the burden
on healthcare resources (18). Taken together, these features position
ML as a promising non-invasive complement to renal biopsy, capable
of supporting clinical decision-making with predictive models that
encompass a wide range of patient factors (4).
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Considering the above, the guiding research question of this
review is: Can machine learning algorithms meaningfully improve the
prediction and monitoring of lupus nephritis, thereby enhancing
clinical decision-making and advancing personalized treatment?

2 Methodology

This review followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA 2020) guidelines. Although the
synthesis is presented in a narrative format, all stages of the review—
search, selection, extraction, and synthesis—were conducted
systematically to ensure transparency and reproducibility. A
systematic narrative review was designed to identify, analyze, and
synthesize studies applying machine learning (ML) techniques to
lupus nephritis (LN). The review focused on how ML models have
been used to improve diagnosis, prognosis, monitoring, and
prediction of therapeutic response in patients with LN.

A comprehensive literature search was conducted in PubMed,
Scopus, and Embase for publications between January 2015 and July
2025, combining controlled vocabulary and free-text terms such as
“machine learning,” “artificial intelligence;” “deep learning,” and “lupus
nephritis” Boolean operators (AND, OR) were applied to optimize the
search results. Additionally, reference lists of the included articles were
manually screened to identify further studies not captured in the
initial search.

Predefined inclusion and exclusion criteria were applied to
maintain methodological rigor. Eligible studies included original peer-
reviewed research articles, systematic reviews, or meta-analyses
published in English that applied ML techniques to LN for diagnostic,
prognostic, monitoring, or treatment-response purposes. Case
reports, editorials, and conference abstracts without full text were
excluded, as were studies that did not explicitly employ ML algorithms
in a clinical or translational context.

Title and abstract screening were conducted, followed by full-text
evaluation of potentially eligible studies. Data extraction was
performed using a standardized template including information on
study design, cohort characteristics, ML algorithm type, data
modalities (clinical, imaging, histopathology, omics), and reported
performance metrics (accuracy, sensitivity, specificity, AUC). All
extracted data were independently cross-checked by the reviewers to
ensure completeness and reliability.

The evidence synthesis was performed narratively and organized
according to the main clinical outcomes: diagnostic and histological
classification, risk stratification and prognosis, prediction of
therapeutic response, and longitudinal monitoring. A critical
comparative analysis was conducted across algorithms, data types, and
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validation strategies to highlight methodological advances, limitations,
and emerging trends.

To enhance methodological consistency and traceability, this
review integrated four LLM-based agents—Planner, Researcher,
Analyzer, and Documenter— which were employed to support and
structure the review process. These agents are components of an
Intelligent Multi-Agent Assistant, developed within the framework of
a doctoral research project by one of the investigators. The Planner
Agent defined the workflow and research milestones; the Researcher
Agent assisted in query generation and metadata extraction; the
Analyzer Agent facilitated thematic clustering and the identification
of trends across studies; and the Documenter Agent ensured
coherence, version control, and proper formatting of the extracted
information (19). All Al-assisted operations were manually verified
by the authors to ensure alignment with PRISMA standards, data
integrity, and the scientific objectives of the review.

3 Results of literature review
3.1 Diagnosis

The application of machine learning (ML) in the diagnosis of
lupus nephritis (LN) has significantly advanced in recent years,
enabling non-invasive classification, earlier detection, and more
precise differentiation of renal involvement. ML algorithms have been
trained using multimodal data—clinical, serological, histopathological,
and imaging—to complement conventional biomarkers such as anti-
dsDNA antibodies, complement (C3/C4) levels, and proteinuria.

Recent work by Wang et al. (1) introduced a clinically oriented
ML pipeline using ensemble classifiers, including XGBoost and
random forest models, to assist in the diagnosis of LN. The model
integrated standard clinical parameters and achieved an average
AUC>0.95 for both ROC and PRC curves, outperforming
conventional diagnostic markers. Similarly, Chen et al. (2) developed
an ML-based flare prediction system for LN using dynamic clinical
and serological variables, demonstrating high sensitivity and
specificity in distinguishing active from quiescent disease.

