

OPEN ACCESS

EDITED BY Rahul Shivahare, The Ohio State University, United States

REVIEWED BY

Raimundo Nonato Colares Camargo Júnior, Instituto Federal de Educação, Ciência e Tecnologia do Pará campus Santarém, Brazil Cassio Campelo,

State University of Ceará, Brazil

*CORRESPONDENCE

Matheus Henrique Gonçalves Aguiar

imatheus.aguiar@upe.br

Gilberto Silva Nunes Bezerra

imagilberto.bezerra@tus.ie

Zulma Maria de Medeiros

imagilos zulma.medeiros@upe.br

RECEIVED 08 August 2025 ACCEPTED 08 October 2025 PUBLISHED 27 October 2025

CITATION

Aguiar MHG, Guedes DL, Júnior WLB, da Silva ED, Bezerra GSN, Bonfim CV, Vieira AVB, Monteiro BEF, dos Santos Souza R, Diniz LFB, de Aquino SR, Mendes LG, Justo AM and de Medeiros ZM (2025) Assessment of asymptomatic *Leishmania* infection in people living with HIV: a long-term follow-up study in Northeastern Brazil. *Front. Med.* 12:1682423. doi: 10.3389/fmed.2025.1682423

COPYRIGHT

© 2025 Aguiar, Guedes, Júnior, da Silva, Bezerra, Bonfim, Vieira, Monteiro, dos Santos Souza, Diniz, de Aquino, Mendes, Justo and de Medeiros. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Assessment of asymptomatic Leishmania infection in people living with HIV: a long-term follow-up study in Northeastern Brazil

Matheus Henrique Gonçalves Aguiar^{1*}, Diego Lins Guedes^{1,2}, Walter Lins Barbosa Júnior³, Elis Dionísio da Silva³, Gilberto Silva Nunes Bezerra^{4*}, Cristine Vieira Bonfim⁵, Amanda Virginia Batista Vieira^{1,3}, Bruna Eduarda Freitas Monteiro⁶, Roberta dos Santos Souza³, Lucyo Flávio Bezerra Diniz⁷, Samuel Ricarte de Aquino⁷, Luiz Gustavo Mendes⁸, Alda Maria Justo⁹ and Zulma Maria de Medeiros^{1,3,6*}

¹Postgraduate Program in Health Sciences, University of Pernambuco (Campus Santo Amaro), Recife, Brazil, ²Department of Life Sciences, Federal University of Pernambuco, Caruaru, Brazil, ³Department of Parasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil, ⁴Department of Life & Health Sciences, Dundalk Institute of Technology, Dundalk, Ireland, ⁵Social Research Division, Joaquim Nabuco Foundation, Ministry of Education, Recife, Brazil, ⁶Postgraduate Program in Health Biosciences and Biotechnology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil, ⁷University Hospital, Federal University of Vale do São Francisco, Petrolina, Brazil, ⁸Ministry Health, Petrolina, Brazil, ⁹Department of Nursing, University of Pernambuco (Campus Petrolina), Petrolina, Brazil

In people living with HIV (PLWH), surveillance for Leishmania infection is crucial for identify those at risk of developing visceral leishmaniasis (VL). Leishmania-HIV coinfection worsens patient outcomes and increases mortality and relapse rates. We conducted a prospective study (2017-2023) in Northeast Brazil to assess the long-term outcomes of asymptomatic Leishmania-HIV coinfected outpatients and Leishmania-negative PLWH. Participants were drawn from a cross-sectional study performed in 2017, which identified both Leishmania-HIV coinfected and Leishmania-negative PLWH. Epidemiological, clinical, and laboratory data were collected from medical records (2017-2023). In 2023, these individuals were retested for Leishmania using serological tests and conventional polymerase chain reaction (PCR). Categorical variables were compared using the chi-square test, and non-parametric tests were used for quantitative variables. During follow-up, six individuals developed VL: five from the coinfected group and one from the non-coinfected PLWH group (OR 10.4; 95% CI 1.2-94.2; p = 0.023). Three patients experienced relapse: one from the PLWH group and two from the coinfected group. There was one death in the Leishmania-HIV group. In 2023, 80 patients were retested; five coinfected patients remained positive for VL by one or more tests, and two PLWH patients seroconverted for VL. Our findings underscore the critical need for long-term follow-up of asymptomatic Leishmania-HIV patients to mitigate disease progression and associated complications.

KEYWORDS

 $visceral\ leish maniasis, \textit{Leish mania in fantum},\ longitudinal\ evaluation,\ HIV\ coinfection,\ disease\ progression$

1 Introduction

Visceral leishmaniasis (VL) is a serious systemic disease caused by protozoa of the *Leishmania donovani* complex. In Brazil, the causative parasite is *Leishmania infantum* (1, 2). Typical symptoms of VL include recurrent fever, weight loss, hepatosplenomegaly, and pancytopenia (3, 4). Pederiva et al. (5) demonstrated that asymptomatic *Leishmania* infection is frequent in VL-endemic regions, particularly in developing countries such as Brazil and India.

People living with HIV (PLWH) in VL-endemic areas have an elevated risk of *Leishmania* infection compared with HIV-negative individuals (6–8). In the Americas, Brazil accounts for 93% of all reported cases of *Leishmania*—HIV coinfection (9, 10). The majority of these cases are caused by *Leishmania infantum* in the country's Northeast region (7, 11–16). HIV infection accelerates the clinical progression from asymptomatic *Leishmania* infection to symptomatic VL. In patients with advanced immunosuppression, the disease can present with more severe and atypical manifestations (17). These atypical manifestations may include hemorrhagic events (e.g., epistaxis, ecchymosis, and hematuria), as well as dyspnea, diarrhea, and the involvement of organs not typically affected by *Leishmania*. Reported atypical sites include the skin, oral mucosa, larynx, lungs, pleura, esophagus, stomach, small intestine, pancreas, and kidneys (18).

Detection of asymptomatic Leishmania-HIV coinfection relies on serological, molecular, and parasitological tests (4, 5). The "gold standard" for VL diagnosis, however, is parasitological confirmation. In Brazil, highly sensitive parasitological diagnoses, such as spleen, liver, and bone marrow aspiration, are commonly employed (19). However, there is currently no gold-standard test or consensus definition for diagnosing asymptomatic *Leishmania* infection (20, 21). Therefore, optimal surveillance for PLWH in VL-endemic areas requires a combination of diagnostic methods to identify asymptomatic infections and detect atypical clinical manifestations during follow-up (7, 22). Molina et al. (21) demonstrated that HIV-infected individuals with asymptomatic Leishmania infection may transmit the parasite to sand flies, thereby contributing to the maintenance of VL transmission in endemic areas like the Mediterranean (23). To the best of our knowledge, few longitudinal studies have focused exclusively on the outcomes of asymptomatic coinfected patients. This prospective study (2017-2023) aimed to assess the clinical outcomes of asymptomatic Leishmania-HIV coinfected and Leishmania-negative patients Northeast Brazil.

2 Materials and methods

2.1 Study design and samples

This was a prospective cohort study conducted from January 2017 to September 2023. We followed a cohort of PLWH, including those with asymptomatic *Leishmania*-HIV coinfection, in the city of Petrolina, State of Pernambuco, Northeast Brazil (7) (Figure 1).

