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Early prediction of
sepsis-induced coagulopathy in
the ICU using interpretable
machine learning: a multi-center
retrospective cohort study

Tao Shat, Hao Jiangt and Lei Feng*

Department of Emergency, Huadong hospital, Fudan University, Shanghai, China

Background: Sepsis-induced coagulopathy (S/C) is a fatal complication in ICU
patients, yet early risk prediction remains challenging. This study aimed to
develop an interpretable machine learning model for predicting SIC within seven
days of ICU admission.

Methods: Clinical data for model development were retrieved from the
Medical Information Mart for Intensive Care-IV (MIMIC-IV) database.
Feature selection was performed using three distinct algorithms: least
absolute shrinkage and selection operator (LASSO) regression, random
forest recursive feature elimination (RF-RFE), and the Boruta method. Ten
machine learning models underwent training employing 5-fold cross-validation
on the training subset, with subsequent evaluation on the validation subset
encompassing discrimination, calibration, and clinical utility metrics. The
optimal model underwent further interpretability analysis through SHapley
Additive exPlanations (SHAP) to elucidate variable contributions and their
directional effects. External validation was then conducted using the electronic
Intensive Care Unit Collaborative Research Database (elCU-CRD). Finally, the
best-performing model was implemented as a web-based Shiny application
featuring an interactive interface.

Results: Among 10,740 patients in MIMIC-1V, 2,232 (20.78%) developed SIC
within 7 days post-ICU admission. A LightGBM model with thirteen variables
demonstrated optimal performance, achieving an area under the receiver
operating characteristic curve (AUROC) of 0.885 (95% confidence interval (Cl):
0.874-0.897) in the internal validation set and 0.831 (95% Cl: 0.819-0.843) in the
external elCU-CRD cohort. Key predictive variables included Prothrombin Time-
International Normalization Ratio (INR), platelet count, Sequential Organ Failure
Assessment (SOFA), lactate, systolic blood pressure (SBP), red cell distribution
width (RDW), bicarbonate, phosphate, hemoglobin, age, the presence of heart
failure (HF), ischemic heart disease (IHD) and the use of continuous renal
replacement therapy (CRRT). The model was deployed as a clinician-oriented
web application providing an accessible interface (https://shatao.shinyapps.io/
Sepsis_Induced_Coagulopathy/).
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1 Introduction

Sepsis is a critical medical condition marked by systemic
organ dysfunction due to an aberrant host response to infection,
which involves immune dysregulation and subsequent multi-
organ failure (1, 2). Heightened clinical awareness and early
recognition are critical to enable timely administration of
appropriate antibiotics and other urgent interventions, thereby
improving patient outcomes (3, 4). A common complication of
sepsis is SIC, a condition characterized by vascular endothelial
damage and systemic coagulation abnormalities triggered by the
septic process (5, 6). A secondary analysis of two European
randomized controlled trials reported SIC prevalence rates
of 22.1% (HYPRESS trial) and 24.2% (SISPCT trial) (7).
Epidemiological studies indicate that coagulation disorders occur
in approximately 50-70% of septic patients, with nearly 35%
progressing to disseminated intravascular coagulation (DIC) (8,
9). The coagulation cascade becomes activated in sepsis primarily
through tissue factor exposure on stimulated monocytes and
vascular endothelial cells. This procoagulant response occurs
because natural regulatory mechanisms, particularly tissue factor
pathway inhibitor function, become inadequate during sepsis
(8). Simultaneously, inflammatory mediators characteristic of
sepsis suppress critical anticoagulant systems, most notably the
protein C pathway. Concurrent overexpression of plasminogen
activator inhibitor-1 (PAI-1) creates a dual defect - both
promoting excessive fibrin deposition and inhibiting its normal
clearance (8). These pathological alterations in hemostatic balance
drive widespread microthrombosis, ultimately causing tissue
hypoperfusion and contributing to sepsis-induced multiple organ
failure. Emerging findings, including data from observational
studies and large randomized controlled trials (RCTs), suggest
anticoagulant therapy offers significant mortality reduction and
clinical outcome improvement in septic patients with confirmed
coagulopathy (10-12). However, in patients without coagulation
abnormalities, the use of anticoagulants appears to confer no
survival benefit while increasing the risk of bleeding complications,
thus warranting cautious consideration in clinical practice (12,
13). Early identification of coagulopathy risk factors in septic
patients enables timely diagnosis of SIC, while targeted therapeutic
strategies addressing the underlying pathophysiology are essential
for improving survival and clinical outcomes. Consequently,
there is an urgent need for accurate, early prediction tools to
identify septic patients at highest risk for developing SIC, enabling
preemptive management.

The International Society of Thrombosis and Haemostasis
(ISTH)’s Scientific and Standardization Committee (SSC) on
Disseminated Intravascular Coagulation (DIC) in 2017 (5)
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established the SIC criteria, encompassing three key parameters:
INR, platelet count, and composite SOFA score components. The
scoring system was applied as follows: for INR values, scores of 0,
1, and 2 were assigned corresponding to < 1.2, > 1.2, and > 1.4
respectively. Platelet counts > 150 x 10"9/L received 0 points,
while counts < 150 x 10"9/L and < 100 x 10"9/L were assigned
1 and 2 points respectively. The composite SOFA score was derived
from the sum of individual scores for respiratory, cardiovascular,
hepatic, and renal systems, with each system component capped at
a maximum of 2 points. A diagnosis of SIC required fulfillment of
two conditions: first, the cumulative score from all three parameters
(INR, platelet count, and composite SOFA) had to reach > 4 points;
Second, the combined score from just the coagulation parameters
(INR and platelet count) needed to exceed 2 points.

