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Background: Current therapeutic approaches for premature ovarian failure
(POF) are often inadequate in clinical practice and some raise ethical concerns.
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have emerged as
a preferred option for cell transplantation, attributed to their facile extraction
process and minimal immunogenicity.

Objective and methods: This study aimed to elucidate the transcriptomic
alterations associated with hUC-MSCs treated in the context of POF mice and
to explore their underlying biological mechanisms. POF mice were established
via injecting cyclophosphamide (CTX) plus busulfan (BU). Subsequently, ovaries
and serum were collected after 1 week for model identification. 4 weeks after
hUC-MSCs transplantation, ovaries and serum were collected for experimental
analysis. Differentially expressed genes (DEGs) were identified using RNA
sequencing (RNA-seq), and their expression levels were validated through
reverse transcription quantitative polymerase chain reaction (RT-gPCR).
Results: After N UC-MSCs therapy, the number of follicles recovered significantly
and the atretic follicles decreased significantly. FSH was reduced, AMH and E2
levels were increased in the treatment group, and comparable to the control
group. 343 DEGs were detected in the POF group and the treatment group,
including 187 up-regulated genes and 156 down-regulated genes. Our
comparative analysis of hUC-MSCs treated with POF samples revealed significant
involvement of biological pathways and processes related to cell adhesion,
proliferation, apoptosis, inflammatory response and immune response.
Conclusion: Our research offers a novel perspective on the application of
hUC-MSCs for the treatment of POF and establishes a foundation for further
exploration of their potential clinical applications.
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1 Introduction

Premature ovarian failure (POF), refers to a disease characterized
by non-physiological amenorrhea, elevated follicle-stimulating
hormone levels, and estrogen deficiency in women after puberty and
before age 40. It is one of the leading causes of female infertility (1).
The reported incidence of POF in women is 0.01% by age 20, 0.1% by
age 30, and 1% by age 40. Recently, the incidence of POF has been
increasing (2). POF is a heterogeneous disease with diverse
pathogenesis, mainly caused by chromosomal aberrations, genetic
diseases, autoimmune disorders, metabolic abnormalities,
environment and chemoradiotherapy (3).

The current conventional treatment approaches for POF include
hormonal replacement therapy, melatonin supplementation,
immunomodulatory therapy, and cells transplantation (3).
However, existing POF treatments are less effective and may lead to
significant side effects such as increased cardiovascular disease,
osteoporosis, sexual dysfunction, stroke, venous thrombosis,
endometrial, breast cancers, ovarian cancers and the risk of other
related diseases (4).

Mesenchymal stem cells (MSCs) are pluripotent stem cells capable
of self-renewal and multi-directional differentiation. MSCs come from
a wide range of sources, such as umbilical cord, bone marrow, fat,
ovary, peritoneum, amniotic membrane, menstrual blood and
placenta (5-8). MSCs are widely used in regenerative medicine owing
to their abundant sources and no ethical controversy (9). Studies have
demonstrated that umbilical cord mesenchymal stem cells (UC-MSCs)
can differentiate into oocyte-like structures and endometrial cells and
express germ cell-specific mRNA and protein markers (10). In 2018,
the world’s first clinical research on the treatment of POF with MSCs
composite scaffolds achieved significant results, with two patients
achieving clinical pregnancy and the birth of the first healthy baby
(11). Intraovarian injection of menstrual blood-derived mesenchymal
stem cells (MB-MSCs) improved the endocrine of POF patients, and
a few patients recovered menstruation (12). In animal POF models
and human POF patients, studies have verified that UC-MSCs can
promote stem cell renewal, activate primordial follicles, enhance
ovarian function and reduce ovarian cell death through paracrine
action, thus repair ovarian function to restore reproductive function
and fertility (13, 14). Further studies have demonstrated that
UC-MSCs may affect mitogen-activated protein kinase (MAPK)
signaling pathway, G protein-coupled receptor (GPCR) signaling
pathway, insulin signaling pathway and regulation of key factors that
induce apoptosis reduce the apoptosis of Granulosa cells (GCs) (2, 15).

Other studies have found that UC-MSCs on collagen scaffolds
activate primordial follicles by phosphorylating transcription factors
Forkhead Box protein O1 (FoxO1) and FoxO3a (16). In addition,
UC-MSCs were observed to induce the production of angiogenic
growth factors such as Vascular Endothelial Growth Factor VEGE,
HGE PGF and TGF-f1, and increase cell proliferation and vascular
marker expression to improve endometrial damage and infertility (2,
16, 17).

