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Interpretable machine learning
model for predicting covert
hepatic encephalopathy in
patients with cirrhosis: a
multicenter study
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Background and aim: Covert hepatic encephalopathy (CHE) is a neurocognitive
complication affecting 40.9-50.4% of patients with cirrhosis. It often remains
undiagnosed owing to its subclinical nature and the limitations of existing
diagnostic tools, which are constrained by subjectivity, variable sensitivity,
and limited accessibility. This study aims to develop and validate interpretable
machine learning (ML) models for predicting CHE in patients with cirrhosis using
multidimensional clinical and lifestyle data.

Methods: This retrospective study included 503 patients with liver cirrhosis
from 16 medical centers in China. CHE was diagnosed using the psychometric
hepatic encephalopathy score and EncephalApp Stroop tests. Recursive feature
elimination and Pearson’s correlation analysis were used for feature selection.
Eight ML models were implemented to predict CHE. Performance was assessed
via AUC, sensitivity, specificity, and decision curve analysis. The SHapley Additive
exPlanations (SHAP) values are interpreted by the optimal model.

Results: The light gradient boosting machine (LightGBM) model achieved the
highest area under the receiver operating characteristic (ROC) curve (AUC) of
0.810 in the training set and 0.710 in the validation set. Decision curve analysis
showed that LightGBM had better diagnostic performance than random forest
(RF) and eXtreme gradient boosting (XGBoost). The SHAP analysis identified
key predictors of CHE, including lower Mini-Mental State Examination (MMSE)
scores, older age, hypoalbuminemia, lack of prior computer usage, and higher
blood urea nitrogen levels.

Conclusion: This study presents a novel ML-based approach for predicting CHE
in cirrhotic patients, with LightGBM offering the best balance of performance
and interpretability. The identified clinical and demographic predictors could
facilitate early CHE detection and personalized management, ultimately
improving outcomes for this high-risk population.

KEYWORDS

covert hepatic encephalopathy, machine learning, SHapley Additive exPlanations,
cirrhosis, LightGBM
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Introduction

Covert hepatic encephalopathy (CHE), the subclinical
precursor to overt hepatic encephalopathy (OHE), is a
neurocognitive complication affecting 40.9-50.4% of patients
with cirrhosis (1, 2). Characterized by subtle impairments in
attention, visuospatial abilities, and psychomotor speed, CHE
significantly compromises the quality of life and predicts
hospitalization risks and mortality (3-6). In consequence, CHE
often remains undiagnosed in routine clinical practice, which
prevents the initiation of medical therapy. Early identification is
critical for initiating interventions, such as lactulose or rifaximin,
to mitigate progression (3, 7).

However, current diagnostic paradigms for CHE face
substantial challenges. Owing to limited time, cost, and resource
availability, only a few patients are routinely tested (8). Current
diagnostic tools for CHE—including the psychometric hepatic
encephalopathy score (PHES) and neuropsychological tests
(NPTs)—are limited by subjectivity, variable sensitivity (PHES:
45-71%), and limited accessibility in routine clinical practice (9).
these methods detect deficits

dysfunction is established,

Furthermore, only after

neurological delaying
therapeutic opportunities.

Blood biomarkers facilitating the diagnosis of covert hepatic
encephalopathy (CHE) in patients with cirrhosis are lacking. While
ammonia levels, inflammatory biomarkers (IL-6), and serum glial
fibrillary acidic protein (sGFAP) have been investigated for minimal
hepatic encephalopathy (MHE) prediction, their utility remains
thresholds

pathophysiology (10-12). The heterogeneity of cirrhosis etiologies

constrained by inconsistent and multifactorial
(e.g., viral, alcoholic, and metabolic dysfunction-associated steatotic
liver disease) further complicates biomarker generalizability.
Therefore, easy-to-use and reliable testing strategies are
urgently required.

Machine learning (ML) offers transformative potential to
decode complex patterns in multidimensional clinical data (13). By
integrating neuropsychological parameters, serum biomarkers, and
electronic health record trajectories, ML algorithms could help
overcome the “silent” nature of CHE through predictive modeling.
In recent years, some scholars have already utilized machine
learning to predict or assist in the diagnosis of HE. Yang et al.
demonstrated a weighted random forest (WRF) model achieving an
AUC of 0.816-0.831 in predicting patients with liver cirrhosis
complicated by HE (14). A recent study has demonstrated an ML
model achieving an AUC of 0.825 in predicting post-transjugular
(TIPS)
encephalopathy (OHE) in patients with acute variceal bleeding
(AVB), and the key predictors identified were Child-Pugh score,

age, and portal vein thrombosis (15). However, at present, most of

intrahepatic  portosystemic  shunt overt hepatic

the studies on ML for predicting or diagnosing minimal hepatic
encephalopathy focus on the use of imaging modules, while there
is a lack of relevant research on predicting minimal hepatic
encephalopathy using other clinical data (16, 17).