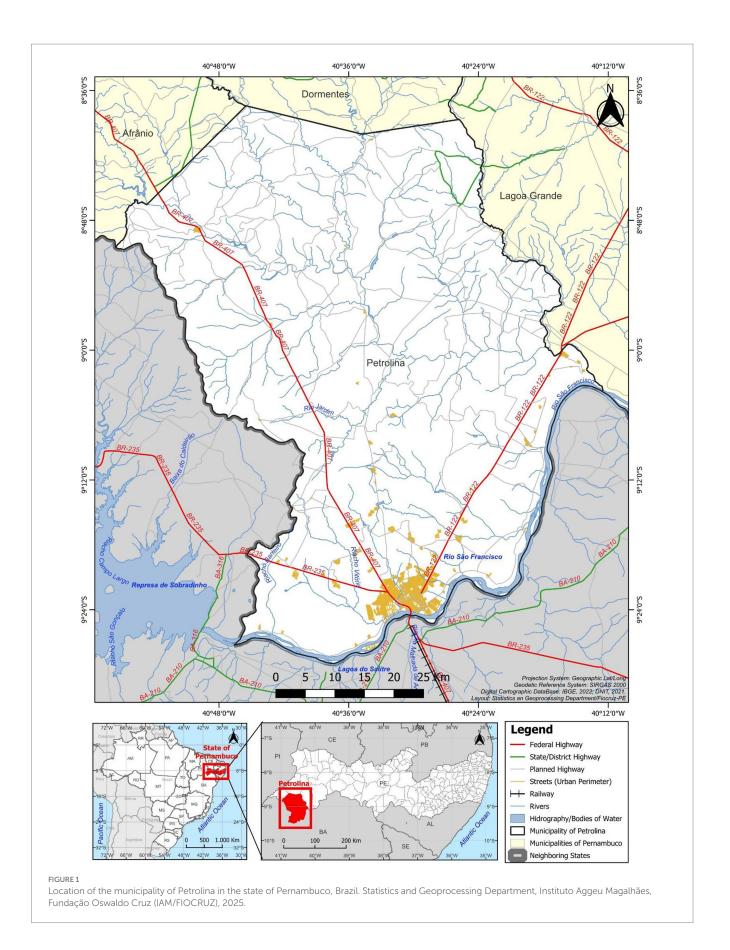
The cohort was established based on a 2017 prevalence study that screened 483 PLWH, which identified 44 individuals as having asymptomatic *Leishmania*-HIV coinfection (7). Inclusion criteria at that time were PLWH 18 years or older who were being treated at the

local HIV care service and were on regular Antiretroviral Therapy (ART). Exclusion criteria included current VL treatment, clinical symptoms of VL, or irregular ART use (7).

From 2017 to 2023, longitudinal clinical data were collected from medical records, specifically focusing on incident symptomatic VL, relapse, cause of death, treatment abandonment, and transfer of care. In 2023, the original participants were invited for retesting for *Leishmania*. A total of 29 asymptomatic *Leishmania*-HIV coinfected patients and 51 *Leishmania*-negative PLWH from the original cohort were successfully retested.

2.2 Cases definitions

- Asymptomatic *Leishmania*-HIV coinfection: An HIV-positive individual with at least one positive serological or molecular test for VL, but without clinical symptoms (7).
- Symptomatic *Leishmania*-HIV coinfection: An HIV-positive patient with laboratory confirmation of VL (parasitological, serological, or molecular test) and clinical symptoms (e.g., fever ≥ 2 weeks, hepatomegaly, splenomegaly, cough, diarrhea, dyspnea, bleeding, weight loss, or mucous pallor) (24).
- Relapse: Recurrence or worsening of one or more clinical signs (e.g., fever, cytopenia, and hepatosplenomegaly) within 12 months after clinical cure (24).
- *Leishmania*-negative PLWH: HIV-positive individuals testing negative for *Leishmania* markers (24).
- VL-related death: A death in a PLWH with VL symptoms and/or positive *Leishmania* tests where the cause of death was attributed to VL (24).
- Abandonment (loss to follow-up): Patients who failed to attend health services for over 3 months after starting treatment or missed appointments for over 6 months, including medication discontinuation or the breakdown of the patient-healthcare provider relationship (24).
- Transfer of care: Patients unable to continue attending the health center due to relocation (e.g., moving to a different city or state) (24).
- Regular ART use: Continuous antiretroviral therapy for at least 6 months (24).
- Seroreversion (or Reversion to negative): A change from positive to negative *Leishmania* markers in PLWH (25).


2.3 Clinical procedures and laboratory analysis

2.3.1 Baseline (2017) and follow-up (2017–2023) data collection

In 2017, PLWH participants underwent interviews, physical examinations, and peripheral venous blood and urine samples were collected for *Leishmania* testing (7). From 2017 to 2023, medical records were reviewed for symptomatic VL, relapses, causes of death, abandonment, and transfers of care.

2.3.2 Retesting procedures (2023)

In 2023, participants were re-evaluated with interviews, physical examinations, and peripheral blood collection. *Leishmania* testing

included: Enzyme-Linked Immunosorbent Assay (ELISA)-rK39, the LSH Ab ECO rapid immunochromatographic test (ICT), the Direct Agglutination Test (DAT), and Polymerase Chain Reaction (PCR).

2.3.3 Serological and immunological tests

For the ELISA-rK39 test, we used the recombinant lipoprotein antigen rK39 (Rekom Biotech, Granada, Spain). The assays were performed according to the protocol described by Pedras et al. (26) with minor adaptations. The LSH Ab ECO test (Eco Diagnóstica, Nova Lima, MG, Brasil) (27), which uses rK39 recombinant antigen, was executed the manufacturer's instructions. For the DAT, we utilized a kit from the Institute of Tropical Medicine Antwerp (ITM-A), Belgium, following the instruction manual. Titers of \geq 1:1600 were considered positive (28, 29).

2.3.4 Molecular analysis (PCR)

For PCR, we targeted the kinetoplast DNA (kDNA) of *Leishmania* species. The primers used were 150 (5'-GGG(G/T)AGGGGCGTT CT(C/G)CGAA3') and 152 (5'-(C/G)(C/G)(C/G)(A/T)CTAT(A/T) TTACACCAACCCC-3'). These primers amplify a 120 bp fragment common to all *Leishmania* species. PCR conditions were described by Souza et al. (30). To confirm the species as *L. infantum*, we used the following primers, which amplify a 230 bp product, according to Gualda et al. (31): RLC2 (5'-GGGAAATTGGCCTCCCTGAG-3') and FLC2 (5'-GTCAGTGTCGGAAACTAATCCGC-3'). Results were analyzed by electrophoresis on 1.5% agarose gels stained with ethidium bromide and visualized under ultraviolet light.

2.3.5 Additional laboratory data

Data on blood count, biochemistry, CD4 + T cell count, and HIV viral load were obtained from medical records.

2.4 Ethics statement

The study protocol was approved by the Ethics Committee of the Instituto Aggeu Magalhães – Oswaldo Cruz Foundation in Pernambuco (approval number 33320920.3.0000.5190). All participants were informed about the study procedures and provided Written Informed Consent (WIC).

2.5 Data analysis

Data were entered and stored in spreadsheets using Microsoft Excel Professional Plus 2016 (Microsoft Corp., Redmond, WA, United States). Statistical analysis was performed using R software, version 4.2.2.

The incidence rate of symptomatic VL was calculated by dividing the number of incident symptomatic VL cases by the total persontime of follow-up among the asymptomatic *Leishmania*-HIV coinfected patients and the *Leishmania*-negative PLWH groups at baseline.

We also calculated the rate of seroreversion (reversion to negative *Leishmania* markers) among previously diagnosed *Leishmania*-HIV coinfected patients. This rate was defined as the number of patients with all negative *Leishmania* tests at the end of follow-up, divided by

the total number of asymptomatic *Leishmania*-HIV coinfected individuals, and presented per 100 people (28).

For descriptive statistics, frequencies with 95% Confidence Intervals (CIs) were calculated. Measures of central tendency were reported as medians and Interquartile Ranges (IQRs) or means and Standard Deviations (SDs), depending on the data distribution. A bivariate analysis was performed to assess the relationship between variables and the outcome. Categorical variables were compared using the Odds Ratio (OR), estimated via the Wald statistic. The significance level was set at 5%, and tests yielding a p-value ≤ 0.05 were considered statistically significant.