In this study, a mouse model of POF was induced by
chemotherapeutic drugs, and hUC-MSCs were transplanted for
treatment. Transcriptome analysis of mouse ovaries in the POF group
and the treatment group was performed to screen genes associated
with the hUC-MSCs treated of POF in order to provide support for
related studies.
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2 Materials and methods

2.1 Isolation of hUC-MSCs

This study was approved by the Ethics Committee of North Henan
Medical University, after obtaining the consent of the mother and her
family through the affiliated hospital, sterile collection of neonatal
umbilical cord (>15 cm) during full-term cesarean section. Wharton’s
jelly was removed aseptically and cut into tissue blocks of about
1 mm?, which were uniformly inoculated into T75 culture bottle and
cultured overnight with 5 mL complete culture medium (2% Ultra-
CULTURE+ 5% L-glutamine). After the tissue block is firmly attached
to the wall, replace the complete medium and change the medium
every 3 days. After sufficient hUC-MSCs grew around the tissue mass,
pancreatic enzyme digestion and passage were performed, the second
generation of hUC-MSCs were harvested for the experiment.

2.2 Flow cytometry analysis

According to previous study (10, 18), the surface markers were
detected by flow cytometry. The expression of cell surface markers CD73,
CD90, CD105, CD34, CD45, CD11b, CD19 and HLA-DR in hUC-MSCs
were analyzed by flow cytometry. Collected hUC-MSCs were incubated
with antibodies at 4 °C for 30 min. Subsequently, the cells were washed
with 0.9% sodium chloride solution, centrifuged and resuspended. Flow
cytometry assay was performed by fluorescence-activated cell sorting
(FACS) and the results were analyzed with FlowJo software.

2.3 Experimental animals and living
conditions

Specific pathogen-free female KM mice (6-8 weeks) were
obtained from Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). Mice were fed in the specific pathogen-free condition
with constant temperature and humidity on a 12-12 h light-dark cycle
and free access to food and water. All animal experiments were
Ethical of North Henan

approved by the Committee

Medical University.

2.4 POF mouse model

Thirty female mice were randomly divided into two groups:
control group (n = 10) and the POF group (n = 20). Next, The mice in
the POF group were intraperitoneally injected with a single dose of
CTX (120 mg/kg) and BU (30 mg/kg) (n =10) (19). To confirm
successful establishment of POF mice, mouse activity, diet, body
weight, hair changes, estrous cyclicity, ovarian weight, serum hormone
and morphological characteristics of ovary were examined at 1 week
after modeling.

2.5 hUC-MSCs transplantation

The second-generation hUC-MSCs are preserved in liquid
nitrogen in the laboratory. hUC-MSCs were stored in 0.9% saline after
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activation. The treatment group was injected with 200 pL 3 x 10° cells/
mL of hUC-MSCs via the tail vein after modeling for 1 week. For
comparison, the same volume of 0.9% sodium chloride solution was
injected into POF group and control group mice.

2.6 Quantitative real-time polymerase
chain reaction (RT-qPCR) analysis

Total RNA was isolated and purified using TRIzol reagent
(Ambion, USA) in accordance with the manufacturer’s instructions
(20). RNA of each sample was quantified using Nanodrop ND-1000
(Nanodrop, Wilmington, DE, USA). RNA integrity was confirmed by
electrophoresis with a denaturing agarose gel. RT-qPCR analysis were
performed as described previously (21). The primers used for
quantification were designed using PrimerBLAST on the NCBI
website.! Each sample was repeated thrice, and relative expression
levels were calculated using the 2722 method, and GAPDH was used

for control. Primer sequences were provided in Supplementary Table S1.

2.7 mRNA library construction and
transcriptomic analysis

According to the intra-group correlation and inter-group
difference of mRNA expression profiles in each group, the
transcriptional data of the POF group and treatment group were used
for bioinformatics analysis (22). RNA libraries were sequenced on the
Mlumina sequencing platform by LC-BIO Co., Ltd. Cutadapt software
(version: 1.9) was used to remove the reads that contained adaptor
contamination. And after removed the low quality bases and
undetermined bases, we used HISAT2 software (version: 2-2.0.4) to
map reads to the genome (Mus Ensembl v101). The mapped reads of
each sample were assembled using StringTie (version: 1.3.4d) with
default parameters. Then, all transcriptomes from all samples were
merged to reconstruct a comprehensive transcriptome using
gffcompare software (version: 0.9.8). After the final transcriptome was
generated, StringTie and ballgown were used to estimate the
expression levels of all transcripts and perform expression level for
mRNAs by calculating FPKM. The differentially expressed mRNAs
were selected with fold change >2 or fold change <0.5 and p < 0.05 by
R package DESeq2, and then analysis GO enrichment and KEGG
enrichment to the differentially expressed mRNAs.

