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Early prediction of
sepsis-induced coagulopathy in
the ICU using interpretable
machine learning: a multi-center
retrospective cohort study
Tao Sha†, Hao Jiang† and Lei Feng*

Department of Emergency, Huadong hospital, Fudan University, Shanghai, China

Background: Sepsis-induced coagulopathy (SIC) is a fatal complication in ICU

patients, yet early risk prediction remains challenging. This study aimed to

develop an interpretable machine learning model for predicting SIC within seven

days of ICU admission.

Methods: Clinical data for model development were retrieved from the

Medical Information Mart for Intensive Care-IV (MIMIC-IV) database.

Feature selection was performed using three distinct algorithms: least

absolute shrinkage and selection operator (LASSO) regression, random

forest recursive feature elimination (RF-RFE), and the Boruta method. Ten

machine learning models underwent training employing 5-fold cross-validation

on the training subset, with subsequent evaluation on the validation subset

encompassing discrimination, calibration, and clinical utility metrics. The

optimal model underwent further interpretability analysis through SHapley

Additive exPlanations (SHAP) to elucidate variable contributions and their

directional effects. External validation was then conducted using the electronic

Intensive Care Unit Collaborative Research Database (eICU-CRD). Finally, the

best-performing model was implemented as a web-based Shiny application

featuring an interactive interface.

Results: Among 10,740 patients in MIMIC-IV, 2,232 (20.78%) developed SIC

within 7 days post-ICU admission. A LightGBM model with thirteen variables

demonstrated optimal performance, achieving an area under the receiver

operating characteristic curve (AUROC) of 0.885 (95% confidence interval (CI):

0.874–0.897) in the internal validation set and 0.831 (95% CI: 0.819–0.843) in the

external eICU-CRD cohort. Key predictive variables included Prothrombin Time-

International Normalization Ratio (INR), platelet count, Sequential Organ Failure

Assessment (SOFA), lactate, systolic blood pressure (SBP), red cell distribution

width (RDW), bicarbonate, phosphate, hemoglobin, age, the presence of heart

failure (HF), ischemic heart disease (IHD) and the use of continuous renal

replacement therapy (CRRT). The model was deployed as a clinician-oriented

web application providing an accessible interface (https://shatao.shinyapps.io/

Sepsis_Induced_Coagulopathy/).
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Conclusion: This model demonstrated strong predictive ability and 

clinical interpretability, enabling early SIC identification and targeted 

intervention. 

KEYWORDS 

sepsis-induced coagulopathy, machine learning, predictive models, early prediction, 
MIMIC-IV database 

1 Introduction 

Sepsis is a critical medical condition marked by systemic 
organ dysfunction due to an aberrant host response to infection, 
which involves immune dysregulation and subsequent multi-
organ failure (1, 2). Heightened clinical awareness and early 
recognition are critical to enable timely administration of 
appropriate antibiotics and other urgent interventions, thereby 
improving patient outcomes (3, 4). A common complication of 
sepsis is SIC, a condition characterized by vascular endothelial 
damage and systemic coagulation abnormalities triggered by the 
septic process (5, 6). A secondary analysis of two European 
randomized controlled trials reported SIC prevalence rates 
of 22.1% (HYPRESS trial) and 24.2% (SISPCT trial) (7). 
Epidemiological studies indicate that coagulation disorders occur 
in approximately 50–70% of septic patients, with nearly 35% 
progressing to disseminated intravascular coagulation (DIC) (8, 
9). The coagulation cascade becomes activated in sepsis primarily 
through tissue factor exposure on stimulated monocytes and 
vascular endothelial cells. This procoagulant response occurs 
because natural regulatory mechanisms, particularly tissue factor 
pathway inhibitor function, become inadequate during sepsis 
(8). Simultaneously, inflammatory mediators characteristic of 
sepsis suppress critical anticoagulant systems, most notably the 
protein C pathway. Concurrent overexpression of plasminogen 
activator inhibitor-1 (PAI-1) creates a dual defect - both 
promoting excessive fibrin deposition and inhibiting its normal 
clearance (8). These pathological alterations in hemostatic balance 
drive widespread microthrombosis, ultimately causing tissue 
hypoperfusion and contributing to sepsis-induced multiple organ 
failure. Emerging findings, including data from observational 
studies and large randomized controlled trials (RCTs), suggest 
anticoagulant therapy oers significant mortality reduction and 
clinical outcome improvement in septic patients with confirmed 
coagulopathy (10–12). However, in patients without coagulation 
abnormalities, the use of anticoagulants appears to confer no 
survival benefit while increasing the risk of bleeding complications, 
thus warranting cautious consideration in clinical practice (12, 
13). Early identification of coagulopathy risk factors in septic 
patients enables timely diagnosis of SIC, while targeted therapeutic 
strategies addressing the underlying pathophysiology are essential 
for improving survival and clinical outcomes. Consequently, 
there is an urgent need for accurate, early prediction tools to 
identify septic patients at highest risk for developing SIC, enabling 
preemptive management. 

The International Society of Thrombosis and Haemostasis 
(ISTH)’s Scientific and Standardization Committee (SSC) on 
Disseminated Intravascular Coagulation (DIC) in 2017 (5) 

established the SIC criteria, encompassing three key parameters: 
INR, platelet count, and composite SOFA score components. The 
scoring system was applied as follows: for INR values, scores of 0, 
1, and 2 were assigned corresponding to ≤ 1.2, > 1.2, and > 1.4 
respectively. Platelet counts ≥ 150 × 10∧9/L received 0 points, 
while counts < 150 × 10∧9/L and < 100 × 10∧9/L were assigned 
1 and 2 points respectively. The composite SOFA score was derived 
from the sum of individual scores for respiratory, cardiovascular, 
hepatic, and renal systems, with each system component capped at 
a maximum of 2 points. A diagnosis of SIC required fulfillment of 
two conditions: first, the cumulative score from all three parameters 
(INR, platelet count, and composite SOFA) had to reach ≥ 4 points; 
Second, the combined score from just the coagulation parameters 
(INR and platelet count) needed to exceed 2 points. 