Recent advances in machine learning have revolutionized
predictive analytics in medicine by leveraging complex clinical
datasets to forecast disease progression dynamically. Modern
algorithms are particularly adept at capturing intricate, non-linear
relationships between predictors and outcomes, making them
well-suited for analyzing high-dimensional biomedical data (14,
15). This capability is crucial in the context of sepsis, where
emerging evidence suggests that the associations between key
physiological variables—such as serum osmolarity, bicarbonate
levels, and others—and critical outcomes like mortality are often
non-linear and cannot be fully characterized by traditional linear
models (16, 17). This study aimed to develop and validate a
machine learning-based framework for the early and dynamic
prediction of SIC. Additionally, we sought to identify critical
risk factors through interpretable modeling techniques to enhance
clinical understanding of SIC pathogenesis.

2 Materials and methods

2.1 Data source

This study utilized data from two independent databases.
Medical Information Mart for Intensive Care IV (MIMIC-IV,
version 3.1) (18, 19) is a publicly available critical care database
maintained by the Massachusetts Institute of Technology (MIT)
that contains de-identified clinical data from Beth Israel Deaconess
Medical Center (BIDMC), a tertiary academic hospital in Boston,
United States. The database spans patient records from 2008
to 2022, encompassing 364,627 hospital admissions and 76,540
unique ICU stays across medical, surgical, cardiac, and neonatal
intensive care units. The eICU-CRD is a multicenter repository
containing de-identified clinical data from over 200,000 ICU
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admissions across the United States (2014-2015) (20). In this study,
we utilized the MIMIC-IV cohort as a development dataset and the
eICU-CRD cohort as an independent external validation dataset.
Certification for the Collaborative Institutional Training Initiative
(CITI) program was successfully completed by one author (Tao
Sha), with issued credential ID 68314142, which is a prerequisite for
accessing both the MIMIC-IV and eICU-CRD databases. The use of
the MIMIC-IV database was approved by the Institutional Review
Boards (IRB) of the Massachusetts Institute of Technology (MIT),
and the requirement for informed consent was waived due to the
de-identified nature of the data. Similarly, the creation of the eICU-
CRD was approved by the IRB of MIT (Protocol No. 0403000206),
and informed consent was waived for its original data collection.
In accordance with institutional policies, we verbally notified
the Ethics Committee of Huadong Hospital affiliated to Fudan
University and received confirmation that formal ethics approval
was not necessary. The study was reported according to the
recommendations of the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
statement (21).

2.2 Participants

Inclusion criteria: (1) Fulfilled Sepsis 3.0 diagnostic criteria
(Society of Critical Care Medicine and European Society of
Intensive Care Medicine in 2016); (2) Initial ICU admission.

Exclusion criteria: (1) Under 18 years of age; (2) ICU stay
duration < 24 h or mortality within 24 h post-admission;
(3) Patients with thrombocytopenic purpura, hemophilia or
hematopoietic malignancies; (4) Incomplete clinical or laboratory
records; (5) Development of SIC within the first 24 h of ICU care.
Figure 1 details the participant selection workflow.

2.3 Data extraction

Data extraction for ICU-admitted patients within the initial
24-h period was performed using PostgreSQLs Structured Query
Language (SQL) across both databases. Retrieved parameters
included: (1) Demographic information: age, gender, and weight;
(2) Underlying diseases: Hypertension (HTN), Cerebrovascular
Accident (CVA), Chronic Kidney Disease (CKD), Cancer (CA),
Diabetes Mellitus (DM), Hyperlipidemia (HLD), HF, IHD, Chronic
Obstructive Pulmonary Disease (COPD). (3) Interventions: CRRT,
ventilation. (4) Vital signs: heart rate (HR), respiratory rate (RR),
SBP, diastolic blood pressure (DBP), temperature, percutaneous
arterial oxygen saturation (SpO,); (5) Scores: SOFA, Simplified
Acute Physiology Score II (SAPSII), Oxford Acute Severity of
Illness Score (OASIS), Glasgow Coma Scale (GCS), Charlson
Comorbidity Index (CCI). (6) Laboratory indicators: white blood
cell (WBC), neutrophil, lymphocyte, hemoglobin, platelet count,
RDW, chloride, potassium, sodium, magnesium, calcium, glucose,
albumin, total cholesterol (TC), triglycerides (TG), lactate, partial
pressure of carbon dioxide (pCO;), potential of hydrogen (pH),
partial pressure of oxygen (pO,), d-dimer (DDI), fibrinogen, INR,
prothrombin time (PT), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), direct bilirubin (DBil), total bilirubin
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(TBil), uric acid (UA), creatine kinase (CK), creatine kinase-MB
(CKMB), n-terminal pro-brain natriuretic peptide (NTproBNP),
troponin t (TNT), creatinine (Cr), blood urea nitrogen (BUN),
bicarbonate, phosphate (PO4), central venous pressure (CVP).
Repeated measurements were aggregated as mean values over
the initial 24-h ICU period. Prior to analysis, we implemented
rigorous data quality control measures. Variables exhibiting > 20%
missingness were excluded to ensure analytical robustness. For
remaining variables with less than 20% missing data, we employed
multiple imputation using a random forest approach (MissForest
algorithm), which has demonstrated superior performance for
clinical datasets compared to traditional imputation methods.
Notably, the imputation was performed separately on training
and validation sets to prevent leakage. This non-parametric
method iteratively imputes missing values by modeling each
variable as a function of other variables in the dataset, preserving
complex relationships and interactions characteristic of critical care
data. The imputation process was repeated for five iterations to
ensure stability of estimates, with diagnostic checks confirming
the preservation of original data distributions (Supplementary
Figure 1). This study defined its primary outcome as new-onset SIC
diagnosed during the first 7 ICU days using ISTH 2017 criteria.

2.4 Statistical analysis and model
development

Statistical analyses were performed based on the characteristics
of the data. For continuous variables, normality was assessed
using the Shapiro-Wilk test. Data that followed a normal
distribution were expressed as mean + standard deviation (SD)
and compared between groups using the t-test. Non-normally
distributed continuous variables were summarized as median with
interquartile ranges (IQR) and compared using the Mann-Whitney
U test. Categorical variables were presented as counts (percentages,
%) and compared between groups using the Chi-square test or
Fisher’s exact test, as appropriate.