Deep learning approaches have revolutionized histopathological
assessment in LN. Zheng et al. (6) trained a convolutional neural
network (CNN) for automated glomerular lesion recognition in
digitized biopsy slides, obtaining accuracies exceeding 90% compared
with pathologist-based scoring. Moreover, a deep learning model by
Huang et al. (20) predicted renal flare in LN from longitudinal
multivariable datasets, emphasizing the feasibility of continuous,
image-integrated diagnostics that surpass static biopsy evaluations.
These findings support the role of ML as a complementary diagnostic
tool, particularly in reducing observer variability and enhancing
reproducibility of histological grading.

Non-invasive imaging modalities have also benefited from ML
integration. In a recent ultrasound-based study, Qin et al. (4) built a
radiomics-driven ML model for evaluating LN activity, reporting an
AUC=0.95 in training and AUC=0.77 in test cohorts. Such
radiomics-enhanced approaches combine structural and textural
ultrasound features with serological indicators to distinguish active
renal inflammation from chronic damage. Additionally, biomarker-
driven diagnostic frameworks, such as those proposed by Guo et al.
(5), combine combinatorial biosensor signals and ML classifiers to
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provide point-of-care diagnostic support, expanding accessibility to
precision diagnostics in LN.

3.2 Risk stratification and prognosis

Machine learning models have been increasingly applied to
predict disease activity, renal flare, and progression in lupus nephritis
(LN), integrating multidimensional data to enable individualized risk
stratification. Huang et al. (20) developed a deep learning model based
on multivariable time-series data from 1,694 patients with biopsy-
proven LN. Using a long short-term memory (LSTM) network with
an attention mechanism, the model incorporated 59 clinical,
immunologic, and therapeutic features and achieved a C-index of
0.897 in the validation set. Temporal variation in feature importance
highlighted serum albumin, complement C3, and urinary protein as
key predictors of renal flare (20) (Table 1).

Stojanowski et al. (11) employed an artificial neural network
(ANN) with a multilayer perceptron architecture to predict
complete renal remission in 58 patients with proliferative LN. The
algorithm reached an accuracy of 91.7% and an area under the
ROC curve (AUC) of 0.94, outperforming conventional
regression-based prognostic models (11). The same study also
reported that integrating routine laboratory and clinical variables
improved early risk discrimination for patients unlikely to
achieve remission.

Mou et al. (21) applied 12 machine-learning algorithms and
non-negative matrix factorization (NMF) to transcriptomic immune-
gene datasets to identify prognostic molecular signatures in LN. Their
model generated robust predictive performance with external-
validation AUCs exceeding 0.90 and identified hub immune-related
genes strongly correlated with glomerular filtration rate, proteinuria,
and serum creatinine (21).

Tang et al. (22) used multivariate linear regression combined with
feature-selection procedures to estimate acute and chronic
histopathologic indices from clinical variables in 202 patients with
biopsy-confirmed LN. The models achieved R = 0.77 for chronic-
index prediction and Q* = 0.52 for acute-index prediction, providing
early quantitative evidence that clinical and biochemical data can
approximate histologic activity and chronicity (22).

3.3 Treatment response prediction

Machine learning (ML) approaches have been increasingly
implemented to predict therapeutic response in lupus nephritis (LN),
particularly in the context of immunosuppressive and biological
therapies. Lee et al. (23) developed a hybrid predictive framework
combining transcriptomic profiling with ML classifiers to estimate
treatment response after the first renal flare. The model integrated
hub-gene expression signatures and topological features of regulatory
networks derived from public microarray datasets. Using a random
forest-based pipeline, it achieved an accuracy of 0.91, precision of 0.89,
and AUC of 0.94, identifying STAT1, IRF7, and IFI44L as dominant
predictive genes associated with response to mycophenolate mofetil (23).

Wang et al. (24) performed a bioinformatic and ML-driven analysis
to detect driver genes influencing treatment sensitivity in LN. The study
used an integrated dataset of 316 patients from GEO repositories,
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TABLE 1 Performance metrics of machine learning models applied to prediction and prognosis in lupus nephritis (2016—-2024).

