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Background: Malaria, caused by Plasmodium parasites transmitted through bites

from infected female Anopheles mosquitoes, results in severe symptoms such as

anemia and potential organ failure. The high prevalence of malaria necessitates

reliable diagnostic methods to reduce the workload of microscopists,

particularly in resource-limited settings.

Methods: This paper evaluates the efficacy of an ensemble learning approach

for automated malaria diagnosis. The proposed model integrates convolutional

ensemble methods, combining outputs from transfer learning architectures

such as VGG16, ResNet50V2, DenseNet201, and VGG19. Data augmentation

and pre-processing techniques were applied to enhance robustness, and the

ensemble approach was fine-tuned for optimal hyperparameters.

Results: The ensemble achieves a test accuracy of 97.93% by combining a

evidence of CNN with multiple transfer learning models (VGG16, ResNet50V2,

DenseNet201, and VGG19), with an F1-score and precision of 0.9793 each,

outperforming standalone models like Custom CNN (accuracy: 97.20%, F1-

score: 0.9720), VGG16 (accuracy: 97.65%, F1-score: 0.9765), and CNN-SVM

(accuracy: 82.47%, F1-score: 0.8266). The method demonstrated effectiveness

in classifying parasitized and uninfected blood smears with high reliability,

addressing the limitations of manual microscopy and standalone models.

Conclusion: The proposed ensemble learning approach highlights the potential

of integrating transfer learning models to improve diagnostic accuracy for

malaria detection. This scalable, automated solution reduces reliance on manual

microscopy, making it highly applicable in resource-constrained settings and

offering a significant advancement in malaria diagnostics.
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1 Introduction 

Malaria, a debilitating disease caused by Plasmodium parasites, 
is a persistent global health challenge transmitted through the 
bites of infected female Anopheles mosquitoes. Despite decades 
of control eorts, malaria continues to impose a severe burden, 
with an estimated 229 million cases and 409,000 deaths reported 
in 2022 alone, disproportionately aecting low-resource regions, 
particularly in sub-Saharan Africa, which accounts for 92% of 
the cases and fatalities. Alarmingly, in 2023, the World Health 
Organization (WHO) recorded 214 million infections and 240,000 
deaths, highlighting the pressing need for innovative and scalable 
solutions to tackle this disease eectively (1). Figures 1, 2, along 
with Table 1, depict the devastating impact of malaria globally 
between 2019 and 2024. 

A novel ensemble framework that combines hard voting and 
adaptive weighted averaging, which distinguishes it from other 
CNN-based malaria detection techniques that typically employ 
fixed-weight averaging or simple majority voting. Stronger models 
are given more influence by adaptive weighted averaging, which 
dynamically allocates weights based on each model’s validation 
results, while hard voting ensures consensus reliability. While 
data augmentation, transfer learning, and CNN architectures 
are all popular techniques in medical imaging, this study 
is unique in that it combines numerous pre-trained models 
(VGG16, VGG19, DenseNet201, and ResNet50V2) with a custom 
CNN using an adaptive ensemble strategy. Unlike earlier 
malaria detection methods, which rely on a single model, 
this framework leverages the complimentary characteristics of 
numerous architectures, resulting in higher diagnostic accuracy 
and robustness. This integrated architecture distinguishes the 
proposed approach from previous methods while emphasizing 
its potential therapeutic usefulness. A key contribution of our 
study is the two-tiered ensemble technique, which enhances 
accuracy and resilience. Traditional diagnostic methods, such as 
the microscopic examination of blood smears, are labor-intensive, 
time-consuming, and prone to human error. These challenges are 
particularly pronounced in resource-constrained settings where 
the disease burden is highest (2). Modern advancements in 
machine learning (ML) have shown transformative potential 

FIGURE 1 

Total deaths recorded during 2019–2024. 

in automating the diagnostic process, oering high accuracy 
and speed. Early studies have demonstrated the eectiveness 
of algorithms like Naive Bayes, Logistic Regression, Decision 
Tree, Support Vector Machine, and Random Forest in malaria 
detection tasks (3, 4). However, individual models often face 
limitations in generalizing across diverse datasets and addressing 
the complexities of malaria diagnosis. Ensemble learning, which 
combines predictions from multiple models, has emerged as a 
promising solution by leveraging the strengths of individual models 
while mitigating their weaknesses (5, 6). This approach enhances 
the robustness, precision, and reliability of automated diagnostic 
systems. Rural clinics and community health initiatives frequently 
encounter limited laboratory equipment, a scarcity of experienced 
microscopists, and delays in obtaining valid data. The proposed 
ensemble learning framework solves these issues by providing 
an automated, scalable method for accurate malaria diagnosis in 
low-resource environments. This strategy improves point-of-care 
screening and enables prompt treatments in underserved areas. 

Compared to individual models, ensemble learning can 
improve robustness and generalization, which is why it was used 
in this work. The inherent diversity in medical imaging datasets 
may be diÿcult for standalone deep learning systems to properly 
capture and they are susceptible to overfitting. By utilizing the 
complementing qualities of several models, ensemble approaches 
reduce variation and increase stability in order to overcome these 
problems. Compared to single-model baselines, the suggested 
framework delivers higher diagnostic accuracy and reliability by 
combining VGG16, VGG19, DenseNet201, and a bespoke CNN. 

Despite the widespread use of methods like data augmentation, 
transfer learning, and CNN-based architectures in medical 
imaging, this work is novel in that it uses an adaptive ensemble 
strategy to integrate several pre-trained models (VGG16, VGG19, 
DenseNet201, and ResNet50V2) with a custom CNN. Through 
the utilization of these architectures’ complimentary qualities, 
the suggested framework successfully lessens the drawbacks of 
each model alone. This demonstrates how unique our ensemble 
approach is and sets it apart from earlier malaria detection research. 

Preprocessing plays a pivotal role in improving the quality 
of blood smear images, ensuring more accurate downstream 
processing steps such as feature extraction, cell segmentation, and 
classification (7, 8). For instance, applying smoothing filters like 
Gaussian and median filters eectively reduces noise and artifacts 
in microscopic images (9, 10). Previous research has explored the 
use of deep learning and machine learning techniques to enhance 
malaria diagnostic accuracy and eÿciency (11, 12). Notably, 
methods focusing on Plasmodium detection in optical microscopy 
images have demonstrated significant advancements (13, 14). 
Smartphone-based deep learning tools have also shown potential 
in creating complex systems for real-time malaria detection (15– 
17), while innovative approaches using quantitative phase imaging 
or mid-infrared spectroscopy oer alternative diagnostic pathways 
(18, 19). 

Eorts to combat malaria have predominantly targeted 
Plasmodium falciparum, the deadliest parasite species. However, 
global objectives, such as reducing malaria-related deaths and case 
incidence by 90% by 2030 and achieving complete eradication 
by 2040, necessitate a broader focus and innovative strategies. 
Emerging techniques like Generative Adversarial Networks 
(GANs) for image synthesis and denoising, or reverse convolution 
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FIGURE 2 

Total no. of cases recorded around the globe during 2019–2024. 

TABLE 1 Recorded cases of malaria around the globe. 

S. No. Year Total cases 
recorded in 
the world 

Total 
deaths 

1. 2024 250 million 610,000 

2. 2023 240 million 609,000 

3. 2022 254 million 646,700 

4. 2021 234 million 619,000 

5. 2020 249 million 625,000 

6. 2019 233 million 568,000 

for image compression, further illustrate the potential of AI-
driven solutions in addressing diagnostic challenges (20, 21). 
EÿcientNet, a deep learning-based technique for identifying 
Malaria, is proposed using red blood cell pictures (22). A review 
using the PRISMA framework examines 50 studies (2015–2023) on 
AI-based malaria diagnosis, identifying common methodologies, 
important challenges such as inadequate validation and species 
categorization, and providing suggestions to improve future 
automated diagnostic and treatment eorts (23). Table 2 provides a 
comparative analysis of existing approaches for malaria prediction 
and diagnosis, highlighting their advantages and limitations. 

