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Background: Lupus nephritis (LN) is one of the most severe manifestations 
of systemic lupus erythematosus (SLE), affecting up to 65% of patients and 
contributing significantly to morbidity and mortality. The heterogeneous clinical 
course of LN—characterized by alternating flares and remissions—stems from 
complex immunological, genetic, endocrine, and environmental factors. Current 
management strategies rely on immunosuppressants and corticosteroids, yet 
predicting disease progression, treatment response, and relapse risk remains 
challenging.
Objective: This review synthesizes current evidence on the use of machine 
learning (ML) models for predicting, diagnosing, and monitoring LN, emphasizing 
their translational potential to improve clinical decision-making and enable 
personalized nephrology.
Methods: A narrative synthesis was conducted of studies published between 
2015 and April 2024, identified through PubMed using the terms (“lupus 
nephritis” OR “LN”) AND (“machine learning” OR “artificial intelligence” OR 
“deep learning”). Eligible studies included those applying ML models to LN for 
diagnosis, histological classification, flare prediction, treatment response, or 
prognosis.
Results: We identified diverse ML approaches—including logistic regression, 
decision trees, random forests, support vector machines, neural networks, 
gradient boosting, and clustering—applied to multimodal data sources (clinical, 
laboratory, imaging, histopathology, and omics). These models demonstrated 
high performance in tasks such as non-invasive histology classification (AUC up 
to 0.98), flare prediction, and individualized risk stratification. Integration with 
big data frameworks enhanced the identification of molecular drivers, improved 
prognostic accuracy, and facilitated remote patient monitoring. However, 
model development in LN remains limited by small datasets, lack of external 
validation, and heterogeneous outcome definitions.
Conclusion: ML models have the potential to transform LN management by 
enabling earlier flare detection, personalized treatment strategies, and non-
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invasive disease monitoring. To achieve clinical integration, future research 
must prioritize robust validation, interoperability with electronic health records, 
and transparent model interpretability. Bridging the gap between computational 
performance and real-world application could substantially improve outcomes 
and quality of life for LN patients.

KEYWORDS

lupus nephritis, machine learning, artificial intelligence, disease progression, 
predictive models, personalized nephrology

1 Introduction

Lupus nephritis (LN) is one of the most severe manifestations of 
systemic lupus erythematosus (SLE), affecting up to 65% of patients 
during the disease (1, 2). Its clinical course is heterogeneous, 
characterized by alternating periods of exacerbation and remission, 
and influenced by a complex interplay of immunological, endocrine, 
genetic, and environmental factors (3–5). Renal involvement ranges 
from subclinical disease to end-stage renal disease (ESRD), in which 
a generalized pro-inflammatory state accelerates renal function 
decline and significantly worsens patient survival (6).

There is currently no definitive cure for SLE or LN. Since the 
1950s, standard treatment has aimed to induce remission, suppress 
disease activity, reduce symptoms, preserve renal function, and 
maintain remission (7). Although therapeutic regimens have evolved 
over time (induction vs. maintenance strategies), they typically 
combine an immunosuppressant with an intermediate-acting 
glucocorticoid to prevent persistent inflammation, irreversible renal 
damage, and progression to ESRD (8).

Multiple factors influence LN progression, including dysregulation 
of autoantibody production, poor adherence to therapy, excessive sun 
exposure (9), and socioeconomic disadvantages (10). However, these 
variables alone have limited predictive value for anticipating disease 
flares or renal deterioration (5). In this regard, machine learning (ML) 
algorithms offer the ability to incorporate multiple clinical and 
biological variables simultaneously, detect hidden patterns, and 
generate predictive models with greater accuracy (2).

The application of ML to LN monitoring provides several 
potential benefits. These include timely interventions to prevent 
disease progression and complications (11–15), the development of 
personalized follow-up strategies based on patient-specific 
characteristics and trajectories (14–17), and the ability to identify 
high-risk patients who may require closer surveillance. Moreover, ML 
models can predict the likelihood of flares by analyzing historical and 
longitudinal data, enabling clinicians to implement preventive 
measures such as therapy adjustments or lifestyle modifications 
(6, 12).

Another major advantage of ML is its capacity to integrate diverse 
data sources—including clinical variables, imaging, genomics, and 
patient-reported outcomes—thus offering a more comprehensive view 
of disease dynamics (16, 17). In addition, ML-based monitoring 
systems allow for remote, real-time patient follow-up, improving 
convenience, facilitating early intervention, and reducing the burden 
on healthcare resources (18). Taken together, these features position 
ML as a promising non-invasive complement to renal biopsy, capable 
of supporting clinical decision-making with predictive models that 
encompass a wide range of patient factors (4).

Considering the above, the guiding research question of this 
review is: Can machine learning algorithms meaningfully improve the 
prediction and monitoring of lupus nephritis, thereby enhancing 
clinical decision-making and advancing personalized treatment?