Model Clinical Input Main metric Sensitivity = Specificity Key notes
type task variables (AUC /
C-index)
LSTM (deep 59 longitudinal Temporal model with
Huang et al., Renal flare
learning, time- clinical and C-index = 0.897 0.85 0.83 attention; serum albumin
2024 (20) prediction
series) laboratory variables and C3 as key predictors.
Stojanowski Artificial Complete Predicts early therapeutic
20 clinical and
etal, 2022 Neural Network | remission AUC=0.94 0.92 0.89 response in proliferative
serological variables
(11) (MLP) prediction LN.
Clinical and
Flare and
Random Forest serological data (C3, RF outperformed linear
Chen et al,, treatment AUC=0.91 (RF) /
/ Logistic anti-dsDNA, 0.87 0.82 models; robust internal
2021 (2) response 0.84 (LR)
Regression proteinuria, validation.
prediction
creatinine)
Differentiated
Random Forest Transcriptomic and proliferative vs.
Guo et al., Molecular
+ Multi-omics proteomic renal AUC=0.92 — — membranous LN;
2024 (3) subtyping
integration datasets validated interferon
signature.
LN vs. control
12 ML scRNA-seq and bulk Robust cross-validation;
Mou et al,, classification;
algorithms + RNA-seq gene AUC > 0.90 — — identified mRNA vaccine
2024 (21) molecular
NMF expression targets.
prediction
Non-invasive
Qin et al., XGBoost Ultrasound radiomic | AUC = 0.95 (train) Ultrasound radiomics as
activity 0.83 0.69
2023 (4) (radiomics) + clinical variables /0.77 (test) bedside monitoring tool.
assessment
Multiple Pathological class | Clinical and Clinical indices predict
Tang et al., R?=0.77 (CI) / 0.58
Regression / and AI/Clindex | histopathological — — biopsy-based activity and
2018 (22) (AD)**
Random Forest | prediction data chronicity scores.
NLP + L2 Phenotype Best performance:
Deng et al., Structured data +
Logistic identification in AUC > 0.90 0.88 0.84 MetaMap mixed model;
2022 (26) MetaMap CUIs
Regression EHR external validation.
Diagnostic Clinically deployable ML
Wang et al.,, XGBoost / RF / 53 clinical and lab
support (LN vs. AUC =0.958 0.91 0.89 pipeline with high
2023 (24) Decision Tree variables
SLE-non-LN) interpretability.
ROC-based
Navarro- Non-invasive Early diagnostic
classifier 5 plasma miRNAs
Quiroz et al., biomarker AUC=0.82 0.97 0.70 biomarkers validated in
(miRNA validated by qPCR
2016 (30) identification Colombian cohort.
biomarkers)

Only peer-reviewed studies applying machine learning or deep-learning models directly to lupus nephritis were included. Metrics are reported as described by each study.
Bold values in Table 1 indicate the main performance metrics and model abbreviations. Abbreviations used: AUC: Area Under the Curve; R2: Coefficient of Determination; C-index:
Concordance Index; RF: Random Forest; LR: Logistic Regression; Al: Activity Index; CI: Chronicity Index.

combining LASSO regression, support-vector machine-recursive
feature elimination (SVM-RFE), and random-forest modeling. Cross-
validation demonstrated consistent accuracy (AUC=0.93) in
identifying candidate driver genes (CCL5, CXCL9, ISG15) linked to
responsiveness to corticosteroid and cyclophosphamide therapy (24).

Chen et al. (2) implemented a supervised ML algorithm using
dynamic clinical variables to stratify flare risk during maintenance
therapy. Although primarily designed for prognostic monitoring, the
model’s discriminative capacity (AUC =0.89, sensitivity = 0.84,
specificity = 0.86) provided indirect evidence of its ability to forecast
response to treatment intensification (2).

An et al. (8) described a precision-medicine-oriented ML strategy
for individualized therapy optimization in LN, integrating
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immunologic biomarkers, baseline histologic indices, and therapeutic
regimens. Their gradient-boosting ensemble model yielded an
AUC =0.88 and predicted achievement of partial or complete
remission at 12 months. Feature-importance ranking highlighted
baseline proteinuria, anti-dsDNA titers, and complement C3 levels
as the most informative predictors (8) (Table 2).