Therefore, this study aims to develop and validate interpretable ML
models for CHE prediction in patients with cirrhosis, comparing their
performance against conventional diagnostic tools, while identifying key
predictive features across heterogeneous patient subgroups.
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Methods
Study population

This is a retrospective study, with patient data derived from a
multi-center cross-sectional study that enrolled 503 patients with liver
cirrhosis at 16 medical centers in China between January 2021 and
March 2022 (Supplementary Figure S1). Among the 503 patients with
cirrhosis, 266 patients (52.88%) had covert hepatic encephalopathy
(CHE) and 237 patients (47.12%) did not have CHE. To diagnose
CHE, the standardized PHES, including five subtests, the
app-dependent concise Color and Word Stroop tests, and the
Encephal App Stroop tests, were used (18, 19). PHES and the Stroop
tests were performed according to the methods illustrated in previous
studies (18, 19). The five subtests of PHES, number connection test A
(NCT-A), number connection test B (NCT-B), line tracing test (LT'T),
serial dotting test (SDT), and digit symbol test (DST), were carried out
by a trained investigator at each center. A total value of all subtests <
4 indicated a PHES positive result. The Encephal App Stroop tests were
administered with the same model of iPad in each center. The cutoff
for the Encephal App Stroop test was > 187 s for on time + off time (18,
19). When both the PHES and EncephalApp Stroop tests resulted
positively, CHE was diagnosed. The study was performed in
accordance with the Declaration of Helsinki (as revised in 2013). The
study protocol was approved by the Institutional Ethics Committee of
the Shanghai Changzheng Hospital (2020SL022). The protocol was
explained to each patient, and informed consent forms were obtained
from all individuals.

Data collection and processing

The clinical and laboratory information of patients was retrieved
from the medical records of participating hospitals (2). Features
with over 25% missing values were excluded from the following
analyses to minimize the bias resulting from missing data. Missing
values were imputed using mean imputation, where the mean value
of each respective feature was substituted for missing data
points (20).

Dataset preparation and feature selection

Prior to model development, continuous variables were
standardized using z-score normalization based on the mean and
standard deviation (SD) calculated from the training set. Categorical
variables were binarized (1 indicating event presence and 0
representing absence), with gender specifically encoded as 1 for male
and 0 for female. The complete dataset was partitioned into a training
set (70%) for predictive model development and a test set (30%) for
performance validation. The test set consisted of 84 patients with liver
cirrhosis recruited from Changzheng Hospital from January 2024 to
May 2025. To mitigate overfitting, 5-fold cross-validation was
systematically implemented during model development. The recursive
feature elimination (RFE) algorithm was used to select features from
the data of the cohort. Pearson’s correlation coefficient was used to
assess collinearity between variables.
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Model development and comparison

The features selected above were used to develop prediction
models. Eight ML models, namely, adaptive boosting (AdaBoost),
artificial neutral network (ANN), decision tree (DT), extra tree (ET),
gradient boosting machine (GBM), light gradient boosting machine
(LightGBM), random forest (RF), and eXtreme gradient boosting
(XGBoost) were trained and established in the training cohort to
predict CHE in liver cirrhosis.

Several commonly used evaluation indices, such as the area under
the receiver operating characteristic (ROC) curve (AUC), sensitivity,
specificity, positive predictive value (PPV), negative predictive value
(NPV), accuracy, and F1 score, were used to evaluate the reliability of
these models. The diagnostic performance of the model was evaluated
using decision curve analysis (DCA).

Model interpretation

The SHapley Additive exPlanations (SHAP) method was used to
analyze the importance of features in the model because of the limited
interpretability in the ML algorithm (21). SHAP was used as a scoring
metric for feature contributions by determining the difference
between the predicted values with and without each feature for all
combinations. The greater the influence a particular value of a sample
has on the composition of the model, the farther that point deviates
from 0 on the x-axis. Using SHAP values and a summary plot, it is
thus possible to determine which features have a significant effect on
prediction and whether this contribution is positive or negative.

