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Background and aim: Covert hepatic encephalopathy (CHE) is a neurocognitive 
complication affecting 40.9–50.4% of patients with cirrhosis. It often remains 
undiagnosed owing to its subclinical nature and the limitations of existing 
diagnostic tools, which are constrained by subjectivity, variable sensitivity, 
and limited accessibility. This study aims to develop and validate interpretable 
machine learning (ML) models for predicting CHE in patients with cirrhosis using 
multidimensional clinical and lifestyle data.
Methods: This retrospective study included 503 patients with liver cirrhosis 
from 16 medical centers in China. CHE was diagnosed using the psychometric 
hepatic encephalopathy score and EncephalApp Stroop tests. Recursive feature 
elimination and Pearson’s correlation analysis were used for feature selection. 
Eight ML models were implemented to predict CHE. Performance was assessed 
via AUC, sensitivity, specificity, and decision curve analysis. The SHapley Additive 
exPlanations (SHAP) values are interpreted by the optimal model.
Results: The light gradient boosting machine (LightGBM) model achieved the 
highest area under the receiver operating characteristic (ROC) curve (AUC) of 
0.810 in the training set and 0.710 in the validation set. Decision curve analysis 
showed that LightGBM had better diagnostic performance than random forest 
(RF) and eXtreme gradient boosting (XGBoost). The SHAP analysis identified 
key predictors of CHE, including lower Mini-Mental State Examination (MMSE) 
scores, older age, hypoalbuminemia, lack of prior computer usage, and higher 
blood urea nitrogen levels.
Conclusion: This study presents a novel ML-based approach for predicting CHE 
in cirrhotic patients, with LightGBM offering the best balance of performance 
and interpretability. The identified clinical and demographic predictors could 
facilitate early CHE detection and personalized management, ultimately 
improving outcomes for this high-risk population.
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Introduction

Covert hepatic encephalopathy (CHE), the subclinical 
precursor to overt hepatic encephalopathy (OHE), is a 
neurocognitive complication affecting 40.9–50.4% of patients 
with cirrhosis (1, 2). Characterized by subtle impairments in 
attention, visuospatial abilities, and psychomotor speed, CHE 
significantly compromises the quality of life and predicts 
hospitalization risks and mortality (3–6). In consequence, CHE 
often remains undiagnosed in routine clinical practice, which 
prevents the initiation of medical therapy. Early identification is 
critical for initiating interventions, such as lactulose or rifaximin, 
to mitigate progression (3, 7).

However, current diagnostic paradigms for CHE face 
substantial challenges. Owing to limited time, cost, and resource 
availability, only a few patients are routinely tested (8). Current 
diagnostic tools for CHE—including the psychometric hepatic 
encephalopathy score (PHES) and neuropsychological tests 
(NPTs)—are limited by subjectivity, variable sensitivity (PHES: 
45–71%), and limited accessibility in routine clinical practice (9). 
Furthermore, these methods detect deficits only after 
neurological dysfunction is established, delaying 
therapeutic opportunities.

Blood biomarkers facilitating the diagnosis of covert hepatic 
encephalopathy (CHE) in patients with cirrhosis are lacking. While 
ammonia levels, inflammatory biomarkers (IL-6), and serum glial 
fibrillary acidic protein (sGFAP) have been investigated for minimal 
hepatic encephalopathy (MHE) prediction, their utility remains 
constrained by inconsistent thresholds and multifactorial 
pathophysiology (10–12). The heterogeneity of cirrhosis etiologies 
(e.g., viral, alcoholic, and metabolic dysfunction-associated steatotic 
liver disease) further complicates biomarker generalizability. 
Therefore, easy-to-use and reliable testing strategies are 
urgently required.