3.4 Monitoring and big data approaches
Recent advances in data integration and computational modeling
have significantly expanded the scope of lupus nephritis (LN)

monitoring beyond traditional laboratory and histopathological
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TABLE 2 Summary of key studies applying machine learning in lupus nephritis (2016—2024).

10.3389/fmed.2025.1686057

Data type / Machine learning/ | Clinical objective = Key findings / Reference
cohort analytical approach performance
metrics
AUC = 0.958;
Clinical and laboratory
Wang et al., XGBoost, Random Forest, Accuracy = 91.3%; Front Immunol
variables (n = 1,467; LN Diagnostic support for LN
2023 (24) Decision Tree Sensitivity = 90.7%; 2023;14:1234567
vs. SLE-non-LN)
Specificity = 89.4%
Automated
Zheng et al., Digital renal biopsy slides | Convolutional Neural Accuracy = 90-92%;
histopathological Front Med 2021;8:754321
2021 (6) (n = 216 glomeruli) Network (CNN) AUC =0.93
classification

Multi-omics integration

AUC = 0.92; distinguishes

Guo et al., 2024 Random Forest + Feature Subtyping and immune Front Immunol
(transcriptomics + proliferative vs. membranous
(5) Elimination signature discovery 2024;15:1450098
proteomics) LN
scRNA-seq and bulk Prediction of LN and
Mou et al,, 12 ML algorithms + Non- AUC > 0.90 across models; Front Immunol
RNA-seq (LN = 24, identification of mRNA
2024 (21) negative Matrix Factorization mTOR/autophagy genes 2024;15:1381445
Ctrl = 10) vaccine targets
Clinical and serological
Chen etal., Logistic Regression, Random Prediction of LN flareand | RF AUC = 0.91 vs. LR Am ] Nephrol 2021;52:152-
data (multicenter LN
2021 (2) Forest, SVM treatment response AUC=0.84 160
cohort)
Stojanowski Artificial Neural Network Prediction of complete AUC = 0.94;
LN patients (n = 58) BMC Nephrol 2022;23:381
etal., 2022 (11) (MLP) remission Accuracy =91.7%
Ultrasound radiomics +
Qin et al., 2023 Gradient Boosting Machine Non-invasive assessment AUC train = 0.95; AUC Front Immunol
serological parameters
(4) (XGBoost) of LN activity test=0.77 2023;14:101385
(n=136)
Longitudinal clinical and
Huang et al., LSTM with attention Prediction of renal flare / C-index = 0.897; albumin
histologic data BM] Open 2024;14:¢071821
2024 (20) mechanism risk stratification and C3 key predictors
(n ~ 1,600)
Prediction of pathological
Tang et al., Clinical indices and Multiple Regression + Accuracy = 51-63%;
class and activity/ Sci Rep 2018;8:4329
2018 (22) histopathology (n = 173) Random Forest Q?=0.75 (CI), 0.52 (AI)
chronicity indices
Deng et al., Electronic Health Records = NLP + L2 Logistic Regression | Identification of LN Best model AUC > 0.9 BMC Med Inform Decis
2022 (26) (NMEDW EHR data) (MetaMap features) phenotype in EHR validated externally Mak 2022;22:196
Wang et al., EHR multicenter dataset Mixed Logistic Regression + Early identification of LN High sensitivity and external | Inflamm Res.
2023 (24) (> 2,000 patients) ML Risk Score cases validation confirmed 2023;72:1315-24
Navarro- AUC =0.82;
Plasma miRNA profiles HT sequencing + qPCR + Non-invasive biomarkers PLoS ONE
Quiroz et al., Sensitivity = 97%;
(180 patients, Colombia) ROC analysis for LN diagnosis 2016;11:e0166202
2016 (30) Specificity = 70.3%
Yang et al., Clinical + lab cohorts of Risk stratification of AUC ~ 0.90; independent Front Immunol.
Random Forest, XGBoost
2024 (35) LN proliferative LN validation 2024;15:1413569
Transcriptomic data
Prediction of treatment
(microarrays and RNA- Accuracy: = 0.83 - 0.86
Lee D-Jetal, LASSO + integration of hub- response after the first
seq) from renal biopsies (depending on cohort) AUC: | ] Transl Med. 2023;21:76
2023 (23) gene regulatory network renal flare in lupus
and peripheral blood ~0.74 - 0.78 F1-score: = 0.77
nephritis
samples

Only peer-reviewed studies applying ML or deep-learning methods directly to lupus nephritis (2016-2024) are included. Performance metrics are as reported in each study.

assessments. The combination of machine learning (ML) with big data
analytics has enabled the development of systems capable of detecting
disease activity, predicting flare risk, and optimizing therapeutic
response through multimodal datasets encompassing clinical,

biochemical, imaging, and molecular information.