2.8 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0. All
results were obtained from at least three biological replicates and were
presented as means + SEM. Differences between means were analyzed
using t-test. p < 0.05 was regarded as statistically significant. For the
in vitro experiments, each group set had three samples and each
sample set had three replications. For the in vivo experiments, each
group set contained ten mice.

1 https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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3 Results

3.1 Isolation, culture and identification of
hUC-MSCs

A large number of cells crawled out 5 days after the tissue block
was attached to the wall (Figure 1A). After passage, the cells were
mainly spindle-shaped, translucent, with clear outline and good
refraction (Figure 1B). hUC-MSCs stable height table up to CD73,
CD90, CD105; CD34, CD45, CD11b, CD19 and HLA-DR were rarely
expressed (Figure 1C). This indicated that the hUC-MSCs obtained
from the experiment were in accordance with the International Cell
Therapy Association (ISCT) mesenchymal stem cell standard.

3.2 CTX combined with BU leads to ovarian
dysfunction

The POF mouse model was established to study the toxic effects
of CTX combined with BU on ovaries. The KM mice were treated with
CTX and BU (Figure 2A). After 1 week, the mice showed weight loss
(Figure 2B), which is an important indicator of the health of the mice.
Result shows representative images of each period of the estrous cycle
(Figure 2C), the estrus interval in POF group was significantly longer
compared with the control group (Figure 2D). At the same time,
ovarian atrophy and contraction were found (Figure 2E), and the
ovarian organ coefficient in the POF group was significantly lower
than that in the control group (Figure 2F). H&E staining showed that
the number of atretic follicles increased and the number of follicles
decreased in POF group (Figures 2G,H). Elisa results showed that FSH
levels was significantly increased, AMH and E2 levels were
significantly reduced in the POF group (Figures 21-K).

3.3 hUC-MSC:s alleviates ovary injury

To verify the effect of hUC-MSCs on ovarian function in POF
mice, ovarian tissue recovery and serum follicle stimulating hormone
(FSH), anti-Mullerian hormone (AMH) and estrogen (E2) levels were
measured by H&E staining and Elisa. H&E staining showed that the
number of follicles recovered significantly and the atretic follicles
decreased significantly (Figures 3A,B). Elisa results showed that FSH
was significantly reduced, AMH and E2 levels were significantly
increased in the treatment group, and there was no significant
difference compared with the control group (Figures 3C-E).

3.4 Differential gene expression

To identify genes involved in the recovery of ovarian function,
genome-wide expression analysis of ovarian tissues was performed in
the POF group and treatment group. DEGs are screened with
[logFC| > 1 and p < 0.05. Results of the principal component analysis
(PCA) is showed good intergroup consistency (Figure 4A). A total of
343 DEGs were identified, including 187 up-regulated genes and 156
down-regulated genes (Figure 4B; Supplementary Table S2),
Up-regulated genes include Nanp, Gm49368, Mir686, Mb, Gm49527,
Myl2, Gm3411, Myl3, Gm2237, Myh6, Oasld, Bmpl5, Wee2, and
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Oogl, as well as down-regulated genes include Gm2007, Commd1b,
Gm15751, E130102H24Rik, 4930431P19Rik, Chill, Ighg3, Gm4631,
Gpr3lc, F630028010Rik, and Cxcl9. DEGs were identified by
threshold were visualized by volcano plot, red and blue dots indicated
up-regulated and down-regulated genes, respectively, with all DEGs’
expression levels shown in the heatmap (Figures 4C,D).