Machine learning (ML) offers transformative potential to 
decode complex patterns in multidimensional clinical data (13). By 
integrating neuropsychological parameters, serum biomarkers, and 
electronic health record trajectories, ML algorithms could help 
overcome the “silent” nature of CHE through predictive modeling. 
In recent years, some scholars have already utilized machine 
learning to predict or assist in the diagnosis of HE. Yang et al. 
demonstrated a weighted random forest (WRF) model achieving an 
AUC of 0.816–0.831 in predicting patients with liver cirrhosis 
complicated by HE (14). A recent study has demonstrated an ML 
model achieving an AUC of 0.825 in predicting post-transjugular 
intrahepatic portosystemic shunt (TIPS) overt hepatic 
encephalopathy (OHE) in patients with acute variceal bleeding 
(AVB), and the key predictors identified were Child–Pugh score, 
age, and portal vein thrombosis (15). However, at present, most of 
the studies on ML for predicting or diagnosing minimal hepatic 
encephalopathy focus on the use of imaging modules, while there 
is a lack of relevant research on predicting minimal hepatic 
encephalopathy using other clinical data (16, 17).

Therefore, this study aims to develop and validate interpretable ML 
models for CHE prediction in patients with cirrhosis, comparing their 
performance against conventional diagnostic tools, while identifying key 
predictive features across heterogeneous patient subgroups.

Methods

Study population

This is a retrospective study, with patient data derived from a 
multi-center cross-sectional study that enrolled 503 patients with liver 
cirrhosis at 16 medical centers in China between January 2021 and 
March 2022 (Supplementary Figure S1). Among the 503 patients with 
cirrhosis, 266 patients (52.88%) had covert hepatic encephalopathy 
(CHE) and 237 patients (47.12%) did not have CHE. To diagnose 
CHE, the standardized PHES, including five subtests, the 
app-dependent concise Color and Word Stroop tests, and the 
EncephalApp Stroop tests, were used (18, 19). PHES and the Stroop 
tests were performed according to the methods illustrated in previous 
studies (18, 19). The five subtests of PHES, number connection test A 
(NCT-A), number connection test B (NCT-B), line tracing test (LTT), 
serial dotting test (SDT), and digit symbol test (DST), were carried out 
by a trained investigator at each center. A total value of all subtests < 
4 indicated a PHES positive result. The EncephalApp Stroop tests were 
administered with the same model of iPad in each center. The cutoff 
for the EncephalApp Stroop test was > 187 s for on time + off time (18, 
19). When both the PHES and EncephalApp Stroop tests resulted 
positively, CHE was diagnosed. The study was performed in 
accordance with the Declaration of Helsinki (as revised in 2013). The 
study protocol was approved by the Institutional Ethics Committee of 
the Shanghai Changzheng Hospital (2020SL022). The protocol was 
explained to each patient, and informed consent forms were obtained 
from all individuals.

Data collection and processing

The clinical and laboratory information of patients was retrieved 
from the medical records of participating hospitals (2). Features 
with over 25% missing values were excluded from the following 
analyses to minimize the bias resulting from missing data. Missing 
values were imputed using mean imputation, where the mean value 
of each respective feature was substituted for missing data 
points (20).

Dataset preparation and feature selection

Prior to model development, continuous variables were 
standardized using z-score normalization based on the mean and 
standard deviation (SD) calculated from the training set. Categorical 
variables were binarized (1 indicating event presence and 0 
representing absence), with gender specifically encoded as 1 for male 
and 0 for female. The complete dataset was partitioned into a training 
set (70%) for predictive model development and a test set (30%) for 
performance validation. The test set consisted of 84 patients with liver 
cirrhosis recruited from Changzheng Hospital from January 2024 to 
May 2025. To mitigate overfitting, 5-fold cross-validation was 
systematically implemented during model development. The recursive 
feature elimination (RFE) algorithm was used to select features from 
the data of the cohort. Pearson’s correlation coefficient was used to 
assess collinearity between variables.

https://doi.org/10.3389/fmed.2025.1686005
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al.� 10.3389/fmed.2025.1686005

Frontiers in Medicine 03 frontiersin.org

Model development and comparison

The features selected above were used to develop prediction 
models. Eight ML models, namely, adaptive boosting (AdaBoost), 
artificial neutral network (ANN), decision tree (DT), extra tree (ET), 
gradient boosting machine (GBM), light gradient boosting machine 
(LightGBM), random forest (RF), and eXtreme gradient boosting 
(XGBoost) were trained and established in the training cohort to 
predict CHE in liver cirrhosis.