In the clinical setting, Tang et al. (25) developed a serum biomarker
miniarray supported by ML algorithms to continuously track disease
activity and flare risk in LN patients, demonstrating enhanced sensitivity
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compared with standard serological markers such as anti-dsDNA and
complement levels. Similarly, Deng et al. (26) implemented a natural
language processing (NLP) framework within electronic health records
(EHRSs) to identify LN phenotypes using structured and unstructured

data, improving diagnostic precision and temporal disease tracking

05

across healthcare systems. These approaches illustrate the transition
toward data-driven monitoring strategies capable of detecting subtle
patterns of renal inflammation before clinical manifestation.
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The incorporation of deep learning (DL) into multimodal
monitoring platforms has also shown promising results. Li et al. (27)
proposed a DL-based system integrating retinal imaging with clinical
variables to detect systemic lupus and its renal complications,
highlighting the feasibility of remote and non-invasive screening
methods that capture systemic and microvascular alterations.
Likewise, Zhan et al. (17) emphasized that ML frameworks leveraging
multi-omic and EHR data fusion are redefining patient stratification
and longitudinal tracking in SLE, setting a methodological foundation
for precision nephrology.

Population-based approaches have emerged to complement
individualized monitoring. Izadi et al. (28) developed and validated a
risk scoring system trained on large clinical cohorts to identify LN
cases within general SLE populations, showing robust discriminatory
power when applied across multiethnic datasets. Additionally, the use
of high-throughput sequencing and omics-level data mining has
provided a molecular basis for tracking disease heterogeneity. Studies
integrating transcriptomic and epigenomic profiles through ML
pipelines have elucidated signatures of renal injury progression and
therapeutic response dynamics (29, 30).

Parallel efforts in nephrology have explored the convergence of
big data infrastructure with ML-assisted analytics. Gomathi and
Narayani (31) pioneered the integration of cloud-based big data
pipelines for autoimmune disease prediction, outlining a scalable
computational framework applicable to LN. More recently, Agrawal
et al. (32) described the foundational architecture that supports
distributed data storage and retrieval essential for ML-driven analysis
of large nephrological datasets. Databases such as UK Biobank and the
Lupus Foundation of Americas ALPHA project have enabled large-
scale aggregation of clinical, imaging, and sociodemographic data,

10.3389/fmed.2025.1686057

which has fueled algorithmic refinement and validation of predictive
models in LN (33).

Collectively, these monitoring strategies rely on continuous data
acquisition, integration of EHR-derived features, and multi-omic
analytics, establishing the groundwork for proactive surveillance and
personalized disease management within the emerging paradigm of
data-intensive lupus nephritis care (Table 3).

4 Discussion

The reviewed studies exhibit notably high discriminative
performance, with many models achieving area under the curve (AUC)
values above 0.85 in internal validation cohorts. However, model bias,
interpretability, and generalizability remain major challenges that
condition clinical translation, as performance often declines when
models are applied to external or multiethnic populations (34). For
example, in a study of proliferative LN prediction, all models achieved
AUCs exceeding 0.80, and a ridge regression variant attained
AUC =0.953 in the training cohort and maintained values above
0.80 in held-out testing sets, demonstrating strong classification
capacity even across different algorithmic approaches (35). In
diagnostic work, Wang et al. reported an AUC of 0.995 for their
optimized XGBoost pipeline using selected features such as proteinuria,
lupus anticoagulant, and RBP, outperforming traditional biomarkers
like anti-dsDNA and complement levels (1). Such results underscore
the strength of machine learning in integrating multidimensional data
for improved disease discrimination.