Despite significant advancements in malaria diagnosis using 
ML and deep learning (DL), existing approaches exhibit several 
limitations. Many studies rely on single-model architectures 
that struggle to generalize across diverse datasets, often leading 
to inconsistencies in performance when applied to real-world 
scenarios with varying image quality, noise levels, and clinical 
conditions (24, 28). Traditional diagnostic workflows, although 
enhanced with ML, frequently lack robustness in handling complex 
cases such as varying malaria severity, relapse patterns, and 
geographic dierences in parasite strains (25, 26). Moreover, 
standalone models are prone to overfitting and may fail to adapt 
to the evolving nature of data, especially in resource-limited 
settings where input quality is inconsistent (27). Certain studies 
employ handcrafted feature extraction, which may inadvertently 

ignore critical patterns, while others focus solely on individual 
performance metrics without evaluating the practical application 
or scalability of the model. Recent developments in medical 
imaging have increasingly relied on machine learning and deep 
learning approaches to automate diagnosis. Multimodal masked 
autoencoders with adaptive masking have been used to accurately 
classify vitiligo stages, highlighting the power of deep learning 
for skin lesion analysis (29). Feature fusion techniques have been 
used to predict protein subcellular localization, demonstrating 
the value of combining various data views for better biological 
interpretation (30). Neuromorphic-enabled video-activated cell 
sorting is an example of AI-driven automation in cellular analysis 
(31), while deep neural networks have been used to predict 
dementia from imaging datasets (32). Furthermore, bio-imaging-
based machine learning algorithms have demonstrated great 
accuracy in breast cancer detection, highlighting the growing 
importance of computational techniques in assisting clinical 
decision-making (33). Reports of autoimmune consequences 
include hemophagocytic lymphohistiocytosis after encephalitis, 
while SIRT6 has been demonstrated to guard against inflammation 
in pulmonary endothelial cells caused by lipopolysaccharide. 

By combining the complimentary advantages of several models, 
ensemble learning lowers overfitting and enhances generalization 
over a range of visual attributes. Compared to employing a 
single model, mixing multiple architectures improves diagnostic 
resilience and accuracy in malaria detection, where cell morphology 
and picture quality can vary greatly. In addition to accuracy, 
ensemble approaches can manage a greater variety of imaging 
settings, including changes in staining or lighting, which can 
mask important cellular properties. Ensembles reduce the biases 
of individual architectures by combining predictions via voting 
or weighted average, oering a more thorough evaluation of cells 
aicted with malaria. Because pre-trained weights from sizable 
picture datasets oer a solid foundation—a benefit in medical 
imaging, where labeled data is frequently scarce and expensive— 
incorporating transfer learning significantly speeds up training. 
Performance can be further enhanced by ongoing observation and 
adjustment on fresh datasets. All things considered, the ensemble 
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TABLE 2 Comparative analysis of existing approaches for malaria predictions. 

References Approach Technique Performance Limitations of 
the studies 

Advantage of 
proposed model 

Nayef et al. (24) The proposed method 

analyses malaria-infected 

blood smear images 
using fuzzy logic and 

edge detection 

techniques. It uses 
mobile hardware for 

real-time analysis in 

remote settings. 

The technique uses fuzzy 

logic-inspired edge 

detection, designing 

membership functions, 
fuzzy inference rules, 
defuzzification, and 

hardware optimization 

for real-time processing. 

Eÿcient real-time 

edge detection for 

low-contrast images; 
performs well in 

remote settings. 

Limited to edge detection 

and lacks deep learning’s 
advanced feature 

extraction capabilities; 
struggles with highly 

complex datasets. 

Integrates deep learning and 

ensemble learning for robust 
feature extraction, achieving 

higher accuracy and 

generalization in complex 

datasets. 

kaggle et al. (25) Artificial intelligence 

(AI) tools for diagnosing 

microbiological diseases 
using machine learning 

and deep learning. 

Uses supervised, 
unsupervised, and deep 

learning methods for 

genomics and 

bioinformatics to detect 
and predict diseases. 

Highly accurate 

detection and 

prediction of 
microorganisms; 
supports 
pathologists. 

Limited focus on malaria 

detection; not optimized 

for microscopic image 

analysis. 

Tailored specifically for malaria 

detection with specialized CNN 

architectures and ensemble 

learning for precise classification 

of infected cells. 

Bias et al. (26) Automated system for 

detecting 

malaria-infected cells 
using Importance-Aware 

Balanced Group SoftMax 

(IBGS). 

Employs CNNs with 

importance-aware 

weighting and balanced 

group SoftMax for 

minority class detection. 

Improved recall for 

infected cells with 

reduced false 

negatives. 

Limited to addressing 

class imbalance; may not 
generalize well across 
diverse datasets or 

variable image quality. 

Utilizes data augmentation and 

ensemble learning to improve 

generalizability and resilience to 

image quality variations. 

Ikerionwu et al. 
(12) 

Employs sophisticated 

image analysis 
techniques to develop 

novel malaria diagnostic 

tools. 

Focuses on automation 

for scalability and 

eÿciency, reducing 

diagnosis time. 

Success rates for 

models: SVM 

(27.9%), KNN 

(11.6%), Random 

Forest (7.0%). 

Low performance 

metrics highlight 
ineÿciency in real-world 

diagnostic scenarios. 

Achieves state-of-the-art testing 

accuracy (97.93%) by integrating 

CNN and ensemble learning 

strategies. 

Marletta et al. 
(27) 

Weakly supervised deep 

learning strategy for 

malaria and sickle cell 
detection using Multiple 

Instance Learning (MIL). 

CNNs with MIL 

framework predict sick 

cells using weak 

supervision and 

augmentation. 

Competitive 

performance with 

reduced false 

negatives; scalable 

for clinical use. 

Weak supervision may 

limit the model’s 
precision on highly 

detailed or complex 

datasets. 

Fully supervised training and 

hyperparameter tuning ensure 

precise and robust performance 

across varied datasets. 

Harvey et al. 
(13) 

Machine learning and 

deep learning for 

precision malaria 

diagnosis via optical 
microscopy. 

Forecasts malaria 

outbreaks using 

historical epidemic data 

with machine learning. 

Achieves 30% 

accuracy and 99% 

recall for epidemic 

warnings. 

Focuses on forecasting 

rather than direct 
cell-based malaria 

detection; lower accuracy 

for predictions. 

Directly targets malaria detection 

at the cellular level, oering 

superior accuracy and recall. 

Masud et al. (15) Employs cutting-edge 

neural network 

architectures for accurate 

malaria parasite 

identification. 

Uses advanced deep 

learning algorithms for 

healthcare and 

mobile-based 

diagnostics. 

Achieves 97.30% 

accuracy for cell 
classification. 

Limited ensemble 

strategies; lacks 
optimization for image 

quality inconsistencies. 

Incorporates ensemble methods 
with adaptive learning strategies 
to enhance classification and 

reduce inconsistencies. 

Fuhad et al. (16) Deep learning techniques 
for automating malaria 

parasite detection in 

blood smears. 

Combines CNN-based 

feature extraction with 

SVM/KNN classifiers, 
data augmentation, and 

auto-encoder 

optimization. 

Achieves 99.23% 

accuracy with 

eÿcient operations. 

Focuses on single deep 

learning models, which 

may overfit or lack 

robustness for diverse 

datasets. 

Combines multiple deep learning 

approaches through ensemble 

learning for improved robustness 
and reduced overfitting. 

Hemachandran 

et al. (10) 
Framework for 

diagnosing malaria using 

CNN, MobileNetV2, and 

ResNet50. 

Optimizes memory and 

computation for mobile 

deployment with 

compact CNN models. 

ResNet50 achieves 
97% accuracy and 

recall; f1-scores of 
0.97 for both 

ResNet50 and 

MobileNetV2. 

Mobile deployment 
prioritizes resource 

optimization over 

diagnostic accuracy. 

Focuses on high diagnostic 

accuracy with ensemble learning 

while remaining adaptable for 

mobile applications. 

Mwanga et al. 
(18) 

Combines logistic 

regression and 

mid-infrared 

spectroscopy for malaria 

detection from dried 

blood spots. 

Uses spectroscopy and 

logistic regression for 

field-friendly malaria 

detection. 

Achieves 92% 

accuracy for P. 
falciparum 

detection; 85% for 

mixed infections. 

Limited to specific data 

types (dried blood spots); 
lower accuracy for mixed 

infections. 

Specializes in microscopic blood 

smear analysis, providing higher 

accuracy and versatility for varied 

infection types. 

(Continued) 
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TABLE 2 (Continued) 

References Approach Technique Performance Limitations of 
the studies 

Advantage of 
proposed model 

Sahu et al. (21) Machine learning for 

predicting malaria risk 

from clinical data. 

Logistic regression, 
decision tree, Gaussian 

NB, and random forest 
models; feature selection 

for prediction 

optimization. 

Decision tree 

achieves highest 
accuracy (96.44%); 
random forest 
achieves 95.96% 

accuracy. 