3 Results

During the follow-up period (2017–2023), participant retention differed between the two groups. Out of the 44 participants in the asymptomatic *Leishmania*-HIV coinfected group, 32 remained in the study by 2023. Losses were attributed to: 7 loss to follow-up (abandonment), 1 death due to VL, and 4 transfers of care to other healthcare services. In the PLWH group (initial n = 439), 368 remained in 2023. Losses in this group were due to: 45 transfers of care, 6 loss to follow-up, and 20 deaths from causes unrelated to VL.

By 2023, 29 participants from the *Leishmania*-HIV coinfected group and 51 from the PLWH group were successfully retested. Three individuals from the coinfected group and one from the PLWH group refused to participate in the retesting procedures (Figure 2).

Of the 29 retested asymptomatic *Leishmania*-HIV coinfected patients, five remained positive by one or more *Leishmania* tests during the follow-up. In the PLWH group (n = 51), two individuals seroconverted for *Leishmania* infection, testing positive by the ELISA-rK39 test (Table 1).

Clinical outcomes are summarized in Figure 3. A total of six participants developed symptomatic VL: five from the asymptomatic Leishmania-HIV coinfected group and one from the Leishmania-negative PLWH group. Three patients experienced VL relapse: one was from the PLWH group (the individual who seroconverted for Leishmania infection) and two were from the asymptomatic coinfected group. Regarding the relapse cases, two participants experienced two episodes each, while one individual suffered six episodes (one per year).

Comparison between groups revealed that both cohorts predominantly resided in urban areas; however, a significantly higher proportion of *Leishmania*-HIV coinfected participants lived in rural areas compared to *Leishmania*-negative PLWH (OR 7.20; 95% CI 1.76–29.4; p=0.004). Asymptomatic coinfected patients were significantly more likely to report weight loss (OR 3.77; 95% CI 1.2–11.88; p=0.025). In contrast, splenomegaly was only observed in the *Leishmania*-negative PLWH group (Tables 2, 3).

Table 4 summarizes the incidence of symptomatic VL. During follow-up, the cumulative incidence was 0.17 (5/29) in the asymptomatic *Leishmania*-HIV group, compared with 0.02 (1/51) in the *Leishmania*-negative PLWH group. The comparison showed that the coinfected group had a significantly higher cumulative incidence of VL (OR 10.4, 95% CI 1.2–94.2, p = 0.023). Among the 29 retested coinfected participants, 22 seroreverted to negative *Leishmania* markers, resulting in a seroreversion rate of 75.9 per 100 people over the 2017–2023 follow-up period.

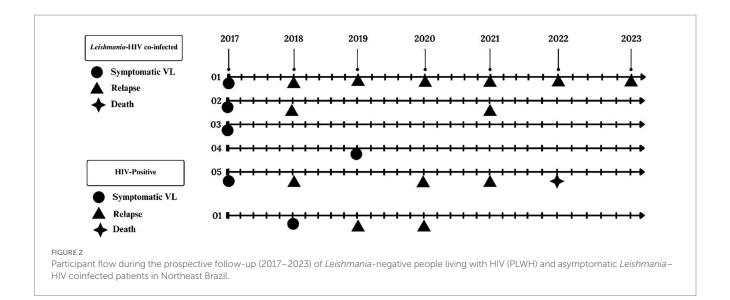
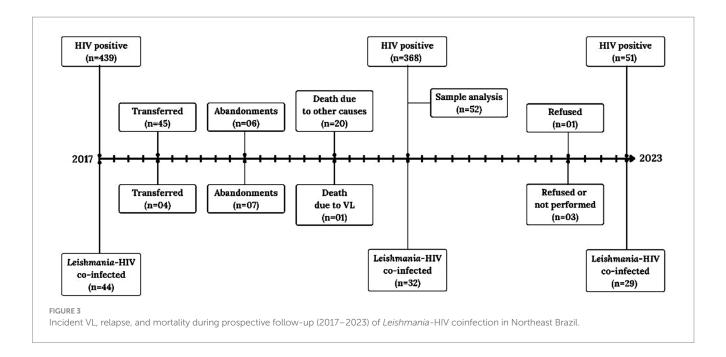


TABLE 1 Summary of Leishmania diagnostic test results among retested participants in Northeast Brazil (2017-2023).

Leishmania-HIV coinfected group (2017–2022 $n = 44$ and 2023 $n = 29$)									
VL tests ^a	2017	2018	2019	2020	2021	2022	2023		
Bone marrow aspirate	3	4	1	2	3	1	1		
ELISA-rK39	12	-	-	_	-	_	2		
rK39-ICT	5	-	-	-	-	-	0		
DAT	17	-	-	_	-	-	0		
PCR kDNA	11	_	-	-	_	_	0		
DAT and rK39 ICT	1	-	-	-	-	-	0		
ELISA-rK39 and DAT	0	_	-	_	-	-	1		
ELISA-rK39 + DAT + rK39- ICT	0	-	-	-	-	-	1		
ELISA-rK39 + DAT + rK39- ICT + PCR kDNA	0	-	_	-	-	_	1		
Total (at last one positive test)	44						5		

PLWH group (2017–2022 $n = 439$ and 2023 $n = 51$)										
VL tests ^a	2017	2018	2019	2020	2021	2022	2023			
Bone marrow aspirate	-	1	1	1	_	_	-			
ELISA-rK39	0	-	-	-	-	-	2			
rK39-ICT	0	-	-	-	-	-	0			
DAT	0	-	-	-	-	-	0			
PCR kDNA	0	-	-	-	-	-	0			
Total (at last one positive test)	0						2			


^aVL tests were conducted in 2017 and 2023.

 $Bold\ values\ indicate\ the\ total\ number\ of\ participants\ with\ at\ least\ one\ positive\ VL\ test\ result\ in\ each\ respective\ year.$

4 Discussion

This study reports the outcomes of a six-year prospective follow-up among two outpatient groups: asymptomatic *Leishmania*-HIV coinfected individuals and *Leishmania*-negative PLWH. During the study period, five asymptomatic coinfected

participants progressed to symptomatic VL, compared to only one participant in the PLWH group. Statistically, the coinfected group had a significantly higher cumulative incidence of VL (OR 10.4, 95% CI 1.2–94.2, p=0.023). These findings strongly reinforce existing evidence (7, 28) that PLWH living in VL-endemic areas are at risk of acquiring *Leishmania* infection and that

asymptomatic coinfection is a major risk factor for progression to symptomatic VL.

Few national-level studies in Brazil have addressed the prevalence of Leishmania-HIV coinfection (32, 33), consistently highlighted endemic regions for VL, including the Distrito Federal (34), Ceará (6), Maranhão (35), Mato Grosso (36), Mato Grosso do Sul (37), Minas Gerais (38, 39), Piauí (12), Rio Grande do Norte (40), Sergipe (41), and Tocantins (42). Specifically in Pernambuco, an endemic state for VL, Cavalcanti et al. (16) reported 10 symptomatic Leishmania-HIV coinfection cases among hospitalized PLWH, and Guedes et al. (43) identified a 16.9% prevalence in Recife. In Petrolina (the setting of our study), Diniz et al. (15) reported a 16.8% (107/181) of coinfection using secondary data. More recently, the baseline of the current study reported a 9.1% (44/483) prevalence of asymptomatic Leishmania-HIV coinfection in the same region (7). Crucially, this is the first prospective study in Brazil designed to follow and evaluate the long-term outcomes of this specific population.

The diagnosis of asymptomatic *Leishmania* infection in VL-endemic areas is critical for effective PLWH surveillance and enabling timely intervention should disease progression occur. The challenges in diagnosing asymptomatic *Leishmania* infection are underscored by the current lack of diagnostic consensus, resulting in the use of various techniques, including parasitological (culture and microscopy), molecular (cPCR, qPCR, LAMP), serological (ELISA, ICT, DAT), and cellular *Leishmania* skin test (LST), whole blood assay (WBA), cell proliferation assay (CPA) tests (44). In our study, we employed a combination of serological (ELISA, DAT, ICT) and molecular (cPCR) tests across both evaluation periods (2017 and 2023).