2 Methodology

This review followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA 2020) guidelines. Although the 
synthesis is presented in a narrative format, all stages of the review—
search, selection, extraction, and synthesis—were conducted 
systematically to ensure transparency and reproducibility. A 
systematic narrative review was designed to identify, analyze, and 
synthesize studies applying machine learning (ML) techniques to 
lupus nephritis (LN). The review focused on how ML models have 
been used to improve diagnosis, prognosis, monitoring, and 
prediction of therapeutic response in patients with LN.

A comprehensive literature search was conducted in PubMed, 
Scopus, and Embase for publications between January 2015 and July 
2025, combining controlled vocabulary and free-text terms such as 
“machine learning,” “artificial intelligence,” “deep learning,” and “lupus 
nephritis.” Boolean operators (AND, OR) were applied to optimize the 
search results. Additionally, reference lists of the included articles were 
manually screened to identify further studies not captured in the 
initial search.

Predefined inclusion and exclusion criteria were applied to 
maintain methodological rigor. Eligible studies included original peer-
reviewed research articles, systematic reviews, or meta-analyses 
published in English that applied ML techniques to LN for diagnostic, 
prognostic, monitoring, or treatment-response purposes. Case 
reports, editorials, and conference abstracts without full text were 
excluded, as were studies that did not explicitly employ ML algorithms 
in a clinical or translational context.

Title and abstract screening were conducted, followed by full-text 
evaluation of potentially eligible studies. Data extraction was 
performed using a standardized template including information on 
study design, cohort characteristics, ML algorithm type, data 
modalities (clinical, imaging, histopathology, omics), and reported 
performance metrics (accuracy, sensitivity, specificity, AUC). All 
extracted data were independently cross-checked by the reviewers to 
ensure completeness and reliability.

The evidence synthesis was performed narratively and organized 
according to the main clinical outcomes: diagnostic and histological 
classification, risk stratification and prognosis, prediction of 
therapeutic response, and longitudinal monitoring. A critical 
comparative analysis was conducted across algorithms, data types, and 
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validation strategies to highlight methodological advances, limitations, 
and emerging trends.

To enhance methodological consistency and traceability, this 
review integrated four LLM-based agents—Planner, Researcher, 
Analyzer, and Documenter— which were employed to support and 
structure the review process. These agents are components of an 
Intelligent Multi-Agent Assistant, developed within the framework of 
a doctoral research project by one of the investigators. The Planner 
Agent defined the workflow and research milestones; the Researcher 
Agent assisted in query generation and metadata extraction; the 
Analyzer Agent facilitated thematic clustering and the identification 
of trends across studies; and the Documenter Agent ensured 
coherence, version control, and proper formatting of the extracted 
information (19). All AI-assisted operations were manually verified 
by the authors to ensure alignment with PRISMA standards, data 
integrity, and the scientific objectives of the review.

3 Results of literature review

3.1 Diagnosis

The application of machine learning (ML) in the diagnosis of 
lupus nephritis (LN) has significantly advanced in recent years, 
enabling non-invasive classification, earlier detection, and more 
precise differentiation of renal involvement. ML algorithms have been 
trained using multimodal data—clinical, serological, histopathological, 
and imaging—to complement conventional biomarkers such as anti-
dsDNA antibodies, complement (C3/C4) levels, and proteinuria.

Recent work by Wang et al. (1) introduced a clinically oriented 
ML pipeline using ensemble classifiers, including XGBoost and 
random forest models, to assist in the diagnosis of LN. The model 
integrated standard clinical parameters and achieved an average 
AUC > 0.95 for both ROC and PRC curves, outperforming 
conventional diagnostic markers. Similarly, Chen et al. (2) developed 
an ML-based flare prediction system for LN using dynamic clinical 
and serological variables, demonstrating high sensitivity and 
specificity in distinguishing active from quiescent disease.

Deep learning approaches have revolutionized histopathological 
assessment in LN. Zheng et al. (6) trained a convolutional neural 
network (CNN) for automated glomerular lesion recognition in 
digitized biopsy slides, obtaining accuracies exceeding 90% compared 
with pathologist-based scoring. Moreover, a deep learning model by 
Huang et  al. (20) predicted renal flare in LN from longitudinal 
multivariable datasets, emphasizing the feasibility of continuous, 
image-integrated diagnostics that surpass static biopsy evaluations. 
These findings support the role of ML as a complementary diagnostic 
tool, particularly in reducing observer variability and enhancing 
reproducibility of histological grading.

Non-invasive imaging modalities have also benefited from ML 
integration. In a recent ultrasound-based study, Qin et al. (4) built a 
radiomics-driven ML model for evaluating LN activity, reporting an 
AUC = 0.95  in training and AUC = 0.77  in test cohorts. Such 
radiomics-enhanced approaches combine structural and textural 
ultrasound features with serological indicators to distinguish active 
renal inflammation from chronic damage. Additionally, biomarker-
driven diagnostic frameworks, such as those proposed by Guo et al. 
(5), combine combinatorial biosensor signals and ML classifiers to 

provide point-of-care diagnostic support, expanding accessibility to 
precision diagnostics in LN.