We performed a stratified partitioning of the MIMIC-
IV dataset to ensure robust model evaluation. The complete
cohort was randomly divided into a development set (70% of
patients) for feature selection, model training, and hyperparameter
optimization, and an internal validation set (30% of patients)
reserved for interim performance assessment.

We employed a feature selection strategy to optimize predictive
variables. First, LASSO regression was applied to identify
parsimonious features through L1 regularization. Meanwhile, the
Boruta algorithm (22), a random forest-based wrapper method, was
implemented to detect all-relevant features by comparing original
variables with permuted shadow features. Subsequently, variables
were selected using the RF-RFE algorithm. The final feature
subset was determined by taking the intersection of variables
selected by all three methods, ensuring biological plausibility while
maintaining statistical robustness.

Using this optimized feature set, we developed and compared
10 distinct machine learning models: logistic regression (LR),
decision tree (DT), elastic net regression (Enet), light gradient
boosting machine (LightGBM), K-nearest neighbors (KNN),
random forest (RF), extreme gradient boosting (XGBoost), support
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FIGURE 1
Workflow.

vector machine (SVM), multilayer perceptron (MLP) and a stacked
ensemble model (stacking). We employed Bayesian optimization
with Gaussian processes for hyperparameter tuning, utilizing the
expected improvement acquisition function over 100 iterations
to identify parameter configurations maximizing the AUROC.
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Model performance was evaluated through stratified 5-fold cross-
validation on the development set, with the optimal model for
each algorithm selected based on peak AUROC performance.
The optimal probability threshold for clinical deployment was
determined using Youden’s index (J = sensitivity + specificity
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— 1) to balance classification metrics. All models underwent
comprehensive evaluation on the internal validation set, assessing:
(1) discrimination (AUROC); (2) classification metrics (F1-score,
accuracy, recall/sensitivity, specificity); (3) calibration (Brier score,
calibration curves); (4) clinical utility (decision curve analysis
(DCA) across probability thresholds 0-100%). To evaluate the
potential confounding effect of anticoagulant therapy, a sensitivity
analysis was performed on the MIMIC-IV cohort. We excluded
patients who received any anticoagulant medication (including
Heparin Sodium, Enoxaparin Sodium, Dalteparin, Warfarin,
Rivaroxaban, Apixaban, and Dabigatran Etexilate) during the
first 24 h of ICU admission. The optimal model was then re-
validated on this sub-cohort. Finally, the optimal model was
subsequently validated on the external eICU-CRD cohort. Final
model interpretability was achieved through SHAP. We generated
a ranked feature importance plot based on mean absolute SHAP
values and a swarm diagram to visualize the distribution of SHAP
values across all samples, demonstrating both feature importance
and effect directionality. We developed partial dependence plots
(PDPs) for each selected feature to show marginal predictions
while holding other variables constant. Case-specific SHAP
value computations revealed feature importance variations across
individual predictions, offering insights into the black-box nature
of the model’s decision algorithm.

All statistical analyses were performed in R 4.4.3, and the
tidymodels framework (version 1.3.0) was used for unified machine
learning implementation. Two-sided p< 0.05 were considered
statistically significant.

3 Results

3.1 Baseline characteristics

After applying inclusion/exclusion criteria, 10,740 patients
from MIMIC-IV and 5,504 from eICU-CRD were analyzed. SIC
developed in 2,232 (20.78%) and 1,175 (23.3%) cases, respectively,
during the 7-day post-admission window.

Table 1 presents baseline characteristics of the MIMIC-IV
study cohort. Compared with the non-SIC group, SIC patients
exhibited significant demographic and clinical disparities. The SIC
cohort was older (median age 71.0 vs. 67.0 years, P < 0.001),
predominantly male (61.1% vs. 52.8%, P < 0.001), and had higher
comorbidity burdens, including chronic kidney disease (25.8% vs.
15.6%, P < 0.001), heart failure (42.6% vs. 22.5%, P < 0.001), and
ischemic heart disease (48.2% vs. 29.3%, P < 0.001). Clinically,
SIC patients experienced worse outcomes: prolonged ICU stays
(median 5.6 vs. 4.6 days, P < 0.001) and hospital stays (median
13.0 vs. 10.6 days, P < 0.001), higher 28-day in-hospital mortality
(24.0% vs. 13.2%, P < 0.001) and 28-day ICU mortality (24.8%
vs. 13.4%, P < 0.001). During initial ICU admission, SIC patients
demonstrated significantly higher intervention requirements:
mechanical ventilation (89.7% vs. 84.7%; p < 0.001) and continuous
renal replacement therapy (14.4% vs. 3.3%; p < 0.001). Severity
scores including SOFA (6.0 vs. 4.0), SAPSII (42.0 vs. 36.0), and
CCI (6.0 vs. 5.0) were significantly elevated in SIC patients (all
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TABLE 1 Patient baseline characteristics.

