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Renal biopsies remain indispensable in the diagnosis and management of renal
diseases, offering critical histopathological insights that guide clinical decisions.
Recent advances in artificial intelligence (Al) and multi-omics technologies have
begun to transform renal pathology by enabling deeper molecular profiling,
enhanced diagnostic precision, and personalized treatment strategies. Despite
these promising developments, challenges such as implementation complexity,
cost, and limited integration into routine clinical workflows have slowed
widespread adoption. Notably, a significant gap exists in the literature regarding
how these modern technologies are applied to maximize the diagnostic
and prognostic value of renal biopsies. This mini-review highlights emerging
applications of Al and omics in renal biopsy interpretation, emphasizing their
potential to transform diagnostic approaches in precision nephrology. It aims
to inform nephrologists, renal pathologists, and researchers about the evolving
landscape of renal diagnostics, while highlighting areas for further clinical
integration and interdisciplinary collaboration.
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Introduction

Renal biopsy remains an essential diagnostic modality in nephrology, offering
crucial histopathological insights into various renal diseases such as focal segmental
glomerulosclerosis, membranous nephropathy, IgA nephropathy, lupus nephritis, and
diabetic nephropathy. It guides disease classification, severity assessment, and therapeutic
decision-making, particularly in complex or unclear clinical scenarios (1, 2). While light
microscopy, immunofluorescence, and electron microscopy remain the cornerstones of
tissue evaluation, the increasing complexity of renal disorders has driven the need for more
precise, mechanistic insights beyond histology alone.

Recent advancements in omics technologies, including genomics, transcriptomics,
proteomics, and metabolomics, are transforming renal pathology by enabling molecular-
level understanding of disease processes. These approaches offer opportunities to identify
disease-specific biomarkers, stratify patients by risk, and personalize treatment strategies
(3, 4). Similarly, artificial intelligence (AI) is emerging as a powerful tool in renal
biopsy analysis, enhancing diagnostic consistency, automating pattern recognition, and
integrating histological and molecular data for improved clinical decision-making (5, 6).
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Despite these innovations, clinical adoption remains limited,
and few studies comprehensively address how omics and AI can
be integrated with renal biopsy to enhance diagnostic precision
and therapeutic stratification. Current clinical workflows rarely
incorporate these tools in a standardized manner, and limited
research has addressed their combined utility in enhancing
diagnostic precision, monitoring disease progression, or predicting
treatment response (7, 8).

This mini-review highlights recent advances in Al and multi-
omics integration in renal biopsy interpretation. It focuses on their
clinical relevance, diagnostic potential, and translational challenges,
aiming to guide nephrologists, renal pathologists, and researchers
in adopting modern approaches to kidney disease diagnostics and
personalized care.

Omics technologies

Omics technologies refer to advanced scientific techniques
used to study the complete set of molecules within a cell,
tissue, or organism. These technologies include genomics (study
of genes and DNA), transcriptomics (study of RNA and gene
expression), proteomics (study of proteins), and metabolomics
(study of metabolites and metabolic pathways), lipidomics (study
of lipids), and microbiomics (study of the structure, function,
and dynamics of a microbial community) (9). According to the
systemic review study, the proteomic approach was the most
common ‘omics platform (43.1%), followed by metabolomics
(24.4%), genomics (13.8%), epigenomics (8.1%), transcriptomics
(4.1) (10). Proteomics techniques include mass spectrometry
(MS) combined with ultra-performance liquid chromatography
(UPLC) and capillary electrophoresis (CE) (11). Genomics
techniques include next generation sequencing (NGS) (12).
Metabolomic techniques include high field nuclear magnetic
resonance (NMR) and mass spectrometry (MS) coupled with
capillary electrophoresis (CE-MS), liquid chromatography MS
(LC-MS), or gas chromatography (GC-MS) (13). Transcriptomics
techniques include DNA microarrays and RNA sequencing (14).
Microbiomics techniques include targeted sequencing of the
16S rRNA gene, and whole metagenome shotgun sequencing
(15). Lipidomics techniques include mass spectrometry, liquid
chromatography-mass spectrometry, and matrix assisted laser
desorption/ionization mass spectrometry imaging (16, 17).