Relies on clinical data 

rather than image-based 

diagnosis; limited to 

prediction, not detection. 

Excels in image-based malaria 

detection, providing direct 
diagnostic capabilities rather than 

risk prediction. 

Sukumarran 

et al. (23) 
A systematic evaluation 

of 50 studies (2015-2023) 
on ML/DL for malaria 

detection using blood 

smears. 

Classical ML (SVM, 
KNN, XGBoost) and 

deep learning models 
(VGG, ResNet, 
DenseNet, MobileNet, 
EÿcientNet, YOLO). 

Deep learning, 
particularly transfer 

learning, 
outperforms 
machine learning, 
with accuracies 
frequently exceeding 

95%. 

The paper focused on 

binary classification, 
lacked cross-dataset 
validation, and 

overlooked multi-stage 

or species identification. 

Lightweight transfer learning 

models integrate high accuracy 

and field eÿciency. 

Mujahid et al. 
(22) 

Hybrid CNN with 

feature selection 

CNN feature extraction + 

PSO for feature selection 

Accuracy > 97% on 

NIH dataset 
Single dataset, added 

complexity, limited 

interpretability 

Reduces overfitting via feature 

selection 

FIGURE 3 

Process of performing the prediction. 

approach not only produces instant improvements in predicted 
accuracy but also creates a foundation for an adaptable system that 
can change in tandem with advancements in diagnostic techniques 
and imaging technology. 

This paper addresses these gaps by proposing a novel ensemble 
learning framework that combines the strengths of multiple 
state-of-the-art transfer learning models, including VGG16, 
ResNet50V2, DenseNet201, and Custom Convolutional Neural 
Network (CNN). By aggregating predictions using advanced 
ensemble techniques such as weighted mean and hard voting, 

the proposed framework enhances diagnostic accuracy and 
robustness. Additionally, the systematic workflow introduced in 
this paper—encompassing image preprocessing, segmentation, 
feature selection, and classification—ensures a comprehensive and 
adaptable diagnostic pipeline. Unlike existing approaches, the 
proposed work prioritizes scalability and real-world applicability, 
demonstrating superior performance in diverse and challenging 
diagnostic scenarios. By leveraging ensemble learning, this work 
mitigates the limitations of individual models, providing a 
reliable and eÿcient solution to the complex challenges of 
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malaria detection. The contributions of the proposed work 
include: 

• A systematic four-stage diagnostic workflow (image 
pre-processing, segmentation, feature selection, and 
classification), 

• Innovative ensemble techniques (weighted mean and hard 
voting), 

• A comprehensive evaluation of the models, and 
• Demonstrating its potential to address clinical challenges 

such as varying severity, relapse patterns, and geographic 
prevalence of malaria. 

The proposed ensemble outperforms individual models, 
achieving enhanced accuracy and reliability, addressing the clinical 
complexities of malaria, including varying symptom severity and 
geographic prevalence. By bridging the gap between traditional 
diagnostic approaches and modern AI-driven techniques, this 
work aims to provide a scalable and robust solution for 
automated malaria detection. The findings hold significant 
implications for improving diagnostic capabilities, particularly in 
underserved regions, contributing to global malaria control and 
eradication eorts. 

This method uses a weighted ensemble strategy designed for 
malaria cell image classification, in contrast to other ensemble-
based systems that often use uniform averaging or simple majority 
voting. Through the integration of complimentary deep learning 
models (VGG16, DenseNet201, and VGG19), the suggested 
approach improves robustness and performance by utilizing each 
model’s distinct feature extraction capabilities. 

The remainder of this paper is organized as follows: materials 
and methodologies are detailed, results and discussions are 
presented, and conclusions are drawn to outline the impact and 
future potential of this research. 

2 Materials and methods 

This section outlines the dataset, preprocessing techniques, 
data augmentation, transfer learning frameworks, ensemble 
learning techniques, and custom CNN architecture employed in 
this paper to develop an eÿcient malaria detection system. Detailed 
steps, equations, and hyperparameter optimization are provided to 
ensure reproducibility. Figure 3 presents the process of performing 
the malaria prediction. 

2.1 Dataset description 

This research work utilizes a robust dataset sourced from 
the National Institutes of Health (NIH), comprising a total of 
21,322 microscopic cell images, 13,779 of which were parasitized 
and 7,543 of which were not. The pictures were taken from 
thin Giemsa-stained blood smears. The analysis was conducted 
using only the NIH dataset; no other datasets were included. 
The restricted diversity of this dataset may limit the findings’ 
generalizability, despite the fact that it is frequently used in 
studies on malaria detection. The dataset plays a pivotal role 

FIGURE 4 

Microscopic images of malaria used for malaria prediction. 

FIGURE 5 

Resized pictures of malaria cells used for malaria prediction. 

in developing an ensemble learning-based system for malaria 
diagnosis. These images, captured at high resolution, are annotated 
to indicate whether the red blood cells are parasitized (infected with 
malaria) or uninfected. The characteristics of the dataset and the 
preprocessing strategies ensure consistency and accuracy for model 
training and evaluation. The dataset consists of: 

• 13,779 parasitized cell images: Red blood cells infected with 
malaria parasites. 

• 7,543 uninfected cell images: Healthy red blood cells devoid of 
infection. 

The dataset is visually rich, capturing a diverse range of 
cells across dierent conditions and visual features, as shown 
in Figures 4, 5. Each image in the dataset is labeled, aiding in 
supervised learning for binary classification. Despite its overall 
quality, a subset of the dataset revealed mislabelling issues, 
impacting approximately 5% of entries: 

• 750 uninfected cells were mislabelled as parasitized. 
• 647 parasitized cells were mislabelled as uninfected. 

These errors were identified and rectified with the help 
of domain experts to ensure that the training data was 
accurate and reliable. 

The National Institutes of Health (NIH) made 21,322 cell 
photos available on Kaggle, which served as the dataset for this 
research. It is made up of 13,780 parasitised and 7,543 uninfected 
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TABLE 3 Parameter values for each augmentation technique. 

Augmentation technique Parameter value 

Random rotation ± 30 

Zoom Up to 20% 

Flipping Horizontal and vertical 

Rescaling 1/255 

cells that were taken from thin blood smear slides stained with 
Giemsa. To ensure reader clarity, this is specifically acknowledging 
both the NIH and Kaggle sources in the Methods section rather 
than referring to the dataset alone in the supplemental materials. 
The dataset exhibits the following properties that necessitate 
specific preprocessing steps for eective use in machine learning: 

• Image dimensions: 
◦ Original image sizes range between 110 and 150 pixels. 
◦ To ensure uniformity and compatibility with the CNN 

architecture, images were resized to 64 × 64 pixels. This 
reduction maintains essential features while optimizing 
computational eÿciency. 

• For train-test split, the dataset was divided into: 
◦ 80% for training: 17,057 images used for model training 

and validation, enabling the network to learn from a diverse 
set of features. 

◦ 20% for testing: 4,265 images reserved for evaluating the 
generalization and robustness of the trained model. 

• Visual representation: 
◦ Figure 4, displays examples of parasitized and uninfected cells, 

illustrating the diversity and complexity of the dataset. 
◦ Figure 5, demonstrates the resized images post-preprocessing, 

showcasing uniform dimensions critical for training deep 
learning models. 

This NIH dataset serves as an invaluable resource for malaria 
prediction due to its scale, diversity, and richness. The challenges 
posed by mislabelled entries indicate the importance of data 
quality and domain expertise in ensuring accurate model training. 
Furthermore, the careful splitting of the dataset ensures a 
balance between training eÿciency and testing reliability, forming 
the foundation for robust model evaluation. By systematically 
preparing and preprocessing this dataset, the paper establishes 
a solid groundwork for building an advanced machine-learning 
system capable of diagnosing malaria with high precision 
and reliability. 

2.2 Data preprocessing 

Eective preprocessing is a critical step in any machine 
learning workflow, particularly in medical image analysis. For this 
study, a systematic data preprocessing pipeline was implemented 
to ensure high-quality, standardized inputs for model training 
and evaluation. By normalizing image data, reducing noise, 
and addressing class imbalances, the preprocessing stage lays a 
strong foundation for developing an accurate and robust malaria 
diagnosis system. 

2.2.1 Normalization 
Normalization is essential to scale image pixel values to a 

uniform range, thereby enhancing computational eÿciency and 
model convergence during training. For this dataset, pixel values 
ranging from 0 to 255 were scaled to a normalized range of (0,1). 
The raw pixel values are scaled by Equation 1 from [0,255] to [0,1], 
guaranteeing that all inputs are normalized before to being supplied 
to the network (1). 

