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Differences in the amplitude of
dynamic low-frequency
fluctuations in primary
angle-closure glaucoma are
associated with gene-molecular
multi-omics

Yuan Hu™, Rui-Yang Hu?, Hai-Jun Yang! and Ting-Ting Xu'*

!Nanchang Bright Eye Hospital, Nanchang, China, ?School of Ophthalmology and Optometry, Jiangxi
Medical College, Nanchang University, Nanchang, China

Objective: Primary angle-closure glaucoma (PACG), an incurable ophthalmic
disease, is a serious risk to human visual health. Previous studies have
demonstrated a strong link between PACG and neuroimaging changes in the
brain. This study utilizes dynamic low-frequency fluctuation amplitude (dALFF)
with the aim of resolving the potential dynamic alterations in neurological
function in PACG and integrating transcriptomics profiles with spatial distribution
characteristics of neuromodulatory receptors/transporters to systematically
elucidate the underlying neurophysiopathological mechanisms.

Methods: We used sliding time windows of 30TR, 50TR and 80TR to calculate
dALFF values and performed partial least squares regression (PLS) analysis of
t-values after two-sample test of dALFF values under the sliding window of 50
TR against the Allen Human Brain Atlas (AHBA) to screen genes. Enrichment
analysis, tissue-specific expression analysis and protein—protein interactions
(PPI) network construction were implemented. The t-values were also analyzed
for spatial correlation with neurotransmitter receptor/transporter density
profiles distributed throughout the brain.

Results: The two-sample tests under three sliding windows revealed extensive
brain alterations in PACG and each abnormal brain region showed elevation
(the Gaussian Random Field method, with significance at the voxel level set at
p < 0.005 (two-tailed) and at the cluster level at p < 0.01), which was mainly
in the occipital lobe and angular gyrus. Enrichment analysis were mainly
“regulation of neuron projection development” and “membrane organization”
pathways (p < 0.05, no corrected). Specific expression analysis revealed that the
relevant genes were involved in all stages of thalamic development. PPl analysis
demonstrated the role of PACG-associated genes in the formation of functional
network. Neurotransmitter receptor/transporter correlation analysis revealed
significant associations with 5-HT4R and mGlu5R (p < 0.05, FDR corrected).
Conclusion: The present study reveals that a wide range of brain regions in
PACG patients show significant functional remodeling, elucidating the molecular
regulatory network behind this type of pathological alteration.
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Introduction

Primary angle-closure glaucoma (PACG) is a type of ocular disease
characterized by anatomical atresia of the anterior chamber angle. Its
pathogenesis stems from mechanical occlusion of the angle triggered
by an abnormal iris-cornea anatomical position, which in turn leads to
dysfunction of the atrial drainage system and an abnormally high
intraocular pressure (IOP), resulting in optic nerve damage as a result
of this glaucomatous type of glaucoma. The core anatomical hallmarks
of the disease include a markedly shallow anterior chamber
(ACD < 2.5 mm), a narrow angle (<20°), and anterior dislocation of
the lens, which together result in frequent iris-to-cornea contact (ITC),
a set of features that have been confirmed by several imaging studies
(1-3). Epidemiological data show a significant gender imbalance and
heterogeneity across geographic regions, with East Asian populations
having a particularly high prevalence; of particular interest is the fact
that the risk of the disease in the female population can be up to one
and a half times higher than that in the male population, a gender-
preference phenomenon that has been demonstrated in multicenter
epidemiological studies (4-6). PACG can cause severe vision loss in
patients because of its irreversible damage to the optic nerve. Cause
severe vision loss, visual field defects, and even blindness (7-10).
Therefore, early detection, diagnosis and treatment are the most
important measures to prevent blindness in PACG patients.