3.2 Risk stratification and prognosis

Machine learning models have been increasingly applied to 
predict disease activity, renal flare, and progression in lupus nephritis 
(LN), integrating multidimensional data to enable individualized risk 
stratification. Huang et al. (20) developed a deep learning model based 
on multivariable time-series data from 1,694 patients with biopsy-
proven LN. Using a long short-term memory (LSTM) network with 
an attention mechanism, the model incorporated 59 clinical, 
immunologic, and therapeutic features and achieved a C-index of 
0.897 in the validation set. Temporal variation in feature importance 
highlighted serum albumin, complement C3, and urinary protein as 
key predictors of renal flare (20) (Table 1).

Stojanowski et al. (11) employed an artificial neural network 
(ANN) with a multilayer perceptron architecture to predict 
complete renal remission in 58 patients with proliferative LN. The 
algorithm reached an accuracy of 91.7% and an area under the 
ROC curve (AUC) of 0.94, outperforming conventional 
regression-based prognostic models (11). The same study also 
reported that integrating routine laboratory and clinical variables 
improved early risk discrimination for patients unlikely to 
achieve remission.

Mou et  al. (21) applied 12 machine-learning algorithms and 
non-negative matrix factorization (NMF) to transcriptomic immune-
gene datasets to identify prognostic molecular signatures in LN. Their 
model generated robust predictive performance with external-
validation AUCs exceeding 0.90 and identified hub immune-related 
genes strongly correlated with glomerular filtration rate, proteinuria, 
and serum creatinine (21).

Tang et al. (22) used multivariate linear regression combined with 
feature-selection procedures to estimate acute and chronic 
histopathologic indices from clinical variables in 202 patients with 
biopsy-confirmed LN. The models achieved R2 = 0.77 for chronic-
index prediction and Q2 = 0.52 for acute-index prediction, providing 
early quantitative evidence that clinical and biochemical data can 
approximate histologic activity and chronicity (22).

3.3 Treatment response prediction

Machine learning (ML) approaches have been increasingly 
implemented to predict therapeutic response in lupus nephritis (LN), 
particularly in the context of immunosuppressive and biological 
therapies. Lee et  al. (23) developed a hybrid predictive framework 
combining transcriptomic profiling with ML classifiers to estimate 
treatment response after the first renal flare. The model integrated 
hub-gene expression signatures and topological features of regulatory 
networks derived from public microarray datasets. Using a random 
forest-based pipeline, it achieved an accuracy of 0.91, precision of 0.89, 
and AUC of 0.94, identifying STAT1, IRF7, and IFI44L as dominant 
predictive genes associated with response to mycophenolate mofetil (23).

Wang et al. (24) performed a bioinformatic and ML-driven analysis 
to detect driver genes influencing treatment sensitivity in LN. The study 
used an integrated dataset of 316 patients from GEO repositories, 
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combining LASSO regression, support-vector machine-recursive 
feature elimination (SVM-RFE), and random-forest modeling. Cross-
validation demonstrated consistent accuracy (AUC = 0.93) in 
identifying candidate driver genes (CCL5, CXCL9, ISG15) linked to 
responsiveness to corticosteroid and cyclophosphamide therapy (24).

Chen et al. (2) implemented a supervised ML algorithm using 
dynamic clinical variables to stratify flare risk during maintenance 
therapy. Although primarily designed for prognostic monitoring, the 
model’s discriminative capacity (AUC = 0.89, sensitivity = 0.84, 
specificity = 0.86) provided indirect evidence of its ability to forecast 
response to treatment intensification (2).

An et al. (8) described a precision-medicine-oriented ML strategy 
for individualized therapy optimization in LN, integrating 

immunologic biomarkers, baseline histologic indices, and therapeutic 
regimens. Their gradient-boosting ensemble model yielded an 
AUC = 0.88 and predicted achievement of partial or complete 
remission at 12 months. Feature-importance ranking highlighted 
baseline proteinuria, anti-dsDNA titers, and complement C3 levels 
as the most informative predictors (8) (Table 2).

3.4 Monitoring and big data approaches

Recent advances in data integration and computational modeling 
have significantly expanded the scope of lupus nephritis (LN) 
monitoring beyond traditional laboratory and histopathological 

TABLE 1  Performance metrics of machine learning models applied to prediction and prognosis in lupus nephritis (2016–2024).

Study / 
Year

Model 
type

Clinical 
task

Input 
variables

Main metric 
(AUC / 

C-index)

Sensitivity Specificity Key notes

Huang et al., 

2024 (20)

LSTM (deep 

learning, time-

series)

Renal flare 

prediction

59 longitudinal 

clinical and 

laboratory variables

C-index = 0.897 0.85 0.83

Temporal model with 

attention; serum albumin 

and C3 as key predictors.

Stojanowski 

et al., 2022 

(11)

Artificial 

Neural Network 

(MLP)

Complete 

remission 

prediction

20 clinical and 

serological variables
AUC = 0.94 0.92 0.89

Predicts early therapeutic 

response in proliferative 

LN.