Inormalized = 
Ioriginal 

255 
(1) 

Here: 

• Ioriginal represents the original pixel intensity values. 
• Inormalized refers to the scaled intensity values. 

This step ensures that all input features are on a similar scale, 
preventing certain pixels from disproportionately influencing the 
model. Additionally, it facilitates faster and more stable learning by 
neural networks. 

2.2.2 Noise reduction 
Medical images often contain visual artifacts and noise, which 

can obscure critical features necessary for accurate classification. To 
mitigate these issues: 

• Gaussian filters: Applied to blur the images and reduce 
high-frequency noise while preserving edges. This technique 
ensures smooth transitions between pixel intensities, 
enhancing feature extraction. 

• Median filters: Used to remove salt-and-pepper noise, 
replacing each pixel’s value with the median of its 
neighborhood. This operation eectively preserves edges 
while eliminating outliers. 

By reducing noise, these filtering methods improve the 
clarity of microscopic cell images, ensuring that the machine 
learning model focuses on relevant diagnostic features rather than 
extraneous artifacts. 

2.2.3 Class balance 
Class imbalance and labeling errors can significantly impact 

the training process, leading to biased or inaccurate models. 
Addressing these issues involved two critical steps: 

• Mislabelling corrections: Experts in the hematology domain 
provided input to correct the dataset/s mislabeled samples. 
Two experts independently reviewed images that were 
thought to be possibly mislabeled, and labels were changed 
depending on their agreement. In order to guarantee label 
correctness and dependability before model training, any 
disputes were settled through dialogue. 

◦ Expert validation was employed to rectify labeling 
errors in the dataset. 

◦ Specifically, 750 uninfected cells initially mislabelled as 
parasitized and 647 parasitized cells mislabeled as uninfected 
were corrected, ensuring a reliable ground truth for training. 

• Data augmentation for class imbalance: 
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FIGURE 6 

Augmented cells used for malaria prediction. 

FIGURE 7 

Working of the ensemble approach. 

FIGURE 8 

Ensemble method for malaria prediction. 

◦ To counter class imbalance, various data augmentation 
techniques were employed. These included random 
rotations, flips, zooms, and scaling, as detailed in the 
augmentation pipeline. 

◦ Augmentation not only increased the quantity of training 
data but also introduced variability, enabling the model to 
generalize better to unseen samples. 

• Mislabeled data correction: 

Experts in hematology assessed images with dubious 
classifications, and consensus was reached to make adjustments. 
A two-step procedure that involved independent evaluation by 

two experts and conversation to settle any discrepancies was used 
to guarantee reliability. This method generated precise, superior 
labels for training the model. 

Hematology specialists examined every image that was marked 
as suspicious or possibly mislabeled in order to guarantee the 
validity of the data. Expert consensus led to revisions in the labels. 
To ensure trustworthiness, a two-step verification method was 
used: 

i. Independent evaluation by two experts. 
ii. Settlement of any disputes to arrive at a final consensus. 
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FIGURE 9 

Workflow of the proposed ensemble learning for malaria parasite 
detection. 

By reducing errors that could impair model performance, this 
process guarantees that the dataset used for model training is 
precise and of high quality. 

This preprocessing pipeline ensures that the dataset is clean, 
balanced, and normalized for optimal performance during training. 
The integration of normalization, noise reduction, and class 
balancing techniques addresses key challenges associated with 
medical image datasets, such as variability in image quality and 
class distribution. Consequently, these preprocessing strategies 
enhance the robustness and reliability of the ensemble learning-
based malaria detection system. 

2.3 Data augmentation 

Data augmentation is a crucial technique in DL, particularly for 
medical imaging, where obtaining large and diverse datasets can 
be challenging. In this study, data augmentation techniques were 
employed to expand the dataset artificially, introducing variations 
that help improve the model’s ability to generalize across unseen 
samples. By applying a range of transformations, the augmented 
dataset retains its original diversity while simulating real-world 
variability in microscopic images. To enhance the dataset and 

improve model performance, several augmentation techniques 
were applied: 

• Random rotation: Images were rotated randomly within a 
range of ± 30◦ . This introduces angular variability, helping 
the model learn features independent of orientation. 

• Zooming: A random zoom transformation of up to 20% was 
applied. This simulates variations in magnification during 
image acquisition, improving the model’s robustness to 
changes in scale. 

• Flipping: Horizontal and vertical flips were incorporated 
to ensure that the model recognizes malaria-infected cells 
regardless of their alignment or orientation. 

• Rescaling: All pixel values were rescaled to the range (0,1) 
using a factor of 1/255, consistent with normalization 
practices, to ensure uniformity and compatibility with the 
model input pipeline. 

Table 3 outlines the parameter values for each augmentation 
technique applied in this paper, while Figure 6 provides visual 
examples of the transformed images. These settings were carefully 
chosen to preserve the biological relevance of the dataset while 
introducing meaningful variability. These transformations were 
implemented uniformly across all images in the dataset, ensuring 
consistency during preprocessing. 

By introducing a wide range of transformations, the augmented 
dataset helps the model generalize better to unseen data, reducing 
the risk of overfitting. While the data augmentation eectively 
balances classes and increases sample diversity, addressing inherent 
limitations in the original dataset. Variations such as rotations, 
flips, and zooms prepare the model to handle real-world scenarios, 
where image orientation and magnification may vary. Figure 6 
illustrates examples of augmented images, highlighting the diversity 
introduced by the applied transformations. These augmented 
images demonstrate how the dataset maintains its biological 
characteristics while incorporating meaningful variability, ensuring 
that the malaria detection model can perform accurately and 
robustly across diverse input scenarios. By employing these 
augmentation techniques, the paper ensures a rich and varied 

FIGURE 10 

Architecture of custom CNN architecture for malaria prediction. 
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TABLE 4 Transfer learning models with their coefficient measure. 

Coefficients Class/measure 

Dimension 64 × 64 

Sample quantity 42 

Pooling 2 × 2 

Epochs 105 

Pre-initialized factors ImageNet 

Stimulation mechanism SoftMax 

Optimizer Adam 

Optimization coeÿcient 1e-04 

training dataset, which is pivotal for the success of the ensemble-
based malaria prediction system. 

2.4 Transfer learning frameworks 

To leverage the power of existing state-of-the-art DL 
architectures, this paper utilized pre-trained models—VGG16, 
VGG19 (34), and DenseNet201—within a transfer learning 
framework. These models, pre-trained on large-scale image 
datasets like ImageNet, were fine-tuned to adapt to the specific task 
of malaria diagnosis using microscopic images. By modifying their 
architecture and hyperparameters, these models were optimized 
for accurate classification of parasitized and uninfected cells. 

The pre-trained models were utilized for feature extraction, 
taking advantage of their hierarchical feature representation 
capabilities (35–38). These models are particularly eective in 
extracting both low-level and high-level features, which are crucial 
for identifying malaria-infected cells. The key adjustments made 
to adapt these models include, modification of dense layers; The 
final dense layers of the pre-trained models were replaced with 
fully connected layers tailored for binary classification (infected 
vs. uninfected). This adjustment ensures that the models focus 
on malaria-specific features, rather than the general-purpose 
features learned during pre-training. Several hyperparameters were 
optimized to enhance the performance of the models, the batch 
size was set to 32, ensuring a balanced trade-o between memory 
eÿciency and gradient update frequency. Epochs were defined as 
100, allowing suÿcient iterations for the model to learn from the 
training data, and the learning rate was adjusted to 104 , providing 
a stable and gradual learning process, avoiding overshooting or 
stagnation during optimization. 

The strength of transfer learning lies in its ability to utilize 
pre-trained layers for hierarchical feature extraction. The initial 
layers of VGG16, VGG19, and DenseNet201 focus on capturing 
fundamental patterns like edges and textures, which are critical 
for distinguishing cellular structures in microscopic images. While 
the deeper layers are responsible for learning more abstract 
representations, such as the presence of parasitic artifacts, enabling 
precise classification. The fine-tuned models were trained and 
validated using the pre-processed dataset, ensuring that they 
adapt eectively to the malaria diagnosis task. Specific techniques 
employed to enhance optimization include, utilizing the Adam 
optimizer to dynamically adjusts learning rates for each parameter, 

TABLE 5 Coefficient measures that need to be fine-tuned. 

