:' frontiers | Frontiers in Medicine

‘ ® Check for updates

OPEN ACCESS

EDITED BY
Madhu Shukla,
Marwadi University, India

REVIEWED BY
Nishu Gupta,

Norwegian University of Science

and Technology, Norway

Mariyam Ouaissa,

Université Chouaib Doukkali, Morocco
Hirak Mondal,

Khulna University, Bangladesh

*CORRESPONDENCE

Yongwon Cho
dragonlwon@sch.ac.kr

Yunyoung Nam
ynama@sch.ac.kr

RECEIVED 13 August 2025
ACCEPTED 26 September 2025
PUBLISHED 06 November 2025

CITATION

Reddy CKK, Anisha PR, Almushharaf A,
Talla R, Baili J, Cho Y and Nam Y (2025) An
optimized transfer learning approach
integrating deep convolutional feature
extractors for malaria parasite classification
in erythrocyte microscopy.

Front. Med. 16:1684973.

doi: 10.3389/fmed.2025.1684973

COPYRIGHT

© 2025 Reddy, Anisha, Almushharaf, Talla,
Baili, Cho and Nam. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Medicine

TYPE Original Research
PUBLISHED 06 November 2025
pol 10.3389/fmed.2025.1684973

An optimized transfer learning
approach integrating deep
convolutional feature extractors
for malaria parasite classification
In erythrocyte microscopy

C. Kishor Kumar Reddy?, P. R. Anisha?, Ahlam Almushharaf?,
Radhika Tallat, Jamel Baili3, Yongwon Cho** and
Yunyoung Nam#*

'Department of Computer Science and Engineering, Stanley College of Engineering and Technology
for Women, Hyderabad, India, ?Department of Management, College of Business Administration,
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, *Department of Computer
Engineering, College of Computer Science, King Khalid University, Abha, Saudi Arabia, *Department
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Background: Malaria, caused by Plasmodium parasites transmitted through bites
from infected female Anopheles mosquitoes, results in severe symptoms such as
anemia and potential organ failure. The high prevalence of malaria necessitates
reliable diagnostic methods to reduce the workload of microscopists,
particularly in resource-limited settings.

Methods: This paper evaluates the efficacy of an ensemble learning approach
for automated malaria diagnosis. The proposed model integrates convolutional
ensemble methods, combining outputs from transfer learning architectures
such as VGG16, ResNet50V2, DenseNet201, and VGG19. Data augmentation
and pre-processing techniques were applied to enhance robustness, and the
ensemble approach was fine-tuned for optimal hyperparameters.

Results: The ensemble achieves a test accuracy of 97.93% by combining a
evidence of CNN with multiple transfer learning models (VGG16, ResNet50V2,
DenseNet201, and VGG19), with an Fl-score and precision of 0.9793 each,
outperforming standalone models like Custom CNN (accuracy: 97.20%, F1-
score: 0.9720), VGG16 (accuracy: 97.65%, Fl-score: 0.9765), and CNN-SVM
(accuracy: 82.47%, Fl-score: 0.8266). The method demonstrated effectiveness
in classifying parasitized and uninfected blood smears with high reliability,
addressing the limitations of manual microscopy and standalone models.

Conclusion: The proposed ensemble learning approach highlights the potential
of integrating transfer learning models to improve diagnostic accuracy for
malaria detection. This scalable, automated solution reduces reliance on manual
microscopy, making it highly applicable in resource-constrained settings and
offering a significant advancement in malaria diagnostics.
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malaria diagnosis, transfer learning, automated microscopy, ensemble learning,
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1 Introduction

Malaria, a debilitating disease caused by Plasmodium parasites,
is a persistent global health challenge transmitted through the
bites of infected female Anopheles mosquitoes. Despite decades
of control efforts, malaria continues to impose a severe burden,
with an estimated 229 million cases and 409,000 deaths reported
in 2022 alone, disproportionately affecting low-resource regions,
particularly in sub-Saharan Africa, which accounts for 92% of
the cases and fatalities. Alarmingly, in 2023, the World Health
Organization (WHO) recorded 214 million infections and 240,000
deaths, highlighting the pressing need for innovative and scalable
solutions to tackle this disease effectively (1). Figures 1, 2, along
with Table 1, depict the devastating impact of malaria globally
between 2019 and 2024.

A novel ensemble framework that combines hard voting and
adaptive weighted averaging, which distinguishes it from other
CNN-based malaria detection techniques that typically employ
fixed-weight averaging or simple majority voting. Stronger models
are given more influence by adaptive weighted averaging, which
dynamically allocates weights based on each model’s validation
results, while hard voting ensures consensus reliability. While
data augmentation, transfer learning, and CNN architectures
are all popular techniques in medical imaging, this study
is unique in that it combines numerous pre-trained models
(VGGI16, VGG19, DenseNet201, and ResNet50V2) with a custom
CNN using an adaptive ensemble strategy. Unlike -earlier
malaria detection methods, which rely on a single model,
this framework leverages the complimentary characteristics of
numerous architectures, resulting in higher diagnostic accuracy
and robustness. This integrated architecture distinguishes the
proposed approach from previous methods while emphasizing
its potential therapeutic usefulness. A key contribution of our
study is the two-tiered ensemble technique, which enhances
accuracy and resilience. Traditional diagnostic methods, such as
the microscopic examination of blood smears, are labor-intensive,
time-consuming, and prone to human error. These challenges are
particularly pronounced in resource-constrained settings where
the disease burden is highest (2). Modern advancements in
machine learning (ML) have shown transformative potential
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FIGURE 1
Total deaths recorded during 2019-2024.
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in automating the diagnostic process, offering high accuracy
and speed. Early studies have demonstrated the effectiveness
of algorithms like Naive Bayes, Logistic Regression, Decision
Tree, Support Vector Machine, and Random Forest in malaria
detection tasks (3, 4). However, individual models often face
limitations in generalizing across diverse datasets and addressing
the complexities of malaria diagnosis. Ensemble learning, which
combines predictions from multiple models, has emerged as a
promising solution by leveraging the strengths of individual models
while mitigating their weaknesses (5, 6). This approach enhances
the robustness, precision, and reliability of automated diagnostic
systems. Rural clinics and community health initiatives frequently
encounter limited laboratory equipment, a scarcity of experienced
microscopists, and delays in obtaining valid data. The proposed
ensemble learning framework solves these issues by providing
an automated, scalable method for accurate malaria diagnosis in
low-resource environments. This strategy improves point-of-care
screening and enables prompt treatments in underserved areas.

Compared to individual models, ensemble learning can
improve robustness and generalization, which is why it was used
in this work. The inherent diversity in medical imaging datasets
may be difficult for standalone deep learning systems to properly
capture and they are susceptible to overfitting. By utilizing the
complementing qualities of several models, ensemble approaches
reduce variation and increase stability in order to overcome these
problems. Compared to single-model baselines, the suggested
framework delivers higher diagnostic accuracy and reliability by
combining VGG16, VGG19, DenseNet201, and a bespoke CNN.

Despite the widespread use of methods like data augmentation,
transfer learning, and CNN-based architectures in medical
imaging, this work is novel in that it uses an adaptive ensemble
strategy to integrate several pre-trained models (VGG16, VGG19,
DenseNet201, and ResNet50V2) with a custom CNN. Through
the utilization of these architectures complimentary qualities,
the suggested framework successfully lessens the drawbacks of
each model alone. This demonstrates how unique our ensemble
approach is and sets it apart from earlier malaria detection research.

Preprocessing plays a pivotal role in improving the quality
of blood smear images, ensuring more accurate downstream
processing steps such as feature extraction, cell segmentation, and
classification (7, 8). For instance, applying smoothing filters like
Gaussian and median filters effectively reduces noise and artifacts
in microscopic images (9, 10). Previous research has explored the
use of deep learning and machine learning techniques to enhance
malaria diagnostic accuracy and efficiency (11, 12). Notably,
methods focusing on Plasmodium detection in optical microscopy
images have demonstrated significant advancements (13, 14).
Smartphone-based deep learning tools have also shown potential
in creating complex systems for real-time malaria detection (15-
17), while innovative approaches using quantitative phase imaging
or mid-infrared spectroscopy offer alternative diagnostic pathways
(18, 19).