Our findings underscore the utility of serological tests for screening and surveillance asymptomatic coinfected individuals, consistent with previous studies (7, 25). However, the LSH Ab ECO rapid test showed a low detection rate, consistent with reports of limited sensitivity for detecting *Leishmania* infection in

PLWH residing in *L. infantum*-endemic regions (45, 46). In contrast, the ELISA-rK39 test demonstrated the highest positivity rate in the coinfected group (47, 48), further supporting the use of combined diagnostic approaches for detecting asymptomatic infection.

The Brazilian Ministry of Health recommends performing *Leishmania* serology at the first post-HIV diagnosis appointment for individuals in endemic areas; nevertheless, this is not yet widely implemented in routine clinical practice. Despite implementation challenge, *Leishmania* testing for PLWH in VL-endemic areas is a core component of the Brazilian Ministry of Health's control and elimination policies, which could significantly improve treatment and patient outcomes (15, 49, 50). Asymptomatic coinfection remains poorly understood (6, 51). Critically, these individuals may act as reservoirs of infection, potentially contributing to *Leishmania* transmission due to high parasitic loads, as noted by Molina et al. (21).

Clinical findings revealed a higher frequency of reported weight loss in asymptomatic *Leishmania*-HIV coinfected group compared to *Leishmania*-negative PLWH. This is notable, as other studies from Brazil (39, 43, 51, 52) and Ethiopia (53) have typically reported weight loss in symptomatic coinfected patients. HIV-induced immunosuppression weakens the body's defenses against intracellular parasites like *Leishmania* species. Furthermore, *Leishmania* can promote the intracellular replication of HIV, which accelerates the clinical progression of HIV infection and increases symptoms (42). Since weight loss is common in both VL and advanced HIV infection, its higher frequency in our asymptomatic coinfected patients is particularly concerning.

Consistent with Cesse et al. (54), who demonstrated *Leishmania* transmission in urban areas of Petrolina, our study also identifies asymptomatic *Leishmania*-HIV coinfection in these settings. This urban finding aligns with the documented epidemiological shift in states like Rio Grande do Norte (55) and Piauí (56), where migration from rural to urban areas has led to *Leishmania* infection in urban or peri-urban populations. This pattern is not unique to Brazil; studies

TABLE 2 Comparison of epidemiological features between *Leishmania*-negative PLWH and asymptomatic *Leishmania*-HIV coinfected participants retested in 2023 in Northeast Brazil.

Variables	PLW	Н	Leishmania-HI	V coinfected		OR	<i>p</i> -value		
	n = 51	%	n = 29	%	OR	95% CI			
Gender									
Male	33	64.7	15	51.7					
Female	18	35.3	14	48.3	1.71	0.68-4.33	0.268		
Age (years)									
18-28	3	5.9	2	6.9					
29-39	12	23.5	6	20.7	0.75	0.10-5.77	0.794		
40-49	7	13.7	8	27.6	2.29	0.22-13.41	0.652		
>50 or more	29	56.9	13	44.8	0.39	0.10-4.52	0.695		
Years of schooling									
0-8	22	43.1	14	48.3					
9–11	4	7.8	3	10.3	1.18	0.23-6.08	0.846		
12 or more	25	49.0	12	41.4	0.64	0.29-1.97	0.576		
Area									
Urban	48	94.1	20	69.0					
Rural	3	5.9	9	31.0	7.20	1.76-29.40	0.004		
Dogs at home									
No	29	56.9	14	48.3					
Yes	22	43.1	15	51.7	1.41	0.57-3.53	0.471		
VL in patients' house	ehold								
No	50	98	28	96.6					
Yes	1	2.0	1	3.4	1.79	0.11-29.67	0.725		
VL in patients' neigh	VL in patients' neighborhood								
No	44	86.3	27	93.1					
Yes	7	13.7	2	6.9	0.47	0.09-2.41	0.388		
Resident in an ende	mic area (last 2 ye	ars)							
No	12	23.5	6	20.7					
Yes	39	76.5	23	79.3	1.18	0.39-3.57	0.788		

n, number of patients in the group.

in Morocco (57, 58), Italy (10), Iran (59), Mexico (60), and Colombia (61) have similarly reported a higher proportion of symptomatic *Leishmania*-HIV coinfected patients in urban areas.

Our study showed that the majority of participants in both groups maintained a CD4+ T-cell count of > 350 cells/mm³ (p = 0.223), consistent with reports from PLWH in Rio Grande do Norte, Brazil (62). However, when observing patients with advanced immunosuppression (CD4+ < 200 cells/mm³), a higher proportion was noted in the *Leishmania*-HIV coinfected group (20.7%) than in the *Leishmania*-negative PLWH group (9.8%). The lower CD4+ T-cell count observed in *Leishmania*-HIV coinfected patients may be explained by reduced IFN- γ production in response to *Leishmania* antigens, contributing to atypical parasitic dissemination, frequent relapses, and treatment failure (63).

Our findings identified a non-significant trend toward a higher prevalence of diabetes mellitus, cardiovascular diseases, and hypertension among coinfected individuals compared to the PLWH (p > 0.05). The literature has already associated these comorbidities with PLWH in Brazil (64, 65) and Spain (66). For instance, Pandey et al. (67) reported a case of a 50-year-old Indian male coinfected with *Leishmania* and HIV who also presented with Parkinsonism, diabetes mellitus, and hyperuricemia. Comorbidities associated with aging, including diabetes, high blood pressure, and cardiovascular diseases, can further compromise the immune system. This increased susceptibility to infection in older adults, may exacerbate the vulnerability of those with HIV and *Leishmania*-HIV coinfection.

We found 22 cases of seroreversion to negative *Leishmania* tests among asymptomatic coinfected individuals, resulting in a seroreversion rate of 75.9 per 100 individuals over the 2017–2023 follow-up period. In comparison, a study from northwest Ethiopia (28) found that 16 of 49 individuals with prevalent infection at baseline seroreverted during follow-up (2015–2016), yielding a rate of 48.5 per 100 persons-year. The differences in these rates can

TABLE 3 Comparison of clinical and laboratory parameters between *Leishmania*-negative PLWH and asymptomatic *Leishmania*-HIV coinfected participants retested in 2023 in Northeast Brazil.

Variables	PLWH		<i>Leishmania</i> infec		OR		p-value		
	n = 51	%	n = 29	%	OR	95% CI			
Presence of fever									
No	43	84.3	24	82.8					
Yes	8	15.7	5	17.2	1.12	0.33-3.81	0.850		
Presence of hepato	megaly	'				'			
No	43	84.3	27	93.1					
Yes	2	3.9	2	6.9	1.59	0.21-11.98	0.676		
Presence of splenomegaly									
No	43	84.3	27	93.1					
Yes	-	-	2	6.9	-	-	-		
Presence of hepato	splenomegaly	<u> </u>							
No	43	84.3	27	93.1					
Yes	2	3.9	2	6.9	1.59	0.21-11.98	0.676		
Presence of cough									
No	43	84.3	26	89.7					
Yes	13	25.5	3	10.3	0.38	0.10-1.47	0.161		
Presence of diarrhe	a	'			'	<u>'</u>	'		
No	43	84.3	27	93.1					
Yes	7	13.7	2	6.9	0.46	0.09-2.35	0.373		
Presence of dyspne	a								
No	43	84.3	25	86.2					
Yes	8	15.7	4	13.8	0.86	0.23-3.15	0.843		
Presence of bleeding	ıg								
No	43	84.3	24	82.8					
Yes	6	11.8	5	17.2	1.49	0.41-5.41	0.550		
Presence of weight	loss								
No	43	84.3	19	65.5					
Yes	6	11.8	10	34.5	3.77	1.20-11.88	0.025		
Presence of mucou	s pale								
No	43	84.3	27	93.1					
Yes	3	5.9	2	6.9	1.06	0.17-6.77	0.936		
Patients with Diabe	tes mellitus								
No	43	84.3	26	89.7					
Yes	11	21.6	3	10.3	0.45	0.12-1.77	0.264		
Patients with hyper	tension								
No	43	84.3	24	82.8					
Yes	15	29.4	5	17.2	0.60	0.19-1.85	0.387		
Patients with obesit	у								
No	43	84.3	27	93.1					
Yes	1	2.0	2	6.9	3.19	0.28-36.85	0.405		
Patients with cardic	vascular disease								
No	43	84.3	29	100.0					