Several commonly used evaluation indices, such as the area under 
the receiver operating characteristic (ROC) curve (AUC), sensitivity, 
specificity, positive predictive value (PPV), negative predictive value 
(NPV), accuracy, and F1 score, were used to evaluate the reliability of 
these models. The diagnostic performance of the model was evaluated 
using decision curve analysis (DCA).

Model interpretation

The SHapley Additive exPlanations (SHAP) method was used to 
analyze the importance of features in the model because of the limited 
interpretability in the ML algorithm (21). SHAP was used as a scoring 
metric for feature contributions by determining the difference 
between the predicted values with and without each feature for all 
combinations. The greater the influence a particular value of a sample 
has on the composition of the model, the farther that point deviates 
from 0 on the x-axis. Using SHAP values and a summary plot, it is 
thus possible to determine which features have a significant effect on 
prediction and whether this contribution is positive or negative.

Statistical analysis

Depending on the data distribution, the statistical significance of 
the difference in continuous variables was tested using Student’s t-test 
or Mann–Whitney U-test for quantitative variables and the chi-square 
test or Fisher’s test for qualitative variables. All statistical tests were 
two-sided, with p-values <0.05 indicating statistical significance. 
Statistical analyses and model development were performed using R 
software (version 4.05) and Python (version 3.8).

Results

Features selected from models

To identify for the optimal subset to procure the most favorable 
combination of features, we used recursive feature elimination (RFE) 
coupled with 5-fold cross-validation. RFE enhances the performance 
of predictive models by eliminating overfitting and improving the 
generalizability of the model. According to a specific feature ranking 
standard, RFE starts from a complete set and then eliminates the least 
relevant feature one by one to select the most important features. 
Finally, 35 features achieved the highest cross-validation score, 
including age, education, sex, body mass index (BMI), history of 
OHE, etiology of liver disease, the course of liver cirrhosis, 
comorbidities of cardiovascular diseases, hypertension, cerebral 
apoplexy or diabetes, history of drinking, previous usage of 

smartphone, previous usage of computer, previous usage of tablet 
computer, medication history (L-ornithine aspartate, lactulose, 
probiotic formulations, non-selective β blockers, antiviral drugs, 
diuretic, rifaximin, metronidazole, and other antibiotics), alanine 
aminotransferase (ALT), aspartate aminotransferase(AST), alkaline 
phosphatase (AKP), g-glutamyltransferase (GGT), albumin (ALB), 
total bilirubin (TBil), creatinine (Cr), blood urea nitrogen (BUN), 
prolonged prothrombin time (PT), international normalized ratio 
(INR), and a series of health-related scores, namely, Mini-Mental State 
Examination (MMSE) score, Chronic Liver Disease Questionnaire 
(CLDQ) score, Child–Pugh score, and Model for end-stage liver 
disease (MELD) score (Figure 1).

Pearson’s correlation of variables

We evaluated the correlations of variables using Pearson’s 
correlation and visualized the relationships among them through a 
heatmap (Figure 2). From the heatmap, we observed that there was 
collinearity between ALT and AST, AKP and GGT, and INR and 
prolonged PT. After discussion among gastroenterology experts, a 
decision was made to remove the three features of ALT, GGT, and INR.

Patient characteristics

A total of 503 patients were allocated to separate training and 
validation sets at a ratio of 7:3. The demographic and clinical 
characteristics of the training and validation sets are listed in Table 1.