Efforts to combat malaria have predominantly targeted
Plasmodium falciparum, the deadliest parasite species. However,
global objectives, such as reducing malaria-related deaths and case
incidence by 90% by 2030 and achieving complete eradication
by 2040, necessitate a broader focus and innovative strategies.
Emerging techniques like Generative Adversarial Networks
(GANs) for image synthesis and denoising, or reverse convolution
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TABLE 1 Recorded cases of malaria around the globe.

Total cases Total
recorded in deaths
the world

L. 2024 250 million 610,000
2. 2023 240 million 609,000
3. 2022 254 million 646,700
4. 2021 234 million 619,000
5, 2020 249 million 625,000
6. 2019 233 million 568,000

for image compression, further illustrate the potential of Al-
driven solutions in addressing diagnostic challenges (20, 21).
EfficientNet, a deep learning-based technique for identifying
Malaria, is proposed using red blood cell pictures (22). A review
using the PRISMA framework examines 50 studies (2015-2023) on
Al-based malaria diagnosis, identifying common methodologies,
important challenges such as inadequate validation and species
categorization, and providing suggestions to improve future
automated diagnostic and treatment efforts (23). Table 2 provides a
comparative analysis of existing approaches for malaria prediction
and diagnosis, highlighting their advantages and limitations.
Despite significant advancements in malaria diagnosis using
ML and deep learning (DL), existing approaches exhibit several
limitations. Many studies rely on single-model architectures
that struggle to generalize across diverse datasets, often leading
to inconsistencies in performance when applied to real-world
scenarios with varying image quality, noise levels, and clinical
conditions (24, 28). Traditional diagnostic workflows, although
enhanced with ML, frequently lack robustness in handling complex
cases such as varying malaria severity, relapse patterns, and
geographic differences in parasite strains (25, 26). Moreover,
standalone models are prone to overfitting and may fail to adapt
to the evolving nature of data, especially in resource-limited
settings where input quality is inconsistent (27). Certain studies
employ handcrafted feature extraction, which may inadvertently
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ignore critical patterns, while others focus solely on individual
performance metrics without evaluating the practical application
or scalability of the model. Recent developments in medical
imaging have increasingly relied on machine learning and deep
learning approaches to automate diagnosis. Multimodal masked
autoencoders with adaptive masking have been used to accurately
classify vitiligo stages, highlighting the power of deep learning
for skin lesion analysis (29). Feature fusion techniques have been
used to predict protein subcellular localization, demonstrating
the value of combining various data views for better biological
interpretation (30). Neuromorphic-enabled video-activated cell
sorting is an example of Al-driven automation in cellular analysis
(31), while deep neural networks have been used to predict
dementia from imaging datasets (32). Furthermore, bio-imaging-
based machine learning algorithms have demonstrated great
accuracy in breast cancer detection, highlighting the growing
importance of computational techniques in assisting clinical
decision-making (33). Reports of autoimmune consequences
include hemophagocytic lymphohistiocytosis after encephalitis,
while SIRT6 has been demonstrated to guard against inflammation
in pulmonary endothelial cells caused by lipopolysaccharide.

By combining the complimentary advantages of several models,
ensemble learning lowers overfitting and enhances generalization
over a range of visual attributes. Compared to employing a
single model, mixing multiple architectures improves diagnostic
resilience and accuracy in malaria detection, where cell morphology
and picture quality can vary greatly. In addition to accuracy,
ensemble approaches can manage a greater variety of imaging
settings, including changes in staining or lighting, which can
mask important cellular properties. Ensembles reduce the biases
of individual architectures by combining predictions via voting
or weighted average, offering a more thorough evaluation of cells
afflicted with malaria. Because pre-trained weights from sizable
picture datasets offer a solid foundation—a benefit in medical
imaging, where labeled data is frequently scarce and expensive—
incorporating transfer learning significantly speeds up training.
Performance can be further enhanced by ongoing observation and
adjustment on fresh datasets. All things considered, the ensemble
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TABLE 2 Comparative analysis of existing approaches for malaria predictions.

References

Approach

Technique

Performance

Limitations of
the studies

10.3389/fmed.2025.1684973

Advantage of
proposed model

Nayef et al. (24)

The proposed method
analyses malaria-infected
blood smear images
using fuzzy logic and
edge detection
techniques. It uses
mobile hardware for
real-time analysis in
remote settings.

The technique uses fuzzy
logic-inspired edge
detection, designing
membership functions,
fuzzy inference rules,
defuzzification, and
hardware optimization
for real-time processing.

Efficient real-time
edge detection for
low-contrast images;
performs well in
remote settings.

Limited to edge detection
and lacks deep learning’s
advanced feature
extraction capabilities;
struggles with highly
complex datasets.

Integrates deep learning and
ensemble learning for robust
feature extraction, achieving
higher accuracy and
generalization in complex
datasets.

kaggle et al. (25)

Artificial intelligence
(AI) tools for diagnosing
microbiological diseases
using machine learning
and deep learning.

Uses supervised,
unsupervised, and deep
learning methods for
genomics and
bioinformatics to detect

and predict diseases.

Highly accurate
detection and
prediction of
microorganisms;
supports
pathologists.

Limited focus on malaria
detection; not optimized
for microscopic image

analysis.

Tailored specifically for malaria
detection with specialized CNN
architectures and ensemble
learning for precise classification
of infected cells.

Bias et al. (26)

Automated system for
detecting
malaria-infected cells
using Importance-Aware

Employs CNNs with
importance-aware
weighting and balanced
group SoftMax for

Improved recall for
infected cells with
reduced false
negatives.

Limited to addressing
class imbalance; may not
generalize well across
diverse datasets or

Utilizes data augmentation and
ensemble learning to improve
generalizability and resilience to
image quality variations.

Balanced Group SoftMax | minority class detection. variable image quality.
(IBGS).
Tkerionwu et al. Employs sophisticated Focuses on automation Success rates for Low performance Achieves state-of-the-art testing

(27)

learning strategy for
malaria and sickle cell
detection using Multiple
Instance Learning (MIL).

framework predict sick
cells using weak
supervision and
augmentation.

performance with
reduced false
negatives; scalable
for clinical use.

limit the model’s
precision on highly
detailed or complex
datasets.

(12) image analysis for scalability and models: SVM metrics highlight accuracy (97.93%) by integrating
techniques to develop efficiency, reducing (27.9%), KNN inefficiency in real-world CNN and ensemble learning
novel malaria diagnostic diagnosis time. (11.6%), Random diagnostic scenarios. strategies.
tools. Forest (7.0%).

Marletta et al. Weakly supervised deep CNN s with MIL Competitive Weak supervision may Fully supervised training and

hyperparameter tuning ensure
precise and robust performance
across varied datasets.

Harvey et al.

(13)

Machine learning and
deep learning for
precision malaria

Forecasts malaria
outbreaks using
historical epidemic data

Achieves 30%
accuracy and 99%
recall for epidemic

Focuses on forecasting
rather than direct
cell-based malaria

Directly targets malaria detection
at the cellular level, offering
superior accuracy and recall.

neural network

learning algorithms for

accuracy for cell

strategies; lacks

diagnosis via optical with machine learning. warnings. detection; lower accuracy
microscopy. for predictions.
Masud et al. (15) Employs cutting-edge Uses advanced deep Achieves 97.30% Limited ensemble Incorporates ensemble methods

with adaptive learning strategies

parasite detection in
blood smears.

SVM/KNN classifiers,

data augmentation, and

efficient operations.

may overfit or lack
robustness for diverse

architectures for accurate | healthcare and classification. optimization for image to enhance classification and
malaria parasite mobile-based quality inconsistencies. reduce inconsistencies.
identification. diagnostics.