In recent years, major recent technological innovations have
propelled the progressive development of magnetic resonance
imaging (MRI) as a highly clinically valuable tool for the early
prediction of disease (11-15). As an important branch of this
technique, functional magnetic resonance imaging (fMRI) aims to
reveal pathological changes in the topology of functional neural
networks in the brain. The technique employs a non-invasive
monitoring mode to pinpoint the synchronized activation
characteristics of neuronal clusters by capturing real-time
hemodynamic parameters and metabolic level fluctuations in brain
regions. Relying on the physical basis of blood oxygen level-
dependent (BOLD) effect, this technique has successfully achieved
millimeter-scale spatial resolution and sub-second temporal
resolution, which provides a technical guarantee for capturing
transient neural activity characteristics (16, 17). A technological
framework based on fMRI has been established in recent years to
systematically study the phenomenon of CNS reorganization in
patients with PACG (18-20). In terms of brain structure, Jiang et al.
found that PACG patients had varying degrees of altered gray matter
volume across a wide range of brain regions (21). From a functional
brain perspective, both Wang et al. and Zhong et al. used independent
component analysis (ICA) to find various network alterations in
PACG patients (20, 22). In addition, Wang et al. explored the
connectivity of the PACG brain network in depth and found that
PACG patients showed lower strength than HC patients, whether it
was the functional connectivity (FC) network, the structural
connectivity (SC) network, or the FC-SC coupling (23). As a result,
patients with PACG have varying degrees of alterations in brain
structure and function.

Brain-wide slow oscillations are a characteristic feature of the
mammalian neocortex that occurs spontaneously in the virtual absence
of sensory stimulation. Amplitude of low-frequency fluctuations
(ALFF) is a method of blood oxygen level-dependent signal analysis
based on resting-state functional magnetic resonance imaging, which
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quantitatively characterizes the energy intensity of spontaneous neural
activity in brain regions by calculating the mean of the square root of
the power spectrum of the BOLD signal in a specific low-frequency
frequency band (typically ranging from 0.01 to 0.1 Hz) (24-26). It
reflects the energy level of local neuronal activity in the resting state of
the brain, and shows a significant positive correlation with the amplitude
of spontaneous neural oscillations in the baseline state (27, 28). ALFF
has been used to investigate abnormal neurological alterations in a
variety of disorders and for early diagnosis of diseases, e.g., Alzheimer’s
disease (29, 30), depression (31, 32), and so on. In addition, Huang et al.
found the presence of ALFF abnormal values in a wide range of brain
regions in PACG patients (33); Li et al. and Jiang et al. found extensive
brain region alterations using ALFF in different bands (full, slow 4, and
slow 5 bands) for PACG (34, 35). However, existing studies have mainly
focused on the static characterization of rs-fMRI, and have not yet
systematically revealed the dynamic spatiotemporal properties of neural
activity signals during PACG pathology.

The current research on rs-fMRI has gradually formed the
consensus that the “resting state” subjects are not completely
physiologically quiescent, and that their functional neural networks
still maintain significant active representations. Even in the absence of
external cognitive tasks, the cortex maintains complex neural
information processing mechanisms. For example, the default mode
network (DMN) is continuously active at rest and forms a dynamic
equilibrium with the central executive network (CEN) and salient
network (SN) (36, 37). In particular, rs-fMRI signals are not only
biological markers of neural activity, but also the result of confounding
factors such as neurovascular coupling mechanisms, physiological
artifacts (e.g., cardiac/respiratory rhythms), and head micromotion
(38-40). This suggests that the energy metabolism level of neuronal
population activity is not a constant parameter, but a dynamic process
with significant time-varying characteristics, even under resting
conditions. In recent years, academics have paid more and more
attention to the research paradigm of dynamic characterization metrics
of functional brain networks, among which the dynamic low-frequency
amplitude fluctuation (dALFF), as a typical representative of innovative
metrics, has gained wide attention in the academic community (41,
42). Unlike the traditional static ALFF analysis strategy that
incorporates full-time data into the calculation, dALFF captures the
dynamic features of brain activity by segmenting the entire functional
magnetic resonance imaging (fMRI) time series into multiple time
windows, calculating the ALFF values within each window, and
analyzing the variance or variability of these values (43, 44). Today,
dALFF has been widely used in a variety of neuropsychiatric disorders
(41, 45) such as Parkinson’s disease (46), Alzheimer’s disease (47), and
generalized anxiety disorder (35). Given that PACG patients have been
shown to be characterized by resting-state ALFF abnormalities in
multimodal brain regions, the present study intends to systematically
investigate the specific patterns of alterations in the time-varying
features of their neurological functional networks by means of an
innovative dALFF approach.