Recent advances in machine learning have revolutionized 
predictive analytics in medicine by leveraging complex clinical 
datasets to forecast disease progression dynamically. Modern 
algorithms are particularly adept at capturing intricate, non-linear 
relationships between predictors and outcomes, making them 
well-suited for analyzing high-dimensional biomedical data (14, 
15). This capability is crucial in the context of sepsis, where 
emerging evidence suggests that the associations between key 
physiological variables—such as serum osmolarity, bicarbonate 
levels, and others—and critical outcomes like mortality are often 
non-linear and cannot be fully characterized by traditional linear 
models (16, 17). This study aimed to develop and validate a 
machine learning-based framework for the early and dynamic 
prediction of SIC. Additionally, we sought to identify critical 
risk factors through interpretable modeling techniques to enhance 
clinical understanding of SIC pathogenesis. 

2 Materials and methods 

2.1 Data source 

This study utilized data from two independent databases. 
Medical Information Mart for Intensive Care IV (MIMIC-IV, 
version 3.1) (18, 19) is a publicly available critical care database 
maintained by the Massachusetts Institute of Technology (MIT) 
that contains de-identified clinical data from Beth Israel Deaconess 
Medical Center (BIDMC), a tertiary academic hospital in Boston, 
United States. The database spans patient records from 2008 
to 2022, encompassing 364,627 hospital admissions and 76,540 
unique ICU stays across medical, surgical, cardiac, and neonatal 
intensive care units. The eICU-CRD is a multicenter repository 
containing de-identified clinical data from over 200,000 ICU 
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admissions across the United States (2014–2015) (20). In this study, 
we utilized the MIMIC-IV cohort as a development dataset and the 
eICU-CRD cohort as an independent external validation dataset. 
Certification for the Collaborative Institutional Training Initiative 
(CITI) program was successfully completed by one author (Tao 
Sha), with issued credential ID 68314142, which is a prerequisite for 
accessing both the MIMIC-IV and eICU-CRD databases. The use of 
the MIMIC-IV database was approved by the Institutional Review 
Boards (IRB) of the Massachusetts Institute of Technology (MIT), 
and the requirement for informed consent was waived due to the 
de-identified nature of the data. Similarly, the creation of the eICU-
CRD was approved by the IRB of MIT (Protocol No. 0403000206), 
and informed consent was waived for its original data collection. 
In accordance with institutional policies, we verbally notified 
the Ethics Committee of Huadong Hospital aÿliated to Fudan 
University and received confirmation that formal ethics approval 
was not necessary. The study was reported according to the 
recommendations of the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 
statement (21). 

2.2 Participants 

Inclusion criteria: (1) Fulfilled Sepsis 3.0 diagnostic criteria 
(Society of Critical Care Medicine and European Society of 
Intensive Care Medicine in 2016); (2) Initial ICU admission. 

Exclusion criteria: (1) Under 18 years of age; (2) ICU stay 
duration < 24 h or mortality within 24 h post-admission; 
(3) Patients with thrombocytopenic purpura, hemophilia or 
hematopoietic malignancies; (4) Incomplete clinical or laboratory 
records; (5) Development of SIC within the first 24 h of ICU care. 
Figure 1 details the participant selection workflow. 

2.3 Data extraction 

Data extraction for ICU-admitted patients within the initial 
24-h period was performed using PostgreSQL’s Structured Query 
Language (SQL) across both databases. Retrieved parameters 
included: (1) Demographic information: age, gender, and weight; 
(2) Underlying diseases: Hypertension (HTN), Cerebrovascular 
Accident (CVA), Chronic Kidney Disease (CKD), Cancer (CA), 
Diabetes Mellitus (DM), Hyperlipidemia (HLD), HF, IHD, Chronic 
Obstructive Pulmonary Disease (COPD). (3) Interventions: CRRT, 
ventilation. (4) Vital signs: heart rate (HR), respiratory rate (RR), 
SBP, diastolic blood pressure (DBP), temperature, percutaneous 
arterial oxygen saturation (SpO2); (5) Scores: SOFA, Simplified 
Acute Physiology Score II (SAPSII), Oxford Acute Severity of 
Illness Score (OASIS), Glasgow Coma Scale (GCS), Charlson 
Comorbidity Index (CCI). (6) Laboratory indicators: white blood 
cell (WBC), neutrophil, lymphocyte, hemoglobin, platelet count, 
RDW, chloride, potassium, sodium, magnesium, calcium, glucose, 
albumin, total cholesterol (TC), triglycerides (TG), lactate, partial 
pressure of carbon dioxide (pCO2), potential of hydrogen (pH), 
partial pressure of oxygen (pO2), d-dimer (DDI), fibrinogen, INR, 
prothrombin time (PT), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), direct bilirubin (DBil), total bilirubin 

(TBil), uric acid (UA), creatine kinase (CK), creatine kinase-MB 
(CKMB), n-terminal pro-brain natriuretic peptide (NTproBNP), 
troponin t (TNT), creatinine (Cr), blood urea nitrogen (BUN), 
bicarbonate, phosphate (PO4), central venous pressure (CVP). 

Repeated measurements were aggregated as mean values over 
the initial 24-h ICU period. Prior to analysis, we implemented 
rigorous data quality control measures. Variables exhibiting > 20% 
missingness were excluded to ensure analytical robustness. For 
remaining variables with less than 20% missing data, we employed 
multiple imputation using a random forest approach (MissForest 
algorithm), which has demonstrated superior performance for 
clinical datasets compared to traditional imputation methods. 
Notably, the imputation was performed separately on training 
and validation sets to prevent leakage. This non-parametric 
method iteratively imputes missing values by modeling each 
variable as a function of other variables in the dataset, preserving 
complex relationships and interactions characteristic of critical care 
data. The imputation process was repeated for five iterations to 
ensure stability of estimates, with diagnostic checks confirming 
the preservation of original data distributions (Supplementary 
Figure 1). This study defined its primary outcome as new-onset SIC 
diagnosed during the first 7 ICU days using ISTH 2017 criteria. 