Fuhad et al. (16) Deep learning techniques | Combines CNN-based Achieves 99.23% Focuses on single deep Combines multiple deep learning
for automating malaria feature extraction with accuracy with learning models, which approaches through ensemble

learning for improved robustness

and reduced overfitting.

mid-infrared
spectroscopy for malaria
detection from dried
blood spots.

field-friendly malaria
detection.

falciparum
detection; 85% for
mixed infections.

lower accuracy for mixed
infections.

auto-encoder datasets.
optimization.
Hemachandran Framework for Optimizes memory and ResNet50 achieves Mobile deployment Focuses on high diagnostic
etal. (10) diagnosing malaria using computation for mobile 97% accuracy and prioritizes resource accuracy with ensemble learning
CNN, MobileNetV2, and deployment with recall; f1-scores of optimization over while remaining adaptable for
ResNet50. compact CNN models. 0.97 for both diagnostic accuracy. mobile applications.
ResNet50 and
MobileNetV2.
Mwanga et al. Combines logistic Uses spectroscopy and Achieves 92% Limited to specific data Specializes in microscopic blood
(18) regression and logistic regression for accuracy for P. types (dried blood spots); | smear analysis, providing higher

accuracy and versatility for varied
infection types.
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TABLE 2 (Continued)

10.3389/fmed.2025.1684973

References Advantage of
proposed model
Sahuetal. (21) Machine learning for Logistic regression, Decision tree Relies on clinical data Excels in image-based malaria
predicting malaria risk decision tree, Gaussian achieves highest rather than image-based detection, providing direct
from clinical data. NB, and random forest accuracy (96.44%); diagnosis; limited to diagnostic capabilities rather than
models; feature selection random forest prediction, not detection. | risk prediction.
for prediction achieves 95.96%
optimization. accuracy.
Sukumarran A systematic evaluation Classical ML (SVM, Deep learning, The paper focused on Lightweight transfer learning
etal. (23) of 50 studies (2015-2023) KNN, XGBoost) and particularly transfer binary classification, models integrate high accuracy
on ML/DL for malaria deep learning models learning, lacked cross-dataset and field efficiency.
detection using blood (VGG, ResNet, outperforms validation, and
smears. DenseNet, MobileNet, machine learning, overlooked multi-stage
EfficientNet, YOLO). with accuracies or species identification.
frequently exceeding
95%.
Mujahid et al. Hybrid CNN with CNN feature extraction + Accuracy > 97% on Single dataset, added Reduces overfitting via feature
(22) feature selection PSO for feature selection NIH dataset complexity, limited selection
interpretability
INPUT IMAGE
[ Data Preprocessing ]
[ Augmentation ]I
Model
configuration
Model Ensemble-Final Analysis
FIGURE 3
Process of performing the prediction.

approach not only produces instant improvements in predicted
accuracy but also creates a foundation for an adaptable system that
can change in tandem with advancements in diagnostic techniques
and imaging technology.

This paper addresses these gaps by proposing a novel ensemble
learning framework that combines the strengths of multiple
state-of-the-art transfer learning models, including VGG16,
ResNet50V2, DenseNet201, and Custom Convolutional Neural
Network (CNN). By aggregating predictions using advanced
ensemble techniques such as weighted mean and hard voting,

Frontiers in Medicine

the proposed framework enhances diagnostic accuracy and
robustness. Additionally, the systematic workflow introduced in
this paper—encompassing image preprocessing, segmentation,
feature selection, and classification—ensures a comprehensive and
adaptable diagnostic pipeline. Unlike existing approaches, the
proposed work prioritizes scalability and real-world applicability,
demonstrating superior performance in diverse and challenging
diagnostic scenarios. By leveraging ensemble learning, this work
mitigates the limitations of individual models, providing a
reliable and efficient solution to the complex challenges of
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malaria detection. The contributions of the proposed work
include:

o A
pre-processing,

systematic four-stage diagnostic workflow (image

segmentation, feature selection, and
classification),

e Innovative ensemble techniques (weighted mean and hard
voting),

e A comprehensive evaluation of the models, and

e Demonstrating its potential to address clinical challenges
such as varying severity, relapse patterns, and geographic

prevalence of malaria.

The proposed ensemble outperforms individual models,
achieving enhanced accuracy and reliability, addressing the clinical
complexities of malaria, including varying symptom severity and
geographic prevalence. By bridging the gap between traditional
diagnostic approaches and modern Al-driven techniques, this
work aims to provide a scalable and robust solution for
automated malaria detection. The findings hold significant
implications for improving diagnostic capabilities, particularly in
underserved regions, contributing to global malaria control and
eradication efforts.

This method uses a weighted ensemble strategy designed for
malaria cell image classification, in contrast to other ensemble-
based systems that often use uniform averaging or simple majority
voting. Through the integration of complimentary deep learning
models (VGG16, DenseNet201, and VGG19), the suggested
approach improves robustness and performance by utilizing each
model’s distinct feature extraction capabilities.

The remainder of this paper is organized as follows: materials
and methodologies are detailed, results and discussions are
presented, and conclusions are drawn to outline the impact and
future potential of this research.

2 Materials and methods

This section outlines the dataset, preprocessing techniques,
data augmentation, transfer learning frameworks, ensemble
learning techniques, and custom CNN architecture employed in
this paper to develop an efficient malaria detection system. Detailed
steps, equations, and hyperparameter optimization are provided to
ensure reproducibility. Figure 3 presents the process of performing
the malaria prediction.

2.1 Dataset description

This research work utilizes a robust dataset sourced from
the National Institutes of Health (NIH), comprising a total of
21,322 microscopic cell images, 13,779 of which were parasitized
and 7,543 of which were not. The pictures were taken from
thin Giemsa-stained blood smears. The analysis was conducted
using only the NIH dataset; no other datasets were included.
The restricted diversity of this dataset may limit the findings’
generalizability, despite the fact that it is frequently used in
studies on malaria detection. The dataset plays a pivotal role
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Unifected
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FIGURE 4
Microscopic images of malaria used for malaria prediction.

Unifected

Parasitised

FIGURE 5
Resized pictures of malaria cells used for malaria prediction.

in developing an ensemble learning-based system for malaria
diagnosis. These images, captured at high resolution, are annotated
to indicate whether the red blood cells are parasitized (infected with
malaria) or uninfected. The characteristics of the dataset and the
preprocessing strategies ensure consistency and accuracy for model
training and evaluation. The dataset consists of:

e 13,779 parasitized cell images: Red blood cells infected with
malaria parasites.

e 7,543 uninfected cell images: Healthy red blood cells devoid of
infection.

The dataset is visually rich, capturing a diverse range of
cells across different conditions and visual features, as shown
in Figures 4, 5. Each image in the dataset is labeled, aiding in
supervised learning for binary classification. Despite its overall
quality, a subset of the dataset revealed mislabelling issues,
impacting approximately 5% of entries:

e 750 uninfected cells were mislabelled as parasitized.
e 647 parasitized cells were mislabelled as uninfected.

These errors were identified and rectified with the help
of domain experts to ensure that the training data was
accurate and reliable.

The National Institutes of Health (NIH) made 21,322 cell
photos available on Kaggle, which served as the dataset for this
research. It is made up of 13,780 parasitised and 7,543 uninfected
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TABLE 3 Parameter values for each augmentation technique.

Augmentation technique

Random rotation +30
Zoom Up to 20%
Flipping Horizontal and vertical

Rescaling 1/255

cells that were taken from thin blood smear slides stained with
Giemsa. To ensure reader clarity, this is specifically acknowledging
both the NIH and Kaggle sources in the Methods section rather
than referring to the dataset alone in the supplemental materials.
The dataset exhibits the following properties that necessitate
specific preprocessing steps for effective use in machine learning:

e Image dimensions:

o Original image sizes range between 110 and 150 pixels.

o To ensure uniformity and compatibility with the CNN
architecture, images were resized to 64 x 64 pixels. This
reduction maintains essential features while optimizing
computational efficiency.

e For train-test split, the dataset was divided into:

o 80% for training: 17,057 images used for model training
and validation, enabling the network to learn from a diverse
set of features.

o 20% for testing: 4,265 images reserved for evaluating the
generalization and robustness of the trained model.

e Visual representation:

o Figure 4, displays examples of parasitized and uninfected cells,
illustrating the diversity and complexity of the dataset.

o Figure 5, demonstrates the resized images post-preprocessing,
showcasing uniform dimensions critical for training deep
learning models.

This NIH dataset serves as an invaluable resource for malaria
prediction due to its scale, diversity, and richness. The challenges
posed by mislabelled entries indicate the importance of data
quality and domain expertise in ensuring accurate model training.
Furthermore, the careful splitting of the dataset ensures a
balance between training efficiency and testing reliability, forming
the foundation for robust model evaluation. By systematically
preparing and preprocessing this dataset, the paper establishes
a solid groundwork for building an advanced machine-learning
system capable of diagnosing malaria with high precision
and reliability.