Statistical analysis

Depending on the data distribution, the statistical significance of
the difference in continuous variables was tested using Student’s ¢-test
or Mann-Whitney U-test for quantitative variables and the chi-square
test or Fisher’s test for qualitative variables. All statistical tests were
two-sided, with p-values <0.05 indicating statistical significance.
Statistical analyses and model development were performed using R
software (version 4.05) and Python (version 3.8).

Results
Features selected from models

To identify for the optimal subset to procure the most favorable
combination of features, we used recursive feature elimination (RFE)
coupled with 5-fold cross-validation. RFE enhances the performance
of predictive models by eliminating overfitting and improving the
generalizability of the model. According to a specific feature ranking
standard, RFE starts from a complete set and then eliminates the least
relevant feature one by one to select the most important features.
Finally, 35 features achieved the highest cross-validation score,
including age, education, sex, body mass index (BMI), history of
OHE, etiology of liver disease, the course of liver cirrhosis,
comorbidities of cardiovascular diseases, hypertension, cerebral
apoplexy or diabetes, history of drinking, previous usage of
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smartphone, previous usage of computer, previous usage of tablet
computer, medication history (L-ornithine aspartate, lactulose,
probiotic formulations, non-selective  blockers, antiviral drugs,
diuretic, rifaximin, metronidazole, and other antibiotics), alanine
aminotransferase (ALT), aspartate aminotransferase(AST), alkaline
phosphatase (AKP), g-glutamyltransferase (GGT), albumin (ALB),
total bilirubin (TBil), creatinine (Cr), blood urea nitrogen (BUN),
prolonged prothrombin time (PT), international normalized ratio
(INR), and a series of health-related scores, namely, Mini-Mental State
Examination (MMSE) score, Chronic Liver Disease Questionnaire
(CLDQ) score, Child-Pugh score, and Model for end-stage liver
disease (MELD) score (Figure 1).

Pearson’s correlation of variables

We evaluated the correlations of variables using Pearson’s
correlation and visualized the relationships among them through a
heatmap (Figure 2). From the heatmap, we observed that there was
collinearity between ALT and AST, AKP and GGT, and INR and
prolonged PT. After discussion among gastroenterology experts, a
decision was made to remove the three features of ALT, GGT, and INR.

Patient characteristics

A total of 503 patients were allocated to separate training and
validation sets at a ratio of 7:3. The demographic and clinical
characteristics of the training and validation sets are listed in Table 1.

Model development and validation

Eight ML models—AdaBoost, ANN, DT, ET, GBM, LightGBM,
RE and XGBoost—were constructed based on 32 features. As shown
in Table 2, among these models, LightGBM, RE and XGBoost
exhibited higher AUC values (0.810, 0.797, and 0.801) compared to
the others. These three models were further evaluated, with the results
presented in Table 3. Supplementary Figure S2 shows the confusion
matrices of the validation set. Additionally, an extensive decision
curve analysis (DCA) demonstrated that Light GBM exhibited better
diagnostic performance than RF and XGBoost in the test set
(Figure 3). Given that LightGBM has the highest AUC value in the
training set and performs well in the test DCA, we chose LightGBM
as the final model for this study. In the independent test set, the
LightGBM model achieved an outstanding AUC of 0.855 (0.852,
0.857), further confirming its robust generalization capability
(Supplementary Table S1).

Model interpretation

To enhance the clinical utility of the model, we used the SHAP
method to identify the features contributing to the prediction of CHE
in patients with cirrhosis, as illustrated in Figure 4. The bar plot was
generated by ranking features according to their mean absolute SHAP
values in descending order, which reflects the relative contribution of
each feature to the overall model. A higher absolute SHAP value
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RFE coupled with 5-fold cross-validation to procure the most favorable combination of features.

indicates greater feature importance and a stronger influence on the
model’s output.

As shown in Figure 4A, the top five clinically significant features
were identified as MMSE score, age, ALB, age, previous computer
usage, and BUN. Furthermore, we present the distribution of SHAP
values for the top 20 clinical features, where each dot represents a
feature (Figure 4B). The position of the dot indicates the SHAP value,
quantifying the feature’s contribution to the model output. A positive
SHAP value suggests a positive influence on the output, whereas a
negative value indicates an inhibitory effect. Color intensity reflects
feature magnitude—red denotes high values, while blue represents low
values, with darker shades signifying a stronger impact on the
target outcome.