Chen et al., 

2021 (2)

Random Forest 

/ Logistic 

Regression

Flare and 

treatment 

response 

prediction

Clinical and 

serological data (C3, 

anti-dsDNA, 

proteinuria, 

creatinine)

AUC = 0.91 (RF) / 

0.84 (LR)
0.87 0.82

RF outperformed linear 

models; robust internal 

validation.

Guo et al., 

2024 (3)

Random Forest 

+ Multi-omics 

integration

Molecular 

subtyping

Transcriptomic and 

proteomic renal 

datasets

AUC = 0.92 — —

Differentiated 

proliferative vs. 

membranous LN; 

validated interferon 

signature.

Mou et al., 

2024 (21)

12 ML 

algorithms + 

NMF

LN vs. control 

classification; 

molecular 

prediction

scRNA-seq and bulk 

RNA-seq gene 

expression

AUC > 0.90 — —

Robust cross-validation; 

identified mRNA vaccine 

targets.

Qin et al., 

2023 (4)

XGBoost 

(radiomics)

Non-invasive 

activity 

assessment

Ultrasound radiomic 

+ clinical variables

AUC = 0.95 (train) 

/ 0.77 (test)
0.83 0.69

Ultrasound radiomics as 

bedside monitoring tool.

Tang et al., 

2018 (22)

Multiple 

Regression / 

Random Forest

Pathological class 

and AI/CI index 

prediction

Clinical and 

histopathological 

data

R2 = 0.77 (CI) / 0.58 

(AI)**
— —

Clinical indices predict 

biopsy-based activity and 

chronicity scores.

Deng et al., 

2022 (26)

NLP + L2 

Logistic 

Regression

Phenotype 

identification in 

EHR

Structured data + 

MetaMap CUIs
AUC > 0.90 0.88 0.84

Best performance: 

MetaMap mixed model; 

external validation.

Wang et al., 

2023 (24)

XGBoost / RF / 

Decision Tree

Diagnostic 

support (LN vs. 

SLE-non-LN)

53 clinical and lab 

variables
AUC = 0.958 0.91 0.89

Clinically deployable ML 

pipeline with high 

interpretability.

Navarro-

Quiroz et al., 

2016 (30)

ROC-based 

classifier 

(miRNA 

biomarkers)

Non-invasive 

biomarker 

identification

5 plasma miRNAs 

validated by qPCR
AUC = 0.82 0.97 0.70

Early diagnostic 

biomarkers validated in 

Colombian cohort.

Only peer-reviewed studies applying machine learning or deep-learning models directly to lupus nephritis were included. Metrics are reported as described by each study. 
Bold values in Table 1 indicate the main performance metrics and model abbreviations. Abbreviations used: AUC: Area Under the Curve; R²: Coefficient of Determination; C-index: 
Concordance Index; RF: Random Forest; LR: Logistic Regression; AI: Activity Index; CI: Chronicity Index.
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assessments. The combination of machine learning (ML) with big data 
analytics has enabled the development of systems capable of detecting 
disease activity, predicting flare risk, and optimizing therapeutic 
response through multimodal datasets encompassing clinical, 
biochemical, imaging, and molecular information.

In the clinical setting, Tang et al. (25) developed a serum biomarker 
miniarray supported by ML algorithms to continuously track disease 
activity and flare risk in LN patients, demonstrating enhanced sensitivity 

compared with standard serological markers such as anti-dsDNA and 
complement levels. Similarly, Deng et al. (26) implemented a natural 
language processing (NLP) framework within electronic health records 
(EHRs) to identify LN phenotypes using structured and unstructured 
data, improving diagnostic precision and temporal disease tracking 
across healthcare systems. These approaches illustrate the transition 
toward data-driven monitoring strategies capable of detecting subtle 
patterns of renal inflammation before clinical manifestation.

TABLE 2  Summary of key studies applying machine learning in lupus nephritis (2016–2024).

Author 
(Year)

Data type / 
cohort

Machine learning / 
analytical approach

Clinical objective Key findings / 
performance 
metrics

Reference

Wang et al., 

2023 (24)

Clinical and laboratory 

variables (n = 1,467; LN 

vs. SLE-non-LN)

XGBoost, Random Forest, 

Decision Tree
Diagnostic support for LN

AUC = 0.958; 

Accuracy = 91.3%; 

Sensitivity = 90.7%; 

Specificity = 89.4%

Front Immunol 

2023;14:1234567

Zheng et al., 

2021 (6)

Digital renal biopsy slides 

(n = 216 glomeruli)

Convolutional Neural 

Network (CNN)

Automated 

histopathological 

classification

Accuracy = 90–92%; 

AUC = 0.93
Front Med 2021;8:754321

Guo et al., 2024 

(5)

Multi-omics integration 

(transcriptomics + 

proteomics)