2.2 Data preprocessing

Effective preprocessing is a critical step in any machine
learning workflow, particularly in medical image analysis. For this
study, a systematic data preprocessing pipeline was implemented
to ensure high-quality, standardized inputs for model training
and evaluation. By normalizing image data, reducing noise,
and addressing class imbalances, the preprocessing stage lays a
strong foundation for developing an accurate and robust malaria
diagnosis system.
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2.2.1 Normalization

Normalization is essential to scale image pixel values to a
uniform range, thereby enhancing computational efliciency and
model convergence during training. For this dataset, pixel values
ranging from 0 to 255 were scaled to a normalized range of (0,1).
The raw pixel values are scaled by Equation 1 from [0,255] to [0,1],
guaranteeing that all inputs are normalized before to being supplied
to the network (1).

Iariginal
Lnormalized = 255 (1)

Here:

o Ioriginal Tepresents the original pixel intensity values.
® Iormalized tefers to the scaled intensity values.

This step ensures that all input features are on a similar scale,
preventing certain pixels from disproportionately influencing the
model. Additionally, it facilitates faster and more stable learning by
neural networks.

2.2.2 Noise reduction

Medical images often contain visual artifacts and noise, which
can obscure critical features necessary for accurate classification. To
mitigate these issues:

e Gaussian filters: Applied to blur the images and reduce
high-frequency noise while preserving edges. This technique
ensures smooth transitions between pixel intensities,
enhancing feature extraction.

e Median filters: Used to remove salt-and-pepper noise,
replacing each pixel's value with the median of its
neighborhood. This operation effectively preserves edges

while eliminating outliers.

By reducing noise, these filtering methods improve the
clarity of microscopic cell images, ensuring that the machine
learning model focuses on relevant diagnostic features rather than
extraneous artifacts.

2.2.3 Class balance

Class imbalance and labeling errors can significantly impact
the training process, leading to biased or inaccurate models.
Addressing these issues involved two critical steps:

e Mislabelling corrections: Experts in the hematology domain
provided input to correct the dataset/s mislabeled samples.
Two experts independently reviewed images that were
thought to be possibly mislabeled, and labels were changed
depending on their agreement. In order to guarantee label
correctness and dependability before model training, any
disputes were settled through dialogue.

o Expert validation was employed to rectify labeling
errors in the dataset.

o Specifically, 750 uninfected cells initially mislabelled as
parasitized and 647 parasitized cells mislabeled as uninfected
were corrected, ensuring a reliable ground truth for training.

e Data augmentation for class imbalance:

frontiersin.org
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Unifected

FIGURE 6
Augmented cells used for malaria prediction.

Parasitised

VGG16(R) " Weighted Mean 1
(VGG16(RI.VGG19(R)
VGG19(R) Weighted Mean 2 Max Voting
(VGG19(R).DenseNet201(R))
DenseNet201(R) Weighted Mean 3
(VGG16(R).DenseNet201(R))

FIGURE 7
Working of the ensemble approach.

FIGURE 8
Ensemble method for malaria prediction.

. VGG16, VGG19,
DenseNET201

CNN with SVM

o To counter class imbalance, various data augmentation
techniques were employed. These included random
rotations, flips, zooms, and scaling, as detailed in the
augmentation pipeline.

o Augmentation not only increased the quantity of training
data but also introduced variability, enabling the model to
generalize better to unseen samples.

e Mislabeled data correction:

Experts in hematology assessed images with dubious

classifications, and consensus was reached to make adjustments.
A two-step procedure that involved independent evaluation by

Frontiers in Medicine

two experts and conversation to settle any discrepancies was used
to guarantee reliability. This method generated precise, superior
labels for training the model.

Hematology specialists examined every image that was marked
as suspicious or possibly mislabeled in order to guarantee the
validity of the data. Expert consensus led to revisions in the labels.
To ensure trustworthiness, a two-step verification method was
used:

i. Independent evaluation by two experts.
ii. Settlement of any disputes to arrive at a final consensus.
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FIGURE 9

Workflow of the proposed ensemble learning for malaria parasite
detection.

By reducing errors that could impair model performance, this
process guarantees that the dataset used for model training is
precise and of high quality.

This preprocessing pipeline ensures that the dataset is clean,
balanced, and normalized for optimal performance during training.
The integration of normalization, noise reduction, and class
balancing techniques addresses key challenges associated with
medical image datasets, such as variability in image quality and
class distribution. Consequently, these preprocessing strategies
enhance the robustness and reliability of the ensemble learning-
based malaria detection system.

2.3 Data augmentation

Data augmentation is a crucial technique in DL, particularly for
medical imaging, where obtaining large and diverse datasets can
be challenging. In this study, data augmentation techniques were
employed to expand the dataset artificially, introducing variations
that help improve the model’s ability to generalize across unseen
samples. By applying a range of transformations, the augmented
dataset retains its original diversity while simulating real-world
variability in microscopic images. To enhance the dataset and

” %

10.3389/fmed.2025.1684973

improve model performance, several augmentation techniques
were applied:

e Random rotation: Images were rotated randomly within a
range of £ 30°. This introduces angular variability, helping
the model learn features independent of orientation.

e Zooming: A random zoom transformation of up to 20% was
applied. This simulates variations in magnification during
image acquisition, improving the model’s robustness to
changes in scale.

e Flipping: Horizontal and vertical flips were incorporated
to ensure that the model recognizes malaria-infected cells
regardless of their alignment or orientation.

e Rescaling: All pixel values were rescaled to the range (0,1)
using a factor of 1/255, consistent with normalization
practices, to ensure uniformity and compatibility with the
model input pipeline.

Table 3 outlines the parameter values for each augmentation
technique applied in this paper, while Figure 6 provides visual
examples of the transformed images. These settings were carefully
chosen to preserve the biological relevance of the dataset while
introducing meaningful variability. These transformations were
implemented uniformly across all images in the dataset, ensuring
consistency during preprocessing.

By introducing a wide range of transformations, the augmented
dataset helps the model generalize better to unseen data, reducing
the risk of overfitting. While the data augmentation effectively
balances classes and increases sample diversity, addressing inherent
limitations in the original dataset. Variations such as rotations,
flips, and zooms prepare the model to handle real-world scenarios,
where image orientation and magnification may vary. Figure 6
illustrates examples of augmented images, highlighting the diversity
introduced by the applied transformations. These augmented
images demonstrate how the dataset maintains its biological
characteristics while incorporating meaningful variability, ensuring
that the malaria detection model can perform accurately and
robustly across diverse input scenarios. By employing these
augmentation techniques, the paper ensures a rich and varied

Malaria
infected cell
image

FIGURE 10
Architecture of custom CNN architecture for malaria prediction.
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TABLE 4 Transfer learning models with their coefficient measure.

Dimension 64 x 64
Sample quantity 42
Pooling 2x2
Epochs 105
Pre-initialized factors ImageNet
Stimulation mechanism SoftMax
Optimizer Adam
Optimization coefficient le-04

training dataset, which is pivotal for the success of the ensemble-
based malaria prediction system.

2.4 Transfer learning frameworks

To leverage the power of existing state-of-the-art DL
architectures, this paper utilized pre-trained models—VGG16,
VGG19 (34), and DenseNet201—within a transfer learning
framework. These models, pre-trained on large-scale image
datasets like ImageNet, were fine-tuned to adapt to the specific task
of malaria diagnosis using microscopic images. By modifying their
architecture and hyperparameters, these models were optimized
for accurate classification of parasitized and uninfected cells.

The pre-trained models were utilized for feature extraction,
taking advantage of their hierarchical feature representation
capabilities (35-38). These models are particularly effective in
extracting both low-level and high-level features, which are crucial
for identifying malaria-infected cells. The key adjustments made
to adapt these models include, modification of dense layers; The
final dense layers of the pre-trained models were replaced with
fully connected layers tailored for binary classification (infected
vs. uninfected). This adjustment ensures that the models focus
on malaria-specific features, rather than the general-purpose
features learned during pre-training. Several hyperparameters were
optimized to enhance the performance of the models, the batch
size was set to 32, ensuring a balanced trade-off between memory
efficiency and gradient update frequency. Epochs were defined as
100, allowing sufficient iterations for the model to learn from the
training data, and the learning rate was adjusted to 10%, providing
a stable and gradual learning process, avoiding overshooting or
stagnation during optimization.

The strength of transfer learning lies in its ability to utilize
pre-trained layers for hierarchical feature extraction. The initial
layers of VGG16, VGGI19, and DenseNet201 focus on capturing
fundamental patterns like edges and textures, which are critical
for distinguishing cellular structures in microscopic images. While
the deeper layers are responsible for learning more abstract
representations, such as the presence of parasitic artifacts, enabling
precise classification. The fine-tuned models were trained and
validated using the pre-processed dataset, ensuring that they
adapt effectively to the malaria diagnosis task. Specific techniques
employed to enhance optimization include, utilizing the Adam
optimizer to dynamically adjusts learning rates for each parameter,
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TABLE 5 Coefficient measures that need to be fine-tuned.

