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Renal biopsies remain indispensable in the diagnosis and management of renal

diseases, offering critical histopathological insights that guide clinical decisions.

Recent advances in artificial intelligence (AI) and multi-omics technologies have

begun to transform renal pathology by enabling deeper molecular profiling,

enhanced diagnostic precision, and personalized treatment strategies. Despite

these promising developments, challenges such as implementation complexity,

cost, and limited integration into routine clinical workflows have slowed

widespread adoption. Notably, a significant gap exists in the literature regarding

how these modern technologies are applied to maximize the diagnostic

and prognostic value of renal biopsies. This mini-review highlights emerging

applications of AI and omics in renal biopsy interpretation, emphasizing their

potential to transform diagnostic approaches in precision nephrology. It aims

to inform nephrologists, renal pathologists, and researchers about the evolving

landscape of renal diagnostics, while highlighting areas for further clinical

integration and interdisciplinary collaboration.

KEYWORDS

renal biopsy, omics techniques, artificial intelligence, deep learning, precision
nephrology

Introduction

Renal biopsy remains an essential diagnostic modality in nephrology, offering
crucial histopathological insights into various renal diseases such as focal segmental
glomerulosclerosis, membranous nephropathy, IgA nephropathy, lupus nephritis, and
diabetic nephropathy. It guides disease classification, severity assessment, and therapeutic
decision-making, particularly in complex or unclear clinical scenarios (1, 2). While light
microscopy, immunofluorescence, and electron microscopy remain the cornerstones of
tissue evaluation, the increasing complexity of renal disorders has driven the need for more
precise, mechanistic insights beyond histology alone.

Recent advancements in omics technologies, including genomics, transcriptomics,
proteomics, and metabolomics, are transforming renal pathology by enabling molecular-
level understanding of disease processes. These approaches offer opportunities to identify
disease-specific biomarkers, stratify patients by risk, and personalize treatment strategies
(3, 4). Similarly, artificial intelligence (AI) is emerging as a powerful tool in renal
biopsy analysis, enhancing diagnostic consistency, automating pattern recognition, and
integrating histological and molecular data for improved clinical decision-making (5, 6).
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Despite these innovations, clinical adoption remains limited, 
and few studies comprehensively address how omics and AI can 
be integrated with renal biopsy to enhance diagnostic precision 
and therapeutic stratification. Current clinical workflows rarely 
incorporate these tools in a standardized manner, and limited 
research has addressed their combined utility in enhancing 
diagnostic precision, monitoring disease progression, or predicting 
treatment response (7, 8). 

This mini-review highlights recent advances in AI and multi-
omics integration in renal biopsy interpretation. It focuses on their 
clinical relevance, diagnostic potential, and translational challenges, 
aiming to guide nephrologists, renal pathologists, and researchers 
in adopting modern approaches to kidney disease diagnostics and 
personalized care. 

Omics technologies 

Omics technologies refer to advanced scientific techniques 
used to study the complete set of molecules within a cell, 
tissue, or organism. These technologies include genomics (study 
of genes and DNA), transcriptomics (study of RNA and gene 
expression), proteomics (study of proteins), and metabolomics 
(study of metabolites and metabolic pathways), lipidomics (study 
of lipids), and microbiomics (study of the structure, function, 
and dynamics of a microbial community) (9). According to the 
systemic review study, the proteomic approach was the most 
common ‘omics platform (43.1%), followed by metabolomics 
(24.4%), genomics (13.8%), epigenomics (8.1%), transcriptomics 
(4.1) (10). Proteomics techniques include mass spectrometry 
(MS) combined with ultra-performance liquid chromatography 
(UPLC) and capillary electrophoresis (CE) (11). Genomics 
techniques include next generation sequencing (NGS) (12). 
Metabolomic techniques include high field nuclear magnetic 
resonance (NMR) and mass spectrometry (MS) coupled with 
capillary electrophoresis (CE-MS), liquid chromatography MS 
(LC-MS), or gas chromatography (GC-MS) (13). Transcriptomics 
techniques include DNA microarrays and RNA sequencing (14). 
Microbiomics techniques include targeted sequencing of the 
16S rRNA gene, and whole metagenome shotgun sequencing 
(15). Lipidomics techniques include mass spectrometry, liquid 
chromatography-mass spectrometry, and matrix assisted laser 
desorption/ionization mass spectrometry imaging (16, 17). 