Significantly, the pathologic process of PACG exhibits a strong
association with specific loci. Genome-wide association studies
(GWAS) have revealed that polymorphic profiles at loci such as
ABCAIl, PMM2, PLEKHA7, and COL11Al show significant
correlations with disease risk (48-50). Accumulating evidence-based
medicine evidence confirms a profound spatial correlation between
functional connectivity patterns of macroscopic brain networks and
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region-specific gene expression profiles (51-53). In the field of joint
neuroimaging-transcriptome research, the Allen Human Brain Atlas
(AHBA) has been widely adopted as a benchmark dataset (54-56). The
AHBA dataset maps the region-specific expression profiles of the
human brain covering 18,686 genes through transcriptomic analysis of
postmortem brain tissue. The establishment of whole-brain gene
expression profiles bridges the gap between connectome and
transcriptome studies (57-60). There have been many previous studies
utilizing AHBA and neuroimaging of ophthalmic diseases for
correlation analysis. For example, Zhong et al. and Huang et al. used
AHBA for neuroimaging transcriptomic analysis of dynamic functional
connectivity density and Voxel-Mirrored Homotopic Connectivity in
patients with diabetic retinopathy, respectively (61, 62); Li et al. also
utilized AHBA to explore ALFF values in different frequency bands in
PACG patients (35). In addition, the dynamic molecular balance of the
neurotransmitter receptor/transporter system may be the molecular
basis mediating the remodeling of neural circuits, and the underlying
regulatory mechanisms may stem from the chemical
microenvironmental spatiotemporal-specific modulation of functional
connectivity architectures at cortical hierarchical levels (63). Therefore,
an in-depth analysis of the interaction between gene transcriptional
regulation and neurotransmitter changes in dALFF will provide new
perspectives for the elucidation of PACG pathomechanisms.

In the present study, we aimed to explore the dynamic changes in
brain neural activity in PACG patients and its association with the
brain genome in order to explore the underlying neural mechanisms
and suggest possible early predictors in PACG patients. We propose
that PACG patients exhibit significant abnormal dALFF alterations
in whole brain regions, which are intrinsically associated with cortical
gene expression patterns and neurotransmitter receptor/transporter
distribution. In the present study, dALFF metrics of PACG patients
were systematically analyzed to characterize their dynamic neural
fluctuations from three sliding windows: 30TR, 50TR and 80TR,
respectively. Then, the results of dALFF analysis from the 50TR
sliding window were analyzed with the AHBA dataset by PLS to find
the genes that were positively and negatively correlated with them.
Multi-level probes were subsequently carried out, including biological
pathway enrichment analysis, cell-specific expression profiling based
on transcriptional decoding, and protein interaction network
construction. Synchronously, under the 50TR time window
established the

neurotransmitter receptor/transporter brain region expression

parameter, we association mapping of
patterns with dALFF variations to explore the key roles of gene
transcriptional regulation and neurotransmitter receptor/transporter
changes in dALFE