Dimension 64 x 64
Sample quality 22
Iterations 98
Constraint 0.002
Omission 0.1
Stimulation mechanism SoftMax
Optimizer Adam
Optimization coefficient le-04

and accelerate convergence while minimizing errors. The loss
function was tailored to the binary nature of the classification
task, effectively minimizing the gap between predicted and true
labels. Also, regularization methods, such as L2 regularization
and dropout layers, were incorporated to reduce overfitting and
enhance the robustness of the models (39).

Overall, leveraging pre-trained models significantly reduces
the time and computational resources required for training, as
most of the feature extraction is already accomplished. The
hierarchical feature extraction capabilities of VGG16, VGG19, and
DenseNet201 improve the model’s ability to identify parasitized
cells accurately. Fine-tuning these architectures ensures that the
models generalize well to the specific dataset while retaining their
high baseline performance. By incorporating transfer learning
frameworks, this paper effectively harnesses the power of pre-
trained DL models, significantly enhancing the accuracy and
efficiency of malaria diagnosis. These models form the backbone
of the proposed ensemble method, which further improves
performance by combining their individual strengths. For transfer
learning, we used VGG16, VGG19, DenseNet201, and ResNet50V2
as foundation models. These designs were chosen because of their
computational efficiency, availability of pretrained weights, and
demonstrated efficacy in medical imaging. The focus on testing
a well-established set of CNN models to assure repeatability and
increased computing needs prevented the inclusion of newer
architectures, such as EfficientNet and Vision Transformers, despite
their promising performance in recent studies. These more recent
architectures may be investigated in future research for possible
performance improvements.

2.5 Ensemble learning methodology

To achieve superior robustness and accuracy in malaria
diagnosis, an ensemble learning methodology was adopted.
This technique combines the predictions of multiple models,
effectively harnessing their individual strengths to deliver enhanced
diagnostic precision. The ensemble method employed two
strategies: Weighted Mean Ensemble and Hard Voting.

The Weighted Mean Ensemble method calculates a weighted
average of predictions from multiple models to produce the final
output. The formula governing this approach is:

n
Z W,‘P,‘

i=1

2

Pensemble
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FIGURE 11

Architecture of CNN-ML classifier model for malaria prediction.

Where:

Pesemple: The final ensemble prediction.

e w;: The weight assigned to the i

its contribution.

model, reflecting

P;: The prediction probability from the i model.

n: The total number of models in the ensemble.

Equation 2 defines a weighted average of the individual model
outputs, which provides the final ensemble prediction. Three model
combinations were used, with specific weights assigned to each.
Model 1 was a combination of VGG16 and VGG19 with weights,
wi 0.7, and w, 0.6. This pairing utilizes the complementary
feature extraction capabilities of VGG16 and VGG19. Model 2 was
a combination of VGG19 and DenseNet201 where weights, w; 0.6,
0.5. This model benefits from DenseNet201’s efficient
feature reuse and VGG19’s deeper network structure. Model 3 was
a combination of VGG16 and DenseNet201 were weights, w; 0.4,
and wy 0.5. This combination balances the simplicity of VGG16

and w;

with the densely connected architecture of DenseNet201. These
weighted combinations ensure that the strengths of each model are
appropriately prioritized in the final prediction.

The Hard Voting approach determines the final prediction
based on a majority vote among the individual model predictions.
The mathematical representation is given in Equation 3:

Pﬁnal = mOde(PbPZ,---,Pn) (3)
Where:

o Pgq: The final aggregated prediction.

e Py, P,, ..., P,: Predictions from individual models.

In this approach, each model contributes equally, and the
prediction category with the majority votes is selected as the final
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output. Hard voting is particularly effective in scenarios where
the models have varied prediction patterns, ensuring consensus-
driven accuracy.

The ensemble methodology offers several advantages; by
combining multiple models, the ensemble reduces the impact
of errors from individual predictions. The ensemble approach
mitigates the risks of overfitting that may occur when relying on
a single model. The weighted mean approach allows fine-tuning
of weights to adapt to specific datasets or classification challenges.
Adaptive weighted averaging and hard voting are used in the
ensemble to integrate base models. Adaptive weighting dynamically
distributes weights to each model based on validation results, giving
stronger models more sway than traditional fixed-weight averaging.
The ensemble outperforms fixed-weight techniques in terms of
accuracy and robustness thanks to this data-driven methodology.
For example, compared to a fixed-weight ensemble, grid search on
the validation set produced better overall validation accuracy by
identifying the ideal weights for every model combination. Figure 7
illustrates the workflow of the ensemble learning methodology,
showcasing the integration of predictions from multiple models
through weighted averaging and hard voting mechanisms. Figure 8
visually represents the ensemble approach, highlighting the
intricacies of this innovative methodology. Figure 9 illustrates
the wfiguorkflow of the proposed ensemble learning for malaria
parasite detection.Overall, this ensemble strategy forms a crucial
part of the proposed malaria prediction framework, ensuring
reliable and precise classification across diverse scenarios.

Three ensemble combinations were employed, and a certain
weight was given to each model. With validation accuracy
serving as the optimization criterion, the weights were found
using a grid search in increments of 0.1 within the range (0.1-
0.9). Grid search was chosen because it was straightforward,
reproducible, and appropriate for computing restrictions, even
though Bayesian optimization was taken into consideration. In the
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FIGURE 12
Architecture of VGG16 used for malaria prediction.

process, models that performed better on their own, such VGG19
and DenseNet201, were inherently given more weight. For instance,
the ideal weights in Model 1 (VGG16+VGG19) were 0.4 and 0.6,
respectively. Table 12 provides an overview of the ideal weights for
every ensemble combination.
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2.6 Algorithm: malaria detection
ensemble framework

2.6.1 Dataset D: microscopic cell images as input
Predicted class labels (infected or uninfected) are the output.
1. Preprocessing

Normalize pixel values to fall between 0 and 1

Use Gaussian and median filters to reduce noise

Make all pictures 64 by 64 pixels.

Use expert review to validate and correct samples that have

o oo

been incorrectly labeled.

2. Augmenting data

Implement random rotations (£ 15°), flip horizontally and
vertically, apply random zoom up to 20%, and rescale to maintain
consistent input dimensions.

3. Utilizing transfer learning for feature extraction

a. Adjust DenseNet201, ResNet50V2, VGG16, and VGGI9.
b. Use a binary classification head in place of the last layers c. Run
each model on the training subset.

4. Collective forecasting

a. Compile each model’s Pi probability outputs.
b. Make ensemble weights better Wi with grid search
c. Determine the ultimate weighted score:

n
Pensemble = Z w;P; (4)
i=1

d. To break classification ties, use hard voting.

5. Personalized CNN Integration

Train the suggested CNN to extract more features; evaluate
its performance against transfer learning models; and, if desired,
incorporate CNN outputs into the ensemble.

6. Assessment of the Model

a. Divide the dataset into 80% training and 20% testing.
b. Use and Recall to
evaluate performance.

F1-score, Accuracy, Precision,

c. Note the typical inference time for each picture.

7. Return: The ensemble’s final class label prediction

2.7 Custom CNN Architecture

To complement the transfer learning frameworks and ensemble
methodologies, a proprietary CNN architecture was developed.
This model was specifically designed to handle the unique
challenges of malaria cell classification, such as feature variability
and dataset imbalance. The architecture comprises several
optimized components aimed at enhancing feature extraction,
generalization, and classification accuracy. The custom CNN
architecture developed for malaria cell classification is designed
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FIGURE 13
Architecture of VGG19 used for malaria prediction.

to effectively extract spatial features, mitigate overfitting, and
improve generalization.