2.4 Statistical analysis and model 
development 

Statistical analyses were performed based on the characteristics 
of the data. For continuous variables, normality was assessed 
using the Shapiro–Wilk test. Data that followed a normal 
distribution were expressed as mean ± standard deviation (SD) 
and compared between groups using the t-test. Non-normally 
distributed continuous variables were summarized as median with 
interquartile ranges (IQR) and compared using the Mann–Whitney 
U test. Categorical variables were presented as counts (percentages, 
%) and compared between groups using the Chi-square test or 
Fisher’s exact test, as appropriate. 

We performed a stratified partitioning of the MIMIC-
IV dataset to ensure robust model evaluation. The complete 
cohort was randomly divided into a development set (70% of 
patients) for feature selection, model training, and hyperparameter 
optimization, and an internal validation set (30% of patients) 
reserved for interim performance assessment. 

We employed a feature selection strategy to optimize predictive 
variables. First, LASSO regression was applied to identify 
parsimonious features through L1 regularization. Meanwhile, the 
Boruta algorithm (22), a random forest-based wrapper method, was 
implemented to detect all-relevant features by comparing original 
variables with permuted shadow features. Subsequently, variables 
were selected using the RF-RFE algorithm. The final feature 
subset was determined by taking the intersection of variables 
selected by all three methods, ensuring biological plausibility while 
maintaining statistical robustness. 

Using this optimized feature set, we developed and compared 
10 distinct machine learning models: logistic regression (LR), 
decision tree (DT), elastic net regression (Enet), light gradient 
boosting machine (LightGBM), K-nearest neighbors (KNN), 
random forest (RF), extreme gradient boosting (XGBoost), support 
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FIGURE 1 

Workflow. 

vector machine (SVM), multilayer perceptron (MLP) and a stacked 

ensemble model (stacking). We employed Bayesian optimization 

with Gaussian processes for hyperparameter tuning, utilizing the 

expected improvement acquisition function over 100 iterations 
to identify parameter configurations maximizing the AUROC. 

Model performance was evaluated through stratified 5-fold cross-
validation on the development set, with the optimal model for 

each algorithm selected based on peak AUROC performance. 
The optimal probability threshold for clinical deployment was 
determined using Youden’s index (J = sensitivity + specificity 
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− 1) to balance classification metrics. All models underwent 
comprehensive evaluation on the internal validation set, assessing: 
(1) discrimination (AUROC); (2) classification metrics (F1-score, 
accuracy, recall/sensitivity, specificity); (3) calibration (Brier score, 
calibration curves); (4) clinical utility (decision curve analysis 
(DCA) across probability thresholds 0–100%). To evaluate the 
potential confounding eect of anticoagulant therapy, a sensitivity 
analysis was performed on the MIMIC-IV cohort. We excluded 
patients who received any anticoagulant medication (including 
Heparin Sodium, Enoxaparin Sodium, Dalteparin, Warfarin, 
Rivaroxaban, Apixaban, and Dabigatran Etexilate) during the 
first 24 h of ICU admission. The optimal model was then re-
validated on this sub-cohort. Finally, the optimal model was 
subsequently validated on the external eICU-CRD cohort. Final 
model interpretability was achieved through SHAP. We generated 
a ranked feature importance plot based on mean absolute SHAP 
values and a swarm diagram to visualize the distribution of SHAP 
values across all samples, demonstrating both feature importance 
and eect directionality. We developed partial dependence plots 
(PDPs) for each selected feature to show marginal predictions 
while holding other variables constant. Case-specific SHAP 
value computations revealed feature importance variations across 
individual predictions, oering insights into the black-box nature 
of the model’s decision algorithm. 

All statistical analyses were performed in R 4.4.3, and the 
tidymodels framework (version 1.3.0) was used for unified machine 
learning implementation. Two-sided p< 0.05 were considered 
statistically significant. 

3 Results 

3.1 Baseline characteristics 

After applying inclusion/exclusion criteria, 10,740 patients 
from MIMIC-IV and 5,504 from eICU-CRD were analyzed. SIC 
developed in 2,232 (20.78%) and 1,175 (23.3%) cases, respectively, 
during the 7-day post-admission window. 

Table 1 presents baseline characteristics of the MIMIC-IV 
study cohort. Compared with the non-SIC group, SIC patients 
exhibited significant demographic and clinical disparities. The SIC 
cohort was older (median age 71.0 vs. 67.0 years, P < 0.001), 
predominantly male (61.1% vs. 52.8%, P < 0.001), and had higher 
comorbidity burdens, including chronic kidney disease (25.8% vs. 
15.6%, P < 0.001), heart failure (42.6% vs. 22.5%, P < 0.001), and 
ischemic heart disease (48.2% vs. 29.3%, P < 0.001). Clinically, 
SIC patients experienced worse outcomes: prolonged ICU stays 
(median 5.6 vs. 4.6 days, P < 0.001) and hospital stays (median 
13.0 vs. 10.6 days, P < 0.001), higher 28-day in-hospital mortality 
(24.0% vs. 13.2%, P < 0.001) and 28-day ICU mortality (24.8% 
vs. 13.4%, P < 0.001). During initial ICU admission, SIC patients 
demonstrated significantly higher intervention requirements: 
mechanical ventilation (89.7% vs. 84.7%; p < 0.001) and continuous 
renal replacement therapy (14.4% vs. 3.3%; p < 0.001). Severity 
scores including SOFA (6.0 vs. 4.0), SAPSII (42.0 vs. 36.0), and 
CCI (6.0 vs. 5.0) were significantly elevated in SIC patients (all 

TABLE 1 Patient baseline characteristics. 