Clinical applications of omics in
renal diseases

Renal biopsy has been revolutionized by multi-omics
technologies, which provide a molecular layer of interpretation
beyond morphology. By integrating histopathologic features with
transcriptomic, proteomic, and metabolomic data, nephrologists
can better understand the mechanisms of renal injury, identify early
molecular signatures of disease, and discover novel therapeutic
targets. Samples from biopsy tissue, urine, and blood can all be
analyzed using omics platforms (18).

Omics approaches have enhanced renal biopsy interpretation
by revealing how molecular changes correspond to classical
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histopathologic lesions. For example, transcriptomic studies
have demonstrated that reduced intrarenal epidermal growth
factor (EGF) expression correlates with tubular atrophy and
interstitial fibrosis (TA/IF), refining prognostic assessment within
the same morphologic class (19, 20). Urinary proteomic classifiers
such as CKD273 detect extracellular matrix remodeling before
fibrosis becomes apparent on light microscopy, providing an
opportunity for early therapeutic intervention (21). Similarly,
multi-omic studies in antineutrophil cytoplasmic antibody
(ANCA)-associated vasculitis has shown that proteomic and
transcriptomic signatures reflecting neutrophil activation and
complement pathways distinguish active inflammation from
chronic scarring, even when biopsies appear morphologically
similar, improving treatment stratification (22).

Recent work demonstrated that the urinary peptide-based
classifier CKD273 can detect early molecular changes preceding
morphologic evidence of chronic kidney disease, allowing more
precise staging and prognosis beyond what is seen in biopsy
alone (23). Likewise, upregulation of retinol dehydrogenase 9 in
podocytes was shown to mitigate structural damage, providing
mechanistic insight into podocyte injury observed histologically
(24). In diabetic kidney disease (DKD), urine metabolomics
identified dysregulation of the pantothenate and CoA biosynthesis
pathway, linking specific metabolic signatures with characteristic
glomerular and tubular lesions (25). Complementing these omics-
based insights, a machine-learning model integrating biochemical
and clinical data accurately predicted acute kidney injury,
demonstrating how computational and omics-driven approaches
can refine biopsy interpretation, guide early intervention, and
reclassify renal pathologies with greater precision (26).

In lupus nephritis (LN), proximity extension assay proteomics
identified urinary ICAM-2, FABP4, FASLG, IGFBP-2, SELE,
and TNFSF13B/BAFF as markers distinguishing active LN
from inactive SLE, correlating with histologic activity indices
(27). In large cohort studies such as the Chronic Renal
Insufficiency and Joslin Kidney Studies, integration of proteomic
and transcriptomic profiles identified proteins such as TNFRSF1A,
FGF20, and ANGPT1 that better predict renal function decline
than conventional mesangial-expansion or IFTA scores (28, 29).
Another study identified an inflammatory signature of 17 TNF
receptor superfamily proteins associated with 10-year end-stage
renal disease risk, supporting their potential use as biomarkers and
therapeutic targets (30).

Collectively, these examples illustrate that omics does not
replace histopathology but rather augments it, transforming
static microscopic patterns into dynamic molecular phenotypes
that improve diagnostic precision, prognostic accuracy, and
personalized patient management. The integration of omics data
with renal biopsy thus represents a paradigm shift in nephrology,
offering a comprehensive view that bridges morphology with
molecular mechanisms. However, it remains important to
recognize that these technologies are still evolving and require

further validation before their routine clinical adoption.
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Omics technologies: challenges and
solutions