Methods
Participants

Participants 47 patients diagnosed with PACG were recruited
from the same hospital, along with 46 carefully matched controls
based on age, gender, and education. All experimental procedures
were conducted in accordance with the Declaration of Helsinki,
approved by the Ethics Committee of School of Ophthalmology and
Optometry, Jiangxi Medical College, Nanchang University, and
written informed consent was obtained from each subject.
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Inclusion criteria for PACG patients were as follows: (1) bilateral
narrow angle confirmed by atrial anguloscopy; (2) presence of visual
field defects associated with glaucoma; (3) no history of glaucoma
medication or surgical treatment; (4) no history of craniocerebral
trauma; (5) no neurologic or psychiatric disorders; (6) availability of
magnetic resonance imaging (no metallic implants, such as
pacemakers); and (7) acceptance of the scans after the resolution of
acute symptoms. Exclusion criteria: (1) Comorbid primary open-
angle glaucoma (POAG) or secondary glaucoma; (2) Comorbid other
ocular or systemic diseases affecting the visual pathway; (3) History
of glaucoma or significant ocular disease; (4) History of
antiglaucomatous surgery; (5) History of craniocerebral trauma; (6)
Severe neurologic/psychiatric disorders; (7) Contraindications to
magnetic resonance imaging examination; (8) Long-term use of
neurologic medications affecting the brain’s function/structure; and
(9) Presence of acute attack symptoms (e.g., eye pain) at the time of
scanning; (10) Patients with cerebrovascular disease.

Inclusion criteria for the control group: (1) no organic lesions on
ophthalmologic examination; (2) no history of craniocerebral trauma;
(3) no neurologic/psychiatric disorders; (4) eligibility for magnetic
resonance examination; and (5) demographic characteristics matching
the PACG group. Exclusion criteria: (1) confirmed diagnosis of any
ocular or systemic disorder; (2) severe refractive error (equivalent
spherical lens > + 6.00 D); (3) history of craniocerebral trauma; (4)
severe neurologic/psychiatric disorders; (5) contraindications to
magnetic resonance examination; and (6) prolonged use of
neurologic medications.

fMRI data acquisition

A 750 T magnetic resonance imaging system manufactured by
General Electric, United States, equipped with a novel 3.0-channel
phased-array head coil, was used in this experiment. Functional
magnetic resonance data of blood oxygen level dependent (BOLD)
signals were acquired via a gradient echo planar imaging (EPI)
sequence. Key imaging parameters included a repetition time (TR) of
2000 ms, a time to echo (TE) of 25 ms, a layer thickness of 3.0 mm, a
layer spacing of 1.2 mm, a receiver matrix of 64 x 64, a radiofrequency
flip angle of 90°, and an effective scanning field of 240 x 240 mm?® The
voxel resolution was set to 3.6 x 3.6 x 3.6 mm’, totaling 35 layers
axially covering the whole brain. Each scanning sequence consistently
acquired 240 BOLD kinetic time points.

Before the experiment, participants were explicitly asked to
keep both eyes open, maintain wakefulness, and avoid systematic
thinking activities as much as possible. During data acquisition, the
head was tightly immobilized with custom sponge padding to
minimize potential motion artifacts in order to reduce noise.
During the post-scanning phase, subjects instantly completed a
standardized post-effects questionnaire, which was used to verify
the degree of adherence to behavioral norms during the
scanning process.

fMRI data preprocessing

In this study, we used the Data Processing and Analysis
Toolbox for Brain Imaging in conjunction with Statistical
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Parametric Mapping software' on the MATLAB 2022b platform
to standardize the preprocessing and analysis of functional
magnetic resonance imaging (fMRI) data for standardized
preprocessing analysis. The data preprocessing steps were as
follows: (1) Convert the original image file format, and convert
the DICOM raw data to the NIFTI common format; (2) Exclude
the initial 10 time point data to eliminate the influence of
magnetic field transient effects during the initialization stage of
the MRI sequence; (3) Perform time alignment of adjacent slices,
aligning the acquisition time of each slice with the midpoint of the
repetition time (TR) to achieve multidimensional timing
correction; (4) Apply a 24-parameter head motion correction
model, set strict quality control standards (translation > 2 mm or
rotation > 2°), and reject abnormal motion data; (5) Realize high-
precision structural image segmentation based on the DARTEL
algorithm to construct an individualized anatomical template, and
then standardize the functional image to the MNI template space
with a spatial resolution of 3 X 3 x 3 mm?; (6) Adopt a full-width-
half-height (FWHM) of 6 mm 3D Gaussian kernel for spatial
smoothing to optimize the signal-to-noise ratio of the signal; (7)
Perform phase linear regression analysis to eliminate the
low-frequency drift component in the time series; (8) Regression
correction of the head movement parameters and the whole-brain
averaged signals as orthogonal interference covariates to
maximally control physiological noise interference.