3.5 GO enrichment analysis of DEGs

The GO framework comprises three categories: biological process
(BP), molecular function (MF) and cellular component (CC). GO BP
analysis indicated that up-regulated genes were significantly enriched
in processes such as inflammatory response, cell adhesion, positive
regulation of cell population proliferation and negative regulation of
apoptotic processes (Figure 5A; Supplementary Table S3). Conversely,
down-regulated genes were significantly enriched in immune response,
inflammatory response, innate immune response, adaptive immune
response and cell adhesion (Figure 5B; Supplementary Table $4). In the
analysis of MF terms, the up-regulated genes were significantly
enriched in categories such as protein binding, identical protein
binding, ATP binding, fibroblast growth factor binding, receptor
ligand activity and ubiquitin-like ligase-substrate adaptor activity
(Figure 5C; Supplementary Table S3). Conversely, the down-regulated
genes showed significant enrichment in MF terms including protein
binding, protein-containing complex binding, peptide antigen binding,
MHC class II protein complex binding and Fc-gamma receptor
I complex binding (Figure 5D; Supplementary Table S4). Regarding

Frontiers in Medicine

the GO CC analysis, the up-regulated genes were enriched in terms
such as cytoplasm, cytosol, extracellular region, collagen-containing
extracellular matrix, female germ cell nucleus and Cul2-RING
ubiquitin ligase complex (Figure 5E; Supplementary Table S3). In
contrast, the down-regulated genes were enriched in terms associated
with the plasma membrane, membrane, external side of plasma
membrane, cell surface, lysosome, Golgi apparatus and lysosomal
membrane (Figure 5F; Supplementary Table S4).

3.6 DEGs signaling pathway and protein
interaction analysis

To elucidate the distinct pathways of DEGs in the POF and treatment
groups, a KEGG enrichment analysis was conducted. The analysis
revealed that up-regulated genes were significantly enriched in pathways
related to cytoskeleton in muscle cells, motor proteins, and Cardiac
muscle contraction (Figure 6A). Conversely, down-regulated genes were
predominantly associated with pathways involving the Cell adhesion
molecules, phagosome, antigen processing and presentation, Thl and
Th2 cell differentiation, Th17 cell differentiation, and Insulin secretion
(Figure 6B). These findings suggest a potential association between these
signaling pathways and hUC-MSCs treatment. To validate the reliability
of the transcriptome sequencing results, RT-qPCR was performed on five
randomly selected genes. RT-qPCR results indicated significant
up-regulation of Bmp15, Oasld, Wee2 and Oogl, while Cxc19 was
significantly down-regulated (Figure 6C). Thereby corroborating the
accuracy of our transcriptome sequencing data. Furthermore, to explore
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FIGURE 2

Effect of CTX combined with BU on ovary structure and function in mice. (A) Animal experiment design. Mice were intraperitoneally injected with CTX
(120 mg/kg) and BU (30 mg/kg), 1 week later, hUC-MSCs (3x10° cells/mL, 200 pL) were injected via the tail vein, while control mice were given saline.
(B) Changes in the body weight of mice in each group during the experiment. (C,F) The estrous cycle of mice. Proestrus: the nucleated cells are round,
the nucleus is dyed purple red, the cytoplasm is dyed rose red, and there are rose red non-nucleated keratinocytes; estrus: rose red keratinized cells,
irregular polygon shape; Late estrus: a large number of white blood cells and a small number of non-nuclear keratinocytes; Interestrus: leukocytes,
nucleated cells and non-nucleated keratinocytes exist simultaneously. (D,H) H&E staining and number of follicles. (E,G) Representative images of ovary
and organ coefficient. (I-K) Serum E2, FSH and AMH content in control and POF mice. Data are presented as mean + SEM (n = 3). *p < 0.05 vs. the

control group.
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FIGURE 5
GO enrichment analysis for biological process, molecular function and cellular component of DEGs. (A—C) Top10 GO terms of up-regulated
differential genes. (D—F) Top10 of GO terms of down-regulated differential genes.

the interactions among the 343 differentially expressed proteins,
proteins-proteins interaction (PPI) network was constructed (Figure 6D;
Supplementary Figure S1). A complex PPI network was identified,
characterized by both direct and indirect interactions among the
majority of proteins, as indicated by the number of observed nodes.
Consistent with our previous findings, the following biological processes
were significantly overrepresented: the immune system (17 proteins) and
the regulation of cell proliferation and differentiation (6 proteins). Within
the PPI network, certain proteins exhibited a high degree of connectivity.
For instance, Oogl demonstrated 18 interactions and was associated
with proteins involved in the regulation of cell proliferation, apoptosis,
differentiation, DNA-templated transcription and ubiquitin-dependent
protein catabolic processes. Similarly, BMP15 exhibited 10 interactions
and was linked to proteins involved in the regulation of DNA-templated
transcription, the immune system and the regulation of tumor necrosis
factor production.