While omics technologies offer transformative potential in
renal biopsy analysis, their clinical application faces several
challenges. One major limitation is the high cost, complexity of
omics techniques, and large sample size is required, which can
limit their accessibility in resource-limited settings (31, 32). To
address the challenges, solutions include reducing costs through
improved technology and automation, focusing on targeted
biomarker panels, using machine learning to analyze smaller
datasets, fostering collaborations for shared data, developing
portable and cost-effective platforms, and optimizing sample
preparation and data analysis protocols (31). These approaches
can make omics more accessible and applicable in clinical settings,
even in resource-limited environments. In addition, the massive
amount of data generated by omics analyses requires advanced
bioinformatics tools and expertise for interpretation, which may
not be readily available in all clinical laboratories (33, 34). To
address these challenges, collaborative efforts between researchers,
clinicians, and bioinformaticians are essential to develop cost-
effective and user-friendly omics platforms (35). Another issue is
the lack of standardized protocols for sample preparation, data
analysis, and interpretation, which can lead to variability in results.
Establishing standardized guidelines and quality control measures
can help improve the reproducibility and reliability of omics-based
diagnostics (36).

Al in renal biopsy

In recent years, the change from human systems to machine
systems [artificial intelligence (AI)], has been a great progress
in the field of medical imaging, including renal pathology (37).
Al techniques are increasingly being integrated into renal biopsy
analysis, significantly enhancing diagnostic accuracy and efficiency.
Machine learning algorithms, particularly deep learning, can be
trained to identify and classify various renal diseases by analyzing
histopathological images with high precision. This prognostic
study found better performance for quantifying percent global
glomerulosclerosis from whole-slide images of frozen and of
permanent hematoxylin-eosin-stained donor transplant kidney
biopsy specimens by a deep learning model (94% accuracy)
than by on-call board-certified pathologists (80%) (38). Similarly,
Convolutional neural networks (CNNs)-based systems indicated
that this technique is suitable for correct glomerulus detection
in Whole Slide Images, showing robustness while reducing
false positive and false negative detections (39). These findings
underscore the importance of hybrid approaches combining Al
with expert histopathological evaluation.

These AI models can detect subtle changes in tissue structure,
cellular patterns, and disease markers that might be overlooked by
human eyes, leading to earlier and more accurate diagnoses. Al
can also assist in quantifying the extent of fibrosis, inflammation,
and other pathological features, providing standardized and
reproducible assessments (40). Moreover, Al-driven image analysis
can streamline the workflow of pathologists, allowing them
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to focus on complex cases and improving overall diagnostic
throughput (41).

Various Al techniques are used for the analysis of renal biopsy
samples, enhancing the accuracy and efficiency for diagnoses.
CNNs, a type of deep learning, are effective in analyzing
histopathological images (42). CNN and its variants are the most
common neural networks utilized for categorizing renal carcinoma
pathology images (43). CNNs can automatically identify and
classify different renal diseases by learning from large datasets
of annotated biopsy images, detecting patterns and features that
may be imperceptible to human pathologists (44, 45). Another
Al technique, machine learning algorithms like support vector
machines (SVMs) and random forests, can be employed to
analyze quantitative features extracted from biopsy images, such
as glomerular size, tubular atrophy, and interstitial fibrosis (46).
These algorithms can classify disease severity and predict outcomes
based on the extracted features. In addition, natural language
processing (NLP) can be used to analyze pathology reports and
integrate clinical data with histopathological findings, providing
a comprehensive diagnostic approach (47). Joint learning, which
combines multiple AI models to improve prediction accuracy,
is also used to enhance the robustness of biopsy analysis.
These AI techniques not only improve diagnostic accuracy and
reproducibility but also facilitate personalized treatment plans and
better patient management in nephrology (48).

Clinical applications of Al in renal
diseases

AT has demonstrated significant potential in improving the
diagnosis and management of kidney diseases. For example, in
a clinical study involving 948 patients with IgA nephropathy
(IgAN), artificial neural networks (ANNs) successfully identified
individuals at high risk of developing end-stage kidney disease
(ESKD) and predicted the time-to-event endpoint, aiding in risk
assessment and early intervention (49). Another study focused
on predicting renal flare in 1,694 patients with biopsy-proven
LN and stratifying risk to enhance clinical decision-making and
personalized management. The XGBoost model and the simplified
risk score prediction model (SRSPM) effectively predicted renal
flare in LN, with SRSPM also enabling risk stratification, ultimately
supporting improved kidney outcomes (50). Additionally, a study
aiming to enhance kidney disease severity assessment beyond
traditional semiquantitative scoring utilized image digitization and
morphometric techniques on 300 biopsy samples. The results
showed that six CNN models outperformed pathologists in
estimating the percentage of interstitial fibrosis, demonstrating the
potential for Al in histopathological evaluation (51).