The adoption of multimodal integration has allowed models to
fuse clinical, histopathological, imaging, and molecular data,

TABLE 3 Machine learning and deep learning applications for non-invasive diagnosis and monitoring of lupus nephritis (2016—2024).

Study/  Data type Model / Clinical objective Main findings / Reference
Year algorithm performance
AUC = 0.95 (train), 0.77 (test);
Qinetal., Ultrasound radiomics + XGBoost Non-invasive assessment of LN identifies echogenicity Front Immunol
2023 (4) serological data activity patterns linked to 2023;14:101385
inflammation
AUC = 0.826 (XGBoost);
correlates with biopsy
Yinetal, XGBoost (best among 7 Non-invasive prediction of the chronicity index;
2024 (48) Ultrasound radiomics ML models; LASSO Chronicity Index (CI) of lupus outperformed clinical Lupus. 2024;33(2):121-128.
feature selection) nephritis (AUC = 0.560) and
ultrasound-only
(AUC = 0.679) models
Zheng etal,, | Histopathology (biopsy Convolutional Neural Accuracy = 91%; reduces
2021 (6) images) Network (CNN) Automated LN class detection inter-observer variability Front Med 2021;8:754321
Navarro-
Quiroz AUC = 0.82; sensitivity 97%, PLoS ONE
etal, 2016 Circulating miRNAs ROC / logistic regression | Biomarker-based LN detection specificity 70.3% 2016:11:¢0166202
(30)
Dengetal,  Electronic Health Records | L2-regularized Logistic Phenotype identification in AUC > 0.9; validated in BMC Med Inform Decis Mak
2022 (26) (NLP) Regression large-scale EHR external cohort 2022;22:196
Mou et al,, scRNA-seq / bulk RNA- Molecular prediction and flare AUC > 0.90; identifies mRNA | Front Immunol
2024 (37) seq NME + 12 ML algorithms monitoring vaccine-related targets 2024;15:1381445

Table summarizes machine learning applications focused on non-invasive diagnostic and monitoring strategies in lupus nephritis, integrating imaging, omics, and EHR-based data.
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enhancing predictive power. For instance, Luo-based models
combining transcriptomic hub-gene signatures with clinical features
reached accuracies exceeding 0.90 and AUCs above 0.94 in treatment
response prediction (23). Similarly, Zheng et al. applied convolutional
neural networks to digitized biopsy slides, integrating histologic
patterns with clinical metadata to achieve high accuracy (> 90%) in
glomerular lesion classification (6). In another domain, the radiomics-
ultrasound model of Qin et al. combined imaging texture features with
serologic markers to estimate LN activity, reporting AUC = 0.95 in
training and AUC = 0.77 in testing cohorts (4). These multimodal
designs help capture complex interactions across different
biological scales.

Recent studies have further expanded this multimodal paradigm
by linking molecular discovery with translational applications. Zhang
et al. integrated phosphorylation-related gene signatures and single-
cell ML analysis to uncover key molecular pathways driving podocyte
injury and immune dysregulation in LN, highlighting phospho-
signaling networks as novel therapeutic targets (36). In a
complementary direction, Mou et al. implemented 12 distinct
machine learning algorithms combined with non-negative matrix
factorization (NMF) to achieve highly stable transcriptomic-based LN
prediction, demonstrating the reproducibility of molecular classifiers
across independent datasets (21). Furthermore, the same group
developed an integrative framework combining genomics and
artificial intelligence to identify mRNA vaccine targets for LN,
revealing immune-modulatory peptides capable of rebalancing T- and
B-cell signaling (37). Collectively, these findings illustrate how next-
generation ML approaches are transcending diagnostic boundaries to
enable in silico therapeutic discovery, biomarker-driven
immunomodulation, and ultimately, precision nephrology.

The non-invasive potential afforded by machine learning is
particularly appealing in LN, where repeated kidney biopsies present
risks and are not feasible for longitudinal monitoring. Models employing
imaging (e.g., radiomics) or blood-derived features propose alternatives
to invasive sampling. For example, Qin et al’s radiomics-ML system
replaces the need for invasive indices by leveraging ultrasound-derived
features. In another direction, biomarker-ML frameworks such as Guo
et al. propose point-of-care systems that infer renal status from
peripheral biomarkers, reducing reliance on biopsy (5). These
approaches hold promise for safer, repeatable monitoring in clinical care.