It demonstrates that low MMSE scores, older age, low albumin
levels, high blood urea nitrogen, and lack of prior computer usage
were associated with an increased likelihood of CHE development
(Figure 4B). This interpretability analysis enhances the model’s clinical
applicability by identifying key predictive factors and their directional
influence on CHE risk.

Discussion

The clinical implications of CHE in patients with cirrhosis are
profound, as it is associated with cognitive impairment, reduced
quality of life, and an increased risk of OHE and mortality (1, 3). Early
identification of CHE is crucial for timely intervention, yet its
diagnosis remains challenging due to the lack of overt symptoms and
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the reliance on specialized neuropsychological tests such as the
Psychometric Hepatic (PHES) and
Encephal App Stroop tests (18, 22). In this study, we developed and
validated multiple ML models to predict CHE in cirrhotic patients,

Encephalopathy Score

leveraging a multicenter cohort of 503 cirrhotic patients.

To our knowledge, this is the first multi-center study to
systematically evaluate eight ML models for predicting CHE in
patients with cirrhosis using multidimensional clinical and lifestyle
data. Our findings demonstrate that the LightGBM model
outperformed other ML algorithms, achieving an AUC of 0.810
(0.779, 0.841) in the training set and 0.710 (0.708, 0.713) in the
validation set, highlighting its potential as a reliable predictive tool for
CHE. Notably, our model does not achieve comparable accuracy to
advanced biomarker-driven approaches (e.g., MRI-based models),
while relying solely on low-cost, less time-consuming parameters—a
critical advantage in resource-limited settings (17, 23).

The SHAP-based interpretability framework revealed key
predictors of CHE, including lower MMSE scores, older age,
hypoalbuminemia, lack of prior computer usage, and higher levels of
blood urea nitrogen. The prominence of MMSE scores underscores
the need for early cognitive screening in cirrhosis management, while
the association between hypoalbuminemia and CHE risk corroborates
its role in hepatic synthetic dysfunction and neurotoxin accumulation
(24). Previous studies have shown that older age is an independent
biomarker associated with CHE (2). Older age may lead to increased
defects in some areas of the central nervous system, affecting cognitive
function and the development of CHE (25). This is also consistent
with the results of a recent meta-analysis (1). Blood urea nitrogen can
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reflect renal function, and high levels of urea nitrogen are usually
associated with poor protein catabolism, dehydration, and
gastrointestinal bleeding. Some studies have shown that high urea
nitrogen is an independent biomarker related to the severity and
prognosis of HE (26, 27). An intriguing finding from our SHAP
analysis was the importance of “previous computer usage” as a
protective factor. We hypothesize that this variable acts as a practical
proxy for cognitive reserve—the brain’s resilience to pathology.
Engaging with computers is a complex cognitive activity that may help
build neural networks that are more resistant to the neurotoxic insults
of cirrhosis. While this factor likely correlates with socioeconomic
status and education level—the latter of which was included in our
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model and provided independent information—its retention as a key
predictor suggests that it captures a unique dimension of a patient’s
cognitive lifestyle. This finding aligns with studies linking technology
use to cognitive function in older adults (28). Although direct
socioeconomic data were not available, this finding highlights the
potential value of incorporating simple assessments of life engagement
into risk stratification. Future prospective studies should aim to collect
more detailed socioeconomic and lifestyle data to disentangle these
complex relationships.

The clinical relevance of our model lies in its potential to
streamline CHE diagnosis by integrating readily available clinical and
laboratory variables, thereby reducing reliance on time-consuming
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TABLE 1 Demographic and clinical characteristics of the training and validation sets.