Variables NON-SIC (N = 8,508) SIC (N = 2,232) p 

Demographic data 

Height (cm) 168.7 ± 10.7 169.4 ± 10.5 0.011 

Weight (kg) 79.0 (65.2, 95.0) 80.0 (67.5, 96.7) 0.002 

Gender, n (%) < 0.001 

F 3,775 (47.2%) 843 (38.9%) 

M 4,225 (52.8%) 1,322 (61.1%) 

sAge (years) 65.5 ± 17.0 69.5 ± 14.5 < 0.001 

Underlying diseases 

HTN < 0.001 

No 4,923 (57.9%) 1,438 (64.4%) 

Yes 3,585 (42.1%) 794 (35.6%) 

CVA 0.389 

No 7,653 (90%) 2,022 (90.6%) 

Yes 855 (10%) 210 (9.4%) 

CKD < 0.001 

No 7,178 (84.4%) 1,656 (74.2%) 

Yes 1,330 (15.6%) 576 (25.8%) 

CA < 0.001 

No 7,367 (86.6%) 1,860 (83.3%) 

Yes 1,141 (13.4%) 372 (16.7%) 

DM < 0.001 

No 6,222 (73.1%) 1,488 (66.7%) 

Yes 2,286 (26.9%) 744 (33.3%) 

HLD < 0.001 

No 5,635 (66.2%) 1,302 (58.3%) 

Yes 2,873 (33.8%) 930 (41.7%) 

HF < 0.001 

No 6,594 (77.5%) 1,281 (57.4%) 

Yes 1,914 (22.5%) 951 (42.6%) 

IHD < 0.001 

No 6,011 (70.7%) 1,157 (51.8%) 

Yes 2,497 (29.3%) 1,075 (48.2%) 

COPD < 0.001 

No 7,146 (84%) 1,797 (80.5%) 

Yes 1,362 (16%) 435 (19.5%) 

Clinical outcomes 

ICU LOS (days) 4.6 (2.9, 8.9) 5.6 (3.3, 9.9) < 0.001 

Hospital day 

(days) 
10.6 (6.5, 18.2) 13.0 (7.8, 21.2) < 0.001 

Death within 

hospital 28d 

< 0.001 

No 7,386 (86.8%) 1,697 (76%) 

Yes 1,122 (13.2%) 535 (24%) 

(Continued) 
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TABLE 1 (Continued) 

Variables NON-SIC (N = 8,508) SIC (N = 2,232) p 

Death within 

ICU 28d 

< 0.001 

No 7,364 (86.6%) 1,679 (75.2%) 

Yes 1,144 (13.4%) 553 (24.8%) 

Interventions 

Ventilation < 0.001 

No 1,305 (15.3%) 231 (10.3%) 

Yes 7,203 (84.7%) 2,001 (89.7%) 

CRRT < 0.001 

No 8,227 (96.7%) 1,910 (85.6%) 

Yes 281 (3.3%) 322 (14.4%) 

Scores 

SOFA 4.8 ± 2.8 6.6 ± 3.3 < 0.001 

SAPSII 37.5 ± 13.1 43.5 ± 13.6 < 0.001 

OASIS 33.4 ± 8.1 35.3 ± 8.4 < 0.001 

GCS 15.0 (13.0, 15.0) 15.0 (14.0, 15.0) < 0.001 

CCI 4.9 ± 3.0 6.1 ± 3.0 < 0.001 

Vital signs 

HR (times/min) 87.0 (75.0, 101.0) 88.0 (75.0, 102.0) 0.384 

SBP (mmHg) 124.9 ± 25.3 116.5 ± 25.0 < 0.001 

DBP (mmHg) 68.0 (57.0, 81.0) 63.0 (54.0, 76.0) < 0.001 

SpO2 (%) 98.0 (95.0, 100.0) 98.0 (95.0, 100.0) 0.580 

RR (times/min) 19.0 (16.0, 23.0) 19.0 (15.0, 23.0) 0.514 

T (◦F) 98.3 (97.7, 99.0) 98.2 (97.6, 98.8) < 0.001 

Laboratory tests 

Lym (109/L) 1.1 (0.7, 1.7) 1.1 (0.6, 1.6) < 0.001 

WBC (109/L) 12.0 (8.8, 16.0) 11.9 (8.2, 16.6) 0.287 

Neu (109/L) 9.6 (6.6, 13.8) 10.1 (6.5, 14.7) 0.144 

Hb (g/L) 11.0 ± 2.2 10.7 ± 2.3 < 0.001 

PLT (109/L) 224.0 (179.0, 289.0) 170.0 (137.0, 228.0) < 0.001 

RDW (fL) 14.2 (13.3, 15.5) 14.6 (13.5, 16.1) < 0.001 

Cl (mmol/L) 104.0 (100.0, 108.0) 105.0 (100.0, 109.0) 0.134 

K (mmol/L) 4.1 (3.7, 4.6) 4.2 (3.8, 4.7) < 0.001 

Na (mmol/L) 139.0 (136.0, 141.0) 139.0 (135.0, 141.0) 0.004 

Mg (mmol/L) 1.9 (1.7, 2.2) 2.0 (1.8, 2.3) < 0.001 

Ca2 (mg/dL) 8.4 (7.9, 8.8) 8.2 (7.8, 8.7) < 0.001 

Glu (mmol/L) 132.0 (109.0, 170.0) 137.0 (112.0, 182.0) < 0.001 

Alb (g/dL) 3.1 ± 0.6 2.9 ± 0.6 < 0.001 

TC (mg/dL) 152.0 (125.0, 185.0) 125.0 (103.0, 159.0) < 0.001 

TG (mg/dL) 147.0 (98.0, 230.0) 138.5 (89.0, 227.0) 0.055 

Lac (mmol/L) 1.5 (1.1, 2.3) 1.9 (1.3, 2.9) < 0.001 

pCO2 (mmHg) 41.0 (36.0, 48.0) 42.0 (36.0, 48.0) 0.988 

pH 7.4 (7.3, 7.4) 7.4 (7.3, 7.4) < 0.001 

(Continued) 

TABLE 1 (Continued) 