Clinical applications of omics in 
renal diseases 

Renal biopsy has been revolutionized by multi-omics 
technologies, which provide a molecular layer of interpretation 
beyond morphology. By integrating histopathologic features with 
transcriptomic, proteomic, and metabolomic data, nephrologists 
can better understand the mechanisms of renal injury, identify early 
molecular signatures of disease, and discover novel therapeutic 
targets. Samples from biopsy tissue, urine, and blood can all be 
analyzed using omics platforms (18). 

Omics approaches have enhanced renal biopsy interpretation 
by revealing how molecular changes correspond to classical 

histopathologic lesions. For example, transcriptomic studies 
have demonstrated that reduced intrarenal epidermal growth 

factor (EGF) expression correlates with tubular atrophy and 

interstitial fibrosis (TA/IF), refining prognostic assessment within 

the same morphologic class (19, 20). Urinary proteomic classifiers 
such as CKD273 detect extracellular matrix remodeling before 

fibrosis becomes apparent on light microscopy, providing an 

opportunity for early therapeutic intervention (21). Similarly, 
multi-omic studies in antineutrophil cytoplasmic antibody 

(ANCA)–associated vasculitis has shown that proteomic and 

transcriptomic signatures reflecting neutrophil activation and 

complement pathways distinguish active inflammation from 

chronic scarring, even when biopsies appear morphologically 

similar, improving treatment stratification (22). 
Recent work demonstrated that the urinary peptide-based 

classifier CKD273 can detect early molecular changes preceding 

morphologic evidence of chronic kidney disease, allowing more 

precise staging and prognosis beyond what is seen in biopsy 

alone (23). Likewise, upregulation of retinol dehydrogenase 9 in 

podocytes was shown to mitigate structural damage, providing 

mechanistic insight into podocyte injury observed histologically 

(24). In diabetic kidney disease (DKD), urine metabolomics 
identified dysregulation of the pantothenate and CoA biosynthesis 
pathway, linking specific metabolic signatures with characteristic 

glomerular and tubular lesions (25). Complementing these omics-
based insights, a machine-learning model integrating biochemical 
and clinical data accurately predicted acute kidney injury, 
demonstrating how computational and omics-driven approaches 
can refine biopsy interpretation, guide early intervention, and 

reclassify renal pathologies with greater precision (26). 
In lupus nephritis (LN), proximity extension assay proteomics 

identified urinary ICAM-2, FABP4, FASLG, IGFBP-2, SELE, 
and TNFSF13B/BAFF as markers distinguishing active LN 

from inactive SLE, correlating with histologic activity indices 
(27). In large cohort studies such as the Chronic Renal 
Insuÿciency and Joslin Kidney Studies, integration of proteomic 

and transcriptomic profiles identified proteins such as TNFRSF1A, 
FGF20, and ANGPT1 that better predict renal function decline 

than conventional mesangial-expansion or IFTA scores (28, 29). 
Another study identified an inflammatory signature of 17 TNF 

receptor superfamily proteins associated with 10-year end-stage 

renal disease risk, supporting their potential use as biomarkers and 

therapeutic targets (30). 
Collectively, these examples illustrate that omics does not 

replace histopathology but rather augments it, transforming 

static microscopic patterns into dynamic molecular phenotypes 
that improve diagnostic precision, prognostic accuracy, and 

personalized patient management. The integration of omics data 

with renal biopsy thus represents a paradigm shift in nephrology, 
oering a comprehensive view that bridges morphology with 

molecular mechanisms. However, it remains important to 

recognize that these technologies are still evolving and require 

further validation before their routine clinical adoption. 
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Omics technologies: challenges and 
solutions 