(Continued)

TABLE 3 (Continued)

Variables	PLW	Н	<i>Leishmania</i> infec		C	OR	p-value
	n = 51	%	n = 29	%	OR	95% CI	
Yes	3	5.9	-	_	_	-	-
Patients with neopla	asm						
No	43	84.3	28	96.6			
Yes	1	2.0	1	3.4	1.54	0.09-25.57	0.795
Patients with respira	tory disease						
No	43	84.3	27	93.1			
Yes	3	5.9	2	6.9	1.06	0.17-6.77	0.936
TCD4 + count (cells	/mm³)						
<200	5	9.8	6	20.7			
200-349	9	17.6	4	13.8	0.37	0.07-1.97	0.279
>350	37	72.5	19	65.5	0.43	0.12-1.59	0.223
HIV viral load (copie	s/mL)					1	
Undetectable (<50)	39	76.5	21	72.4			
50-100,000	9	17.6	6	20.7	1.24	0.39-3.95	0.721
>100,000	3	5.9	2	6.9	1.24	0.19-8.00	0.819
In use of ART							
No	3	5.9	-	_	-	_	-
Yes	48	94.1	29	100.0	_	_	-
General Laboratory	– Median (IQR) to	the variables	below				
White blood cells (cells/mm³)	5600 (4600–7010)			5250 (4302.5-6407.5)			0.360
Neutrophils	3	086 (2189.3–3860.	5)	3096 (2239–3634)			0.931
Lymphocytes	1999.5 (1722.8–2689.5)			1875 (1388.5–2587)			0.224
Hemoglobin (g/dL)	13.6 (12.5–15.1)			14.2 (13.2–14.7)			0.361
Platelets (cells/mm³)		237 (197.5–274.5)		217.5 (176.5–269)			0.187
НТС		42.3 (37.5-46.1)		41.8 (39.3–43.6)			1.000
AST (U/L)		26 (19.3–32.5)		25 (22.8–37)			0.413
ALT (U/L)		24.5 (17.3–36.8)		25.5 (18.5–36.3)			0.632
Creatinine (mg/dL)		0.9 (0.8–1.1)		0.9 (0.7–1.1)			0.762

n, number of patients; ART, antiretroviral therapy; AST, aspartate aminotransferase; ALT, alanine aminotransferase.

TABLE 4 Comparison of VL cumulative incidence and risk of symptomatic disease between asymptomatic *Leishmania*-HIV coinfection and *Leishmania*-negative PLWH (2017–2023).

Groups	S	c infection	OR	95% CI	<i>p</i> -value		
	No					Yes	
	n = 74	%	n = 6	%			
PLWH	50	98.0	1	3.4			
Leishmania-HIV co-infected	24	47.1	5	17.2	10.4	1.2-94.2	0.023

n, number of patients.

be partially attributed to the varying follow-up durations between the two studies.

In the present study, the cumulative incidence of symptomatic VL was significantly higher among asymptomatic Leishmania-HIV

coinfected patients compared to the *Leishmania*-negative PLWH. High frequencies of symptomatic VL, recurrence, and increased mortality, along with a higher rate of relapses and treatment failures, are typically observed among *Leishmania*-HIV coinfected patients (18, 68). During

our follow-up, the risk of progression to symptomatic VL was 10.4 times higher in asymptomatic coinfected patients compared to PLWH living in an VL-endemic area from Northeast Brazil (OR 10.4; 95% CI 1.2–94.2; p=0.023). Overall, three patients experienced relapse: one was the individual from the *Leishmania*-negative PLWH group who seroconverted, and two were from the asymptomatic *Leishmania*-HIV coinfected group.

Additionally, one VL-related death occurred in our study, originating from the asymptomatic *Leishmania*-HIV coinfected group. In a previous national analysis of 18,501 human VL cases in Brazil (2007–2011), researchers identified risk factors associated with death. The study reported that, at the time of clinical suspicion, death was predicted by the presence of leishmaniasis in PLWH patients (33). HIV seropositivity was the most significant predictor of death among individuals treated for VL, with HIV-infected individuals being four times more likely to die than HIV-negative individuals (69). This high mortality risk is compounded by the fact that, in Brazil, VL cases are often investigated only after severe symptoms are present, which hinders the timely diagnosis of asymptomatic or mild *Leishmania* infection (11).

Limitations of our study included the difficulty in performing repeated laboratory tests for *Leishmania* throughout the follow-up, given that patients were primarily monitored by local health services physicians. To mitigate this, information on clinical signs and symptoms was diligently obtained from medical records. Furthermore, the COVID-19 pandemic occurred during the study period, which resulted in changes to healthcare routines that may have affected the monitoring of HIV cases, including ART adherence. A critical limitation is the lack of standardized diagnostic and long-term follow-up protocols for asymptomatic *Leishmania*-HIV coinfection, which complicates care in HIV outpatient clinics in VL-endemic regions. Therefore, future prospective studies, building upon our findings, are essential to support the development of such protocols.

5 Conclusion

Our six-year prospective study provides critical insights into the long-term outcomes of *Leishmania*-HIV coinfected patients in VL-endemic areas. It demonstrates that asymptomatic coinfected individuals have a significantly elevated risk of progression to symptomatic VL and subsequent recurrence compared to *Leishmania*-negative PLWH. Research focusing on asymptomatic *Leishmania* carriers is crucial for evidence-based public health policymaking in endemic regions, directly contributing to the control and prevention of adverse outcomes. Our findings emphasize the critical need for routine, long-term surveillance and follow-up care for individuals with asymptomatic *Leishmania*-HIV coinfection to prevent disease progression and mitigate life-threatening complications.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by Ethics Committee of the Instituto Aggeu Magalhães – Oswaldo Cruz Foundation in Pernambuco (approval number 33320920.3. 0000.5190). The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

MA: Writing - review & editing, Investigation, Writing original draft, Software, Conceptualization, Data curation, Methodology, Visualization, Formal analysis. DG: Investigation, Writing - review & editing. WJ: Data curation, Methodology, Supervision, Writing - review & editing. ES: Investigation, Writing - review & editing, Data curation. GB: Writing - review & editing, Formal analysis, Visualization. CB: Writing – original draft, Conceptualization. AV: Investigation, Writing - review & editing, Methodology. BM: Investigation, Methodology, Writing review & editing. RS: Investigation, Methodology, Writing original draft. LD: Investigation, Writing - original draft. SA: Investigation, Writing - original draft. LM: Investigation, Writing - original draft. AJ: Writing - review & editing, Methodology, Data curation, Writing - original draft. ZM: Funding acquisition, Project administration, Supervision, Writing - review & editing, Formal analysis, Writing - original draft, Visualization, Conceptualization, Validation, Resources.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by the Oswaldo Cruz Foundation [Fiocruz (process PROEP/ IAM-005-FIO-22-2-51)], the Foundation for Scientific and Technological Development in Health (Fiotecprocess PRES009-FIO-22), the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq (process 400729/2019-9)] and Sistema Único de Saúde (SUS): Ministry of Health, Health Departments of Pernambuco and the Municipality of Petrolina. Additionally, scholarships were provided to the following researchers: M.H.G.A. and A.V.B.V. by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil [CAPES (Finance Code 001)]; B.E.F.M by Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco [FACEPE (grant number IBPG-2281-2.10/22)] and R.d.S.S. by Oswaldo Cruz Foundation [Fiocruz (process PROEP/ IAM-005-FIO-22-2-51) and CNPq (process 400729/2019-9)].