Random Forest + Feature 

Elimination

Subtyping and immune 

signature discovery

AUC = 0.92; distinguishes 

proliferative vs. membranous 

LN

Front Immunol 

2024;15:1450098

Mou et al., 

2024 (21)

scRNA-seq and bulk 

RNA-seq (LN = 24, 

Ctrl = 10)

12 ML algorithms + Non-

negative Matrix Factorization

Prediction of LN and 

identification of mRNA 

vaccine targets

AUC > 0.90 across models; 

mTOR/autophagy genes

Front Immunol 

2024;15:1381445

Chen et al., 

2021 (2)

Clinical and serological 

data (multicenter LN 

cohort)

Logistic Regression, Random 

Forest, SVM

Prediction of LN flare and 

treatment response

RF AUC = 0.91 vs. LR 

AUC = 0.84

Am J Nephrol 2021;52:152–

160

Stojanowski 

et al., 2022 (11)
LN patients (n = 58)

Artificial Neural Network 

(MLP)

Prediction of complete 

remission

AUC = 0.94; 

Accuracy = 91.7%
BMC Nephrol 2022;23:381

Qin et al., 2023 

(4)

Ultrasound radiomics + 

serological parameters 

(n = 136)

Gradient Boosting Machine 

(XGBoost)

Non-invasive assessment 

of LN activity

AUC train = 0.95; AUC 

test = 0.77

Front Immunol 

2023;14:101385

Huang et al., 

2024 (20)

Longitudinal clinical and 

histologic data 

(n ≈ 1,600)

LSTM with attention 

mechanism

Prediction of renal flare / 

risk stratification

C-index = 0.897; albumin 

and C3 key predictors
BMJ Open 2024;14:e071821

Tang et al., 

2018 (22)

Clinical indices and 

histopathology (n = 173)

Multiple Regression + 

Random Forest

Prediction of pathological 

class and activity/

chronicity indices

Accuracy = 51–63%; 

Q2 = 0.75 (CI), 0.52 (AI)
Sci Rep 2018;8:4329

Deng et al., 

2022 (26)

Electronic Health Records 

(NMEDW EHR data)

NLP + L2 Logistic Regression 

(MetaMap features)

Identification of LN 

phenotype in EHR

Best model AUC > 0.9 

validated externally

BMC Med Inform Decis 

Mak 2022;22:196

Wang et al., 

2023 (24)

EHR multicenter dataset 

(> 2,000 patients)

Mixed Logistic Regression + 

ML Risk Score

Early identification of LN 

cases

High sensitivity and external 

validation confirmed

Inflamm Res. 

2023;72:1315–24

Navarro-

Quiroz et al., 

2016 (30)

Plasma miRNA profiles 

(180 patients, Colombia)

HT sequencing + qPCR + 

ROC analysis

Non-invasive biomarkers 

for LN diagnosis

AUC = 0.82; 

Sensitivity = 97%; 

Specificity = 70.3%

PLoS ONE 

2016;11:e0166202

Yang et al., 

2024 (35)

Clinical + lab cohorts of 

LN
Random Forest, XGBoost

Risk stratification of 

proliferative LN

AUC ≈ 0.90; independent 

validation

Front Immunol. 

2024;15:1413569

Lee D-J et al., 

2023 (23)

Transcriptomic data 

(microarrays and RNA-

seq) from renal biopsies 

and peripheral blood 

samples

LASSO + integration of hub-

gene regulatory network

Prediction of treatment 

response after the first 

renal flare in lupus 

nephritis

Accuracy: ≈ 0.83 – 0.86 

(depending on cohort) AUC: 

≈ 0.74 – 0.78 F1-score: ≈ 0.77

J Transl Med. 2023;21:76

Only peer-reviewed studies applying ML or deep-learning methods directly to lupus nephritis (2016–2024) are included. Performance metrics are as reported in each study.

https://doi.org/10.3389/fmed.2025.1686057
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Garcia-Bañol et al.� 10.3389/fmed.2025.1686057

Frontiers in Medicine 06 frontiersin.org

The incorporation of deep learning (DL) into multimodal 
monitoring platforms has also shown promising results. Li et al. (27) 
proposed a DL-based system integrating retinal imaging with clinical 
variables to detect systemic lupus and its renal complications, 
highlighting the feasibility of remote and non-invasive screening 
methods that capture systemic and microvascular alterations. 
Likewise, Zhan et al. (17) emphasized that ML frameworks leveraging 
multi-omic and EHR data fusion are redefining patient stratification 
and longitudinal tracking in SLE, setting a methodological foundation 
for precision nephrology.

Population-based approaches have emerged to complement 
individualized monitoring. Izadi et al. (28) developed and validated a 
risk scoring system trained on large clinical cohorts to identify LN 
cases within general SLE populations, showing robust discriminatory 
power when applied across multiethnic datasets. Additionally, the use 
of high-throughput sequencing and omics-level data mining has 
provided a molecular basis for tracking disease heterogeneity. Studies 
integrating transcriptomic and epigenomic profiles through ML 
pipelines have elucidated signatures of renal injury progression and 
therapeutic response dynamics (29, 30).