While omics technologies oer transformative potential in 
renal biopsy analysis, their clinical application faces several 
challenges. One major limitation is the high cost, complexity of 
omics techniques, and large sample size is required, which can 
limit their accessibility in resource-limited settings (31, 32). To 
address the challenges, solutions include reducing costs through 
improved technology and automation, focusing on targeted 
biomarker panels, using machine learning to analyze smaller 
datasets, fostering collaborations for shared data, developing 
portable and cost-eective platforms, and optimizing sample 
preparation and data analysis protocols (31). These approaches 
can make omics more accessible and applicable in clinical settings, 
even in resource-limited environments. In addition, the massive 
amount of data generated by omics analyses requires advanced 
bioinformatics tools and expertise for interpretation, which may 
not be readily available in all clinical laboratories (33, 34). To 
address these challenges, collaborative eorts between researchers, 
clinicians, and bioinformaticians are essential to develop cost-
eective and user-friendly omics platforms (35). Another issue is 
the lack of standardized protocols for sample preparation, data 
analysis, and interpretation, which can lead to variability in results. 
Establishing standardized guidelines and quality control measures 
can help improve the reproducibility and reliability of omics-based 
diagnostics (36). 

AI in renal biopsy 

In recent years, the change from human systems to machine 
systems [artificial intelligence (AI)], has been a great progress 
in the field of medical imaging, including renal pathology (37). 
AI techniques are increasingly being integrated into renal biopsy 
analysis, significantly enhancing diagnostic accuracy and eÿciency. 
Machine learning algorithms, particularly deep learning, can be 
trained to identify and classify various renal diseases by analyzing 
histopathological images with high precision. This prognostic 
study found better performance for quantifying percent global 
glomerulosclerosis from whole-slide images of frozen and of 
permanent hematoxylin-eosin–stained donor transplant kidney 
biopsy specimens by a deep learning model (94% accuracy) 
than by on-call board-certified pathologists (80%) (38). Similarly, 
Convolutional neural networks (CNNs)-based systems indicated 
that this technique is suitable for correct glomerulus detection 
in Whole Slide Images, showing robustness while reducing 
false positive and false negative detections (39). These findings 
underscore the importance of hybrid approaches combining AI 
with expert histopathological evaluation. 

These AI models can detect subtle changes in tissue structure, 
cellular patterns, and disease markers that might be overlooked by 
human eyes, leading to earlier and more accurate diagnoses. AI 
can also assist in quantifying the extent of fibrosis, inflammation, 
and other pathological features, providing standardized and 
reproducible assessments (40). Moreover, AI-driven image analysis 
can streamline the workflow of pathologists, allowing them 

to focus on complex cases and improving overall diagnostic 
throughput (41). 

Various AI techniques are used for the analysis of renal biopsy 
samples, enhancing the accuracy and eÿciency for diagnoses. 
CNNs, a type of deep learning, are eective in analyzing 
histopathological images (42). CNN and its variants are the most 
common neural networks utilized for categorizing renal carcinoma 
pathology images (43). CNNs can automatically identify and 
classify dierent renal diseases by learning from large datasets 
of annotated biopsy images, detecting patterns and features that 
may be imperceptible to human pathologists (44, 45). Another 
AI technique, machine learning algorithms like support vector 
machines (SVMs) and random forests, can be employed to 
analyze quantitative features extracted from biopsy images, such 
as glomerular size, tubular atrophy, and interstitial fibrosis (46). 
These algorithms can classify disease severity and predict outcomes 
based on the extracted features. In addition, natural language 
processing (NLP) can be used to analyze pathology reports and 
integrate clinical data with histopathological findings, providing 
a comprehensive diagnostic approach (47). Joint learning, which 
combines multiple AI models to improve prediction accuracy, 
is also used to enhance the robustness of biopsy analysis. 
These AI techniques not only improve diagnostic accuracy and 
reproducibility but also facilitate personalized treatment plans and 
better patient management in nephrology (48). 

Clinical applications of AI in renal 
diseases 

AI has demonstrated significant potential in improving the 
diagnosis and management of kidney diseases. For example, in 
a clinical study involving 948 patients with IgA nephropathy 
(IgAN), artificial neural networks (ANNs) successfully identified 
individuals at high risk of developing end-stage kidney disease 
(ESKD) and predicted the time-to-event endpoint, aiding in risk 
assessment and early intervention (49). Another study focused 
on predicting renal flare in 1,694 patients with biopsy-proven 
LN and stratifying risk to enhance clinical decision-making and 
personalized management. The XGBoost model and the simplified 
risk score prediction model (SRSPM) eectively predicted renal 
flare in LN, with SRSPM also enabling risk stratification, ultimately 
supporting improved kidney outcomes (50). Additionally, a study 
aiming to enhance kidney disease severity assessment beyond 
traditional semiquantitative scoring utilized image digitization and 
morphometric techniques on 300 biopsy samples. The results 
showed that six CNN models outperformed pathologists in 
estimating the percentage of interstitial fibrosis, demonstrating the 
potential for AI in histopathological evaluation (51). 