Variables INON-SIC (N = 8,508) SIC (N = 2,232)  p|

Demographic data

Height (cm) 168.7 £ 10.7 169.4 = 10.5 0.011
Weight (kg) 79.0 (65.2, 95.0) 80.0 (67.5, 96.7) 0.002
Gender, n (%) < 0.001
F 3,775 (47.2%) 843 (38.9%)
M 4,225 (52.8%) 1,322 (61.1%)
sAge (years) 65.5+17.0 69.5 + 14.5| < 0.001

Underlying diseases

HIN <0.001
No 4,923 (57.9%) 1,438 (64.4%)
Yes 3,585 (42.1%) 794 (35.6%)

CVA 0.389
No 7,653 (90%) 2,022 (90.6%)
Yes 855 (10%) 210 (9.4%)

CKD <0.001
No 7,178 (84.4%) 1,656 (74.2%)
Yes 1,330 (15.6%) 576 (25.8%)

CA <0.001
No 7,367 (86.6%) 1,860 (83.3%)
Yes 1,141 (13.4%) 372 (16.7%)

DM <0.001
No 6,222 (73.1%) 1,488 (66.7%)
Yes 2,286 (26.9%) 744 (33.3%)

HLD <0.001
No 5,635 (66.2%) 1,302 (58.3%)
Yes 2,873 (33.8%) 930 (41.7%)

HF <0.001
No 6,594 (77.5%) 1,281 (57.4%)
Yes 1,914 (22.5%) 951 (42.6%)

IHD <0.001
No 6,011 (70.7%) 1,157 (51.8%)
Yes 2,497 (29.3%) 1,075 (48.2%)

COPD <0.001
No 7,146 (84%) 1,797 (80.5%)
Yes 1,362 (16%) 435 (19.5%)

Clinical outcomes

ICU LOS (days) 4.6 (2.9,8.9) 5.6(3.3,9.9)| < 0.001
Hospital day 10.6 (6.5, 18.2) 13.0(7.8,21.2)| < 0.001
(days)
Death within < 0.001
hospital 28d

No 7,386 (86.8%) 1,697 (76%)

Yes 1,122 (13.2%) 535 (24%)

(Continued)
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TABLE 1 (Continued)

! NON-SIC (N = 8,508)[SIC (N = 2,232)  p|
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TABLE1 (Continued)