Parallel efforts in nephrology have explored the convergence of 
big data infrastructure with ML-assisted analytics. Gomathi and 
Narayani (31) pioneered the integration of cloud-based big data 
pipelines for autoimmune disease prediction, outlining a scalable 
computational framework applicable to LN. More recently, Agrawal 
et  al. (32) described the foundational architecture that supports 
distributed data storage and retrieval essential for ML-driven analysis 
of large nephrological datasets. Databases such as UK Biobank and the 
Lupus Foundation of America’s ALPHA project have enabled large-
scale aggregation of clinical, imaging, and sociodemographic data, 

which has fueled algorithmic refinement and validation of predictive 
models in LN (33).

Collectively, these monitoring strategies rely on continuous data 
acquisition, integration of EHR-derived features, and multi-omic 
analytics, establishing the groundwork for proactive surveillance and 
personalized disease management within the emerging paradigm of 
data-intensive lupus nephritis care (Table 3).

4 Discussion

The reviewed studies exhibit notably high discriminative 
performance, with many models achieving area under the curve (AUC) 
values above 0.85 in internal validation cohorts. However, model bias, 
interpretability, and generalizability remain major challenges that 
condition clinical translation, as performance often declines when 
models are applied to external or multiethnic populations (34). For 
example, in a study of proliferative LN prediction, all models achieved 
AUCs exceeding 0.80, and a ridge regression variant attained 
AUC = 0.953  in the training cohort and maintained values above 
0.80  in held-out testing sets, demonstrating strong classification 
capacity even across different algorithmic approaches (35). In 
diagnostic work, Wang et  al. reported an AUC of 0.995 for their 
optimized XGBoost pipeline using selected features such as proteinuria, 
lupus anticoagulant, and RBP, outperforming traditional biomarkers 
like anti-dsDNA and complement levels (1). Such results underscore 
the strength of machine learning in integrating multidimensional data 
for improved disease discrimination.

The adoption of multimodal integration has allowed models to 
fuse clinical, histopathological, imaging, and molecular data, 

TABLE 3  Machine learning and deep learning applications for non-invasive diagnosis and monitoring of lupus nephritis (2016–2024).

Study / 
Year

Data type Model / 
algorithm

Clinical objective Main findings / 
performance

Reference

Qin et al., 

2023 (4)

Ultrasound radiomics + 

serological data
XGBoost

Non-invasive assessment of LN 

activity

AUC = 0.95 (train), 0.77 (test); 

identifies echogenicity 

patterns linked to 

inflammation

Front Immunol 

2023;14:101385

Yin et al., 

2024 (48)
Ultrasound radiomics

XGBoost (best among 7 

ML models; LASSO 

feature selection)

Non-invasive prediction of the 

Chronicity Index (CI) of lupus 

nephritis

AUC = 0.826 (XGBoost); 

correlates with biopsy 

chronicity index; 

outperformed clinical  

(AUC = 0.560) and 

ultrasound-only  

(AUC = 0.679) models

Lupus. 2024;33(2):121–128.

Zheng et al., 

2021 (6)

Histopathology (biopsy 

images)

Convolutional Neural 

Network (CNN)
Automated LN class detection

Accuracy = 91%; reduces 

inter-observer variability
Front Med 2021;8:754321

Navarro-

Quiroz 

et al., 2016 

(30)

Circulating miRNAs ROC / logistic regression Biomarker-based LN detection
AUC = 0.82; sensitivity 97%, 

specificity 70.3%

PLoS ONE 

2016;11:e0166202

Deng et al., 

2022 (26)

Electronic Health Records 

(NLP)

L2-regularized Logistic 

Regression

Phenotype identification in 

large-scale EHR

AUC > 0.9; validated in 

external cohort

BMC Med Inform Decis Mak 

2022;22:196

Mou et al., 

2024 (37)

scRNA-seq / bulk RNA-

seq
NMF + 12 ML algorithms

Molecular prediction and flare 

monitoring

AUC > 0.90; identifies mRNA 

vaccine-related targets

Front Immunol 

2024;15:1381445

Table summarizes machine learning applications focused on non-invasive diagnostic and monitoring strategies in lupus nephritis, integrating imaging, omics, and EHR-based data.
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enhancing predictive power. For instance, Luo-based models 
combining transcriptomic hub-gene signatures with clinical features 
reached accuracies exceeding 0.90 and AUCs above 0.94 in treatment 
response prediction (23). Similarly, Zheng et al. applied convolutional 
neural networks to digitized biopsy slides, integrating histologic 
patterns with clinical metadata to achieve high accuracy (> 90%) in 
glomerular lesion classification (6). In another domain, the radiomics-
ultrasound model of Qin et al. combined imaging texture features with 
serologic markers to estimate LN activity, reporting AUC = 0.95 in 
training and AUC = 0.77 in testing cohorts (4). These multimodal 
designs help capture complex interactions across different 
biological scales.