Another study developed a deep learning model for continuous 
risk prediction of patient deterioration, using acute kidney 
injury as an example. Trained on electronic health records 
from 703,782 adult patients across diverse clinical settings, the 
model predicted 55.8% of all inpatient AKI cases and 90.2% 
of severe cases requiring dialysis, with a lead time of up to 
48 h. It also provided confidence assessments, highlighted key 
clinical features, and predicted blood test trajectories, oering 
a valuable tool for early intervention and improved patient 
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FIGURE 1 

Integration of traditional renal biopsy assessment with omics technologies and artificial intelligence to enhance diagnostic accuracy. 

outcomes (52). Furthermore, an artificial neural network model 
was developed to predict ESKD in patients with primary IgAN 
using a retrospective cohort of 948 patients. The model included 
a classifier for ESKD prediction and a regression model for 
estimating time to onset. Performance improved over time, 
achieving an area under the curve of 0.82 at 5 years and 
0.89 at 10 years. External validation in 167 patients showed 
successful predictions for 91%, with superior discrimination 
(Harrell C index: 81% at 5 years, 86% at 10 years) and 
calibration compared to other models. The tool demonstrated 
strong predictive accuracy over a 25-year follow-up period, 
eectively identifying high-risk patients and supporting early 
therapeutic strategies to enhance clinical outcomes (49). Figure 1 
shows an integration of traditional renal biopsy assessment 
with omics technologies and artificial intelligence to enhance 
diagnostic accuracy. 

AI in renal biopsy: challenges and 
solutions 

The integration of AI into renal biopsy analysis also presents 
several challenges. One significant limitation is the need for 
large, high-quality datasets to train AI models eectively. 
Inadequate or biased datasets can lead to inaccurate predictions 
and reduced generalizability of AI algorithms (53). To overcome 
this, multicenter collaborations and data-sharing initiatives 
are critical to build strong and diverse datasets. Another 
challenge is the black box nature of some AI algorithms, where 
the decision-making process is not transparent, making it 
diÿcult for clinicians to trust and interpret AI-generated results 
(54, 55). Developing explainable AI models and providing 

training for pathologists on AI tools can help bridge this 
gap. In addition, the integration of AI into clinical workflows 
requires significant infrastructure and training, which may pose 
logistical and financial challenges for healthcare institutions 
(56). Gradually introducing AI technologies and continuously 
training healthcare providers can help make the transition 
easier. Another significant issue is related to ethical and safety 
concerns. Current laws and regulations are insuÿcient to 
address issues surrounding patient privacy, data security, 
and data ownership (57). To overcome these challenges, it is 
crucial to establish an international consensus on the ethical 
and safe use of AI in renal pathology, ensuring that these 
concerns are addressed and managed eectively by the global 
community (58). 

Conclusion 

The integration of advanced technologies such as omics and AI 
into renal biopsy interpretation represents a transformative shift in 
nephrology. These tools enable deeper molecular insights, enhance 
diagnostic accuracy, and support the development of personalized 
treatment strategies. Omics technologies provide a comprehensive 
understanding of the complex biological pathways underlying 
renal diseases, while AI oers automation, standardization, and 
predictive power in image and data analysis. Together, they hold 
the potential to improve patient outcomes and drive precision 
medicine in nephrology. Despite their promise, challenges 
remain in terms of clinical implementation, data interpretation, 
infrastructure, and ethical considerations. Addressing these 
issues through standardization, interdisciplinary collaboration, 
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and robust validation studies is essential for successful clinical 
integration. As research continues to advance, the role of AI, 
alongside omics, in renal biopsy is expected to become increasingly 
crucial. Embracing these innovations will be key to enhancing 
diagnostic precision and improving patient care in the era of 
precision nephrology. 
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