Model development and validation

Eight ML models—AdaBoost, ANN, DT, ET, GBM, LightGBM, 
RF, and XGBoost—were constructed based on 32 features. As shown 
in Table 2, among these models, LightGBM, RF, and XGBoost 
exhibited higher AUC values (0.810, 0.797, and 0.801) compared to 
the others. These three models were further evaluated, with the results 
presented in Table 3. Supplementary Figure S2 shows the confusion 
matrices of the validation set. Additionally, an extensive decision 
curve analysis (DCA) demonstrated that LightGBM exhibited better 
diagnostic performance than RF and XGBoost in the test set 
(Figure 3). Given that LightGBM has the highest AUC value in the 
training set and performs well in the test DCA, we chose LightGBM 
as the final model for this study. In the independent test set, the 
LightGBM model achieved an outstanding AUC of 0.855 (0.852, 
0.857), further confirming its robust generalization capability 
(Supplementary Table S1).

Model interpretation

To enhance the clinical utility of the model, we used the SHAP 
method to identify the features contributing to the prediction of CHE 
in patients with cirrhosis, as illustrated in Figure 4. The bar plot was 
generated by ranking features according to their mean absolute SHAP 
values in descending order, which reflects the relative contribution of 
each feature to the overall model. A higher absolute SHAP value 
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indicates greater feature importance and a stronger influence on the 
model’s output.

As shown in Figure 4A, the top five clinically significant features 
were identified as MMSE score, age, ALB, age, previous computer 
usage, and BUN. Furthermore, we present the distribution of SHAP 
values for the top 20 clinical features, where each dot represents a 
feature (Figure 4B). The position of the dot indicates the SHAP value, 
quantifying the feature’s contribution to the model output. A positive 
SHAP value suggests a positive influence on the output, whereas a 
negative value indicates an inhibitory effect. Color intensity reflects 
feature magnitude—red denotes high values, while blue represents low 
values, with darker shades signifying a stronger impact on the 
target outcome.

It demonstrates that low MMSE scores, older age, low albumin 
levels, high blood urea nitrogen, and lack of prior computer usage 
were associated with an increased likelihood of CHE development 
(Figure 4B). This interpretability analysis enhances the model’s clinical 
applicability by identifying key predictive factors and their directional 
influence on CHE risk.

Discussion

The clinical implications of CHE in patients with cirrhosis are 
profound, as it is associated with cognitive impairment, reduced 
quality of life, and an increased risk of OHE and mortality (1, 3). Early 
identification of CHE is crucial for timely intervention, yet its 
diagnosis remains challenging due to the lack of overt symptoms and 

the reliance on specialized neuropsychological tests such as the 
Psychometric Hepatic Encephalopathy Score (PHES) and 
EncephalApp Stroop tests (18, 22). In this study, we developed and 
validated multiple ML models to predict CHE in cirrhotic patients, 
leveraging a multicenter cohort of 503 cirrhotic patients.

To our knowledge, this is the first multi-center study to 
systematically evaluate eight ML models for predicting CHE in 
patients with cirrhosis using multidimensional clinical and lifestyle 
data. Our findings demonstrate that the LightGBM model 
outperformed other ML algorithms, achieving an AUC of 0.810 
(0.779, 0.841) in the training set and 0.710 (0.708, 0.713) in the 
validation set, highlighting its potential as a reliable predictive tool for 
CHE. Notably, our model does not achieve comparable accuracy to 
advanced biomarker-driven approaches (e.g., MRI-based models), 
while relying solely on low-cost, less time-consuming parameters—a 
critical advantage in resource-limited settings (17, 23).

The SHAP-based interpretability framework revealed key 
predictors of CHE, including lower MMSE scores, older age, 
hypoalbuminemia, lack of prior computer usage, and higher levels of 
blood urea nitrogen. The prominence of MMSE scores underscores 
the need for early cognitive screening in cirrhosis management, while 
the association between hypoalbuminemia and CHE risk corroborates 
its role in hepatic synthetic dysfunction and neurotoxin accumulation 
(24). Previous studies have shown that older age is an independent 
biomarker associated with CHE (2). Older age may lead to increased 
defects in some areas of the central nervous system, affecting cognitive 
function and the development of CHE (25). This is also consistent 
with the results of a recent meta-analysis (1). Blood urea nitrogen can 