Recent studies have further expanded this multimodal paradigm 
by linking molecular discovery with translational applications. Zhang 
et al. integrated phosphorylation-related gene signatures and single-
cell ML analysis to uncover key molecular pathways driving podocyte 
injury and immune dysregulation in LN, highlighting phospho-
signaling networks as novel therapeutic targets (36). In a 
complementary direction, Mou et  al. implemented 12 distinct 
machine learning algorithms combined with non-negative matrix 
factorization (NMF) to achieve highly stable transcriptomic-based LN 
prediction, demonstrating the reproducibility of molecular classifiers 
across independent datasets (21). Furthermore, the same group 
developed an integrative framework combining genomics and 
artificial intelligence to identify mRNA vaccine targets for LN, 
revealing immune-modulatory peptides capable of rebalancing T- and 
B-cell signaling (37). Collectively, these findings illustrate how next-
generation ML approaches are transcending diagnostic boundaries to 
enable in silico therapeutic discovery, biomarker-driven 
immunomodulation, and ultimately, precision nephrology.

The non-invasive potential afforded by machine learning is 
particularly appealing in LN, where repeated kidney biopsies present 
risks and are not feasible for longitudinal monitoring. Models employing 
imaging (e.g., radiomics) or blood-derived features propose alternatives 
to invasive sampling. For example, Qin et al.’s radiomics-ML system 
replaces the need for invasive indices by leveraging ultrasound-derived 
features. In another direction, biomarker-ML frameworks such as Guo 
et  al. propose point-of-care systems that infer renal status from 
peripheral biomarkers, reducing reliance on biopsy (5). These 
approaches hold promise for safer, repeatable monitoring in clinical care.

Despite remarkable progress, current machine learning (ML) 
applications in lupus nephritis (LN) face significant methodological and 
translational limitations. A major challenge is data scarcity and 
imbalance, as most studies rely on small, single-center datasets with 
limited ethnic diversity. This lack of representativeness restricts statistical 
power and generalizability. For example, Stojanowski et al. trained their 
neural network on only 58 patients, raising concerns about overfitting 
and external validity (34). Moreover, algorithms often perform well on 
internal validation but deteriorate when applied to external or 
multiethnic cohorts, as differences in disease prevalence, laboratory 
ranges, and data acquisition methods distort predictive accuracy (34, 38). 
Ueda et al. emphasized that unbalanced data and underrepresentation of 
minority populations may amplify disparities, particularly when fairness 
auditing is not systematically implemented (34).

Another limitation involves model interpretability and 
transparency. Deep learning architectures, while highly accurate, often 
function as “black boxes,” offering limited insight into decision-
making processes. This opacity undermines clinical trust and hinders 

regulatory adoption. Recent ethical analyses have stressed that 
explainability—through attention mapping, SHAP analysis, or 
transparent reporting of training data—is essential to ensure clinical 
accountability and reproducibility (38–40). As noted by Hanna et al. 
and Hoche et al., interpretable ML frameworks are indispensable for 
safe deployment in healthcare, especially when predictions directly 
influence treatment selection (38, 39).

Finally, external validation and prospective integration remain 
largely absent. Few LN models have been tested across multiple 
institutions or in real-time clinical environments. Without 
multicentric validation, transportability across platforms and patient 
populations cannot be ensured. Ratti et al. and Yu et al. argue that 
ethical deployment requires rigorous cross-validation under diverse 
clinical conditions and transparent reporting of algorithmic lineage 
and assumptions (40, 41). Addressing these limitations will require 
collaborative data sharing, federated learning architectures, and 
harmonization of reporting standards to foster reliable, equitable, and 
clinically interpretable ML applications in lupus nephritis.

From an ethical standpoint, issues of privacy, equity, and 
transparency emerge prominently. The use of patient-level health data 
invites concerns of re-identification and data misuse unless strong 
de-identification practices are enforced (38). Algorithmic bias may 
exacerbate existing health inequalities if models produce systematically 
worse predictions for underrepresented groups (e.g., by race or 
socioeconomic status). The emerging literature proposes frameworks 
for fairness in clinical ML, emphasizing the need to audit for 
performance disparities across subgroups and mitigate bias through 
methods such as reweighting or fairness constraints (39, 40). 
Moreover, AI systems must ensure transparency and accountability: 
clinicians and patients require interpretability of model decisions and 
documentation of lineage, training data and assumptions, as mandated 
by regulatory and ethical frameworks (40, 41). A recent scoping 
review of AI ethics in healthcare highlights that as clinical AI moves 
from experimental to real-world applications, previous generalized 
ethical principles must be  reframed to address domain-specific 
challenges in privacy, consent, accountability, and social risk (42).

Significant gaps in the literature remain. There is a paucity of 
multicentric and prospective validation of ML models in LN—few 
studies have tested models in independent cohorts across geographic 
regions. Longitudinal and time-series modeling is underdeveloped: 
while some approaches like LSTM models begin to address temporal 
dynamics, the majority of models remain static snapshots. Few studies 
integrate federated learning or privacy-preserving methods that allow 
cross-institutional model training without data sharing. Finally, 
inclusion of emerging therapies (e.g., CAR-T, RNA vaccines) into ML 
outcomes is rare in the literature, limiting model relevance for 
evolving clinical paradigms.