NON-SIC (N = 8,508)| SIC(N=2232) p|

Variables

Frontiers in Medicine

Death within < 0.001 pO, (mmHg) 144.6 +110.5 150.4 £+ 125.8 0.062
ICU 28d
DDI (ng/mL) 1733.0 (900.0, 3888.5)| 2312.0 (1203.0, 5982.0) 0.025
No 7,364 (86.6%) 1,679 (75.2%)
FIB (mg/dL) 367.0 (237.0, 584.0) 323.0 (214.0, 506.0)| < 0.001
Yes 1,144 (13.4%) 553 (24.8%)
INR 1.2(1.1,1.3) 1.3 (1.2,1.4)| < 0.001
Interventions
PT (s) 12.8(11.9,13.9) 14.0 (12.8, 15.4)| < 0.001
Ventilation < 0.001
ALT (IU/L) 25.0 (15.0, 50.0) 28.0 (16.0, 58.0) 0.001
No 1,305 (15.3%) 231 (10.3%)
AST (IU/L) 34.0 (21.0, 62.0) 43.0 (25.0, 96.0)| < 0.001
Yes 7,203 (84.7%) 2,001 (89.7%) -
DBil (mg/dL) 0.6 (0.2,1.8) 1.2(0.5,2.6)| <0.001
CRRT < 0.001 )
Tbil (mg/dL) 0.5(0.3,0.7) 0.6 (0.4, 1.0)| < 0.001
No 8,227 (96.7%) 1,910 (85.6%)
Cr (mg/dL) 0.9 (0.7, 1.4) 1.2(0.8,1.9)| < 0.001
Yes 281 (3.3%) 322 (14.4%)
BUN (mg/dL) 18.0 (13.0, 30.0) 24.0 (16.0, 41.0)| < 0.001
Scores
UA (mg/dL) 52(2.9,8.1) 6.0 (3.4,9.1) 0.022
SOFA 48+28 6.6 £ 3.3 <0.001
CK (IU/L) 170.0 (68.0, 521.0) 190.0 (68.0, 689.0) 0.087
SAPSII 375+£13.1 435+ 13.6/ <0.001
CKMB (ng/mL) 5.0 (3.0, 10.0) 6.0 (3.0,17.0)| < 0.001
OASIS 33.4+8.1 353484 <0.001
NTproBNP 2286.0 (717.5, 6717.0) | 4262.0 (1307.0, 12171.0)| < 0.001
GCS 15.0 (13.0, 15.0) 15.0 (14.0, 15.0)| < 0.001 (pg/mL)
CCI 49+3.0 6.1+3.0 <0.001 TNT (ng/mL) 0.1 (0.0, 0.3) 0.1(0.0,0.7)| < 0.001
Vital signs HCO3 (mmol/L) 23.0 (20.0, 26.0) 22.0 (19.0, 24.0)| < 0.001
HR (times/min) 87.0 (75.0, 101.0) 88.0 (75.0, 102.0) 0.384 PO4 (mmol/L) 3.5(2.8,4.2) 3.7 (3.0,4.7)| <0.001
SBP (mmHg) 1249 +25.3 116.5 +25.0) < 0.001 CVP (mmHg) 10.0 (7.0, 14.0) 11.0 (8.0, 15.0) 0.002
DBP (mmHg) 68.0 (57.0, 81.0) 63.0 (54.0,76.0)| < 0.001 Statistical comparisons used t-tests (mean with standard deviation), Mann-Whitney
$v05 (9 tests (median with first and third quartiles), or chi-square/Fisher’s exact tests (number
P02 (%) 98.0 (95.0,100.0) 98.0(95.0,1000)  0.580 with percentage) based on variable distribution and type. HTN, Hypertension; CVA,
RR (times/min) 19.0 (16.0, 23.0) 19.0 (15.0,23.0) 0514 Cerebrovascular Accident; CKD, Chronic Kidney Disease; CA, Cancer; T2DM, Type 2
Diabetes Mellitus; HLD, Hyperlipidemia; HE, Heart Failure; IHD, Ischemic Heart Disease;
T (°F) 98.3(97.7,99.0) 98.2 (97.6, 98.8)| < 0.001 COPD, Chronic Obstructive Pulmonary Disease; LOS, Length of stay; CRRT, continuous
renal replacement therapy; SOFA, Sequential Organ Failure Assessment; SAPSII, Simplified
Laboratory tests Acute Physiology Score II; OASIS, Oxford Acute Severity of Illness Score; GCS, Glasgow
Lym (10/L) 1.1(0.7,1.7) 1.1 (0.6, 1.6)| < 0.001 Coma Scale; CHARLSON, Charlson Comorbidity Index; HR, Heart Rate; SBP, Systolic
Blood Pressure; DBP, Diastolic Blood Pressure; SpO;, Peripheral Oxygen Saturation;
WBC (10°/L) 12.0 (8.8, 16.0) 11.9 (8.2,16.6)  0.287 RR, Respiratory Rate; T, Temperature; WBC, White Blood Cell; Neu, Neutrophil; Lym,
New (10°/1L 61 0.1 14 144 Lymphocyte; Hb, Hemoglobin; PLT, Platelet; RDW, Red Cell Distribution Width; CI,
eu (10°/1) 9.6 (6.6,13.8) 0.1(6.5,14.7) 0. Chloride; K, Potassium; Na, Sodium; Mg, Magnesium; Ca, Calcium; Glu, Glucose; Alb,
Hb (g/L) 11.0+22 10.7 &+ 2.3/ < 0.001 Albumin; TC, Total Cholesterol; TG, Triglycerides; LAC, Lactate; PCO,, Partial Pressure
of Carbon Dioxide; PH, Potential of Hydrogen; PO, Partial Pressure of Oxygen; DDI,
PLT (10°/L) 224.0 (179.0,289.0)  170.0 (137.0, 228.0)| < 0.001 D-Dimer; FIB, Fibrinogen; INR, International Normalized Ratio; PT, Prothrombin Time;
RDW (£ 42133 6(13 6 0.00 ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; DBil, Direct Bilirubin;
(L) 142 (13.3,15.5) 14.6 (13.5,16.1)) <0.001 TBil, Total Bilirubin; UA, Uric Acid; CK, Creatine Kinase; CKMB, Creatine Kinase-MB;
Cl (mmol/L) 104.0 (100.0, 108.0) 105.0 (100.0, 109.0) 0.134 NT-proBNP, N-Terminal pro-Brain Natriuretic Peptide; TNT, Troponin T; Cr, Creatinine;
BUN, Blood Urea Nitrogen; AB, Actual Bicarbonate; PO4, Phosphate; CVP, Central
K (mmol/L) 4.1 (3‘7, 4‘6) 4.2 (3‘8, 4.7) < 0.001 Venous Pressure.
Na (mmol/L) 139.0 (136.0, 141.0)|  139.0 (135.0, 141.0),  0.004
Mg (mmol/L) 1.9(1.7,2.2) 2.0(1.8,2.3) <0.001 P < 0.001). Comparative analysis of laboratory profiles and vital
Ca2 (mg/dL) 8.4(7.9,8.8) 8.2(7.8,8.7)| <0.001 signs demonstrated significantly depressed levels in SIC patients
Glu (mmol/L) 1320 (1090, 170.0)|  137.0 (112.0, 182.0)| < 0.001 across multiple parameters: lymphocyte, hemoglobin, platelets
count, calcium, albumin, total cholesterol, triglycerides, fibrinogen,
Alb (g/dL 3.1£0.6 29406 <0.001 .
(g/dL) bicarbonate, SBP and DBP. Conversely, they demonstrated elevated
TC (mg/dL) 152.0 (125.0,185.0)|  125.0 (103.0, 159.0)| < 0.001 RDW, magnesium, glucose, lactate, DDI, PT, INR, ALT, AST, Dbil,
TG (mg/dL) 147.0 (98.0,230.0)|  138.5(89.0,227.0)|  0.055 Tbil, CK, NTproBNP, Cr, BUN, phosphate and CVP compared to
Lac (mmol/L) 1.5 (1.1, 2.3) 1.9 (1.3,2.9) < 0.001 patients without SIC.
This comprehensive analysis confirms that SIC patients
pCO, (mmHg) 41.0 (36.0, 48.0) 42.0 (36.0,48.0))  0.988 o . ) ) -
represent a distinct high-risk subgroup with multisystem
pH 74(73,74) 74(73,74)] <0001 dysregulation, providing a foundation for subsequent
(Continued) predictive modeling.
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FIGURE 2
Feature engineering. (A) Variation characteristics of variable coefficients. (B) The process of selecting the optimal value of the parameter Lambda in
the LASSO regression model is carried out by the cross-validation method. (C) Variable selection procedure using the Boruta algorithm. (D) Variable
selection procedure using the RF-RFE. (E) Venn diagram illustrating the intersection of feature selection methods.

3.2 Feature engineering

To identify the most predictive features for SIC, we employed
a three-stage feature selection approach. We first applied LASSO

regression with 10-fold cross-validation on the development set to
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penalize non-informative features. The optimal penalty parameter
(the largest Lambda within 1 standard error of the minimum
cross-validation error) was selected to balance model simplicity
and generalizability (Figure 2A). LASSO retained 17 non-zero
coefficient features (Figure 2B). We further applied the Boruta
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FIGURE 3
Model performances on the validation set. (A) ROC curve. (B) PR curve. (C) Calibration curve and Brier score. (D) DCA.

algorithm, a random forest-based wrapper method, to identify
all potentially relevant features by comparing real features with
permuted shadow features (Figure 2C), and Boruta selected
24 features with statistically significant importance (p < 0.01).
Subsequently, we employed the RF-RFE with 5-fold cross-
validation to identify the optimal 25-variable subset that maximized
the AUROC, Figure 2D presents the feature selection results from
RF-RFE, displaying a bar plot of variable importance scores for
the final feature set (ranked by mean decrease in Gini index) and
a line graph tracking AUC values across iterative feature subset
sizes. Finally, the intersection of LASSO, Boruta and RFE yielded
13 clinically interpretable variables for model training: HE, THD,
CRRT, SOFA, PO4, Hb, Age, SBP, PIt, RDW, Lac, INR, HCO3. The
intersection of selected features is visually presented in Figure 2E.
This diagram shows the overlap in variables selected by the LASSO
regression (17 variables), RE-RFE (25 variables), and the Boruta
algorithm (24 variables). The numbers in each segment indicate
the count of variables unique to each method and their overlaps.
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The final set of 13 predictive variables (in the central overlap) was
derived from the intersection of all three methods.