Variables NON-SIC (N = 8,508) SIC (N = 2,232) p 

pO2 (mmHg) 144.6 ± 110.5 150.4 ± 125.8 0.062 

DDI (ng/mL) 1733.0 (900.0, 3888.5) 2312.0 (1203.0, 5982.0) 0.025 

FIB (mg/dL) 367.0 (237.0, 584.0) 323.0 (214.0, 506.0) < 0.001 

INR 1.2 (1.1, 1.3) 1.3 (1.2, 1.4) < 0.001 

PT (s) 12.8 (11.9, 13.9) 14.0 (12.8, 15.4) < 0.001 

ALT (IU/L) 25.0 (15.0, 50.0) 28.0 (16.0, 58.0) 0.001 

AST (IU/L) 34.0 (21.0, 62.0) 43.0 (25.0, 96.0) < 0.001 

DBil (mg/dL) 0.6 (0.2, 1.8) 1.2 (0.5, 2.6) < 0.001 

Tbil (mg/dL) 0.5 (0.3, 0.7) 0.6 (0.4, 1.0) < 0.001 

Cr (mg/dL) 0.9 (0.7, 1.4) 1.2 (0.8, 1.9) < 0.001 

BUN (mg/dL) 18.0 (13.0, 30.0) 24.0 (16.0, 41.0) < 0.001 

UA (mg/dL) 5.2 (2.9, 8.1) 6.0 (3.4, 9.1) 0.022 

CK (IU/L) 170.0 (68.0, 521.0) 190.0 (68.0, 689.0) 0.087 

CKMB (ng/mL) 5.0 (3.0, 10.0) 6.0 (3.0, 17.0) < 0.001 

NTproBNP 

(pg/mL) 
2286.0 (717.5, 6717.0) 4262.0 (1307.0, 12171.0) < 0.001 

TNT (ng/mL) 0.1 (0.0, 0.3) 0.1 (0.0, 0.7) < 0.001 

HCO3 (mmol/L) 23.0 (20.0, 26.0) 22.0 (19.0, 24.0) < 0.001 

PO4 (mmol/L) 3.5 (2.8, 4.2) 3.7 (3.0, 4.7) < 0.001 

CVP (mmHg) 10.0 (7.0, 14.0) 11.0 (8.0, 15.0) 0.002 

Statistical comparisons used t-tests (mean with standard deviation), Mann-Whitney 
tests (median with first and third quartiles), or chi-square/Fisher’s exact tests (number 
with percentage) based on variable distribution and type. HTN, Hypertension; CVA, 
Cerebrovascular Accident; CKD, Chronic Kidney Disease; CA, Cancer; T2DM, Type 2 
Diabetes Mellitus; HLD, Hyperlipidemia; HF, Heart Failure; IHD, Ischemic Heart Disease; 
COPD, Chronic Obstructive Pulmonary Disease; LOS, Length of stay; CRRT, continuous 
renal replacement therapy; SOFA, Sequential Organ Failure Assessment; SAPSII, Simplified 
Acute Physiology Score II; OASIS, Oxford Acute Severity of Illness Score; GCS, Glasgow 
Coma Scale; CHARLSON, Charlson Comorbidity Index; HR, Heart Rate; SBP, Systolic 
Blood Pressure; DBP, Diastolic Blood Pressure; SpO2 , Peripheral Oxygen Saturation; 
RR, Respiratory Rate; T, Temperature; WBC, White Blood Cell; Neu, Neutrophil; Lym, 
Lymphocyte; Hb, Hemoglobin; PLT, Platelet; RDW, Red Cell Distribution Width; Cl, 
Chloride; K, Potassium; Na, Sodium; Mg, Magnesium; Ca, Calcium; Glu, Glucose; Alb, 
Albumin; TC, Total Cholesterol; TG, Triglycerides; LAC, Lactate; PCO2 , Partial Pressure 
of Carbon Dioxide; PH, Potential of Hydrogen; PO2, Partial Pressure of Oxygen; DDI, 
D-Dimer; FIB, Fibrinogen; INR, International Normalized Ratio; PT, Prothrombin Time; 
ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; DBil, Direct Bilirubin; 
TBil, Total Bilirubin; UA, Uric Acid; CK, Creatine Kinase; CKMB, Creatine Kinase-MB; 
NT-proBNP, N-Terminal pro-Brain Natriuretic Peptide; TNT, Troponin T; Cr, Creatinine; 
BUN, Blood Urea Nitrogen; AB, Actual Bicarbonate; PO4, Phosphate; CVP, Central 
Venous Pressure. 

P < 0.001). Comparative analysis of laboratory profiles and vital 
signs demonstrated significantly depressed levels in SIC patients 
across multiple parameters: lymphocyte, hemoglobin, platelets 
count, calcium, albumin, total cholesterol, triglycerides, fibrinogen, 
bicarbonate, SBP and DBP. Conversely, they demonstrated elevated 
RDW, magnesium, glucose, lactate, DDI, PT, INR, ALT, AST, Dbil, 
Tbil, CK, NTproBNP, Cr, BUN, phosphate and CVP compared to 
patients without SIC. 

This comprehensive analysis confirms that SIC patients 
represent a distinct high-risk subgroup with multisystem 
dysregulation, providing a foundation for subsequent 
predictive modeling. 
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FIGURE 2 

Feature engineering. (A) Variation characteristics of variable coefficients. (B) The process of selecting the optimal value of the parameter Lambda in 
the LASSO regression model is carried out by the cross-validation method. (C) Variable selection procedure using the Boruta algorithm. (D) Variable 
selection procedure using the RF-RFE. (E) Venn diagram illustrating the intersection of feature selection methods. 

3.2 Feature engineering 

To identify the most predictive features for SIC, we employed 

a three-stage feature selection approach. We first applied LASSO 

regression with 10-fold cross-validation on the development set to 

penalize non-informative features. The optimal penalty parameter 

(the largest Lambda within 1 standard error of the minimum 

cross-validation error) was selected to balance model simplicity 

and generalizability (Figure 2A). LASSO retained 17 non-zero 

coeÿcient features (Figure 2B). We further applied the Boruta 

Frontiers in Medicine 07 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1681621
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1681621 October 31, 2025 Time: 18:5 # 8

Sha et al. 10.3389/fmed.2025.1681621 

FIGURE 3 

Model performances on the validation set. (A) ROC curve. (B) PR curve. (C) Calibration curve and Brier score. (D) DCA. 

algorithm, a random forest-based wrapper method, to identify 
all potentially relevant features by comparing real features with 
permuted shadow features (Figure 2C), and Boruta selected 
24 features with statistically significant importance (p < 0.01). 
Subsequently, we employed the RF-RFE with 5-fold cross-
validation to identify the optimal 25-variable subset that maximized 
the AUROC, Figure 2D presents the feature selection results from 
RF-RFE, displaying a bar plot of variable importance scores for 
the final feature set (ranked by mean decrease in Gini index) and 
a line graph tracking AUC values across iterative feature subset 
sizes. Finally, the intersection of LASSO, Boruta and RFE yielded 
13 clinically interpretable variables for model training: HF, IHD, 
CRRT, SOFA, PO4, Hb, Age, SBP, Plt, RDW, Lac, INR, HCO3. The 
intersection of selected features is visually presented in Figure 2E. 
This diagram shows the overlap in variables selected by the LASSO 
regression (17 variables), RF-RFE (25 variables), and the Boruta 
algorithm (24 variables). The numbers in each segment indicate 
the count of variables unique to each method and their overlaps. 