Coefficients Class/measures 

Dimension 64 × 64 

Sample quality 22 

Iterations 98 

Constraint 0.002 

Omission 0.1 

Stimulation mechanism SoftMax 

Optimizer Adam 

Optimization coeÿcient 1e-04 

and accelerate convergence while minimizing errors. The loss 
function was tailored to the binary nature of the classification 
task, eectively minimizing the gap between predicted and true 
labels. Also, regularization methods, such as L2 regularization 
and dropout layers, were incorporated to reduce overfitting and 
enhance the robustness of the models (39). 

Overall, leveraging pre-trained models significantly reduces 
the time and computational resources required for training, as 
most of the feature extraction is already accomplished. The 
hierarchical feature extraction capabilities of VGG16, VGG19, and 
DenseNet201 improve the model’s ability to identify parasitized 
cells accurately. Fine-tuning these architectures ensures that the 
models generalize well to the specific dataset while retaining their 
high baseline performance. By incorporating transfer learning 
frameworks, this paper eectively harnesses the power of pre-
trained DL models, significantly enhancing the accuracy and 
eÿciency of malaria diagnosis. These models form the backbone 
of the proposed ensemble method, which further improves 
performance by combining their individual strengths. For transfer 
learning, we used VGG16, VGG19, DenseNet201, and ResNet50V2 
as foundation models. These designs were chosen because of their 
computational eÿciency, availability of pretrained weights, and 
demonstrated eÿcacy in medical imaging. The focus on testing 
a well-established set of CNN models to assure repeatability and 
increased computing needs prevented the inclusion of newer 
architectures, such as EÿcientNet and Vision Transformers, despite 
their promising performance in recent studies. These more recent 
architectures may be investigated in future research for possible 
performance improvements. 

2.5 Ensemble learning methodology 

To achieve superior robustness and accuracy in malaria 
diagnosis, an ensemble learning methodology was adopted. 
This technique combines the predictions of multiple models, 
eectively harnessing their individual strengths to deliver enhanced 
diagnostic precision. The ensemble method employed two 
strategies: Weighted Mean Ensemble and Hard Voting. 

The Weighted Mean Ensemble method calculates a weighted 
average of predictions from multiple models to produce the final 
output. The formula governing this approach is: 

Pensemble = 
nX 

i = 1 

wiPi (2) 
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FIGURE 11 

Architecture of CNN-ML classifier model for malaria prediction. 

Where: 

• Pensemble: The final ensemble prediction. 
• wi: The weight assigned to the ith model, reflecting 

its contribution. 
• Pi: The prediction probability from the ith model. 
• n: The total number of models in the ensemble. 

Equation 2 defines a weighted average of the individual model 
outputs, which provides the final ensemble prediction. Three model 
combinations were used, with specific weights assigned to each. 
Model 1 was a combination of VGG16 and VGG19 with weights, 
w1 0.7, and w2 0.6. This pairing utilizes the complementary 
feature extraction capabilities of VGG16 and VGG19. Model 2 was 
a combination of VGG19 and DenseNet201 where weights, w1 0.6, 
and w2 0.5. This model benefits from DenseNet201’s eÿcient 
feature reuse and VGG19’s deeper network structure. Model 3 was 
a combination of VGG16 and DenseNet201 were weights, w1 0.4, 
and w2 0.5. This combination balances the simplicity of VGG16 
with the densely connected architecture of DenseNet201. These 
weighted combinations ensure that the strengths of each model are 
appropriately prioritized in the final prediction. 

The Hard Voting approach determines the final prediction 
based on a majority vote among the individual model predictions. 
The mathematical representation is given in Equation 3: 

Pfinal = mode (P1, P2, ..., Pn) (3) 

Where: 

• Pfinal: The final aggregated prediction. 
• P1, P2, ..., Pn: Predictions from individual models. 

In this approach, each model contributes equally, and the 
prediction category with the majority votes is selected as the final 

output. Hard voting is particularly eective in scenarios where 
the models have varied prediction patterns, ensuring consensus-
driven accuracy. 

The ensemble methodology oers several advantages; by 
combining multiple models, the ensemble reduces the impact 
of errors from individual predictions. The ensemble approach 
mitigates the risks of overfitting that may occur when relying on 
a single model. The weighted mean approach allows fine-tuning 
of weights to adapt to specific datasets or classification challenges. 
Adaptive weighted averaging and hard voting are used in the 
ensemble to integrate base models. Adaptive weighting dynamically 
distributes weights to each model based on validation results, giving 
stronger models more sway than traditional fixed-weight averaging. 
The ensemble outperforms fixed-weight techniques in terms of 
accuracy and robustness thanks to this data-driven methodology. 
For example, compared to a fixed-weight ensemble, grid search on 
the validation set produced better overall validation accuracy by 
identifying the ideal weights for every model combination. Figure 7 
illustrates the workflow of the ensemble learning methodology, 
showcasing the integration of predictions from multiple models 
through weighted averaging and hard voting mechanisms. Figure 8 
visually represents the ensemble approach, highlighting the 
intricacies of this innovative methodology. Figure 9 illustrates 
the wfiguorkflow of the proposed ensemble learning for malaria 
parasite detection.Overall, this ensemble strategy forms a crucial 
part of the proposed malaria prediction framework, ensuring 
reliable and precise classification across diverse scenarios. 

Three ensemble combinations were employed, and a certain 
weight was given to each model. With validation accuracy 
serving as the optimization criterion, the weights were found 
using a grid search in increments of 0.1 within the range (0.1– 
0.9). Grid search was chosen because it was straightforward, 
reproducible, and appropriate for computing restrictions, even 
though Bayesian optimization was taken into consideration. In the 
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FIGURE 12 

Architecture of VGG16 used for malaria prediction. 

process, models that performed better on their own, such VGG19 
and DenseNet201, were inherently given more weight. For instance, 
the ideal weights in Model 1 (VGG16+VGG19) were 0.4 and 0.6, 
respectively. Table 12 provides an overview of the ideal weights for 
every ensemble combination. 

2.6 Algorithm: malaria detection 
ensemble framework 

2.6.1 Dataset D: microscopic cell images as input 
Predicted class labels (infected or uninfected) are the output. 
1. Preprocessing 

a. Normalize pixel values to fall between 0 and 1 
b. Use Gaussian and median filters to reduce noise 
c. Make all pictures 64 by 64 pixels. 
d. Use expert review to validate and correct samples that have 

been incorrectly labeled. 

2. Augmenting data 
Implement random rotations (± 15◦), flip horizontally and 

vertically, apply random zoom up to 20%, and rescale to maintain 
consistent input dimensions. 

3. Utilizing transfer learning for feature extraction 

a. Adjust DenseNet201, ResNet50V2, VGG16, and VGG19. 
b. Use a binary classification head in place of the last layers c. Run 

each model on the training subset. 

4. Collective forecasting 

a. Compile each model’s Pi probability outputs. 
b. Make ensemble weights better Wi with grid search 
c. Determine the ultimate weighted score: 

Pensemble = 
nX 

i = 1 

wiPi (4) 

d. To break classification ties, use hard voting. 
5. Personalized CNN Integration 
Train the suggested CNN to extract more features; evaluate 

its performance against transfer learning models; and, if desired, 
incorporate CNN outputs into the ensemble. 

6. Assessment of the Model 

a. Divide the dataset into 80% training and 20% testing. 
b. Use F1-score, Accuracy, Precision, and Recall to 

evaluate performance. 
c. Note the typical inference time for each picture. 

7. Return: The ensemble’s final class label prediction 

2.7 Custom CNN Architecture 

To complement the transfer learning frameworks and ensemble 
methodologies, a proprietary CNN architecture was developed. 
This model was specifically designed to handle the unique 
challenges of malaria cell classification, such as feature variability 
and dataset imbalance. The architecture comprises several 
optimized components aimed at enhancing feature extraction, 
generalization, and classification accuracy. The custom CNN 
architecture developed for malaria cell classification is designed 
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FIGURE 13 

Architecture of VGG19 used for malaria prediction. 

to eectively extract spatial features, mitigate overfitting, and 
improve generalization. 