3.3 Model performance comparisons

We systematically evaluated 10 machine learning algorithms
across both training and validation cohorts, with comprehensive
performance metrics for the validation set presented in Figure 3.
The ROC and PR curves for all evaluated models on the training
set are presented in Supplementary Figures 2, 3. LightGBM
and stacking model exhibited the strongest overall performance,
achieving the highest AUROC [0.885 (95% CI: 0.874-0.897) and
0.887 (95% CI: 0.875-0.898)] and area under the precision-
recall curve (AUPRC) [0.631 (95% CI: 0.592-0.669) and 0.629
(95% CI: 0.589-0.670)] scores, along with exceptional NPV
(0.962 and 0.969), while both demonstrated particularly high
sensitivity (0.888 and 0.912) for identifying true positive cases.
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Tree-based ensemble methods, including XGBoost [AUROC: 0.885
(95% CI: 0.874-0.897)] and RF [AUROC: 0.877 (95% CI: 0.866—
0.889)], consistently outperformed other approaches, showing
4.8-9.0% improvements in AUROC over traditional models like
Logistic Regression (0.841) and ElasticNet (0.839). Although the
MLP (AUROC: 0.876) and SVM (0.869) displayed intermediate
performance, simpler models such as DT (0.802) and KNN (0.795)
showed more limited discriminative ability, with KNN exhibiting
notably lower sensitivity (0.672). The LightGBM model also
demonstrated optimal calibration (Brier score 0.1104) and clinical
utility, as evidenced by decision curve analysis (Figures 3C,D).
While the stacking model showed comparable discrimination, its
net benefit was marginally lower than LightGBM. KNN and DT
exhibited poor clinical utility across threshold probabilities.

The comparative performance metrics of all 10 machine
learning models are summarized in Table 2, which identified
LightGBM, XGBoost, stacking, and RF as top performers based on
AUROC (>0.88). LightGBM demonstrated superior discriminative
ability (AUROC 0.885), the highest precision-recall performance
(AUPRC 0.631), excellent calibration (Brier score 0.1104), and
maximal clinical net benefit in decision curve analysis. Based on
the model’s performance in terms of discrimination, calibration,
and clinical applicability across both the training and validation
datasets, we ultimately selected LightGBM as the optimal algorithm
for subsequent external validation and model interpretation.
The optimal probability threshold for clinical decision-making,
determined by maximizing Youden’s index, was 0.232. The
hyperparameter tuning process was conducted using Bayesian
optimization with the complete optimization trajectory and final
parameter configurations detailed in Supplementary Figure 4.

3.4 Sensitivity analysis

To assess the potential confounding effect of anticoagulant
therapy on model performance, we conducted a sensitivity analysis
on the MIMIC-IV cohort. We excluded patients who received any
anticoagulant medication (including Heparin Sodium, Enoxaparin
Sodium, Dalteparin, Warfarin, Rivaroxaban, Apixaban, and
Dabigatran Etexilate) during the first 24 h of ICU admission. This
process resulted in a sub-cohort of 8,335 patients. When our final

10.3389/fmed.2025.1681621

LightGBM model was re-validated on this anticoagulant-free sub-
cohort, it maintained strong predictive performance, achieving an
AUROC of 0.857 (95% CI: 0.847-0.866). This result, which is
highly comparable to the performance in the full cohort (AUROC:
0.885), indicates that the model’s predictive ability is robust and not
substantially confounded by the early use of common therapeutic
anticoagulants. The corresponding ROC curve and confusion
matrix for this analysis are provided in Supplementary Figures 5, 6.

3.5 External validation

Our LightGBM model demonstrated excellent generalizability
and robustness across different datasets. In the external validation
using the eICU-CRD dataset, the model achieved an outstanding
AUROC of 0.831 (95% CI: 0.819-0.843), confirming its strong
predictive performance. The detailed ROC curve is presented
in Supplementary Figure 7, while Supplementary Figure 8
shows the corresponding confusion matrix, further validating the
model’s clinical applicability. These results highlight the model’s
reliability for potential clinical implementation despite variations
in data sources.

3.6 Interpretability analysis

Figure 4A presents an integrated visualization combining
a SHAP beeswarm plot and feature importance ranking for
the LightGBM model, where the lower x-axis represents raw
SHAP values and the upper x-axis shows mean absolute
SHAP values, with variables vertically ordered by descending
importance. Figure 4B presents a partial dependence plot
analysis of 10 continuous variables associated with the outcome.
The analysis revealed significant clinical correlations with SIC
development, demonstrating strong associations with elevated
INR, thrombocytopenia, higher SOFA scores, increased lactate
levels, pre-existing HF and ITHD, requirement for CRRT, decreased
bicarbonate levels, advanced age, hypotension, elevated RDW,
hyperphosphatemia, and abnormal hemoglobin levels. Figure 4C
presents an exemplary case analysis demonstrating the model’s risk
prediction mechanism for an individual patient. The visualization

TABLE 2 Comparative evaluation metrics of predictive models in the validation set.