Convolutional layers form the backbone of the CNN and are
responsible for extracting hierarchical spatial features from input
images. These layers apply convolution operations using kernels to
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detect patterns such as edges, textures, and shapes. The first layer
utilizes 32 filters with a 5 x 5 kernel size. Larger kernel size in
the first layer helps in capturing more general features like shapes
and contours. The second layer also comprises 32 filters but uses a
smaller 3 x 3 kernel size to focus on finer details and local features.
The Rectified Linear Unit (ReLU) is employed for non-linearity.
ReLU prevents negative outputs and reduces the risk of vanishing
gradient issues, accelerating convergence during training. It is given
as:

R() = ®)

max (0, x)

Batch normalization standardizes the outputs of each layer to
reduce internal covariate shift, thereby stabilizing the learning
process. It is defined as:

1 .
W= ZiN(l) (6)
- > )
o = ;Zl( (z)_,u)
N, = N()—p/ jo2+e (8)
Here:

o N®: Input to the normalization layer.
e |: Mean of the inputs.
e o2: Variance of the inputs.
e &: A small constant to avoid division by zero.

This enhances training stability and allows the use of higher
learning rates, speeding up the optimization process. The batch
normalization process involves averaging activation values across
the batch and determining standard deviation (Equations 4, 5). To
achieve the normalization of the activation vector N[l], Equation
6 is utilized. Additionally, the layer output N(i) is computed
by employing with trainable parameters y and P, expressed in

Equation 7. By centering the input activations to zero mean and
scaling them to unit variance, Equation 8 normalizes them and
ensures stable learning dynamics. By introducing trainable scale (y)
and shift (B) parameters, Equation 9 enables the network to regain
representational flexibility following normalization.

NGO

N = vy* narm+ﬁ &)

Dropout is a regularization technique to combat overfitting,
particularly in deep networks with large parameter spaces. During
training, 20% of neurons are randomly deactivated which forces
the model to learn more distributed and robust representations
instead of relying heavily on specific neurons. It encourages
the network to learn more robust representations by preventing
reliance on specific neurons. Dense (fully connected) layers
consolidate the features extracted by convolutional layers and
produce predictions. Layer 1 contains 4096 neurons and applies
L2 regularization to penalize large weights, further controlling
overfitting. Layer 2 includes 1,024 neurons, refining the feature
mappings generated in the previous layers. These layers integrate
all the features extracted and prepare them for final classification.
The SoftMax layer computes probabilities for each class, enabling
binary classification of parasitized and uninfected cells. It produces
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FIGURE 14

Architecture of DenseNet used for malaria prediction.
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TABLE 6 The Convolutional Neural Network (CNN) model's results at various levels.

ey e T  score T ccuracy T negatve value |

normalized probabilities between 0 and 1, ensuring interpretability.
It is given as:

(zi) “
s(zi) =
&

(10)
j=1

Sparse categorical cross-entropy is utilized to measure the
divergence between the true and predicted class probabilities.
Although typically applied in multi-class scenarios, this loss
function is particularly useful for binary tasks as it precisely
captures classification errors. It is defined as:

1 N
Loss = — Nzizlyilog (11)

Where:

e N: Number of samples.
e ;: True label of the i-th sample.
e J;: Predicted probability for the true class.

The proposed architecture is uniquely tailored for the
malaria dataset, addressing challenges like feature variability
and small dataset size. It is designed specifically for malaria
cell images, balancing computational efficiency with predictive
performance. Convolutional layers systematically capture features
ranging from general (shapes) to specific (textures), enhancing
accuracy. Dropout and L2 regularization prevent overfitting,
ensuring the model generalizes well to unseen data. The compact
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Adadelta 0.7820 0.7740 0.7680 0.7830 0.7890
Adagrad 0.9180 0.9180 0.9179 0.9719 0.9810
Adamax 0.9625 0.9601 0.9605 0.9607 0.9652
Ftrl 0.2547 0.6001 0.3400 0.4593 0.4001
Nadam 0.9800 0.9765 0.9768 0.9764 0.9890
RMSprop 0.9643 0.9643 0.9643 0.9643 0.9643
SGD 0.9546 0.9522 0.9244 0.9452 0.9625
Adam 0.9789 0.9789 0.9768 0.9750 0.9810
architecture is computationally feasible, making it suitable for
® PPV TPR @ Fiscore @ Accuracy resource-constrained environments. The custom CNN’s modular
@ True Negative Value design is visually represented in Figure 10, which outlines the
10 sequential arrangement of layers, including convolutional, batch
normalization, and dense layers. Additionally, Table 4 provides
08 . , .
a detailed breakdown of each layer’s configuration, such as
06 the number of filters, kernel sizes, activation functions, and
regularization parameters. The hyperparameters that are fine-
0.4 . . . .
tuned to reduce error are listed in Table 5. Figure 11 illustrates
02 the CNN-ML classifier diagram, highlighting the integration of
the custom CNN architecture with various machine-learning
00 . . . . .
b°\‘° ¢°b & & v Q@Q S F algorithms in this stud).r. Flgur.e ‘12 sh9ws the architecture of
& & & ¢ v VGG16 used for Malaria Prediction. Figure 13 represents the
CCURE 15 architecture of VGG19 used for malaria prediction. Figure 14 shows
Performances at various optimizers. the architecture of DenseNet used for Malaria Prediction. Overall,
the custom CNN architecture effectively combines advanced

feature extraction, robust regularization techniques, and efficient
classification mechanisms. Its design ensures optimal performance
for the malaria classification task, making it a viable solution for
real-world applications in healthcare diagnostics.

2.8 Experimental setup and evaluation
metrics

The experiments for evaluating the malaria cell classification
system were conducted in the Google Colab environment,
leveraging its powerful computational resources, and streamlined
setup. The hardware and software resources were; 69 gigabytes of
available disk storage, 13 gigabytes of RAM, Nvidia Tesla T4 GPU
for accelerated computations, 11.2 CUDA version which enabled
GPU-optimized training via parallel processing, Python 3.7.10 was
used for model development and analysis, and Matplotlib 3.2.2
package for plotting metrics and results. This configuration ensured
a high-performance environment for the development, training,
and evaluation of the proposed models, allowing rapid iterations
and efficient handling of the large dataset.

The performance of the classification models was assessed using
a suite of evaluation metrics designed to provide a comprehensive
view of their effectiveness. These metrics include accuracy,
precision, recall (sensitivity), F1 score, and specificity. Each metric
measures a different aspect of model performance, particularly
in the context of binary classification. Accuracy measures the
proportion of correctly classified samples, encompassing both
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TABLE 7 Comparison of several Convolutional Neural Network-machine learning (CNN-ML) classifiers’ performance results.

Optimization
coefficient

le-02 0.2546 0.5400 0.3450 0.4895 0.2564
1e-03 0.9250 0.9268 0.9285 0.9285 0.9286
le-04 0.9153 0.9128 0.9129 0.9129 0.9186
Ensemble (proposed 0.9456 0.9458 0.9489 0.9456 0.9543
method)
parasitized and uninfected cells and it is given as Equation 10.
Recall evaluates the model’s ability to correctly identify positive ©1c-02 @1e-03 ©1e-04 @ Ensemble (Proposed Method)
cases (parasitized cells) and is given as Equation 11. Precision L ; v
(Equation 12) quantifies the proportion of true positive predictions o
out of all positive predictions. Precision and Recall are crucial
. e 06
for understanding the trade-off between false positives and false
negatives. In the context of this paper, a false positive (mislabeling 04
an uninfected cell as parasitized) may lead to unnecessary
. 1. e 02
treatment, and a false negative (failing to detect a parasitized I I
cell) can have serious health consequences. F1 score represents L2 o s vl v =
the harmonic mean of precision and recall, balancing these two
. . .. . FIGURE 16
metrics, providing a balanced assessment by combining precision o
X ) . o . ) Comparison of several classifiers’ performances.
and recall into a single metric. It is given in Equation 13. The

evaluation is also done using macro F1 score (Equation 14) and
weighted average F1 score (Equation 15), where the former is the
unweighted average of the F1 scores for each class, treating all
classes equally and the latter takes the class imbalance into account
by computing a weighted average of F1 scores. Specificity is used to
measure the ability to correctly identify uninfected cells (negative
cases). It is particularly important in this binary classification
problem to ensure the accurate detection of uninfected cells,
reducing unnecessary alarm. It is given in Equation 16.