Convolutional layers form the backbone of the CNN and are 
responsible for extracting hierarchical spatial features from input 
images. These layers apply convolution operations using kernels to 

detect patterns such as edges, textures, and shapes. The first layer 
utilizes 32 filters with a 5 × 5 kernel size. Larger kernel size in 
the first layer helps in capturing more general features like shapes 
and contours. The second layer also comprises 32 filters but uses a 
smaller 3 × 3 kernel size to focus on finer details and local features. 
The Rectified Linear Unit (ReLU) is employed for non-linearity. 
ReLU prevents negative outputs and reduces the risk of vanishing 
gradient issues, accelerating convergence during training. It is given 
as: 

R (x) = max (0, x) (5) 

Batch normalization standardizes the outputs of each layer to 
reduce internal covariate shift, thereby stabilizing the learning 
process. It is defined as: 

µ = 
1
n 

X 

i 
N(i) (6) 

σ = 
1
n 

X 

i
(N(i) − µ) (7) 

N(i) 
norm = N (i)−µ/ √ 

σ2+ε (8) 

Here: 

• N(i): Input to the normalization layer. 
• µ: Mean of the inputs. 
• σ2: Variance of the inputs. 
• ε: A small constant to avoid division by zero. 

This enhances training stability and allows the use of higher 
learning rates, speeding up the optimization process. The batch 
normalization process involves averaging activation values across 
the batch and determining standard deviation (Equations 4, 5). To 
achieve the normalization of the activation vector N[l], Equation 
6 is utilized. Additionally, the layer output N(i) is computed 
by employing with trainable parameters γ and β, expressed in 
Equation 7. By centering the input activations to zero mean and 
scaling them to unit variance, Equation 8 normalizes them and 
ensures stable learning dynamics. By introducing trainable scale (γ) 
and shift (β) parameters, Equation 9 enables the network to regain 
representational flexibility following normalization. 

N = γ ∗ N(i) 
norm + β (9) 

Dropout is a regularization technique to combat overfitting, 
particularly in deep networks with large parameter spaces. During 
training, 20% of neurons are randomly deactivated which forces 
the model to learn more distributed and robust representations 
instead of relying heavily on specific neurons. It encourages 
the network to learn more robust representations by preventing 
reliance on specific neurons. Dense (fully connected) layers 
consolidate the features extracted by convolutional layers and 
produce predictions. Layer 1 contains 4096 neurons and applies 
L2 regularization to penalize large weights, further controlling 
overfitting. Layer 2 includes 1,024 neurons, refining the feature 
mappings generated in the previous layers. These layers integrate 
all the features extracted and prepare them for final classification. 
The SoftMax layer computes probabilities for each class, enabling 
binary classification of parasitized and uninfected cells. It produces 
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FIGURE 14 

Architecture of DenseNet used for malaria prediction. 
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TABLE 6 The Convolutional Neural Network (CNN) model’s results at various levels. 

Techniques PPV TPR F1 score Accuracy True negative value 

Adadelta 0.7820 0.7740 0.7680 0.7830 0.7890 

Adagrad 0.9180 0.9180 0.9179 0.9719 0.9810 

Adamax 0.9625 0.9601 0.9605 0.9607 0.9652 

Ftrl 0.2547 0.6001 0.3400 0.4593 0.4001 

Nadam 0.9800 0.9765 0.9768 0.9764 0.9890 

RMSprop 0.9643 0.9643 0.9643 0.9643 0.9643 

SGD 0.9546 0.9522 0.9244 0.9452 0.9625 

Adam 0.9789 0.9789 0.9768 0.9750 0.9810 

FIGURE 15 

Performances at various optimizers. 

normalized probabilities between 0 and 1, ensuring interpretability. 
It is given as: 

s (zi) = 
ez 

i Pk 
j = 1 e

z 
j 

(10) 

Sparse categorical cross-entropy is utilized to measure the 
divergence between the true and predicted class probabilities. 
Although typically applied in multi-class scenarios, this loss 
function is particularly useful for binary tasks as it precisely 
captures classification errors. It is defined as: 

Loss = − 
1 

N 

XN 

i = 1 
yilog (11) 

Where: 

• N: Number of samples. 
• yi: True label of the i-th sample. 
• ŷi: Predicted probability for the true class. 

The proposed architecture is uniquely tailored for the 
malaria dataset, addressing challenges like feature variability 
and small dataset size. It is designed specifically for malaria 
cell images, balancing computational eÿciency with predictive 
performance. Convolutional layers systematically capture features 
ranging from general (shapes) to specific (textures), enhancing 
accuracy. Dropout and L2 regularization prevent overfitting, 
ensuring the model generalizes well to unseen data. The compact 

architecture is computationally feasible, making it suitable for 
resource-constrained environments. The custom CNN’s modular 
design is visually represented in Figure 10, which outlines the 
sequential arrangement of layers, including convolutional, batch 
normalization, and dense layers. Additionally, Table 4 provides 
a detailed breakdown of each layer’s configuration, such as 
the number of filters, kernel sizes, activation functions, and 
regularization parameters. The hyperparameters that are fine-
tuned to reduce error are listed in Table 5. Figure 11 illustrates 
the CNN-ML classifier diagram, highlighting the integration of 
the custom CNN architecture with various machine-learning 
algorithms in this study. Figure 12 shows the architecture of 
VGG16 used for Malaria Prediction. Figure 13 represents the 
architecture of VGG19 used for malaria prediction. Figure 14 shows 
the architecture of DenseNet used for Malaria Prediction. Overall, 
the custom CNN architecture eectively combines advanced 
feature extraction, robust regularization techniques, and eÿcient 
classification mechanisms. Its design ensures optimal performance 
for the malaria classification task, making it a viable solution for 
real-world applications in healthcare diagnostics. 

2.8 Experimental setup and evaluation 
metrics 

The experiments for evaluating the malaria cell classification 
system were conducted in the Google Colab environment, 
leveraging its powerful computational resources, and streamlined 
setup. The hardware and software resources were; 69 gigabytes of 
available disk storage, 13 gigabytes of RAM, Nvidia Tesla T4 GPU 
for accelerated computations, 11.2 CUDA version which enabled 
GPU-optimized training via parallel processing, Python 3.7.10 was 
used for model development and analysis, and Matplotlib 3.2.2 
package for plotting metrics and results. This configuration ensured 
a high-performance environment for the development, training, 
and evaluation of the proposed models, allowing rapid iterations 
and eÿcient handling of the large dataset. 

The performance of the classification models was assessed using 
a suite of evaluation metrics designed to provide a comprehensive 
view of their eectiveness. These metrics include accuracy, 
precision, recall (sensitivity), F1 score, and specificity. Each metric 
measures a dierent aspect of model performance, particularly 
in the context of binary classification. Accuracy measures the 
proportion of correctly classified samples, encompassing both 
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TABLE 7 Comparison of several Convolutional Neural Network-machine learning (CNN-ML) classifiers’ performance results. 

Optimization 
coefficient 

Precision Recall F1-score Accuracy TNR 

1e-02 0.2546 0.5400 0.3450 0.4895 0.2564 

1e-03 0.9250 0.9268 0.9285 0.9285 0.9286 

1e-04 0.9153 0.9128 0.9129 0.9129 0.9186 

Ensemble (proposed 

method) 
0.9456 0.9458 0.9489 0.9456 0.9543 

parasitized and uninfected cells and it is given as Equation 10. 
Recall evaluates the model’s ability to correctly identify positive 
cases (parasitized cells) and is given as Equation 11. Precision 
(Equation 12) quantifies the proportion of true positive predictions 
out of all positive predictions. Precision and Recall are crucial 
for understanding the trade-o between false positives and false 
negatives. In the context of this paper, a false positive (mislabeling 
an uninfected cell as parasitized) may lead to unnecessary 
treatment, and a false negative (failing to detect a parasitized 
cell) can have serious health consequences. F1 score represents 
the harmonic mean of precision and recall, balancing these two 
metrics, providing a balanced assessment by combining precision 
and recall into a single metric. It is given in Equation 13. The 
evaluation is also done using macro F1 score (Equation 14) and 
weighted average F1 score (Equation 15), where the former is the 
unweighted average of the F1 scores for each class, treating all 
classes equally and the latter takes the class imbalance into account 
by computing a weighted average of F1 scores. Specificity is used to 
measure the ability to correctly identify uninfected cells (negative 
cases). It is particularly important in this binary classification 
problem to ensure the accurate detection of uninfected cells, 
reducing unnecessary alarm. It is given in Equation 16. 

Accuracy = TP + TN/TP + FP + TN + FN (12) 

Recall (TPR) = TP/TP + FN (13) 

Precision (PPV) = TP/TP + FN (14) 

F1 Score = 2×Precision × Recall/Precision × Recall (15) 

macro F1 = sum of all the F1 scores/Total no. of scores (16) 

weighted average of F1 = sum of all weighted average of 

F1 scores/ Total weighted of the F1 Scores (17) 

Specificity (TNR) = TN/TN + FP (18) 

By using these metrics, the models’ performance was rigorously 
evaluated, ensuring robustness and reliability for real-world 
deployment in malaria diagnosis systems and by combining 
robust preprocessing, advanced transfer learning, and ensemble 
techniques, the proposed system achieves superior malaria 
detection, paving the way for scalable applications in resource-
constrained settings. 