dALFF data processing

In the present study, the Time Dynamic Analysis built into
DPABI v8.1 software was used for neuroimaging dynamic metrics
measurements. Previous studies have shown that insufficient time
window span exacerbates the time-series oscillatory characteristics
of dynamic low-frequency amplitude fluctuation (dALFF) signals,
where as an excessively long window length does not adequately
reflect dynamic temporal changes in dALFF (64, 65). Therefore,
the optimal selection of time window parameters constitutes one
of the core challenges in the methodological study of dynamic
functional magnetic resonance imaging, and sliding time-domain
analysis techniques have a key methodological value in the
quantitative assessment of the dynamic features of such
spontaneous brain activities. To systematically eliminate the
potential bias introduced by a single time-window configuration,
the present study adopted a multiple time-window parameter
validation strategy: 30TR (60 s), 50TR (100 s), and 80TR (160 s)
with a 2TR sliding step for the full cohort dALFF calculation (45,
66-68). For the individual-level spatiotemporal dALFF feature
parameters, we calculated the arithmetic mean and standard
deviation of the time-varying signals of each voxel, and then
deduced the distribution characteristics of its temporal coefficient
of variation (CV = standard deviation/mean). The resulting
dynamic coefficient of variation images were incorporated into
the framework of subsequent between-group statistical analyses.

1 SPM12, https://www fil.ion.ucl.ac.uk/spm/.

Frontiers in Medicine

10.3389/fmed.2025.1679910

Gene expression data processing

Data processing consisted of utilizing the AHBA database
available at https://www.brainmap.org. This database provides gene
expression profiles for six postmortem brains (male to female ratio:
5:1; mean age: 42.5 + 13.4 years) covering 3,702 different spatial
samples and measuring the expression levels of more than 20,000
genes. The raw dataset was subjected to full-scale standardized
preprocessing, and established quality control protocols were
strictly followed to ensure computational reproducibility. The
AHBA dataset was processed according to Arnatkevic et al. (69).
The six steps of preprocessing were as follows: (1) validation of
probe-to-gene annotations using the Re-annotator toolkit (70); (2)
filtering of probes (intensity-based filtering) to no more than
background noise, excluding all samples from at least 50% of the
participants; (3) probe selection, choosing the highest correlation
with the RN-seq data; (4) assigning samples to wraps within a 2 mm
Euclidean distance within the AAL90 atlas set; (5) Normalization
of expression measurements using a scaled robust Sigmoid for each
participant; (6) Gene set filtering based on differential stability.
Since the AHBA dataset includes only two right-brain data, only the
left brain was considered in our analyses (69). Therefore, the average
of all samples in the regions was calculated to obtain a matrix of
transcript level values (90 regions x 10,027 gene expression levels).
We applied partial least squares (PLS) regression to model
multivariate associations between dALFF (time window = 50 TRs)
and 15,633 high-quality gene features, where the PLS principal
component characterizes the optimal linear combination of gene
expression profiles and neural activity dynamics with
maximum covariance.

We performed correlation analyses using PLS1 and PLS2 methods,
respectively; however, unfortunately in the PLS1 analyses, the p-values
of most results exceeded the threshold of 0.05 after FDR correction,
and therefore we only used PLS2 results for exploration in subsequent
studies. The 2nd PLS regression component (PLS2) was highly
correlated with regional differences in dALFE Spatial alignment tests
(10,000 trials) were used to verify whether PLS2 was statistically
significant. To estimate the variability of each gene in PLS2, a
bootstrap method was used to generate Z-values by calculating the
weight of each gene with respect to the standardized bootstrap error
for that gene and ranking the genes according to their contribution to
PLS2. Significant genes with positive (PLS+) and negative (PLS-)
weights of FDR-corrected 5%o were screened.