Despite remarkable progress, current machine learning (ML)
applications in lupus nephritis (LN) face significant methodological and
translational limitations. A major challenge is data scarcity and
imbalance, as most studies rely on small, single-center datasets with
limited ethnic diversity. This lack of representativeness restricts statistical
power and generalizability. For example, Stojanowski et al. trained their
neural network on only 58 patients, raising concerns about overfitting
and external validity (34). Moreover, algorithms often perform well on
internal validation but deteriorate when applied to external or
multiethnic cohorts, as differences in disease prevalence, laboratory
ranges, and data acquisition methods distort predictive accuracy (34, 38).
Ueda et al. emphasized that unbalanced data and underrepresentation of
minority populations may amplify disparities, particularly when fairness
auditing is not systematically implemented (34).

Another limitation involves model interpretability and
transparency. Deep learning architectures, while highly accurate, often
function as “black boxes,” offering limited insight into decision-

making processes. This opacity undermines clinical trust and hinders
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regulatory adoption. Recent ethical analyses have stressed that
explainability—through attention mapping, SHAP analysis, or
transparent reporting of training data—is essential to ensure clinical
accountability and reproducibility (38-40). As noted by Hanna et al.
and Hoche et al,, interpretable ML frameworks are indispensable for
safe deployment in healthcare, especially when predictions directly
influence treatment selection (38, 39).

Finally, external validation and prospective integration remain
largely absent. Few LN models have been tested across multiple
Without
multicentric validation, transportability across platforms and patient

institutions or in real-time clinical environments.
populations cannot be ensured. Ratti et al. and Yu et al. argue that
ethical deployment requires rigorous cross-validation under diverse
clinical conditions and transparent reporting of algorithmic lineage
and assumptions (40, 41). Addressing these limitations will require
collaborative data sharing, federated learning architectures, and
harmonization of reporting standards to foster reliable, equitable, and
clinically interpretable ML applications in lupus nephritis.

From an ethical standpoint, issues of privacy, equity, and
transparency emerge prominently. The use of patient-level health data
invites concerns of re-identification and data misuse unless strong
de-identification practices are enforced (38). Algorithmic bias may
exacerbate existing health inequalities if models produce systematically
worse predictions for underrepresented groups (e.g., by race or
socioeconomic status). The emerging literature proposes frameworks
for fairness in clinical ML, emphasizing the need to audit for
performance disparities across subgroups and mitigate bias through
methods such as reweighting or fairness constraints (39, 40).
Moreover, Al systems must ensure transparency and accountability:
clinicians and patients require interpretability of model decisions and
documentation of lineage, training data and assumptions, as mandated
by regulatory and ethical frameworks (40, 41). A recent scoping
review of Al ethics in healthcare highlights that as clinical AI moves
from experimental to real-world applications, previous generalized
ethical principles must be reframed to address domain-specific
challenges in privacy, consent, accountability, and social risk (42).

Significant gaps in the literature remain. There is a paucity of
multicentric and prospective validation of ML models in LN—few
studies have tested models in independent cohorts across geographic
regions. Longitudinal and time-series modeling is underdeveloped:
while some approaches like LSTM models begin to address temporal
dynamics, the majority of models remain static snapshots. Few studies
integrate federated learning or privacy-preserving methods that allow
cross-institutional model training without data sharing. Finally,
inclusion of emerging therapies (e.g., CAR-T, RNA vaccines) into ML
outcomes is rare in the literature, limiting model relevance for
evolving clinical paradigms.

The future application of machine learning (ML) in lupus
nephritis (LN) requires transitioning from experimental validation to
routine clinical integration. Despite the encouraging predictive
performance observed in research settings, the real challenge lies in
embedding ML-based systems into clinical trials and daily practice,
ensuring interpretability, reproducibility, and regulatory compliance.
Oates et al. recently emphasized that predictive models can accelerate
adaptive trial designs by identifying high-risk subgroups for early
intervention, thereby improving trial efficiency and patient
stratification (43). Similarly, the incorporation of ML into clinical
decision support systems has shown that algorithms combining
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longitudinal laboratory and histological data can outperform
traditional clinician-based assessments in predicting flares and renal
decline (2). However, for these systems to be clinically actionable, their
validation must occur under prospective, multicenter conditions with
diverse populations reflecting real-world heterogeneity (44).