The final set of 13 predictive variables (in the central overlap) was 
derived from the intersection of all three methods. 

3.3 Model performance comparisons 

We systematically evaluated 10 machine learning algorithms 
across both training and validation cohorts, with comprehensive 
performance metrics for the validation set presented in Figure 3. 
The ROC and PR curves for all evaluated models on the training 
set are presented in Supplementary Figures 2, 3. LightGBM 
and stacking model exhibited the strongest overall performance, 
achieving the highest AUROC [0.885 (95% CI: 0.874–0.897) and 
0.887 (95% CI: 0.875–0.898)] and area under the precision-
recall curve (AUPRC) [0.631 (95% CI: 0.592–0.669) and 0.629 
(95% CI: 0.589–0.670)] scores, along with exceptional NPV 
(0.962 and 0.969), while both demonstrated particularly high 
sensitivity (0.888 and 0.912) for identifying true positive cases. 
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Tree-based ensemble methods, including XGBoost [AUROC: 0.885 
(95% CI: 0.874–0.897)] and RF [AUROC: 0.877 (95% CI: 0.866– 
0.889)], consistently outperformed other approaches, showing 
4.8–9.0% improvements in AUROC over traditional models like 
Logistic Regression (0.841) and ElasticNet (0.839). Although the 
MLP (AUROC: 0.876) and SVM (0.869) displayed intermediate 
performance, simpler models such as DT (0.802) and KNN (0.795) 
showed more limited discriminative ability, with KNN exhibiting 
notably lower sensitivity (0.672). The LightGBM model also 
demonstrated optimal calibration (Brier score 0.1104) and clinical 
utility, as evidenced by decision curve analysis (Figures 3C,D). 
While the stacking model showed comparable discrimination, its 
net benefit was marginally lower than LightGBM. KNN and DT 
exhibited poor clinical utility across threshold probabilities. 

The comparative performance metrics of all 10 machine 
learning models are summarized in Table 2, which identified 
LightGBM, XGBoost, stacking, and RF as top performers based on 
AUROC (>0.88). LightGBM demonstrated superior discriminative 
ability (AUROC 0.885), the highest precision-recall performance 
(AUPRC 0.631), excellent calibration (Brier score 0.1104), and 
maximal clinical net benefit in decision curve analysis. Based on 
the model’s performance in terms of discrimination, calibration, 
and clinical applicability across both the training and validation 
datasets, we ultimately selected LightGBM as the optimal algorithm 
for subsequent external validation and model interpretation. 
The optimal probability threshold for clinical decision-making, 
determined by maximizing Youden’s index, was 0.232. The 
hyperparameter tuning process was conducted using Bayesian 
optimization with the complete optimization trajectory and final 
parameter configurations detailed in Supplementary Figure 4. 

3.4 Sensitivity analysis 

To assess the potential confounding eect of anticoagulant 
therapy on model performance, we conducted a sensitivity analysis 
on the MIMIC-IV cohort. We excluded patients who received any 
anticoagulant medication (including Heparin Sodium, Enoxaparin 
Sodium, Dalteparin, Warfarin, Rivaroxaban, Apixaban, and 
Dabigatran Etexilate) during the first 24 h of ICU admission. This 
process resulted in a sub-cohort of 8,335 patients. When our final 

LightGBM model was re-validated on this anticoagulant-free sub-
cohort, it maintained strong predictive performance, achieving an 
AUROC of 0.857 (95% CI: 0.847–0.866). This result, which is 
highly comparable to the performance in the full cohort (AUROC: 
0.885), indicates that the model’s predictive ability is robust and not 
substantially confounded by the early use of common therapeutic 
anticoagulants. The corresponding ROC curve and confusion 
matrix for this analysis are provided in Supplementary Figures 5, 6. 

3.5 External validation 

Our LightGBM model demonstrated excellent generalizability 
and robustness across dierent datasets. In the external validation 
using the eICU-CRD dataset, the model achieved an outstanding 
AUROC of 0.831 (95% CI: 0.819–0.843), confirming its strong 
predictive performance. The detailed ROC curve is presented 
in Supplementary Figure 7, while Supplementary Figure 8 
shows the corresponding confusion matrix, further validating the 
model’s clinical applicability. These results highlight the model’s 
reliability for potential clinical implementation despite variations 
in data sources. 

3.6 Interpretability analysis 

Figure 4A presents an integrated visualization combining 
a SHAP beeswarm plot and feature importance ranking for 
the LightGBM model, where the lower x-axis represents raw 
SHAP values and the upper x-axis shows mean absolute 
SHAP values, with variables vertically ordered by descending 
importance. Figure 4B presents a partial dependence plot 
analysis of 10 continuous variables associated with the outcome. 
The analysis revealed significant clinical correlations with SIC 
development, demonstrating strong associations with elevated 
INR, thrombocytopenia, higher SOFA scores, increased lactate 
levels, pre-existing HF and IHD, requirement for CRRT, decreased 
bicarbonate levels, advanced age, hypotension, elevated RDW, 
hyperphosphatemia, and abnormal hemoglobin levels. Figure 4C 
presents an exemplary case analysis demonstrating the model’s risk 
prediction mechanism for an individual patient. The visualization 

TABLE 2 Comparative evaluation metrics of predictive models in the validation set. 