Characteristics Training set (n = 352) Validation set (n = 151)
Age, years 5129 +11.26 51.26 + 11.47 0.946
Sex
Male 260 117 0.432
Female 92 34
BMI, kg/m? 23.62+2.75 23.70 % 2.60 0.894
Education, years 8.92+3.19 9.12 +£3.31 0.639
History of drinking
N 253 101 0.287
Y 99 50

Previous usage of a smartphone

N 35 14 0.871

Y 317 137

Previous usage of a computer

N 247 114 0.236

Y 105 37

Previous usage of a tablet computer

N 289 133 0.112

Y 63 18

Etiology of liver disease

Hepatitis B virus 237 96 0.385
Hepatitis C virus 12 6
Alcohol 33 13
Primary Biliary Cholangitis 8 5
Schistosoma 3 2
Other 59 29
The course of liver cirrhosis, day 900.72 + 1661.32 764.34 + 1208.55 0.534

Comorbidities of cardiovascular diseases, hypertension, cerebral apoplexy, or diabetes

N 301 133 0.482
Y 51 18
History of OHE
N 344 147 0.758
Y 8 4
CLDQ score 164.00 + 26.22 165.19 +23.94 0.880
MMSE score 28.98 £1.20 29.03 £ 1.12 0.944
Child-Pugh score 7.25+2.00 6.96 + 1.82 0.172
MELD score 10.33 £6.59 10.32+6.16 0.891
Medication history

L ornithine aspartate

N 259 110 0.913
Y 93 41
Lactulose
N 320 133 0.333
Y 32 18
(Continued)

Frontiers in Medicine 06 frontiersin.org


https://doi.org/10.3389/fmed.2025.1686005
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Liu etal.

TABLE 1 (Continued)

Characteristics

Training set (n = 352)

10.3389/fmed.2025.1686005

Validation set (n = 151)

Probiotic formulations

N 324 136 0.488
Y 28 15

Non-selective p-blockers
N 332 138 0.241
Y 20 13

Antiviral drugs
N 157 63 0.558
Y 195 88

Diuretic
N 251 114 0.383
Y 101 37

Rifaximin
N 338 147 0.604
Y 14 4

Metronidazole
N 348 150 >0.999
Y 4 1

Other antibiotics
N 312 131 0.551
Y 40 20

Blood test
AST, U/L 80.75 £ 119.53 7822 +112.38 0.388
AKP, U/L 135.07 £ 95.08 120.52 + 85.03 0.062
TBil, pmol/L 45.52 £ 67.98 46.25 + 69.06 0.675
Alb, g/L 34.60 +7.00 35.02 + 7.64 0.418
Prolonged PT, s 3.75+7.62 3.14 + 4.05 0.397
Cr, pmol/L 68.82 £ 26.68 70.60 + 27.76 0.262
BUN, mmol/L 544 +£2.92 5.53+2.98 0.407

CHE
N 171 66 0.331
Y 181 85

Y, yes; N, no; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AKP, alkaline phosphatase; GGT, g-glutamyltransferase; ALB, albumin; TBil, total
bilirubin; Cr, creatinine; BUN, blood urea nitrogen; PT, prothrombin time; INR, international normalized ratio; MMSE, Mini-Mental State Examination; CLDQ, Chronic Liver Disease

Questionnaire; MELD, model for end-stage liver disease; CHE, covert hepatic encephalopathy; OHE, overt hepatic encephalopathy.

TABLE 2 Performance of the eight ML models in the training set.

Model AUC Sensitivity Specificity PPV NPV Accuracy F1 Score

LightGBM 0.810 (0.779,0.841) | 0.694 (0.505,0.883) = 0.836 (0.629,1.043) | 0.852(0.72,0.983) = 0.719 (0.588,0.85) | 0.758 (0.725,0.792) = 0.748 (0.683,0.814)
RF 0.797 (0.758,0.835) | 0.746 (0.585,0.907) = 0.740 (0.592,0.889) | 0.773 (0.655,0.892) = 0.730 (0.602, 0.858) | 0.742 (0.705,0.779) = 0.750 (0.675, 0.825)
XGBoost 0.801 (0.765,0.838) | 0.755(0.595,0.914) = 0.78 (0.601,0.959) | 0.804 (0.673,0.935) = 0.751 (0.591,0.911) | 0.761(0.731,0.792) = 0.768 (0.714, 0.822)
AdaBoost 0.774 (0.74,0.808) | 0.695 (0.497,0.894) = 0.72(0.515,0.925) | 0.773 (0.671,0.874) = 0.689 (0.585,0.793) | 0.716(0.69,0.742) | 0.716 (0.636, 0.795)
ANN 0.653 (0.582,0.724) | 0.624 (0.381,0.867) | 0.703 (0.494,0.913) = 0.731 (0.648, 0.815) | 0.636 (0.591,0.681) = 0.676 (0.643,0.709) | 0.656 (0.503, 0.809)
DT 0.655 (0.575,0.736) | 0.659 (0.495,0.823) = 0.675 (0.493,0.857) | 0.707 (0.543,0.871) = 0.635 (0.506,0.763) | 0.656 (0.596,0.717) = 0.667 (0.588, 0.746)
ET 0.791 (0.743,0.838) = 0.82(0.737,0.902) = 0.716 (0.574,0.858) | 0.772 (0.666,0.877) = 0.772 (0.671,0.872) | 0.767 (0.739,0.795) = 0.789 (0.767,0.811)
GBM 0.703 (0.62,0.786)  0.752 (0.575,0.929) | 0.634 (0.476,0.793) | 0.705 (0.564,0.845) = 0.708 (0.547, 0.869) | 0.693 (0.618,0.769) = 0.718 (0.616, 0.819)
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neuropsychological tests. For instance, hypoalbuminemia, a key
predictor in our model, is a well-established marker of liver synthetic
dysfunction and is associated with blood-brain barrier disruption,
facilitating neurotoxin accumulation (29, 30). Similarly, the MMSE
score can, to some extent, reflect the interplay between global
cognitive function and CHE (24).