Accuracy = TP 4+ TN/TP + FP 4+ TN + FN (12)

Recall (TPR) = TP/TP + EN (13)

Precision (PPV) = TP/TP + EN (14)

F1 Score = 2xPrecision x Recall/Precision x Recall ~ (15)

macro F1 = sum of all the F1 scores/Total no. of scores  (16)
weighted average of F1 = sum of all weighted average of

F1 scores/ Total weighted of the F1 Scores (17)

Specificity (TNR) = TN/TN + FP (18)

By using these metrics, the models’ performance was rigorously
evaluated, ensuring robustness and reliability for real-world
deployment in malaria diagnosis systems and by combining
robust preprocessing, advanced transfer learning, and ensemble
techniques, the proposed system achieves superior malaria
detection, paving the way for scalable applications in resource-
constrained settings.
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3 Results

The experimental results of the study demonstrate the efficacy
of the proposed methodologies in addressing the challenge
of malaria detection through DL. The custom CNN achieved
remarkable training and validation accuracies, highlighting its
potential as a reliable feature extractor. The training accuracy
reached 96.43%, and the validation accuracy was 96.56%. Without
data augmentation, these values were 99.77% and 95.06%,
respectively. The notable discrepancy between training and
validation accuracy indicates signs of overfitting, where the
model performs well on training data but exhibits diminished
generalization on test data. Table 6 presents a detailed breakdown
of the performance of the custom CNN across various optimizers,
while Figure 15 graphically illustrates these results. The optimizers
tested include Adadelta, Adagrad, Ftrl, SGD, Adam, and RMSprop,
showcasing varying levels of effectiveness in reaching the global
minimum loss. Outcomes for the modified CNN model’s efficacy
at different learning rates are exhibited in Table 7 and Figure 16 is
the graphical representation of the comparison of several classifiers’
performances.

Incorporating machine learning classifiers into the CNN
architecture provided additional insights into the models
adaptability. When the custom CNN served as a feature extractor,
the SVM classifier achieved a commendable 81.67% test accuracy.
A comparative analysis of various CNN-ML classifiers is presented
in Table 8, with their respective performance outcomes visualized
in Figure 17. These results demonstrate that the SVM-based
combination was the most effective in leveraging CNN-extracted
features for classification. The paper also explored transfer
learning to assess the impact of pre-trained models on the malaria
detection task. Retrained models, where all layers were fine-
tuned, consistently outperformed their pre-trained counterparts.
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TABLE 8 Various Convolutional Neural Network-machine learning (CNN-ML) classifiers’ performance in terms of results.

CNN-SVM 0.8214 0.8245
CNN-KNN 0.6564 0.6255
CNN-decision tree 0.7498 0.7498
CNN-random forest 0.8145 0.8141
Ensemble method 0.9432 0.9456
(proposed method)
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FIGURE 17

Various CNN-ML classifiers’ performance in terms of results.

Among the tested architectures, VGG19 (retrained) exhibited
the highest testing accuracy of 97.65%, outperforming other
models. Table 9 systematically presents the performance outcomes
of various transfer learning models, while Figure 18 provides a
graphical comparison. These results underscore the importance
of comprehensive training for achieving superior performance in
novel domains.

The ensemble learning approach, combining max voting
and adaptive weighted averaging, further enhanced classification
accuracy. For the parasitized class, 2,790 images were correctly
classified, while 2,704 images from the uninfected class were
accurately identified. The ensemble method achieved a testing
accuracy of 97.93%, as reflected in the confusion matrices
(Figures 18-20). These matrices indictae the robustness of the
ensemble strategy in mitigating misclassifications. Table 10
provides a detailed summary of the results obtained from various
ensemble learning techniques. The ensemble framework that
combines hard voting approach ensured optimal outcomes by
dynamically assigning appropriate weights to individual models.
The proposed ensemble learning approach was compared to
other deep learning models, demonstrating its superiority in
malaria detection. The ensemble model achieved the highest
testing precision of 97.93%, outperforming other models in terms
of accuracy, precision, recall, and Fl-score. Adaptive weighted
averaging consistently improved validation accuracy by 0.5%-
1.0% as compared to fixed-weight ensembles, demonstrating
the efficacy of the dynamic weighting technique. Table 11
compares the performance of the proposed ensemble model
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0.8266 0.8345 0.8247
0.5989 0.5689 0.6199
0.7498 0.7498 0.7498
0.8143 0.8149 0.8148
0.9453 0.9447 0.9472

against alternative methods, clearly illustrating its dominance in
accuracy and robustness.
VGG19 higher weights
performance, as Table

The grid search gave DenseNet201 and
because of their superior individual
12 The
accuracy of 97.93% was attained by the three-model ensemble
(VGG16+VGG19+DenseNet201), which had ideal weights of 0.2,
0.4, and 0.4, respectively.

illustrates. best validation

Finally, the study compared the proposed approach with
existing methodologies to evaluate its practical impact. The
ensemble model outperformed previous works, particularly those
using standalone CNN or transfer learning models. Table 13
presents a comparative evaluation, underscoring the ability of the
ensemble model to detect malaria more precisely and effectively
than existing methods. Overall, the proposed methodology
demonstrates significant advancements in malaria detection,
leveraging custom CNN architectures, transfer learning, and
ensemble strategies. With an accuracy of 97.93%, the suggested
ensemble outperformed both individual models and previous
methods. Despite the slight (1-2%) absolute gain over earlier
techniques, this improvement can have important therapeutic
ramifications by lowering the likelihood of misdiagnosis, lowering
false negatives, and increasing patient outcomes in malaria
screening. By systematically addressing issues such as overfitting
and leveraging the complementary strengths of multiple classifiers,
the approach establishes a benchmark for future research in
automated disease diagnosis. The superior accuracy, particularly
of the ensemble model, highlights its potential for deployment in
real-world healthcare applications.

4 Discussion

This paper introduces an ensemble learning-based deep
neural network to identify malaria-causing parasites through
microscopic red blood cell images. The suggested ensemble
outperformed individual CNN and transfer learning models
with an testing accuracy of 97.93% and demonstrated better
classification robustness when compared to current benchmarks.
This achievement is attributed to the integration of custom
CNN architectures, transfer learning techniques, and adaptive
ensemble strategies.

The proposed model’s accuracy significantly outperforms
traditional single-network models and transfer learning-based
approaches. For instance, while standalone custom CNN
models and transfer learning methods such as VGG19 achieved
commendable results, they were outmatched by the ensemble

strategy, which mitigates individual model weaknesses. These
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TABLE 9 Different transfer learning models’ performance in terms of results.

10.3389/fmed.2025.1684973

I T

VGGI16 0.9102 0.9245 0.9189 0.9178 0.9243
VGG19 0.9125 0.9104 0.9105 0.9108 0.9106
DenseNet201 0.9088 0.8928 0.8954 0.8910 0.8999
ResNet201 0.9038 0.9010 0.9011 0.9012 0.9016
VGG16 (R) 0.9765 0.9765 0.9765 0.9765 0.9765
VGG19 (R) 0.9742 0.9742 0.9742 0.9742 0.9742
DenseNet201 (R) 0.9750 0.9748 0.9748 0.9748 0.9786
ResNet50V2 (R) 0.9701 0.9702 0.9703 0.9704 0.9701
@ PPV TPR @ Fl-score @ Accuracy @® TNR
1.000
0.995
0.990
0.985
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0.975
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FIGURE 18
Different transfer learning models’ performance in terms of results.

Training Set
TARGET
infected uninfected sum
OUTPUT
1366
infected 49.00%
1336 1382
pxiafeciad 47.92% 96.67%
3.33%
1412 1376 27022788
SUM
96.74% 97.09% 96.92%
3.26% 291% 3.08%

FIGURE 19
Confusion matrix.

results align with previous studies suggesting that ensemble
techniques often provide enhanced robustness and generalizability
by aggregating diverse model predictions. Furthermore, the
integration of adaptive weighted averaging and max-voting
mechanisms ensures optimal performance across a variety
of test scenarios.

Frontiers in Medicine

One critical challenge tackled in this research is overfitting,
a common issue in deep learning models trained on biomedical
datasets. Data augmentation and L2 regularization strategies
effectively reduced overfitting, as evidenced by the reduced gap
between training and validation accuracies. Such interventions
resonate with prior studies that indicate the importance of
pre-processing techniques and hyperparameter optimization in
boosting model robustness for small or noisy datasets.

The ensemble model holds substantial promise for practical
applications in biomedicine, particularly in resource-constrained
settings where accurate malaria diagnosis is crucial. Microscopists
could use this tool to expedite diagnosis while reducing the
likelihood of human error. Moreover, the approach has the
potential to be adapted for differentiating between various
Plasmodium species, enabling more nuanced clinical decision-
making. Future integration with mobile applications could further
expand accessibility, empowering healthcare workers in remote
or underserved areas. The frequency of misdiagnosed cases,
particularly false negatives, can be significantly reduced with
even a little increase in classification accuracy (1%-2%), which is
essential for patient treatment. This demonstrates the suggested
ensemble model’s potential clinical utility in supporting malaria
diagnosis in practical settings. Unlike previous works that just
used one CNN or transfer learning model, our ensemble approach
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TABLE 10 Findings from several group education techniques.