LightGBM 0.885 0.631 0.775
Stacking 0.887 0.629 0.770
XGBoost 0.885 0.617 0.768
RF 0.877 0.609 0.782
MLP 0.876 0.624 0.762
SVM 0.869 0.618 0.773
Logistic 0.841 0.593 0.729
ENet 0.839 0.590 0.730
DT 0.802 0.521 0.738
KNN 0.795 0.508 0.740

0.888 0.745 0.478 0.962
0.912 0.733 0.473 0.969
0.890 0.736 0.469 0.962
0.818 0.772 0.485 0.942
0.840 0.742 0.461 0.947
0.828 0.758 0.474 0.944
0.816 0.706 0.421 0.936
0.815 0.708 0.423 0.936
0.787 0.726 0.430 0.928
0.672 0.758 0.421 0.898

AUROG, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; PPV, positive predictive value; NPV, negative predictive value.
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employs a dual-color coding system: yellow represents risk-  each feature’s contribution is quantified by its corresponding

enhancing factors (positive SHAP values), while purple indicates ~ SHAP value [f(x)]. Notably, this case demonstrates that our
protective factors (negative SHAP values). The magnitude of  LightGBM model predicted an elevated risk of SIC compared to
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the baseline population risk. The visualization provides clinicians
with interpretable feature contributions for SIC risk stratification in
septic patients, facilitating early prediction of clinical deterioration
and data-driven therapeutic decision-making.

3.7 Model deployment

For practical clinical use and to expedite bedside decisions,
we operationalized our optimized model via an interactive Shiny
app deployed online.! This accessible platform empowers clinicians
to enter relevant patient data and instantly assess SIC risk.
Crucially, the tool also deconstructs the prediction, showing
the individual impact of each clinical characteristic on the risk
score, thereby furnishing essential understanding of the underlying
predictive factors.

4 Discussion

To our knowledge, this is the first interpretable machine
learning model constructed based on the MIMIC-IV and eICU-
CRD databases for the early prediction of SIC within 7 days of
ICU admission. Our final LightGBM model, incorporating only
13 clinically relevant variables, provides an accurate, robust, and
user-friendly tool for early SIC risk assessment.

Artificial intelligence has progressed rapidly, compared to
conventional statistical approaches, ML techniques are capable
of processing complicated, high-dimensional data with superior
predictive accuracy. However, many studies either employ only
a single algorithm for modeling, rely solely on the AUROC for
performance evaluation, or utilize an excessive number of features
at the expense of clinical practicality (23-26). Additionally, some
are limited by their single-center design, which may compromise
model generalizability. In contrast, our study adopted the Boruta,
RF-RFE and LASSO algorithms for feature selection, constructed
models using 10 distinct machine learning algorithms, and
evaluated performance through multiple metrics, including ROC
curves, calibration curves, Brier scores, and DCA. Ultimately, we
developed a clinically practical LightGBM model incorporating
only 13 variables.

LightGBM, an advanced gradient boosting decision tree
(GBDT) framework developed by Microsoft Research, has gained
prominence in machine learning due to its computational
efficiency, optimized memory usage, and parallel processing
capabilities (27). In medical classification tasks, its distinctive
histogram-based algorithm, combined with Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB) techniques, enables rapid processing of high-dimensional
biomedical data (e.g., genomic profiles, medical images, or EHRs)
while maintaining superior classification accuracy. Three key
advantages make it particularly valuable for clinical applications:
(1) native handling of missing values and class imbalance—
common challenges in real-world medical datasets; (2) scalable
feature selection for identifying critical biomarkers from high-
throughput data; and (3) significantly faster training speeds

1 https://shatao.shinyapps.io/Sepsis_Induced_Coagulopathy/
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compared to conventional algorithms like XGBoost (28), which is
crucial for time-sensitive healthcare decisions (e.g., early disease
risk stratification).

SHAP, as an interpretable machine learning approach,
provides insights into model predictions by quantifying feature
contributions (29). In our study, the INR emerged as the most
critical predictor for SIC development. Both platelet count and
SOFA score also demonstrated significant predictive value.
Previous studies have established INR as a moderately effective
diagnostic tool for septic shock and sepsis, as well as a reliable
prognostic marker for 30-day all-cause mortality. Specifically, an
INR > 1.5 has been associated with increased mortality risk in
septic patients (30). Sepsis-associated coagulopathy may progress
from early-stage SIC to late-stage disseminated intravascular
coagulation (DIC), with platelet counts below 50 X 10°/L often
indicating DIC and poor prognosis. During sepsis, hemostatic
balance is profoundly disrupted, characterized by concurrent
coagulation activation and anticoagulation suppression. However,
laboratory markers (e.g., thrombocytopenia,

elevated fibrin degradation products, and

conventional
prolonged PT,
hypofibrinogenemia) typically manifest only in advanced stages
(31). In contrast, our LightGBM model demonstrates that platelet
count and INR can predict SIC during the early, reversible phase
of coagulopathy. There are some reasons that may explain INR’s
superior predictive value in our model: First, INR provides a
comprehensive assessment of coagulation status by integrating not
only platelet quantity but also the synthesis and functionality of
multiple coagulation factors, offering a more holistic evaluation
than isolated parameters. Second, as a standardized derivative
of PT, INR demonstrates enhanced sensitivity for detecting
early coagulopathy compared to platelet counts alone, enabling
earlier identification of coagulation abnormalities. Third, INR
measurements exhibit greater reliability as they are less susceptible
to common clinical confounders such as medication interference or
transfusion effects that frequently impact platelet count accuracy.
This combination of comprehensive coagulation profiling, early
detection capability, and reduced vulnerability to confounding
variables establishes INR as an optimal predictor in our SIC risk
assessment model. These findings collectively position INR as an
optimal early warning biomarker for SIC in septic patients.
Elevated significant
pathophysiological connection with SIC through two distinct

lactate  levels demonstrate a
mechanistic pathways. The primary mechanism involves lactate-
induced endothelial injury, where increased circulating lactate

concentrations directly compromise endothelial integrity and

enhance vascular permeability (32, 33). This endothelial
dysfunction subsequently triggers activation of the extrinsic
coagulation cascade, ultimately contributing to systemic

coagulopathy. The secondary mechanism relates to lactate-
associated metabolic acidosis, which has been shown to impair
thrombin production. These combined coagulation abnormalities
may promote microvascular thrombosis, exacerbating tissue
hypoperfusion and potentially creating a vicious cycle of worsening
circulatory compromise.