Models AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV 

LightGBM 0.885 0.631 0.775 0.888 0.745 0.478 0.962 

Stacking 0.887 0.629 0.770 0.912 0.733 0.473 0.969 

XGBoost 0.885 0.617 0.768 0.890 0.736 0.469 0.962 

RF 0.877 0.609 0.782 0.818 0.772 0.485 0.942 

MLP 0.876 0.624 0.762 0.840 0.742 0.461 0.947 

SVM 0.869 0.618 0.773 0.828 0.758 0.474 0.944 

Logistic 0.841 0.593 0.729 0.816 0.706 0.421 0.936 

ENet 0.839 0.590 0.730 0.815 0.708 0.423 0.936 

DT 0.802 0.521 0.738 0.787 0.726 0.430 0.928 

KNN 0.795 0.508 0.740 0.672 0.758 0.421 0.898 

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; PPV, positive predictive value; NPV, negative predictive value. 
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FIGURE 4 

Visually interpret machine learning models using SHAP. (A) SHAP summary plot and feature importance plot. (B) SHAP dependency plots. (C) SHAP 
force plot. 

employs a dual-color coding system: yellow represents risk-
enhancing factors (positive SHAP values), while purple indicates 
protective factors (negative SHAP values). The magnitude of 

each feature’s contribution is quantified by its corresponding 
SHAP value [f(x)]. Notably, this case demonstrates that our 
LightGBM model predicted an elevated risk of SIC compared to 
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the baseline population risk. The visualization provides clinicians 
with interpretable feature contributions for SIC risk stratification in 
septic patients, facilitating early prediction of clinical deterioration 
and data-driven therapeutic decision-making. 

3.7 Model deployment 

For practical clinical use and to expedite bedside decisions, 
we operationalized our optimized model via an interactive Shiny 
app deployed online.1 This accessible platform empowers clinicians 
to enter relevant patient data and instantly assess SIC risk. 
Crucially, the tool also deconstructs the prediction, showing 
the individual impact of each clinical characteristic on the risk 
score, thereby furnishing essential understanding of the underlying 
predictive factors. 

4 Discussion 

To our knowledge, this is the first interpretable machine 
learning model constructed based on the MIMIC-IV and eICU-
CRD databases for the early prediction of SIC within 7 days of 
ICU admission. Our final LightGBM model, incorporating only 
13 clinically relevant variables, provides an accurate, robust, and 
user-friendly tool for early SIC risk assessment. 

Artificial intelligence has progressed rapidly, compared to 
conventional statistical approaches, ML techniques are capable 
of processing complicated, high-dimensional data with superior 
predictive accuracy. However, many studies either employ only 
a single algorithm for modeling, rely solely on the AUROC for 
performance evaluation, or utilize an excessive number of features 
at the expense of clinical practicality (23–26). Additionally, some 
are limited by their single-center design, which may compromise 
model generalizability. In contrast, our study adopted the Boruta, 
RF-RFE and LASSO algorithms for feature selection, constructed 
models using 10 distinct machine learning algorithms, and 
evaluated performance through multiple metrics, including ROC 
curves, calibration curves, Brier scores, and DCA. Ultimately, we 
developed a clinically practical LightGBM model incorporating 
only 13 variables. 

LightGBM, an advanced gradient boosting decision tree 
(GBDT) framework developed by Microsoft Research, has gained 
prominence in machine learning due to its computational 
eÿciency, optimized memory usage, and parallel processing 
capabilities (27). In medical classification tasks, its distinctive 
histogram-based algorithm, combined with Gradient-based 
One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB) techniques, enables rapid processing of high-dimensional 
biomedical data (e.g., genomic profiles, medical images, or EHRs) 
while maintaining superior classification accuracy. Three key 
advantages make it particularly valuable for clinical applications: 
(1) native handling of missing values and class imbalance— 
common challenges in real-world medical datasets; (2) scalable 
feature selection for identifying critical biomarkers from high-
throughput data; and (3) significantly faster training speeds 

1 https://shatao.shinyapps.io/Sepsis_Induced_Coagulopathy/ 

compared to conventional algorithms like XGBoost (28), which is 
crucial for time-sensitive healthcare decisions (e.g., early disease 
risk stratification). 

SHAP, as an interpretable machine learning approach, 
provides insights into model predictions by quantifying feature 
contributions (29). In our study, the INR emerged as the most 
critical predictor for SIC development. Both platelet count and 
SOFA score also demonstrated significant predictive value. 
Previous studies have established INR as a moderately eective 
diagnostic tool for septic shock and sepsis, as well as a reliable 
prognostic marker for 30-day all-cause mortality. Specifically, an 
INR > 1.5 has been associated with increased mortality risk in 
septic patients (30). Sepsis-associated coagulopathy may progress 
from early-stage SIC to late-stage disseminated intravascular 
coagulation (DIC), with platelet counts below 50 × 109/L often 
indicating DIC and poor prognosis. During sepsis, hemostatic 
balance is profoundly disrupted, characterized by concurrent 
coagulation activation and anticoagulation suppression. However, 
conventional laboratory markers (e.g., thrombocytopenia, 
prolonged PT, elevated fibrin degradation products, and 
hypofibrinogenemia) typically manifest only in advanced stages 
(31). In contrast, our LightGBM model demonstrates that platelet 
count and INR can predict SIC during the early, reversible phase 
of coagulopathy. There are some reasons that may explain INR’s 
superior predictive value in our model: First, INR provides a 
comprehensive assessment of coagulation status by integrating not 
only platelet quantity but also the synthesis and functionality of 
multiple coagulation factors, oering a more holistic evaluation 
than isolated parameters. Second, as a standardized derivative 
of PT, INR demonstrates enhanced sensitivity for detecting 
early coagulopathy compared to platelet counts alone, enabling 
earlier identification of coagulation abnormalities. Third, INR 
measurements exhibit greater reliability as they are less susceptible 
to common clinical confounders such as medication interference or 
transfusion eects that frequently impact platelet count accuracy. 
This combination of comprehensive coagulation profiling, early 
detection capability, and reduced vulnerability to confounding 
variables establishes INR as an optimal predictor in our SIC risk 
assessment model. These findings collectively position INR as an 
optimal early warning biomarker for SIC in septic patients. 