Acknowledgments

We are very grateful to the study participants and the staff of the Serviço de Atenção Especializada e Centro de Aconselhamento e Testagem do Município de Petrolina for their assistance in collecting blood samples.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of this manuscript.

References

- Lukes J, Mauricio IL, Schönian G, Dujardin JC, Soteriadou K, Dedet JP, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. *Proc Natl Acad Sci USA*. (2007) 104:9375–80. doi: 10.1073/pnas.0703678104
- 2. Schwabl P, Boité MC, Bussotti G, Jacobs A, Andersson B, Moreira O, et al. Colonization processes and genetic diversification of *Leishmania infantum* in the Americas. *Commun Biol.* (2021) 4:139. doi: 10.1038/s42003-021-01658-5
- 3. Lindoso JAL, Cunha MA, Queiroz IT, Moreira CHV. Leishmaniasis–HIV coinfection: current challenges. *HIV AIDS*. (2016) 8:147–56. doi: 10.2147/HIV.S93789
- 4. Das VNR, Bimal S, Siddiqui NA, Kumar A, Pandey K, Sinha SK, et al. Conversion of asymptomatic infection to symptomatic visceral leishmaniasis: a study of possible immunological markers. *PLoS Negl Trop Dis.* (2020) 14:e0008272. doi: 10.1371/journal.pntd.0008272
- 5. Pederiva MMC, Santos SMD, Rivarola LGS, Guerreiro VJ, Lopes KS, Lima Junior MSDC, et al. Asymptomatic Leishmania infection in humans: a systematic review. *J Infect Public Health.* (2023) 16:286–94. doi: 10.1016/j.jiph.2022.12.021
- 6. Távora LGF, Nogueira MB, Gomes ST. Visceral leishmaniasis/ HIV co-infection in Northeast Brazil: evaluation of outcome. *Infect Dis.* (2015) 19:651–6. doi: 10.1016/j.bjid.2015.07.004
- 7. Guedes DL, Justo AM, Barbosa Júnior WL, Silva EDD, Aquino SR, Lima Junior MSDC, et al. Asymptomatic *Leishmania* infection in HIV-positive outpatients on antiretroviral therapy in Pernambuco, Brazil. *PLoS Negl Trop Dis.* (2021) 15:e0009067. doi: 10.1371/journal.pntd.0009067
- 8. Kantzanou M, Karalexi MA, Theodoridou K, Kostares E, Kostare G, Loka T, et al. Prevalence of visceral leishmaniasis among people with HIV: a systematic review and meta-analysis. *Eur J Clin Microbiol Infect Dis.* (2023) 42:1–12. doi: 10.1007/s10096-022-04530-4
- 9. Lindoso JAL, Moreira CHV, Cunha MA, Queiroz IT. Visceral leishmaniasis and HIV coinfection: current perspectives. *HIV AIDS*. (2018) 10:193–201. doi: 10.2147/HIV.S143929
- 10. Ferroglio E, Battisti E, Zanet S, Bolla C, Concialdi E, Trisciuoglio A, et al. Epidemiological evaluation of *Leishmania infantum* zoonotic transmission risk in the recently established endemic area of northwestern Italy. *Zoonoses Public Health*. (2018) 65:675–82. doi: 10.1111/zph.12477
- 11. de Moraes L, Santos LA, Arruda LB, da Silva MDPP, Silva MO, Silva JAG, et al. High seroprevalence of Leishmania infantum is linked to immune activation in people with HIV: a two-stage cross-sectional study in Bahia, Brazil. *Front Microbiol.* (2023) 19:1221682. doi: 10.3389/fmicb.2023.1221682
- 12. Soares VYR, Lúcio Filho CEP, De Carvalho LIM, Silva AMMDM, Eulálio KD. Clinical and epidemiological analysis of patients with HIV/AIDS admitted to a reference hospital in the northeast region of Brazil. Rev Inst Med Trop. (2008) 50:327–32. doi: 10.1590/S0036-46652008000600003
- 13. Lima ID, Lima ALM, Mendes-Aguiar CO, Coutinho JFV, Wilson ME, Pearson RD, et al. Changing demographics of visceral leishmaniasis in Northeast Brazil: lessons for the future. *PLoS Negl Trop Dis.* (2018) 12:e0006164. doi: 10.1371/journal.pntd.0006164
- 14. Machado CAL, Sevá AP, Silva AAFAS, Horta MC. Epidemiological profile and lethality of visceral leishmaniasis/human immunodeficiency virus co-infection in an endemic area in Northeast Brazil. *Rev Soc Bras Med Trop.* (2021) 54:e0795. doi: 10.1590/0037-8682-0795-2020
- 15. Diniz FB, Souza CDF, Carmo RF. Epidemiology of human visceral leishmaniasis in the urban centers of the lower-middle São Francisco Valley, Brazilian semiarid region. *Rev Soc Bras Med Trop.* (2017) 51:461–6. doi: 10.1590/0037-8682-0074-2018

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

- 16. Cavalcanti ATA, Medeiros ZM, Lopes F, Andrade LD, Ferreira VM, Magalhães V, et al. Diagnosing visceral leishmaniasis and HIV/aids co-infection: a case series study in Pernambuco, Brazil. *Rev Inst Med Trop Sao Paulo.* (2012) 54:43–7. doi: 10.1590/S0036-46652012000100008
- 17. Cunha MA, Celeste BJ, Kesper N, Fugimori M, Lago MM, Ibanes AS, et al. Frequency of *Leishmania* spp. infection among HIV-infected patients living in an urban area in Brazil: a cross-sectional study. *BMC Infect Dis.* (2020) 20:885. doi: 10.1186/s12879-020-05622-2
- 18. Fontoura IG, Barbosa DS, de Andrade Paes AM, Santos FS, Neto MS, Fontoura VM, et al. Epidemiological, clinical and laboratory aspects of human visceral leishmaniasis (HVL) associated with human immunodeficiency virus (HIV) coinfection: a systematic review. *Parasitology*. (2018) 145:1801–18. doi: 10.1017/S003118201800080X
- 19. da Saúde M. Manual of surveillance and control of visceral leishmaniasis. *1st* ed. Ministry of Health: Brasília, Brazil (2014).
- 20. Chapman LAC, Morgan ALK, Adams ER, Bern C, Medley GF, Hollingsworth TD. Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indiansubcontinent: a review and analysis of data from diagnostic and epidemiological studies. *PLoS Negl Trop Dis.* (2018) 12:e0006803. doi: 10.1371/journal.pntd.0006803
- 21. Molina R, Jiménez M, García-Martínez J, San Martín JV, Carrillo E, Sánchez C, et al. Role of asymptomatic and symptomatic humans as reservoirs of visceral leishmaniasis in a Mediterranean context. *PLoS Negl Trop Dis.* (2020) 14:e0008253. doi: 10.1371/journal.pntd.0008253
- 22. Cota GF, de Sousa MR, Nogueira BMF, Gomes LI, Oliveira E, Assis TSM, et al. Comparison of parasitological, serological, and molecular tests for visceral leishmaniasis in HIV-infected patients: a cross-sectional delayed-type study. *Am J Trop Med Hyg.* (2013) 89:570–7. doi: 10.4269/ajtmh.13-0239
- 23. Molina R, Gradoni L, Alvar J. HIV and the transmission of Leishmania. $Ann\ Trop\ Med\ Parasitol.\ (2003)\ 97:29-45.$ doi: 10.1179/000349803225002516
- 24. Ministry of Health (BR). Manual of recommendations for diagnosis, treatment and monitoring of patients with Leishmania-HIV coinfection. *1st* ed. Brasília Brazil: Ministry of Health (2015).
- 25. Van Griensven J, Mengesha B, Mekonnen T, Fikre H, Takele Y, Adem E, et al. Leishmania antigenuria to predict initial treatment failure and relapse in visceral leishmaniasis/HIV coinfected patients: an exploratory study nested within a clinical trial in Ethiopia. Front Cell Infect Microbiol. (2018) 8:94. doi: 10.3389/fcimb. 2018.00094
- 26. Pedras MJ, Viana LG, de Oliveira EJ, Rabello A. Comparative evaluation of direct agglutination test, rK39 and soluble antigen ELISA and IFAT for the diagnosis of visceral leishmaniasis. *Trans R Soc Trop Med Hyg.* (2008) 102:172–8. doi: 10.1016/j.trstmh. 2007.11.004
- 27. Octávio Magalhães Institute FUNED. Technical guidance. SDP/IOM/FUNED no. 001/2019. National Reference Laboratory for diagnosis of visceral Leishmaniasis. Quality control of kits for diagnosis of human visceral Leishmaniasis. Evaluation of the rapid immunochromatographic test LSH ab ECO from ECO Diagnóstica for the immunodiagnosis of human visceral leishmaniasis (HVL). Brazil: Technical Report, Belo Horizonte (2019). 5 p.
- 28. Van Griensven J, Van Henten S, Mengesha B, Kassa M, Adem E, Seid ME, et al. Longitudinal evaluation of asymptomatic *Leishmania* infection in HIV-infected individuals in north-West Ethiopia: a pilot study. *PLoS Negl Trop Dis.* (2019) 13:e0007765. doi: 10.1371/journal.pntd.0007765
- 29. Chakravarty J, Hasker E, Kansal S, Singh OP, Malaviya P, Singh AK, et al. Determinants for progression from asymptomatic infection to symptomatic visceral