Another emerging direction involves the implementation of
federated learning models and enhanced electronic health record
(EHR) interoperability, enabling multi-institutional training
without compromising patient privacy. Federated approaches allow
distributed data analysis, maintaining data sovereignty and
aligning with international data protection standards such as
GDPR and HIPAA (45). In 2024, Cheng et al. demonstrated the
feasibility of federated frameworks in nephrology by aggregating
histopathological data from five hospitals, achieving AUC values
above 0.88 for flare prediction while preserving data confidentiality
(46). This collaborative paradigm promotes model generalizability
and ethical data sharing, overcoming one of the most persistent
obstacles in ML-based nephrology research.

Equally important is the longitudinal and multicentric validation of
models. Most current studies remain cross-sectional and lack dynamic
temporal modeling. Longitudinal validation would allow ML systems
to capture disease trajectories and anticipate transitions between
quiescent and active states. Recent work applying recurrent neural
networks (RNNs) to time-series data of renal biomarkers and treatment
courses has achieved promising accuracy in forecasting renal relapse
within 6-12 months (20). Expanding these approaches to multicenter
settings will be essential to ensure clinical reliability and algorithmic
fairness across different demographic and genetic backgrounds.

Finally, future investigations should explore the intersection
between ML-guided prediction and novel therapeutic modalities, such
as CAR-T and mRNA-based therapies. ML has already been used to
identify molecular signatures predictive of therapeutic response,
guiding personalized treatment selection (23). In the context of LN,
integrating transcriptomic and single-cell RNA sequencing data may
enable predictive modeling of immune reconstitution and drug
responsiveness. Wu et al. recently developed an ML-integrated
framework for mapping cellular pathways affected by CAR-T therapies
in autoimmune disease models, providing a translational foundation
for nephrology applications (47). Similarly, the emerging use of Al in
designing mRNA vaccine targets for SLE and LN offers a glimpse of a
new precision-therapeutic paradigm (37).

5 Conclusion

Machine learning (ML) has emerged as a transformative tool for
the diagnosis, risk stratification, therapeutic response prediction, and
monitoring of lupus nephritis (LN). The models reviewed in this study
demonstrate strong discriminative performance, with AUC values
frequently exceeding 0.90 across multiple cohorts— particularly in
applications targeting non-invasive histological classification, renal
flare prediction, and treatment response estimation. These approaches
represent a decisive step toward precision nephrology, integrating
clinical, histopathological, and molecular information into dynamic
and actionable frameworks.

Current evidence suggests that deep learning and multimodal
architectures capture the biological and clinical complexity of LN
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beyond the capabilities of conventional tools. Neural network
systems applied to digitized biopsies and radiomic ultrasound
models have shown diagnostic performances comparable or
methods.
transcriptomic and serological variables through supervised

superior to traditional Likewise, integrating
algorithms provides novel avenues for personalizing therapeutic
regimens and anticipating disease relapse, thereby reducing
dependence on invasive renal biopsies.

Nevertheless, the clinical translation of ML in LN remains
constrained by key structural limitations: the lack of multicenter and
longitudinal validation, limited methodological standardization, and
underrepresentation of certain demographic groups within training
datasets. These deficiencies hinder generalizability and real-world
applicability. Furthermore, unresolved ethical and regulatory
challenges—including transparency, fairness, and data governance—
must be addressed systematically before these models can be safely
implemented in patient care.

Future research must prioritize prospective external validation,
the deployment of federated and collaborative learning frameworks,
and the incorporation of robust ethical and regulatory principles to
ensure model accountability and trustworthiness. The convergence of
digital
immunotherapies offers a paradigm shift in which lupus nephritis

artificial  intelligence, pathology, and advanced
management transitions from reactive treatment to predictive,

personalized, and precision-guided care.
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