10.3389/fmed.2025.1684973

Dynamic weighted VGG16 (R), VGG19 (R) 0.8, 0.5 0.9754 0.9789 0.9758 0.9758 0.9758
Average VGG19 (R), DenseNet201 (R) 0.7,0.6 0.9874 0.9874 0.9874 0.9874 0.9874
VGG16 (R), DenseNet201(R) 0.5,0.6 0.9761 0.9761 0.9761 0.9761 0.9761
VGG16(R), VGG19 (R) and 0.1,0.8,0.7 0.9788 0.9788 0.9788 0.9788 0.9788
DenseNet201(R)
Max voting VGG16 (R), VGG19 (R) and - 0.9782 0.9781 0.9780 0.9780 0.9780
DenseNet201 (R)
Adaptive weighted VGG16 (R), VGG19 (R) and - 0.9794 0.9794 0.9794 0.9794 0.9794
average and max voting DenseNet201 (R)
TABLE 11 Findings regarding alternative models juxtaposed with the proposed ensemble model.
Model | PPV | TNR | TPR | Fl-score | Accuracy |
Custom CNN 0.9728 0.9720 0.9721 0.9720 0.9720
VGG16 (R) 0.9765 0.9765 0.9765 0.9765 0.9765
CNN-SVM 0.8214 0.8245 0.8245 0.8266 0.8247
Ensemble (proposed 0.9793 0.9793 0.9793 0.9793 0.9793
method)

TABLE 12 Optimal weights were determined for various ensemble model combinations (using grid search).

Ensemble combination

Search range

Optimal weights (model A/model

Validation accuracy

B/model C)

VGG16 + VGGI19 0.1-0.9 (step 0.1) 0.5/0.4 96.87
VGG16 + DenseNet201 0.1-0.9 (step 0.1) 0.3/0.6 97.12
VGG19 + DenseNet201 0.1-0.9 (step 0.1) 0.40/0.50 97.56

VGG16 + VGG19 + DenseNet201 0.1-0.9 (step 0.1) 0.2/0.4/0.4 97.93

TABLE 13 Comparing the results and performance of the proposed ensemble model with that of existing work.

Otsu segmentation, 0.9617 0.94 0.954 0.945 0.949

K-means clustering
CNN 0.9547 0.9720 0.9720 0.9542 0.95

VGG16 0.9765 0.9765 0.9645 0.9654 0.9605

CNN 0.9689 0.9644 0.9689 0.9689 0.9689

VGG16 0.9709 0.9710 0.9699 0.9721 0.9780

VGG16 0.946 0.946 0.946 0.946 0.946

CNN 0.9781 0.9710 0.9748 0.9746 0.9749

Ensemble model 0.9793 0.9793 0.9793 0.9763 0.9793
(proposed method)

incorporates a custom CNN along with many state-of-the-art
architectures. Complementary feature learning is made possible by
this integration, which also lowers the possibility of overfitting and
produces more accurate categorization. This study’s uniqueness

therefore resides in its ensemble structure, which goes beyond

traditional single-model techniques.

Despite its successes, the paper acknowledges several
limitations that impact the generalizability of the model like image
quality variability, where fluctuations in the quality of microscopic
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images introduce inconsistencies in predictions, especially when
working with diverse datasets. The reliance on specific datasets,
such as the NIH dataset, may lead to biases that hinder the model’s
performance on unfamiliar data or populations. Demographic
or geographical biases inherent in the training data could distort
predictions, particularly in global applications with diverse patient
profiles. To mitigate these challenges, future research should
focus on training the model using a broader spectrum of datasets,
improving pre-processing pipelines, and developing techniques to
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Class Name Precision 1-Precision Recall 1-Recall f1-score

infected 09716 0.0284 0.9674 0.0326 0.9695

uninfected 0.9667 0.0333 0.9709 0.0291 0.9688
Accuracy 0.9692
MlsclaRszigcatlon 0.0308
Macro-F1 0.9691
Weighted-F1 0.9692

FIGURE 20
Detailed confusion matrix.

handle variability in input data. The suggested framework delivers
excellent diagnostic accuracy while providing practical benefit in
clinical settings. It can help microscopists make better decisions by
reducing workload and errors. Its lightweight design also makes it
appropriate for mobile health platforms, which improves access in
remote and underserved locations. Furthermore, interpretability
approaches like Grad-CAM can provide visual explanations for
forecasts, increasing transparency and clinician trust in the system.

Building on this work, future studies should aim to design
new architectures tailored for multi-class classification tasks,
such as differentiating between various Plasmodium species. Test
the model on larger, more heterogeneous datasets to enhance
its generalizability across different populations and contexts.
Explore lightweight model designs suitable for deployment on
mobile devices, making malaria diagnosis more accessible in
remote regions. Investigate hybrid approaches combining machine
learning and domain knowledge to refine model interpretability
and usability in clinical settings. By addressing these directions,
this line of research could significantly contribute to malaria
elimination efforts, particularly in endemic regions.

5 Conclusion

The proposed research presents a novel ensemble learning-
based deep neural network framework for malaria detection,
demonstrating state-of-the-art performance with a testing accuracy
of 97.93%. Through the strategic integration of custom CNN

Frontiers in Medicine

architectures, transfer learning models, and ensemble methods,
the proposed system addresses key challenges such as overfitting,
variability in image quality, and model generalization. The findings
underscore the potential of machine learning, particularly ensemble
approaches, to revolutionize malaria diagnosis. By leveraging
robust pre-processing techniques, adaptive learning mechanisms,
and diverse datasets, the model provides a reliable and efficient
tool for assisting microscopists in clinical and field settings. The
suggested ensemble model has the potential to assist in the clinical
detection of malaria and exhibits good accuracy. However, as the
present validation was limited to the NIH dataset and lacked
hardware-level testing, immediate implementation in resource-
constrained environments is still premature. To improve real-
world applicability, future research will give priority to mobile
deployment experiments and evaluation on external datasets.
While this study focuses on binary classification, future work will
include multi-class categorization of Plasmodium species. This
clinically significant step addresses real-world diagnostic demands
and improves the system’s translational utility.

Despite certain limitations, including data biases and
inconsistencies in image quality, this research lays the foundation
for further advancements in automated disease detection. In order
to distinguish between Plasmodium species and test the model on
external datasets, future research will concentrate on multi-class
categorisation. The viability of implementation in clinical and
resource-constrained outdoor settings will also be evaluated at
the hardware level using smartphones and low-power embedded
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devices. Future efforts aimed at refining model generalization,
exploring mobile applications, and expanding the dataset diversity
will play a pivotal role in making these technologies universally
applicable. The evaluation of the suggested ensemble model was
restricted to images of Plasmodium falciparum and uninfected
cells in a particular context, despite its good performance on the
NIH dataset. As such, it is unclear whether it can be applied to
other datasets or real-world samples with other staining techniques,
imaging scenarios, or parasite species. More publicly accessible
datasets should be evaluated in future research. Ultimately, the
proposed system not only enhances diagnostic accuracy but also
paves the way for scalable, data-driven solutions to malaria
detection. This marks a significant step toward improving patient
outcomes and supporting global health initiatives aimed at malaria
eradication. This study is restricted to the NIH malaria dataset,
which, despite its widespread use, has limited generalisability and
may induce bias because of its controlled imaging circumstances.
Future studies should investigate transfer learning between datasets
acquired in various imaging conditions, address inter-laboratory
variability using domain adaptation approaches, and replicate real-
world changes in staining, illumination, and image quality using
sophisticated augmentation techniques. This study’s reliance on the
NIH dataset is a significant restriction, as it may limit the model’s
applicability to other clinical or geographical circumstances. Cross-
dataset testing involving images from various staining techniques,
imaging devices, and patient groups should be included in future
research. Furthermore, using domain adaptation approaches could
improve the model’s robustness, ensuring that the suggested
framework is more widely applicable in a variety of real-world
scenarios. To improve the suggested model’s clinical applicability
in a variety of resource-constrained contexts, these tactics must be
put into practice.
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