FIGURE 16 

Comparison of several classifiers’ performances. 

3 Results 

The experimental results of the study demonstrate the eÿcacy 
of the proposed methodologies in addressing the challenge 
of malaria detection through DL. The custom CNN achieved 
remarkable training and validation accuracies, highlighting its 
potential as a reliable feature extractor. The training accuracy 
reached 96.43%, and the validation accuracy was 96.56%. Without 
data augmentation, these values were 99.77% and 95.06%, 
respectively. The notable discrepancy between training and 
validation accuracy indicates signs of overfitting, where the 
model performs well on training data but exhibits diminished 
generalization on test data. Table 6 presents a detailed breakdown 
of the performance of the custom CNN across various optimizers, 
while Figure 15 graphically illustrates these results. The optimizers 
tested include Adadelta, Adagrad, Ftrl, SGD, Adam, and RMSprop, 
showcasing varying levels of eectiveness in reaching the global 
minimum loss. Outcomes for the modified CNN model’s eÿcacy 
at dierent learning rates are exhibited in Table 7 and Figure 16 is 
the graphical representation of the comparison of several classifiers’ 
performances. 

Incorporating machine learning classifiers into the CNN 
architecture provided additional insights into the model’s 
adaptability. When the custom CNN served as a feature extractor, 
the SVM classifier achieved a commendable 81.67% test accuracy. 
A comparative analysis of various CNN-ML classifiers is presented 
in Table 8, with their respective performance outcomes visualized 
in Figure 17. These results demonstrate that the SVM-based 
combination was the most eective in leveraging CNN-extracted 
features for classification. The paper also explored transfer 
learning to assess the impact of pre-trained models on the malaria 
detection task. Retrained models, where all layers were fine-
tuned, consistently outperformed their pre-trained counterparts. 
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TABLE 8 Various Convolutional Neural Network-machine learning (CNN-ML) classifiers’ performance in terms of results. 

Model PPV TPR F1-score TNR Accuracy 

CNN-SVM 0.8214 0.8245 0.8266 0.8345 0.8247 

CNN-KNN 0.6564 0.6255 0.5989 0.5689 0.6199 

CNN-decision tree 0.7498 0.7498 0.7498 0.7498 0.7498 

CNN-random forest 0.8145 0.8141 0.8143 0.8149 0.8148 

Ensemble method 

(proposed method) 
0.9432 0.9456 0.9453 0.9447 0.9472 

FIGURE 17 

Various CNN-ML classifiers’ performance in terms of results. 

Among the tested architectures, VGG19 (retrained) exhibited 
the highest testing accuracy of 97.65%, outperforming other 
models. Table 9 systematically presents the performance outcomes 
of various transfer learning models, while Figure 18 provides a 
graphical comparison. These results underscore the importance 
of comprehensive training for achieving superior performance in 
novel domains. 

The ensemble learning approach, combining max voting 
and adaptive weighted averaging, further enhanced classification 
accuracy. For the parasitized class, 2,790 images were correctly 
classified, while 2,704 images from the uninfected class were 
accurately identified. The ensemble method achieved a testing 
accuracy of 97.93%, as reflected in the confusion matrices 
(Figures 18–20). These matrices indictae the robustness of the 
ensemble strategy in mitigating misclassifications. Table 10 
provides a detailed summary of the results obtained from various 
ensemble learning techniques. The ensemble framework that 
combines hard voting approach ensured optimal outcomes by 
dynamically assigning appropriate weights to individual models. 
The proposed ensemble learning approach was compared to 
other deep learning models, demonstrating its superiority in 
malaria detection. The ensemble model achieved the highest 
testing precision of 97.93%, outperforming other models in terms 
of accuracy, precision, recall, and F1-score. Adaptive weighted 
averaging consistently improved validation accuracy by 0.5%– 
1.0% as compared to fixed-weight ensembles, demonstrating 
the eÿcacy of the dynamic weighting technique. Table 11 
compares the performance of the proposed ensemble model 

against alternative methods, clearly illustrating its dominance in 
accuracy and robustness. The grid search gave DenseNet201 and 
VGG19 higher weights because of their superior individual 
performance, as Table 12 illustrates. The best validation 
accuracy of 97.93% was attained by the three-model ensemble 
(VGG16+VGG19+DenseNet201), which had ideal weights of 0.2, 
0.4, and 0.4, respectively. 

Finally, the study compared the proposed approach with 
existing methodologies to evaluate its practical impact. The 
ensemble model outperformed previous works, particularly those 
using standalone CNN or transfer learning models. Table 13 
presents a comparative evaluation, underscoring the ability of the 
ensemble model to detect malaria more precisely and eectively 
than existing methods. Overall, the proposed methodology 
demonstrates significant advancements in malaria detection, 
leveraging custom CNN architectures, transfer learning, and 
ensemble strategies. With an accuracy of 97.93%, the suggested 
ensemble outperformed both individual models and previous 
methods. Despite the slight (1–2%) absolute gain over earlier 
techniques, this improvement can have important therapeutic 
ramifications by lowering the likelihood of misdiagnosis, lowering 
false negatives, and increasing patient outcomes in malaria 
screening. By systematically addressing issues such as overfitting 
and leveraging the complementary strengths of multiple classifiers, 
the approach establishes a benchmark for future research in 
automated disease diagnosis. The superior accuracy, particularly 
of the ensemble model, highlights its potential for deployment in 
real-world healthcare applications. 

4 Discussion 

This paper introduces an ensemble learning-based deep 
neural network to identify malaria-causing parasites through 
microscopic red blood cell images. The suggested ensemble 
outperformed individual CNN and transfer learning models 
with an testing accuracy of 97.93% and demonstrated better 
classification robustness when compared to current benchmarks. 
This achievement is attributed to the integration of custom 
CNN architectures, transfer learning techniques, and adaptive 
ensemble strategies. 

The proposed model’s accuracy significantly outperforms 
traditional single-network models and transfer learning-based 
approaches. For instance, while standalone custom CNN 
models and transfer learning methods such as VGG19 achieved 
commendable results, they were outmatched by the ensemble 
strategy, which mitigates individual model weaknesses. These 

Frontiers in Medicine 17 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1684973
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1684973 November 4, 2025 Time: 14:25 # 18

Reddy et al. 10.3389/fmed.2025.1684973 

TABLE 9 Different transfer learning models’ performance in terms of results. 

Model PPV TPR F1-score Accuracy TNR 

VGG16 0.9102 0.9245 0.9189 0.9178 0.9243 

VGG19 0.9125 0.9104 0.9105 0.9108 0.9106 

DenseNet201 0.9088 0.8928 0.8954 0.8910 0.8999 

ResNet201 0.9038 0.9010 0.9011 0.9012 0.9016 

VGG16 (R) 0.9765 0.9765 0.9765 0.9765 0.9765 

VGG19 (R) 0.9742 0.9742 0.9742 0.9742 0.9742 

DenseNet201 (R) 0.9750 0.9748 0.9748 0.9748 0.9786 

ResNet50V2 (R) 0.9701 0.9702 0.9703 0.9704 0.9701 

FIGURE 18 

Different transfer learning models’ performance in terms of results. 

FIGURE 19 

Confusion matrix. 

results align with previous studies suggesting that ensemble 
techniques often provide enhanced robustness and generalizability 
by aggregating diverse model predictions. Furthermore, the 
integration of adaptive weighted averaging and max-voting 
mechanisms ensures optimal performance across a variety 
of test scenarios. 

One critical challenge tackled in this research is overfitting, 
a common issue in deep learning models trained on biomedical 
datasets. Data augmentation and L2 regularization strategies 
eectively reduced overfitting, as evidenced by the reduced gap 
between training and validation accuracies. Such interventions 
resonate with prior studies that indicate the importance of 
pre-processing techniques and hyperparameter optimization in 
boosting model robustness for small or noisy datasets. 

The ensemble model holds substantial promise for practical 
applications in biomedicine, particularly in resource-constrained 
settings where accurate malaria diagnosis is crucial. Microscopists 
could use this tool to expedite diagnosis while reducing the 
likelihood of human error. Moreover, the approach has the 
potential to be adapted for dierentiating between various 
Plasmodium species, enabling more nuanced clinical decision-
making. Future integration with mobile applications could further 
expand accessibility, empowering healthcare workers in remote 
or underserved areas. The frequency of misdiagnosed cases, 
particularly false negatives, can be significantly reduced with 
even a little increase in classification accuracy (1%–2%), which is 
essential for patient treatment. This demonstrates the suggested 
ensemble model’s potential clinical utility in supporting malaria 
diagnosis in practical settings. Unlike previous works that just 
used one CNN or transfer learning model, our ensemble approach 
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TABLE 10 Findings from several group education techniques. 