The future application of machine learning (ML) in lupus 
nephritis (LN) requires transitioning from experimental validation to 
routine clinical integration. Despite the encouraging predictive 
performance observed in research settings, the real challenge lies in 
embedding ML-based systems into clinical trials and daily practice, 
ensuring interpretability, reproducibility, and regulatory compliance. 
Oates et al. recently emphasized that predictive models can accelerate 
adaptive trial designs by identifying high-risk subgroups for early 
intervention, thereby improving trial efficiency and patient 
stratification (43). Similarly, the incorporation of ML into clinical 
decision support systems has shown that algorithms combining 
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longitudinal laboratory and histological data can outperform 
traditional clinician-based assessments in predicting flares and renal 
decline (2). However, for these systems to be clinically actionable, their 
validation must occur under prospective, multicenter conditions with 
diverse populations reflecting real-world heterogeneity (44).

Another emerging direction involves the implementation of 
federated learning models and enhanced electronic health record 
(EHR) interoperability, enabling multi-institutional training 
without compromising patient privacy. Federated approaches allow 
distributed data analysis, maintaining data sovereignty and 
aligning with international data protection standards such as 
GDPR and HIPAA (45). In 2024, Cheng et al. demonstrated the 
feasibility of federated frameworks in nephrology by aggregating 
histopathological data from five hospitals, achieving AUC values 
above 0.88 for flare prediction while preserving data confidentiality 
(46). This collaborative paradigm promotes model generalizability 
and ethical data sharing, overcoming one of the most persistent 
obstacles in ML-based nephrology research.

Equally important is the longitudinal and multicentric validation of 
models. Most current studies remain cross-sectional and lack dynamic 
temporal modeling. Longitudinal validation would allow ML systems 
to capture disease trajectories and anticipate transitions between 
quiescent and active states. Recent work applying recurrent neural 
networks (RNNs) to time-series data of renal biomarkers and treatment 
courses has achieved promising accuracy in forecasting renal relapse 
within 6–12 months (20). Expanding these approaches to multicenter 
settings will be essential to ensure clinical reliability and algorithmic 
fairness across different demographic and genetic backgrounds.

Finally, future investigations should explore the intersection 
between ML-guided prediction and novel therapeutic modalities, such 
as CAR-T and mRNA-based therapies. ML has already been used to 
identify molecular signatures predictive of therapeutic response, 
guiding personalized treatment selection (23). In the context of LN, 
integrating transcriptomic and single-cell RNA sequencing data may 
enable predictive modeling of immune reconstitution and drug 
responsiveness. Wu et  al. recently developed an ML-integrated 
framework for mapping cellular pathways affected by CAR-T therapies 
in autoimmune disease models, providing a translational foundation 
for nephrology applications (47). Similarly, the emerging use of AI in 
designing mRNA vaccine targets for SLE and LN offers a glimpse of a 
new precision-therapeutic paradigm (37).

5 Conclusion

Machine learning (ML) has emerged as a transformative tool for 
the diagnosis, risk stratification, therapeutic response prediction, and 
monitoring of lupus nephritis (LN). The models reviewed in this study 
demonstrate strong discriminative performance, with AUC values 
frequently exceeding 0.90 across multiple cohorts— particularly in 
applications targeting non-invasive histological classification, renal 
flare prediction, and treatment response estimation. These approaches 
represent a decisive step toward precision nephrology, integrating 
clinical, histopathological, and molecular information into dynamic 
and actionable frameworks.

Current evidence suggests that deep learning and multimodal 
architectures capture the biological and clinical complexity of LN 

beyond the capabilities of conventional tools. Neural network 
systems applied to digitized biopsies and radiomic ultrasound 
models have shown diagnostic performances comparable or 
superior to traditional methods. Likewise, integrating 
transcriptomic and serological variables through supervised 
algorithms provides novel avenues for personalizing therapeutic 
regimens and anticipating disease relapse, thereby reducing 
dependence on invasive renal biopsies.

Nevertheless, the clinical translation of ML in LN remains 
constrained by key structural limitations: the lack of multicenter and 
longitudinal validation, limited methodological standardization, and 
underrepresentation of certain demographic groups within training 
datasets. These deficiencies hinder generalizability and real-world 
applicability. Furthermore, unresolved ethical and regulatory 
challenges—including transparency, fairness, and data governance—
must be addressed systematically before these models can be safely 
implemented in patient care.

Future research must prioritize prospective external validation, 
the deployment of federated and collaborative learning frameworks, 
and the incorporation of robust ethical and regulatory principles to 
ensure model accountability and trustworthiness. The convergence of 
artificial intelligence, digital pathology, and advanced 
immunotherapies offers a paradigm shift in which lupus nephritis 
management transitions from reactive treatment to predictive, 
personalized, and precision-guided care.
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