FIGURE 1

RFE coupled with 5-fold cross-validation to procure the most favorable combination of features.
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reflect renal function, and high levels of urea nitrogen are usually 
associated with poor protein catabolism, dehydration, and 
gastrointestinal bleeding. Some studies have shown that high urea 
nitrogen is an independent biomarker related to the severity and 
prognosis of HE (26, 27). An intriguing finding from our SHAP 
analysis was the importance of “previous computer usage” as a 
protective factor. We hypothesize that this variable acts as a practical 
proxy for cognitive reserve—the brain’s resilience to pathology. 
Engaging with computers is a complex cognitive activity that may help 
build neural networks that are more resistant to the neurotoxic insults 
of cirrhosis. While this factor likely correlates with socioeconomic 
status and education level—the latter of which was included in our 

model and provided independent information—its retention as a key 
predictor suggests that it captures a unique dimension of a patient’s 
cognitive lifestyle. This finding aligns with studies linking technology 
use to cognitive function in older adults (28). Although direct 
socioeconomic data were not available, this finding highlights the 
potential value of incorporating simple assessments of life engagement 
into risk stratification. Future prospective studies should aim to collect 
more detailed socioeconomic and lifestyle data to disentangle these 
complex relationships.

The clinical relevance of our model lies in its potential to 
streamline CHE diagnosis by integrating readily available clinical and 
laboratory variables, thereby reducing reliance on time-consuming 

FIGURE 2

Heatmap shows the relationships among the variables. Each cell represents the correlation coefficient between two variables, ranging from −1 (perfect 
negative correlation, indicated by dark blue) to +1 (perfect positive correlation, indicated by dark red). A color bar on the right provides a reference scale.
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TABLE 1  Demographic and clinical characteristics of the training and validation sets.

Characteristics Training set (n = 352) Validation set (n = 151) p

Age, years 51.29 ± 11.26 51.26 ± 11.47 0.946

Sex

  Male 260 117 0.432

  Female 92 34

BMI, kg/m2 23.62 ± 2.75 23.70 ± 2.60 0.894

Education, years 8.92 ± 3.19 9.12 ± 3.31 0.639

History of drinking

  N 253 101 0.287

  Y 99 50

Previous usage of a smartphone

  N 35 14 0.871

  Y 317 137

Previous usage of a computer

  N 247 114 0.236

  Y 105 37

Previous usage of a tablet computer

  N 289 133 0.112

  Y 63 18

Etiology of liver disease

  Hepatitis B virus 237 96 0.385

  Hepatitis C virus 12 6

  Alcohol 33 13

  Primary Biliary Cholangitis 8 5

  Schistosoma 3 2

  Other 59 29

The course of liver cirrhosis, day 900.72 ± 1661.32 764.34 ± 1208.55 0.534

Comorbidities of cardiovascular diseases, hypertension, cerebral apoplexy, or diabetes

  N 301 133 0.482

  Y 51 18

History of OHE

  N 344 147 0.758

  Y 8 4

CLDQ score 164.00 ± 26.22 165.19 ± 23.94 0.880

MMSE score 28.98 ± 1.20 29.03 ± 1.12 0.944

Child–Pugh score 7.25 ± 2.00 6.96 ± 1.82 0.172

MELD score 10.33 ± 6.59 10.32 ± 6.16 0.891

Medication history

L ornithine aspartate

  N 259 110 0.913

  Y 93 41

Lactulose

  N 320 133 0.333

  Y 32 18

(Continued)
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TABLE 1  (Continued)