Ensemble 
method 

Model Coefficients TNR PPV TPR F1-
score 

Accuracy 

Dynamic weighted VGG16 (R), VGG19 (R) 0.8, 0.5 0.9754 0.9789 0.9758 0.9758 0.9758 

Average VGG19 (R), DenseNet201 (R) 0.7, 0.6 0.9874 0.9874 0.9874 0.9874 0.9874 

VGG16 (R), DenseNet201(R) 0.5, 0.6 0.9761 0.9761 0.9761 0.9761 0.9761 

VGG16(R), VGG19 (R) and 

DenseNet201(R) 
0.1, 0.8, 0.7 0.9788 0.9788 0.9788 0.9788 0.9788 

Max voting VGG16 (R), VGG19 (R) and 

DenseNet201 (R) 
– 0.9782 0.9781 0.9780 0.9780 0.9780 

Adaptive weighted 

average and max voting 

VGG16 (R), VGG19 (R) and 

DenseNet201 (R) 
– 0.9794 0.9794 0.9794 0.9794 0.9794 

TABLE 11 Findings regarding alternative models juxtaposed with the proposed ensemble model. 

Model PPV TNR TPR F1-score Accuracy 

Custom CNN 0.9728 0.9720 0.9721 0.9720 0.9720 

VGG16 (R) 0.9765 0.9765 0.9765 0.9765 0.9765 

CNN-SVM 0.8214 0.8245 0.8245 0.8266 0.8247 

Ensemble (proposed 

method) 
0.9793 0.9793 0.9793 0.9793 0.9793 

TABLE 12 Optimal weights were determined for various ensemble model combinations (using grid search). 

Ensemble combination Search range Optimal weights (model A/model 
B/model C) 

Validation accuracy 

VGG16 + VGG19 0.1–0.9 (step 0.1) 0.5/0.4 96.87 

VGG16 + DenseNet201 0.1–0.9 (step 0.1) 0.3/0.6 97.12 

VGG19 + DenseNet201 0.1–0.9 (step 0.1) 0.40/0.50 97.56 

VGG16 + VGG19 + DenseNet201 0.1–0.9 (step 0.1) 0.2/0.4/0.4 97.93 

TABLE 13 Comparing the results and performance of the proposed ensemble model with that of existing work. 

Model PPV TPR F1-score TNR Accuracy 

Otsu segmentation, 
K-means clustering 

0.9617 0.94 0.954 0.945 0.949 

CNN 0.9547 0.9720 0.9720 0.9542 0.95 

VGG16 0.9765 0.9765 0.9645 0.9654 0.9605 

CNN 0.9689 0.9644 0.9689 0.9689 0.9689 

VGG16 0.9709 0.9710 0.9699 0.9721 0.9780 

VGG16 0.946 0.946 0.946 0.946 0.946 

CNN 0.9781 0.9710 0.9748 0.9746 0.9749 

Ensemble model 
(proposed method) 

0.9793 0.9793 0.9793 0.9763 0.9793 

incorporates a custom CNN along with many state-of-the-art 
architectures. Complementary feature learning is made possible by 

this integration, which also lowers the possibility of overfitting and 

produces more accurate categorization. This study’s uniqueness 
therefore resides in its ensemble structure, which goes beyond 

traditional single-model techniques. 
Despite its successes, the paper acknowledges several 

limitations that impact the generalizability of the model like image 

quality variability, where fluctuations in the quality of microscopic 

images introduce inconsistencies in predictions, especially when 

working with diverse datasets. The reliance on specific datasets, 
such as the NIH dataset, may lead to biases that hinder the model’s 
performance on unfamiliar data or populations. Demographic 

or geographical biases inherent in the training data could distort 
predictions, particularly in global applications with diverse patient 
profiles. To mitigate these challenges, future research should 

focus on training the model using a broader spectrum of datasets, 
improving pre-processing pipelines, and developing techniques to 
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FIGURE 20 

Detailed confusion matrix. 

handle variability in input data. The suggested framework delivers 
excellent diagnostic accuracy while providing practical benefit in 
clinical settings. It can help microscopists make better decisions by 
reducing workload and errors. Its lightweight design also makes it 
appropriate for mobile health platforms, which improves access in 
remote and underserved locations. Furthermore, interpretability 
approaches like Grad-CAM can provide visual explanations for 
forecasts, increasing transparency and clinician trust in the system. 

Building on this work, future studies should aim to design 
new architectures tailored for multi-class classification tasks, 
such as dierentiating between various Plasmodium species. Test 
the model on larger, more heterogeneous datasets to enhance 
its generalizability across dierent populations and contexts. 
Explore lightweight model designs suitable for deployment on 
mobile devices, making malaria diagnosis more accessible in 
remote regions. Investigate hybrid approaches combining machine 
learning and domain knowledge to refine model interpretability 
and usability in clinical settings. By addressing these directions, 
this line of research could significantly contribute to malaria 
elimination eorts, particularly in endemic regions. 

5 Conclusion 

The proposed research presents a novel ensemble learning-
based deep neural network framework for malaria detection, 
demonstrating state-of-the-art performance with a testing accuracy 
of 97.93%. Through the strategic integration of custom CNN 

architectures, transfer learning models, and ensemble methods, 
the proposed system addresses key challenges such as overfitting, 
variability in image quality, and model generalization. The findings 
underscore the potential of machine learning, particularly ensemble 
approaches, to revolutionize malaria diagnosis. By leveraging 
robust pre-processing techniques, adaptive learning mechanisms, 
and diverse datasets, the model provides a reliable and eÿcient 
tool for assisting microscopists in clinical and field settings. The 
suggested ensemble model has the potential to assist in the clinical 
detection of malaria and exhibits good accuracy. However, as the 
present validation was limited to the NIH dataset and lacked 
hardware-level testing, immediate implementation in resource-
constrained environments is still premature. To improve real-
world applicability, future research will give priority to mobile 
deployment experiments and evaluation on external datasets. 
While this study focuses on binary classification, future work will 
include multi-class categorization of Plasmodium species. This 
clinically significant step addresses real-world diagnostic demands 
and improves the system’s translational utility. 

Despite certain limitations, including data biases and 
inconsistencies in image quality, this research lays the foundation 
for further advancements in automated disease detection. In order 
to distinguish between Plasmodium species and test the model on 
external datasets, future research will concentrate on multi-class 
categorisation. The viability of implementation in clinical and 
resource-constrained outdoor settings will also be evaluated at 
the hardware level using smartphones and low-power embedded 
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devices. Future eorts aimed at refining model generalization, 
exploring mobile applications, and expanding the dataset diversity 
will play a pivotal role in making these technologies universally 
applicable. The evaluation of the suggested ensemble model was 
restricted to images of Plasmodium falciparum and uninfected 
cells in a particular context, despite its good performance on the 
NIH dataset. As such, it is unclear whether it can be applied to 
other datasets or real-world samples with other staining techniques, 
imaging scenarios, or parasite species. More publicly accessible 
datasets should be evaluated in future research. Ultimately, the 
proposed system not only enhances diagnostic accuracy but also 
paves the way for scalable, data-driven solutions to malaria 
detection. This marks a significant step toward improving patient 
outcomes and supporting global health initiatives aimed at malaria 
eradication. This study is restricted to the NIH malaria dataset, 
which, despite its widespread use, has limited generalisability and 
may induce bias because of its controlled imaging circumstances. 
Future studies should investigate transfer learning between datasets 
acquired in various imaging conditions, address inter-laboratory 
variability using domain adaptation approaches, and replicate real-
world changes in staining, illumination, and image quality using 
sophisticated augmentation techniques. This study’s reliance on the 
NIH dataset is a significant restriction, as it may limit the model’s 
applicability to other clinical or geographical circumstances. Cross-
dataset testing involving images from various staining techniques, 
imaging devices, and patient groups should be included in future 
research. Furthermore, using domain adaptation approaches could 
improve the model’s robustness, ensuring that the suggested 
framework is more widely applicable in a variety of real-world 
scenarios. To improve the suggested model’s clinical applicability 
in a variety of resource-constrained contexts, these tactics must be 
put into practice. 
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