leishmaniasis: a cohort study. PLoS Negl Trop Dis. (2019) 13:e0007216. doi: 10.1371/journal.pntd.0007216

- 30. Souza NP, de Almeida ABPF, de Freitas TPT, da Paz RCR, Dutra V, Nakazato L, et al. Leishmania (Leishmania) infantum chagasi in wild canids kept in captivity in the state of Mato Grosso. *Rev Soc Bras Med Trop.* (2010) 43:333–5. doi: 10.1590/S0037-86822010000300024
- 31. Gualda KP, Marcussi LM, Neitzke-Abreu HC, Aristides SMA, Lonardoni MVC, Cardoso RF, et al. New primers for detection of *Leishmania infantum* using polymerase chain reaction. *Rev Inst Med Trop Sao Paulo*. (2015) 57:377–83. doi: 10.1590/S0036-46652015000500002
- 32. Sousa-Gomes ML, Maia-Elkhoury ANS, Pelissari DM, Lima Junior FEFD, Sena JMD, Cechinel MP. Coinfecção Leishmania no Brasil: aspectos epidemiológicos, clínicos e laboratoriais. *Epidemiol Serv Saude*. (2011) 20:519–26. doi: 10.5123/S1679-49742011000400011
- 33. Coura-Vital W, Araújo VE, Reis IA, Amâncio FF, Reis AB, Carneiro M. Prognostic factors and scoring system for death from visceral leishmaniasis: an historical cohort study in Brazil. *PLoS Negl Trop Dis.* (2014) 8:e3374. doi: 10.1371/journal.pntd.0003374
- 34. Carranza-Tamayo CO, Santana T, Assis MD, Teresa A, Neri B, Cupolillo E, et al. Prevalence of *Leishmania* infection in adult HIV/AIDS patients treated in a tertiary-level care center in Brasilia, Federal District, Brazil. *Trans R Soc Trop Med Hyg.* (2009) 103:743–8. doi: 10.1016/j.trstmh.2009.01.014
- 35. Carvalho FL, Aires DLS, Segunda ZF, Azevedo C, Corrêa RDGCF, Aquino DMC, et al. Perfil epidemiológico dos indivíduos HIV positivo e coinfecção HIV-Leishmania em um serviço de referência em São Luís, MA. Brasil. *Cienc Saude Coletiva*. (2013) 18:1305–12. doi: 10.1590/S1413-81232013000500015
- 36. Luz JGG, Naves DB, Meira GA, Dias JVL, Fontes CJF. Visceral leishmaniasis in a Brazilian endemic area: an overview of occurrence, HIV coinfection and lethality. *Rev Inst Med Trop Sao Paulo.* (2018) 60:1–9. doi: 10.1590/s1678-9946201860012
- 37. Botelho ACA, Natal D. Primeira descrição epidemiológica da leishmaniose visceral em Campo Grande, Estado de Mato Grosso do Sul. *Rev Soc Bras Med Trop.* (2009) 42:503–8. doi: 10.1590/S0037-86822009000500006
- 38. Souza GF, Biscione F, Greco DB, Rabello A. Slow clinical improvement after treatment initiation in Leishmania/HIV coinfected patients. *Rev Soc Bras Med Trop.* (2012) 45:147–50. doi: 10.1590/S0037-86822012000200001
- 39. Cota GF, de Sousa MR, de Mendonça ALP, Patrocinio A, Assunção LS, de Faria SR, et al. Leishmania-HIV co-infection: clinical presentation and outcomes in an urban area in Brazil. *PLoS Negl Trop Dis.* (2014) 8:e2816–8. doi: 10.1371/journal.pntd.0002816
- 40. Lima ÁLM, de Lima ID, Coutinho JFV, de Sousa ÚPST, Rodrigues MAG, Wilson ME, et al. Changing epidemiology of visceral leishmaniasis in northeastern Brazil: a 25-year follow-up of an urban outbreak. *Trans R Soc Trop Med Hyg.* (2017) 111:440–7. doi: 10.1093/trstmh/trx080
- 41. Santos GO, Jesus NPS, Cerqueira-Braz JV, Santos VS, Lemos LMD. Prevalence of HIV and associated factors among visceral leishmaniasis cases in an endemic area of Northeast Brazil. *Rev Soc Bras Med Trop.* (2019) 52:e20180257–4. doi: 10.1590/0037-8682-0257-2018
- 42. Albuquerque LC, Mendonça IR, Cardoso PN, Baldaçara LR, Borges MR, Borges JC, et al. HIV/AIDS-related visceral leishmaniasis: a clinical and epidemiological description of visceral leishmaniasis in northern Brazil. *Rev Soc Bras Med Trop.* (2014) 47:38–46. doi: 10.1590/0037-8682-0180-2013
- 43. Guedes DL, Medeiros Z, Silva EDD, Vasconcelos AVMD, Silva MS, Silva MALD, et al. Visceral leishmaniasis in hospitalized HIV-infected patients in Pernambuco, Brazil. *Am J Trop Med Hyg.* (2018) 99:1541. doi: 10.4269/ajtmh.17-0787
- 44. Ibarra-Meneses AV, Corbeil A, Wagner V, Onwuchekwa C, Fernandez-Prada C. Identification of asymptomatic Leishmania infections: a scoping review. *Parasit Vectors*. (2022) 15:1–22. doi: 10.1186/s13071-021-05129-y
- 45. Silva MRB, Brandão NAA, Colovati M, de Sousa MMP, de Lima LC, Dorta ML, et al. Performance of two immunochromatographic tests for diagnosis of visceral leishmaniasis in patients coinfected with HIV. *Parasitol Res.* (2018) 117:419–27. doi: 10.1007/s00436-017-5716-3
- 46. Sanchez MCA, Celeste BJ, Lindoso JAL, Fujimori M, de Almeida RP, Fortaleza CMCB, et al. Performance of rK39-based immunochromatographic rapid diagnostic test for serodiagnosis of visceral leishmaniasis using whole blood, serum and oral fluid. PLoS One. (2020) 15:e0230610. doi: 10.1371/journal.pone.0230610
- 47. Malla N, Sengupta C, Dubey ML, Sud A, Ansari NA, Salotra P. Antigenaemia and antibody response to Leishmania donovani stage-specific antigens and rk39 antigen in human immunodeficiency virus-infected patients. *Br J Biomed Sci.* (2003) 60:210–6. doi: 10.1080/09674845.2003.11783701
- 48. Mahajan R, Owen SI, Kumar S, Pandey K, Kazmi S, Kumar V, et al. Prevalence and determinants of asymptomatic Leishmania infection in HIV-infected individuals living within visceral leishmaniasis endemic areas of Bihar, India. *PLoS Negl Trop Dis.* (2022) 16:e0010718. doi: 10.1371/journal.pntd.0010718
- 49. Ministry of Health (BR). Clinical protocol and therapeutic guidelines for management of HIV infection in adults: Module 1: Treatment. Brasília: Ministry of Health (2024).