Enrichment analysis

Enrichment analysis was performed for genes that were
significantly positively and negatively correlated with their dALFF
values in the 50TR window, respectively. This analysis utilized the
DAVID functional annotation bioinformatics microarray analysis
platform to explore biological functions. Gene ontology (GO) terms
including biological process (BP) were used to assess biological
functions. In addition, related biological pathways were investigated
with a focus on the Kyoto Encyclopedia of the Genome (KEGG)
pathway. All enrichment analysis maps were generated using
Metascape and are available at https://metascape.org/gp/. Enrichment
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pathways were derived by entering PLS1 + (Z > 5) or PLS1- (Z < — 5)
on the Metascape website, followed by a significance threshold of 5%.

Specific expression analysis

Specific expression analysis was performed for genes significantly
positively and negatively correlated within the TR50 window of
dALFE Analyses were performed using the CSEA tool accessible at
http://doughertytools.wustl.edu/CSEAtoolhtml and focused on
identifying genes that showed over-representation in different cell types,
brain regions and developmental stages. Cell-specific expression analysis
was performed to demonstrate the unique expression of the genes of
interest in various cell types; brain-specific expression analysis
highlighted their specific expression patterns in different brain regions;
and time-specific expression analysis further elucidated their differential
expression in developmental stages and brain regions. Thresholds for
probability of specificity index (pSI) were 0.05, 0.01, 0.001, and 0.0001.

Proteins and protein interactions

Protein-protein interaction (PPI) analysis was performed on
significantly positively and negatively correlated genes within the
TR50 window of dALFE. This analysis was performed using STRING
v11.0” to investigate the potential formation of PPI networks between
genes associated with altered brain function. In addition, the most
highly connected genes were selected and used to map their
spatiotemporal and temporal expression patterns through the Human
Brain Transcriptome Database.’

Neurotransmitter receptors/transporters
distribution maps

The neurotransmitter density map is derived from positron
emission tomography (PET) images of over 1,200 healthy individuals,
encompassing 19 distinct neurotransmitter receptors and transport
proteins from nine different neurotransmitter systems. Twenty
different neurotransmitter receptor/transmitter whole-brain density
profiles were selected from previous in vivo molecular imaging studies,
including 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT4R, 5-HT6R, 5-HTT,
a4f2, CBIR, DIR, D2R, DAT, FDOPA, GABAAR, H3R, MIR,
mGluR5, MU, NAT, NMDA and VAChT* (71-75). Subsequently,
receptor/transporter density values were extracted from each positron
emission tomography atlas and averaged over 90 regions according to
anatomical autolabeling atlas (AAL). For the 50 TR window of dALFF
values, we performed a two-sample t-test. Therefore, we extracted the
t-values and averaged them in the same way as the receptor/
transporter density procedure. Finally, we performed a correlation
analysis to investigate the relationship between f-values and
neurotransmitter after  the

receptor/transporter  density

two-sample test.

2 https://string-db.org/
3 https://hbatlas.org/
4 https://neurovault.Org/collections/1206/
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Statistical analysis

We statistically analyzed the clinical characteristics of the two groups
of patients using the Statistical Package for the Social Sciences (SPSS)26
software from IBM, Armonk, NY, United States. Between-group
differences in dALFF values for 30TR, 50TR, and 80TR were assessed by
two-sample t test assessed with age, gender and head movement as
covariates. Multiple comparisons were corrected using the Gaussian
Random Field (GRF) method, with significance at the voxel level set at
P <0.005 (two-tailed) and at the cluster level at p < 0.01. The correlation
of neurotransmitters/transporters with the dALFF values in the 50TR
window was set at 0.05 (two-tailed) using a threshold of significance and
corrected for FDR. All procedures are shown in Figure 1.

Results

Demographics and disease
characteristics

In terms of demographic characteristics, the PACG and HC
groups did not present statistically significant differences in
gender (p =0.45), age (p=0.86), and years of education
(p = 0.38). Notably, compared to the HC group, the PACG group
presented statistically significant differences in key visual
function indicators such as binocular best-corrected visual
acuity (BCVA) (p <0.001) and intraocular pressure (IOP)
(p < 0.001; Table 1).