Our study addressed critical gaps in CHE prediction research.
First, the integration of lifestyle factors (e.g., digital device usage) with
traditional clinical variables (e.g., MELD score) provides a holistic risk
profile, capturing both biological and psychosocial determinants of
CHE—a paradigm shift from prior biomarker-centric models. Second,
the rigorous feature selection pipeline (RFE + expert-guided
collinearity reduction) optimized model parsimony. For instance,
excluding redundant variables (e.g., ALT and INR) improved
generalizability without sacrificing predictive power.

Despite its strengths, our study has limitations. First, the
retrospective design may introduce selection bias, and the reliance on
imputation for missing data (though limited to variables with <25%
missingness) could affect model generalizability. Second, while our
retrospective design mitigated recall bias, the cohort was restricted to
Chinese patients, necessitating external validation in global populations
to confirm generalizability. Third, while the LightGBM model

FIGURE 4
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TABLE 3 Performance of the three ML models in the validation set.

Model AUC Sensitivity Specificity PPV NPV Accuracy F1 Score
LightGBM 0.710 (0.708,0.713) | 0.748 (0.739,0.757) = 0.631 (0.622,0.639) = 0.689 (0.685,0.694)  0.725(0.72,0.73) | 0.69 (0.688,0.692) | 0.703 (0.7, 0.707)
RF 0.712(0.71,0.715)  0.851 (0.846,0.855) = 0.551 (0.546,0.556) = 0.665 (0.662, 0.668) = 0.787 (0.783,0.792) | 0.704 (0.702,0.706) = 0.743 (0.741, 0.746)
XGBoost 0711 (0.708,0.713) | 0.783 (0.778,0.788) = 0.612 (0.606,0.618) = 0.681 (0.677,0.684) = 0.737 (0.733,0.742) | 0.699 (0.697,0.701) | 0.723 (0.721,0.726)
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demonstrated good discrimination, its moderate AUC (0.710 in the
validation set) suggests room for improvement, potentially through the
inclusion of additional biomarkers such as gut microbiota profiles,
inflammatory markers, or imaging parameters. Besides, the operational
definition of “previous computer usage” requires standardization across
diverse socioeconomic contexts. Future prospective studies should also
explore the integration of dynamic variables (e.g., longitudinal cognitive
assessments) to enhance predictive accuracy.

Despite these limitations, our Light GBM model offers a pragmatic
tool for CHE risk stratification in routine practice. By prioritizing easily
accessible variables (e.g., albumin and MMSE scores), it could be
seamlessly embedded into the Hospital Information System (HIS) to
guide targeted monitoring. For clinicians, the SHAP dashboard
provides actionable insights, transforming opaque algorithms into
transparent decision aids (31). Furthermore, we could develop an
interactive SHAP visualization tool to translate model outputs into
clinician-friendly risk assessments, bridging the “black-box” gap in ML
applications. Such tools could be integrated into the HIS to trigger real-
time alerts for high-risk patients.

In conclusion, our study presents a novel ML-based approach to
CHE prediction, with the LightGBM model offering the best balance
of performance and interpretability. By identifying key clinical and
demographic predictors, this tool could facilitate early CHE detection
and personalized management in cirrhotic patients. Future efforts
should focus on external validation and the development of user-
friendly applications to translate this model into clinical practice,
ultimately improving outcomes for this high-risk population.
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