Elevated lactate levels demonstrate a significant 
pathophysiological connection with SIC through two distinct 
mechanistic pathways. The primary mechanism involves lactate-
induced endothelial injury, where increased circulating lactate 
concentrations directly compromise endothelial integrity and 
enhance vascular permeability (32, 33). This endothelial 
dysfunction subsequently triggers activation of the extrinsic 
coagulation cascade, ultimately contributing to systemic 
coagulopathy. The secondary mechanism relates to lactate-
associated metabolic acidosis, which has been shown to impair 
thrombin production. These combined coagulation abnormalities 
may promote microvascular thrombosis, exacerbating tissue 
hypoperfusion and potentially creating a vicious cycle of worsening 
circulatory compromise. 

RDW is an indicator reflecting the variability in RBC volume. 
Existing studies have confirmed its association with clinical 
outcomes in critically ill patients (34, 35). Similar findings have 
been observed in septic patients. For instance, a meta-analysis 
encompassing 11 studies demonstrated that elevated RDW was 
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positively associated with mortality in sepsis patients (HR 1.14, 
95% CI 1.09–1.20, p < 0.001), with findings robust across 
subgroups and sensitivity analyses (36). The potential mechanisms 
linking RDW to SIC may involve the following pathways: First, 
under conditions of inflammation and oxidative stress, accelerated 
erythrocyte destruction leads to excessive adenosine diphosphate 
(ADP) release into circulation, promoting platelet activation, 
adhesion, and aggregation. Second, sepsis disrupts iron metabolism 
and suppresses bone marrow hematopoiesis and megakaryocyte 
function, resulting in thrombocytopenia, elevated RDW, and 
subsequent coagulopathy (37, 38). RDW variability may thus 
reflect the degree of bone marrow suppression and indirectly 
indicate SIC risk. Third, inflammatory cytokines compromise 
vascular endothelial integrity, while sustained inflammation alters 
erythrocyte membrane glycoproteins and ion channel structures 
(39, 40), impairing erythrocyte deformability. These pathological 
changes exacerbate endothelial injury, trigger tissue factor release, 
and ultimately activate coagulation cascades, culminating in SIC. 
Therefore, within our model, RDW serves as a powerful proxy 
for the overall severity of the septic insult, which inherently 
encompasses the risk of developing SIC. 

Elevated serum phosphate levels consistently correlate with 
increased mortality in sepsis, potentially attributable to phosphate-
mediated cytotoxicity, diminished muscular function, vascular 
calcification, and cardiovascular pathology (41–44). Elevated 
serum phosphate levels may exacerbate microvascular dysfunction 
through multiple mechanisms, including inflammation, oxidative 
stress, and vascular calcification. The pivotal role of cardiovascular 
impairment in sepsis pathogenesis suggests septic patients 
possess unique biological vulnerability to hyperphosphatemia’s 
adverse consequences. 

The present study oers several distinct strengths and clinical 
advantages over existing SIC prediction models. While a recent 
multi-center study by Tan et al. also developed an interpretable 
machine learning model for SIC prediction, their cohort was 
comparatively limited (n = 847) and their optimal model achieved 
an AUROC of 0.784 (95% CI: 0.711, 0.857) (45). In contrast, to 
our knowledge, our work presents the first interpretable machine 
learning model developed and externally validated on large-scale 
multicenter databases (MIMIC-IV, n = 10,740 and eICU-CRD) 
for the early prediction of SIC within 7 days of ICU admission, 
demonstrating superior discriminative performance (AUROC: 
0.885 internally and 0.831 externally). The model’s clinical value 
is threefold. First, it enables the identification of high-risk patients 
days before the onset of SIC, providing a critical window for 
targeted interventions, such as intensified monitoring or careful 
consideration of anticoagulant therapy. Second, the model’s high 
performance (AUROC: 0.885 internally and 0.831 externally) 
is achieved using only 13 routinely available clinical variables, 
ensuring immediate practicality at the bedside without the need 
for specialized testing. Finally, and crucially, the integration of 
SHAP analysis transforms the model from a black box into a 
clinically interpretable tool. It not only provides a risk score but 
also elucidates the individualized contribution of key drivers (e.g., 
elevated INR, low platelet count) for each prediction, empowering 
clinicians with actionable insights for data-driven decision making. 
The robustness of our model is further aÿrmed by its stable 
performance in sensitivity analysis after excluding patients on 
anticoagulants. We have operationalized these advantages through 

an openly accessible web application, bridging the gap between 
advanced predictive analytics and frontline clinical practice. 

This study also has several limitations. First, the retrospective 
nature of this investigation introduces potential selection and 
information biases; large-scale prospective validation studies 
remain essential to confirm predictor robustness across diverse 
populations. Second, our study did not adjust for medications 
that influence coagulation (e.g., aspirin, heparin) or evaluate their 
potential eects on SIC progression. Additionally, several advanced 
coagulation biomarkers, including tissue plasminogen activator-
inhibitor complex (tPAI-C), thrombin-antithrombin complex 
(TAT), thromboelastography (TEG) parameters and antithrombin 
III (AT III) could not be incorporated into the model due to 
data unavailability in the database. Third, our predictive model 
was based only on static baseline measurements and did not 
capture dynamic changes in coagulation parameters over time. 
Future studies should develop time-series models incorporating 
serial measurements of PLT, INR, and other relevant biomarkers 
to improve the temporal prediction of SIC progression. Despite 
these limitations, our LightGBM model demonstrates potential as 
a clinically deployable tool for timely SIC identification. 

5 Conclusion 

We developed and validated a LightGBM model for 
early prediction of sepsis-induced coagulopathy (SIC) within 
7 days of ICU admission. By incorporating SHAP analysis, our 
approach achieves both high predictive accuracy and transparent 
interpretation of key clinical features driving SIC pathogenesis. 
The model’s deployment as an interactive Shiny application (see 
text footnote 1) bridges advanced artificial intelligence with clinical 
decision-making at the bedside. 
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