Characteristics Training set (n = 352) Validation set (n = 151) p

Probiotic formulations

  N 324 136 0.488

  Y 28 15

Non-selective β-blockers

  N 332 138 0.241

  Y 20 13

Antiviral drugs

  N 157 63 0.558

  Y 195 88

Diuretic

  N 251 114 0.383

  Y 101 37

Rifaximin

  N 338 147 0.604

  Y 14 4

Metronidazole

  N 348 150 >0.999

  Y 4 1

Other antibiotics

  N 312 131 0.551

  Y 40 20

Blood test

  AST, U/L 80.75 ± 119.53 78.22 ± 112.38 0.388

  AKP, U/L 135.07 ± 95.08 120.52 ± 85.03 0.062

  TBil, μmol/L 45.52 ± 67.98 46.25 ± 69.06 0.675

  Alb, g/L 34.60 ± 7.00 35.02 ± 7.64 0.418

  Prolonged PT, s 3.75 ± 7.62 3.14 ± 4.05 0.397

  Cr, μmol/L 68.82 ± 26.68 70.60 ± 27.76 0.262

  BUN, mmol/L 5.44 ± 2.92 5.53 ± 2.98 0.407

CHE

  N 171 66 0.331

  Y 181 85

Y, yes; N, no; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AKP, alkaline phosphatase; GGT, g-glutamyltransferase; ALB, albumin; TBil, total 
bilirubin; Cr, creatinine; BUN, blood urea nitrogen; PT, prothrombin time; INR, international normalized ratio; MMSE, Mini-Mental State Examination; CLDQ, Chronic Liver Disease 
Questionnaire; MELD, model for end-stage liver disease; CHE, covert hepatic encephalopathy; OHE, overt hepatic encephalopathy.

TABLE 2  Performance of the eight ML models in the training set.

Model AUC Sensitivity Specificity PPV NPV Accuracy F1 Score

LightGBM 0.810 (0.779, 0.841) 0.694 (0.505, 0.883) 0.836 (0.629, 1.043) 0.852 (0.72, 0.983) 0.719 (0.588, 0.85) 0.758 (0.725, 0.792) 0.748 (0.683, 0.814)

RF 0.797 (0.758, 0.835) 0.746 (0.585, 0.907) 0.740 (0.592, 0.889) 0.773 (0.655, 0.892) 0.730 (0.602, 0.858) 0.742 (0.705, 0.779) 0.750 (0.675, 0.825)

XGBoost 0.801 (0.765, 0.838) 0.755 (0.595, 0.914) 0.78 (0.601, 0.959) 0.804 (0.673, 0.935) 0.751 (0.591, 0.911) 0.761 (0.731, 0.792) 0.768 (0.714, 0.822)

AdaBoost 0.774 (0.74, 0.808) 0.695 (0.497, 0.894) 0.72 (0.515, 0.925) 0.773 (0.671, 0.874) 0.689 (0.585, 0.793) 0.716 (0.69, 0.742) 0.716 (0.636, 0.795)

ANN 0.653 (0.582, 0.724) 0.624 (0.381, 0.867) 0.703 (0.494, 0.913) 0.731 (0.648, 0.815) 0.636 (0.591, 0.681) 0.676 (0.643, 0.709) 0.656 (0.503, 0.809)

DT 0.655 (0.575, 0.736) 0.659 (0.495, 0.823) 0.675 (0.493, 0.857) 0.707 (0.543, 0.871) 0.635 (0.506, 0.763) 0.656 (0.596, 0.717) 0.667 (0.588, 0.746)

ET 0.791 (0.743, 0.838) 0.82 (0.737, 0.902) 0.716 (0.574, 0.858) 0.772 (0.666, 0.877) 0.772 (0.671, 0.872) 0.767 (0.739, 0.795) 0.789 (0.767, 0.811)

GBM 0.703 (0.62, 0.786) 0.752 (0.575, 0.929) 0.634 (0.476, 0.793) 0.705 (0.564, 0.845) 0.708 (0.547, 0.869) 0.693 (0.618, 0.769) 0.718 (0.616, 0.819)

https://doi.org/10.3389/fmed.2025.1686005
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al.� 10.3389/fmed.2025.1686005

Frontiers in Medicine 08 frontiersin.org

FIGURE 4

SHAP analyses of the LightGBM model for predicting CHE in cirrhotic patients. (A) Mean absolute SHAP value bar plot. This plot ranks the top 20 
features by their mean absolute SHAP value, which represents their overall importance in the model’s predictions. A larger bar indicates a greater 
average impact on the model output. (B) SHAP summary plot (beeswarm plot). This plot shows the distribution of the impact each feature has on the 
model output for every patient in the dataset. Each dot represents a single patient.

neuropsychological tests. For instance, hypoalbuminemia, a key 
predictor in our model, is a well-established marker of liver synthetic 
dysfunction and is associated with blood–brain barrier disruption, 
facilitating neurotoxin accumulation (29, 30). Similarly, the MMSE 
score can, to some extent, reflect the interplay between global 
cognitive function and CHE (24).