4 Discussion

The clinical efficacy of the existing treatment methods for POF is
not very satisfactory, and some methods still have ethical disputes.
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hUC-MSC:s are easy to extract, have low immunogenicity, and have
now become the first choice for cells transplantation. Transplantation
of hUC-MSCs can reduce the number of atretic follicles and restore
the ovulation cycle (19). It can also reduce the apoptosis of GCs by
regulating autophagy, thereby improving ovarian function (21).
However, a lack of knowledge of the molecular mechanism of
hUC-MSCs in the treatment of POF. The purpose of this study was to
identify in hUC-MSCs treated
POE Transcriptome analysis was used to assess the relevant biological

transcriptomic  alterations
alterations, focusing on alterations in biological pathways and PPI
networks that were not available in the current literature.

Our comparative analysis of hUC-MSCs treated with POF
samples revealed significant involvement of biological pathways and
processes related to cell adhesion, proliferation, apoptosis,
inflammatory response and immune response. Notably, certain
proteins, such as Oogenesin 1 (Oogl), were consistently upregulated
and associated with cell proliferation, apoptosis and differentiation.
The Oog protein family plays a crucial role in reproductive health and
fertility by regulating various intracellular biological processes,
particularly in the development of germ cells, including oocyte
formation and maturation. The Oog family primarily comprises
Oog-1, —2, —3 and —4 (23). Our study identified 4 previously
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regulated genes. (C) RT-gPCR verified RNA sequencing. (D) Proteins-proteins interaction analysis. *p < 0.05 vs. the POF group.
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described Oog genes, and enrichment analysis indicated their
involvement in regulating cell proliferation and differentiation,
potentially influencing chromosomal recombination during germ cell
meiosis. Additionally, these genes participate in proteasome-mediated
ubiquitin-dependent protein degradation, which may contribute to
intracellular protein degradation and recycling, thereby impacting
apoptosis. Oogl gene is expressed in oocytes and early embryos,
initiating expression on embryonic day 15.5 and localizing within the
nucleus of oocytes (24, 25), this gene plays a crucial role in promoting
the normal differentiation of female germ cells into oocytes by
inhibiting the expression of genes associated with spermatogenesis (26).

PPI analyses have demonstrated that Oogl directly interacts with
proteins primarily involved in oocyte maturation and development,
such as Bmp15, Oasld, Oospl, Oog2, Oog3, Oog4, Zar1, Rfpl4, Hif8,
Omt2a, Zpl and Zp3, as well as those involved in immune response
processes, including Oas1d, Oasle, Cd274, Ccl2, Nlrp4f and Nlrp4b.
Proteins that directly interact with Bmp15, such as Oasld, Wee2,
Oogl, Zarl, Rfpl4, Hif8, Zp1 and Zp3, are predominantly engaged in
the biological processes of oocyte maturation and development.

Frontiers in Medicine

Bmp15 is a growth factor expressed in oocytes that plays a key
role in ovarian function, primarily by regulating the growth of
granulosa cells and the development of follicles, affecting the overall
function of the ovary. Studies have shown that the loss of Bmp15 can
lead to its dysfunction, which can trigger premature ovarian
failure (27).

The expression of Oasld may be related to the expression of
Bmp15 and Oogl. Loss of Oasld leads to impaired ovarian function,
which in turn affects the expression and function of Bmp15 and Oogl,
thereby affecting oocyte development and fertility (28). Oasld is an
oocyte-specific 2-5-oligoadenylate synthetase-like protein exhibiting
59% sequence homology with Oasla. Expression of Oasld is restricted
to the ovaries, specifically localized within oocytes and the cytoplasm
of early embryos, and is not detectable in later embryonic stages or
other cell types. Knockout of the Oasld gene in female mice results in
decreased fertility, characterized by a reduced number of ovulations,
impaired early embryonic development and increased embryonic
fragmentation. Histological analyses indicate that Oasld and Oasla
can interact both in vivo and in vitro, with Oasld capable of inhibiting
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Oasla enzymatic activity in a dose-dependent manner. It is
hypothesized that Oas1d may inhibit the Oasla-mediated interferon
(IFN)/OAS/RNase L RNA degradation pathway. Functioning as a
protective mechanism, this process prevents oocyte loss during viral
infection, thereby preserving female fertility. The protective role of
Oasld in safeguarding oocytes and early embryos is crucial, as its
absence leads to reproductive defects in mice (29-31).