Another study developed a deep learning model for continuous
risk prediction of patient deterioration, using acute kidney
injury as an example. Trained on electronic health records
from 703,782 adult patients across diverse clinical settings, the
model predicted 55.8% of all inpatient AKI cases and 90.2%
of severe cases requiring dialysis, with a lead time of up to
48 h. It also provided confidence assessments, highlighted key
clinical features, and predicted blood test trajectories, offering
a valuable tool for early intervention and improved patient
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FIGURE 1

Integration of traditional renal biopsy assessment with omics technologies and artificial intelligence to enhance diagnostic accuracy.

outcomes (52). Furthermore, an artificial neural network model
was developed to predict ESKD in patients with primary IgAN
using a retrospective cohort of 948 patients. The model included
a classifier for ESKD prediction and a regression model for
estimating time to onset. Performance improved over time,
achieving an area under the curve of 0.82 at 5 years and
0.89 at 10 years. External validation in 167 patients showed
successful predictions for 91%, with superior discrimination
(Harrell C index: 81% at 5 years, 86% at 10 years) and
calibration compared to other models. The tool demonstrated
strong predictive accuracy over a 25-year follow-up period,
effectively identifying high-risk patients and supporting early
therapeutic strategies to enhance clinical outcomes (49). Figure 1
shows an integration of traditional renal biopsy assessment
with omics technologies and artificial intelligence to enhance
diagnostic accuracy.

Al in renal biopsy: challenges and
solutions

The integration of Al into renal biopsy analysis also presents
several challenges. One significant limitation is the need for
large, high-quality datasets to train AI models effectively.
Inadequate or biased datasets can lead to inaccurate predictions
and reduced generalizability of Al algorithms (53). To overcome
this, multicenter collaborations and data-sharing initiatives
are critical to build strong and diverse datasets. Another
challenge is the black box nature of some AI algorithms, where
the decision-making process is not transparent, making it
difficult for clinicians to trust and interpret Al-generated results
(54, 55). Developing explainable AI models and providing
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training for pathologists on AI tools can help bridge this
gap. In addition, the integration of Al into clinical workflows
requires significant infrastructure and training, which may pose
logistical and financial challenges for healthcare institutions
(56). Gradually introducing AI technologies and continuously
training healthcare providers can help make the transition
easier. Another significant issue is related to ethical and safety
concerns. Current laws and regulations are insufficient to
address issues surrounding patient privacy, data security,
and data ownership (57). To overcome these challenges, it is
crucial to establish an international consensus on the ethical
and safe use of AI in renal pathology, ensuring that these
concerns are addressed and managed effectively by the global
community (58).

Conclusion

The integration of advanced technologies such as omics and Al
into renal biopsy interpretation represents a transformative shift in
nephrology. These tools enable deeper molecular insights, enhance
diagnostic accuracy, and support the development of personalized
treatment strategies. Omics technologies provide a comprehensive
understanding of the complex biological pathways underlying
renal diseases, while AI offers automation, standardization, and
predictive power in image and data analysis. Together, they hold
the potential to improve patient outcomes and drive precision
medicine in nephrology. Despite their promise, challenges
remain in terms of clinical implementation, data interpretation,
infrastructure, and ethical considerations. Addressing these
issues through standardization, interdisciplinary collaboration,
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and robust validation studies is essential for successful clinical
integration. As research continues to advance, the role of Al,
alongside omics, in renal biopsy is expected to become increasingly
crucial. Embracing these innovations will be key to enhancing
diagnostic precision and improving patient care in the era of
precision nephrology.
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