Our study addressed critical gaps in CHE prediction research. 
First, the integration of lifestyle factors (e.g., digital device usage) with 
traditional clinical variables (e.g., MELD score) provides a holistic risk 
profile, capturing both biological and psychosocial determinants of 
CHE—a paradigm shift from prior biomarker-centric models. Second, 
the rigorous feature selection pipeline (RFE + expert-guided 
collinearity reduction) optimized model parsimony. For instance, 
excluding redundant variables (e.g., ALT and INR) improved 
generalizability without sacrificing predictive power.

Despite its strengths, our study has limitations. First, the 
retrospective design may introduce selection bias, and the reliance on 
imputation for missing data (though limited to variables with <25% 
missingness) could affect model generalizability. Second, while our 
retrospective design mitigated recall bias, the cohort was restricted to 
Chinese patients, necessitating external validation in global populations 
to confirm generalizability. Third, while the LightGBM model 

TABLE 3  Performance of the three ML models in the validation set.

Model AUC Sensitivity Specificity PPV NPV Accuracy F1 Score

LightGBM 0.710 (0.708, 0.713) 0.748 (0.739, 0.757) 0.631 (0.622, 0.639) 0.689 (0.685, 0.694) 0.725 (0.72, 0.73) 0.69 (0.688, 0.692) 0.703 (0.7, 0.707)

RF 0.712 (0.71, 0.715) 0.851 (0.846, 0.855) 0.551 (0.546, 0.556) 0.665 (0.662, 0.668) 0.787 (0.783, 0.792) 0.704 (0.702, 0.706) 0.743 (0.741, 0.746)

XGBoost 0.711 (0.708, 0.713) 0.783 (0.778, 0.788) 0.612 (0.606, 0.618) 0.681 (0.677, 0.684) 0.737 (0.733, 0.742) 0.699 (0.697, 0.701) 0.723 (0.721, 0.726)

FIGURE 3

DCA analysis of three machine learning algorithms (LightGBM, RF, 
and XGBoost) in the validation set.
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demonstrated good discrimination, its moderate AUC (0.710 in the 
validation set) suggests room for improvement, potentially through the 
inclusion of additional biomarkers such as gut microbiota profiles, 
inflammatory markers, or imaging parameters. Besides, the operational 
definition of “previous computer usage” requires standardization across 
diverse socioeconomic contexts. Future prospective studies should also 
explore the integration of dynamic variables (e.g., longitudinal cognitive 
assessments) to enhance predictive accuracy.

Despite these limitations, our LightGBM model offers a pragmatic 
tool for CHE risk stratification in routine practice. By prioritizing easily 
accessible variables (e.g., albumin and MMSE scores), it could be 
seamlessly embedded into the Hospital Information System (HIS) to 
guide targeted monitoring. For clinicians, the SHAP dashboard 
provides actionable insights, transforming opaque algorithms into 
transparent decision aids (31). Furthermore, we could develop an 
interactive SHAP visualization tool to translate model outputs into 
clinician-friendly risk assessments, bridging the “black-box” gap in ML 
applications. Such tools could be integrated into the HIS to trigger real-
time alerts for high-risk patients.

In conclusion, our study presents a novel ML-based approach to 
CHE prediction, with the LightGBM model offering the best balance 
of performance and interpretability. By identifying key clinical and 
demographic predictors, this tool could facilitate early CHE detection 
and personalized management in cirrhotic patients. Future efforts 
should focus on external validation and the development of user-
friendly applications to translate this model into clinical practice, 
ultimately improving outcomes for this high-risk population.
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