- $50.\,\mathrm{Da}$ Saúde M. Manual for surveillance and control of visceral leishmaniasis. 1sted. Brasília, Brazil: Ministry of Health (2014). 120 p.
- 51. Alexandrino-de-Oliveira P, Santos-Oliveira JR, Dorval MEC, Da-Costa FCB, Pereira GROL, da Cunha RV, et al. HIV/AIDS-associated visceral leishmaniasis in patients from an endemic area in central-West Brazil. *Mem Inst Oswaldo Cruz.* (2010) 105:692–7. doi: 10.1590/S0074-02762010000500016
- 52. Daher EF, Fonseca PP, Gerhard ES, Silva Leitão TMJ, Silva Júnior GB. Clinical and epidemiological features of visceral Leishmaniasis and Hiv co-infection in fifteen patients from Brazil. *J Parasitol.* (2009) 95:652–5. doi: 10.1645/GE-1678.1
- 53. Diro E, Edwards T, Ritmeijer K, Fikre H, Abongomera C, Kibret A, et al. Long term outcomes and prognostics of visceral leishmaniasis in HIV infected patients with use of pentamidine as secondary prophylaxis based on CD4 level: a prospective cohort study in Ethiopia. *PLoS Negl Trop Dis.* (2019) 13:e0007132. doi: 10.1371/journal.pntd.0007132
- 54. Cesse EAP, Carvalho EFD, Andrade PP, Ramalho WM, Luna L. Organização do espaço urbano e expansão do calazar. *Rev Bras Saude Mater Infant*. (2002) 1:167–76. doi: 10.1590/S1519-38292001000200010
- 55. Lima ID, Queiroz JW, Lacerda HG, Queiroz PV, Pontes NN, Barbosa JD, et al. *Leishmania infantum chagasi* in northeastern Brazil: asymptomatic infection at the urban perimeter. *Am J Trop Med Hyg.* (2012) 86:99–107. doi: 10.4269/ajtmh.2012.10-0492
- 56. Chaves AFCP, Costa IVS, Brito MO, Sousa Neto FA, Mascarenhas MDM. Visceral leishmaniasis in Piauí, Brazil, 2007-2019: an ecological time series analysis and spatial distribution of epidemiological and operational indicators. *Epidemiol Serv Saude*. (2022) 31:e2021339. doi: 10.1590/S1679-49742022000100013
- 57. Kbaich MA, Mhaidi I, Ezzahidi A, Dersi N, El Hamouchi A, Riyad M, et al. New epidemiological pattern of cutaneous leishmaniasis in two pre-Saharan arid provinces, southern Morocco. *Acta Trop.* (2017) 173:11–6. doi: 10.1016/j.actatropica. 2017.05.016
- 58. Echchakery M, Nieto J, Boussaa S, El Fajali N, Ortega S, Souhail K, et al. Asymptomatic carriers of Leishmania infantum in patients infected with human immunodeficiency virus (HIV) in Morocco. *Parasitol Res.* (2018) 117:1237–44. doi: 10.1007/s00436-018-5805-y
- 59. Hanafi-Bojd AA, Rassi Y, Yaghoobi-Ershadi MR, Haghdoost AA, Akhavan AA, Charrahy Z, et al. Predicted distribution of visceral leishmaniasis vectors (Diptera: Psychodidae; Phlebotominae) in Iran: a niche model study. *Zoonoses Public Health*. (2015) 62:644–54. doi: 10.1111/zph.12202
- 60. González C, Rebollar-Téllez EA, Ibáñez-Bernal S, Becker-Fauser I, Martínez-Meyer E, Peterson AT, et al. Current knowledge of Leishmania vectors in Mexico: how geographic distributions of species relate to transmission areas. *Am J Trop Med Hyg.* (2011) 85:839–46. doi: 10.4269/ajtmh.2011.10-0452
- 61. Castillo-Castañeda A, Herrera G, Ayala MS, Fuya P, Ramírez JD. Spatial and temporal variability of visceral leishmaniasis in Colombia, 2007 to 2018. *Am J Trop Med Hyg.* (2021) 105:144–55. doi: 10.4269/ajtmh.21-0103
- 62. de Oliveira M-AC, do Monte Alves M, Lopes Machado AA, Monteiro GRG, Marques Medeiros I, Queiroz JW, et al. T-cell activation and senescence in asymptomatic HIV/Leishmania infantum co-infection. *PLoS Negl Trop Dis.* (2025) 19:0012848. doi: 10.1371/journal.pntd.0012848
- 63. Takele Y, Mulaw T, Adem E, Shaw CJ, Franssen SU, Womersley R, et al. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV. *Cell Rep Med.* (2022) 1:100487. doi: 10.1016/j.xcrm. 2021.100487
- 64. Pereira LDO, Casseb JSDR, Monteiro MA, Veiga APR, Nascimento NADL, Andrade LCDC. Evaluation of comorbidities in people living with HIV/AIDS using dual therapy in a treatment reference service. *Braz J Infect Dis.* (2024) 28:104082. doi: 10.1016/j.bjid.2024.104469
- 65. Ximenes RA, Lacerda HR, Miranda-Filho DB, Albuquerque MFPM, Montarroyos UR, Turchi MD, et al. Comparison between potential risk factors for cardiovascular disease in people living with HIV/AIDS in areas of Brazil. *J Infect Dev Ctries*. (2015) 9:988–96. doi: 10.3855/jidc.5867
- 66. Estrada V, Bernardino JI, Masiá M, Iribarren JA, Ortega A, Lozano F, et al. Cardiovascular risk factors and lifetime risk estimation in HIV-infected patients under antiretroviral treatment in Spain. *HIV Clin Trials.* (2015) 16:57–65. doi: 10.1179/1528433614Z.0000000008
- 67. Pandey K, Sinha PK, Rabidas V, Kumar N, Bimal S, Verma N, et al. HIV, visceral leishmaniasis and parkinsonism combined with diabetes mellitus and hyperuricaemia: a case report. *Cases J.* (2008) 1:183. doi: 10.1186/1757-1626-1-183
- 68. Martins-Melo FR, Lima MDAS, Ramos ANJ, Alencar CH, Heukelbach J. Mortality and case fatality due to visceral leishmaniasis in Brazil: a nationwide analysis of epidemiology, trends and spatial patterns. *PLoS One*. (2014) 3:93770. doi: 10.1371/journal.pone.0093770
- 69. Lyons S, Veeken H, Long J. Visceral leishmaniasis and HIV in Tigray, Ethiopia. *Trop Med Int Health.* (2003) 8:733–9. doi: 10.1046/j.1365-3156.2003.01088.x