RDW is an indicator reflecting the variability in RBC volume.
Existing studies have confirmed its association with clinical
outcomes in critically ill patients (34, 35). Similar findings have
been observed in septic patients. For instance, a meta-analysis
encompassing 11 studies demonstrated that elevated RDW was
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positively associated with mortality in sepsis patients (HR 1.14,
95% CI 1.09-1.20, p < 0.001), with findings robust across
subgroups and sensitivity analyses (36). The potential mechanisms
linking RDW to SIC may involve the following pathways: First,
under conditions of inflammation and oxidative stress, accelerated
erythrocyte destruction leads to excessive adenosine diphosphate
(ADP) release into circulation, promoting platelet activation,
adhesion, and aggregation. Second, sepsis disrupts iron metabolism
and suppresses bone marrow hematopoiesis and megakaryocyte
function, resulting in thrombocytopenia, elevated RDW, and
subsequent coagulopathy (37, 38). RDW variability may thus
reflect the degree of bone marrow suppression and indirectly
indicate SIC risk. Third, inflammatory cytokines compromise
vascular endothelial integrity, while sustained inflammation alters
erythrocyte membrane glycoproteins and ion channel structures
(39, 40), impairing erythrocyte deformability. These pathological
changes exacerbate endothelial injury, trigger tissue factor release,
and ultimately activate coagulation cascades, culminating in SIC.
Therefore, within our model, RDW serves as a powerful proxy
for the overall severity of the septic insult, which inherently
encompasses the risk of developing SIC.

Elevated serum phosphate levels consistently correlate with
increased mortality in sepsis, potentially attributable to phosphate-
mediated cytotoxicity, diminished muscular function, vascular
calcification, and cardiovascular pathology (41-44). Elevated
serum phosphate levels may exacerbate microvascular dysfunction
through multiple mechanisms, including inflammation, oxidative
stress, and vascular calcification. The pivotal role of cardiovascular
impairment in sepsis pathogenesis suggests septic patients
possess unique biological vulnerability to hyperphosphatemia’s
adverse consequences.

The present study offers several distinct strengths and clinical
advantages over existing SIC prediction models. While a recent
multi-center study by Tan et al. also developed an interpretable
machine learning model for SIC prediction, their cohort was
comparatively limited (n = 847) and their optimal model achieved
an AUROC of 0.784 (95% CI: 0.711, 0.857) (45). In contrast, to
our knowledge, our work presents the first interpretable machine
learning model developed and externally validated on large-scale
multicenter databases (MIMIC-IV, n = 10,740 and eICU-CRD)
for the early prediction of SIC within 7 days of ICU admission,
demonstrating superior discriminative performance (AUROC:
0.885 internally and 0.831 externally). The model’s clinical value
is threefold. First, it enables the identification of high-risk patients
days before the onset of SIC, providing a critical window for
targeted interventions, such as intensified monitoring or careful
consideration of anticoagulant therapy. Second, the model’s high
performance (AUROC: 0.885 internally and 0.831 externally)
is achieved using only 13 routinely available clinical variables,
ensuring immediate practicality at the bedside without the need
for specialized testing. Finally, and crucially, the integration of
SHAP analysis transforms the model from a black box into a
clinically interpretable tool. It not only provides a risk score but
also elucidates the individualized contribution of key drivers (e.g.,
elevated INR, low platelet count) for each prediction, empowering
clinicians with actionable insights for data-driven decision making.
The robustness of our model is further affirmed by its stable
performance in sensitivity analysis after excluding patients on
anticoagulants. We have operationalized these advantages through
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an openly accessible web application, bridging the gap between
advanced predictive analytics and frontline clinical practice.

This study also has several limitations. First, the retrospective
nature of this investigation introduces potential selection and
information biases; large-scale prospective validation studies
remain essential to confirm predictor robustness across diverse
populations. Second, our study did not adjust for medications
that influence coagulation (e.g., aspirin, heparin) or evaluate their
potential effects on SIC progression. Additionally, several advanced
coagulation biomarkers, including tissue plasminogen activator-
inhibitor complex (tPAI-C), thrombin-antithrombin complex
(TAT), thromboelastography (TEG) parameters and antithrombin
I (AT II) could not be incorporated into the model due to
data unavailability in the database. Third, our predictive model
was based only on static baseline measurements and did not
capture dynamic changes in coagulation parameters over time.
Future studies should develop time-series models incorporating
serial measurements of PLT, INR, and other relevant biomarkers
to improve the temporal prediction of SIC progression. Despite
these limitations, our LightGBM model demonstrates potential as
a clinically deployable tool for timely SIC identification.

5 Conclusion

We developed and validated a LightGBM model for
early prediction of sepsis-induced coagulopathy (SIC) within
7 days of ICU admission. By incorporating SHAP analysis, our
approach achieves both high predictive accuracy and transparent
interpretation of key clinical features driving SIC pathogenesis.
The model’s deployment as an interactive Shiny application (see
text footnote 1) bridges advanced artificial intelligence with clinical
decision-making at the bedside.
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access and analysis. The studies were conducted in accordance
with the local legislation and institutional requirements. Written
informed consent for participation was not required from the
participants or the participants’ legal guardians/next of kin
in accordance with the national legislation and institutional
requirements. This study utilized data from two independent
databases. Medical Information Mart for Intensive Care IV
(MIMIC-1V, version 3.1) is a publicly available critical care database
maintained by the Massachusetts Institute of Technology (MIT)
that contains de-identified clinical data from Beth Israel Deaconess
Medical Center (BIDMC), a tertiary academic hospital in Boston,
United States. The database spans patient records from 2008
to 2022, encompassing 364,627 hospital admissions and 76,540
unique ICU stays across medical, surgical, cardiac, and neonatal
intensive care units. The eICU-CRD is a multicenter repository
containing de-identified clinical data from over 200,000 ICU
admissions across the United States (2014-2015).
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