Immune processes are implicated in the pathogenesis of numerous
gynecological disorders, including POF, polycystic ovary syndrome
(PCOS), endometriosis, and cervicitis. Previous studies have
demonstrated immune dysregulation in both peripheral blood and the
local ovarian microenvironment of POF patients, characterized by
heightened Th1 cells responses, deficiencies in Tregs, and a significant
correlation between the Th1/Treg ratio and POF severity. Interferon-
gamma (IFN-y) and tumor necrosis factor-alpha (TNF-a), secreted by
Thl cells, may impair ovarian function by activating immune
responses, promoting inflammation, and inducing granulosa cell
apoptosis (32). Research indicates that Th17 cells and their associated
cytokines are markedly elevated in POF patients, suggesting their
involvement in disease pathogenesis through pro-inflammatory
effects and immune dysregulation, thereby affecting ovarian function
(33-36). Furthermore, the PI3K/AKT/mTOR signaling pathway
participates in the development of various autoimmune diseases by
regulating Th17 cell differentiation. In POF, whether this signaling
pathway exhibits abnormalities and its relationship with ovarian
function remain unclear, warranting further investigation to provide
novel insights into disease mechanisms (37).

Antigen processing and presentation are one of the core
mechanisms by which the immune system recognizes and responds
to foreign substances. This process involves degrading antigens (such
as viral or bacterial proteins) into small molecular fragments, which
are then bound to major histocompatibility complex (MHC)
molecules to form antigenic peptide-MHC complexes. These
complexes are subsequently presented to T cells, thereby activating
adaptive immune responses (38). Phagosomes, while serving as
critical components of innate immunity, bridge innate and adaptive
immunities through antigen presentation. Their maturation and
activation of signaling pathways promote T cell activation and
initiation of adaptive immune responses (39). Cell adhesion not only
participates in immune system functionality and regulation but also
engages in diverse physiological and pathological processes—
including immune cell recognition, migration, homing, and
inflammatory responses. These processes rely on coordinated
interactions among multiple adhesion molecules and signaling
pathways, collectively maintaining immune homeostasis and normal
function (40).

Motor proteins use energy generated from ATP hydrolysis, with
their tail domains binding to the cytoskeleton to drive intracellular
processes such as vesicle transport, cellular motility, and cell
division. The cytoskeleton serves as both a sensor and mediator of
apoptosis. Studies demonstrate that dynamic alterations in the
cytoskeleton—including reorganization of actin filaments and
microtubules—can modulate apoptotic signaling cascades and
regulate the progression of apoptosis. Furthermore, the cytoskeleton
influences both differentiation and functionality of follicular
granulosa cells, while actively participating in oocyte maturation,
chromosome segregation, organelle trafficking, and establishment
of cellular polarity (41, 42).
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In this study, only 10 mice were included in each group, which
is consistent with the common design of preliminary exploratory
studies, but there are limitations in clinical transformation.
Although this study did not directly assess immune cell populations
or associated cytokines. But we found a key role of immune
regulation in POF treatment through transcriptome data analysis.
However, whether the observed improvement in ovarian function-
related indicators following treatment is associated with the
regulation of immune dysregulation warrants further investigation.
Subsequent studies can further improve the reliability and
universality of the results by expanding the sample size, introducing
independent validation cohorts (cell models). In order to further
improve the reliability and generality of the results, qPCR was used
to analyze the function of the key differential genes. MSCs require
ISCT screening, patient stratification, and gene modification
prevention and control due to inherent genetic abnormalities
arising from prolonged culture or transplantation, as well as tumor-
promoting effects. Different administration routes (intravenous and
local delivery), are appropriate for varying symptoms. Low doses
demonstrating limited efficacy and high doses potentially increasing
adverse reactions. Therefore, these should be combined with
pharmacodynamic markers and standardized detection. A longer
follow-up period should focus on monitoring delayed adverse
events, and cell trans differentiation, in accordance with EMA and
FDA guidelines. In brief, MSCs therapy for POF necessitates the
integration of mechanistic research and clinical application. The
development of safe and effective MSC therapies should
be expedited through head-to-head trials, companion diagnostics,
and standardized production processes.

In conclusion, hUC-MSCs therapy restores endocrine, ovarian
structure and function in POF mice, but remains a major challenge
for clinical translation. Future research should prioritize: (1) Enlarging
sample sizes to validate findings; (2) Refining treatment protocols to
enhance therapeutic outcomes; and (3) Elucidating molecular
mechanisms underlying treatment effects and their interplay with the
immune system, to develop more effective clinical strategies for POF
management. Concurrently, rigorous evaluation of long-term safety
profiles and potential adverse effects remains imperative to maximize
benefits for patients.
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