Values of dALFF in different windows

Performing a one-sample test for the PACG and HC groups in
30TR, 50TR, and 80TR sliding windows, respectively, we found
that the spatial distribution of dALFF at all three temporal
resolutions showed a significant consistency within the groups
(Figure 2).

Two-sample t-tests showed that under 30TR, 50TR, and 80TR
dynamic window conditions, PACG patients presented significantly
higher dALFF amplitudes in all scan states compared with healthy
controls. in the 30TR sliding window, the regions of significant
change were the left middle temporal gyrus (Temporal_Mid_L), the
left suboccipital gyrus (Occipital_Inf L), right Cerebellum Superior
(Cerebelum_6_R), right periaqueductal cortex (Calcarine_R), right
middle temporal gyrus (Temporal Mid_R), and left middle
occipital gyrus (Occipital_Mid_L), right middle occipital gyrus
(Occipital_Mid_R), right subparietal marginal angular gyrus
(Parietal_Sup_R) (Table 2; Figure 3A); the mean values of dALFF
in 30TR between two groups was showed in Figure 3B, in the 50TR
sliding window, the abnormally altered brain regions were right
Cerebellum Superior (Cerebelum_ 6_R), left suboccipital gyrus
(Occipital_Inf_L), right supraoccipital gyrus (Occipital_Sup_R),
and right parietal submarginal angular gyrus (Parietal_Sup_R)
(Table 2; Figure 4A); the mean values of dALFF in 50TR between
two groups was showed in Figure 4B, and in the 80TR sliding
window, the abnormally altered brain region was the right angular
gyrus (Angular_R) (Table 2; Figure 5A). The mean values of dALFF
in 80TR between two groups was showed in Figure 5B.
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FIGURE 1

A systematic data analysis process was used in this study. The study first implemented one-sample t-tests and two-sample t-tests for dALFF values
calculated in 30TR, 50TR, and 80TR time window conditions for PACG patients and HC subjects, respectively, and used Gaussian Random Field Theory
(GRF) multiple comparisons correction method (p < 0.005 at the voxel level, and p < 0.01 at the clump level) to statistically correct the results to ensure
reliability. Subsequently, under the 50TR sliding window condition, we performed PLS regression analysis of the t-statistics of significantly different
dALFF values obtained from the two-sample t-test with the multigene expression values of each brain region in the Allen Human Brain Atlas (AHBA),
and successfully extracted the genome-wide set of genes characterizing the associations with positively correlated (PLS+) and negatively correlated
(PLS-) patterns. The resulting genes were subjected to enrichment analysis, specific expression analysis and protein—protein interaction analysis. In
addition, the study innovatively explored the above patterns of association between dALFF differential t-values and the spatial distribution of
neurotransmitter receptor/transporter expression levels between brain regions. dALFF, dynamic low-frequency fluctuation amplitude; TR, repetition
time; PLS, partial least squares; PACG, primary angle-closure glaucoma; HC, healthy control. Parts of this figure were drawn by using pictures from
Biovisart (https://biovisart.com.cn).

TABLE 1 Demographics and visual measurements between two groups.

Condition PACG group HC group t/y’value p value
Gender (male/female) 26/21 29/17 0.57 0.45
Age (years) 5453 +10.03 55.91 + 10.00 —0.184 0.86
Education 14.86 + 1.56 15.14 + 1.51 —0.886 0.38
BCVA-OD 0.51+0.17 1.11 +0.06 -22.15 <0.001*
BCVA-0S 0.49+0.15 1.11 +0.06 —26.44 <0.001*
10P-OD 48424178 14.53 + 1.06 111.24 <0.001*
10P-0S 48.02 + 1.53 15.10 1.20 115.04 <0.001

BCVA, best corrected visual acuity; IOP, intraocular pressure; OD, oculus dexter; OS, oculus sinister. * indicate p < 0.001.

50TR sliding window dALFF values
correlate with cortical gene expression

identified as significantly associated with the dynamic features of
dALFF after correction for strict multiple comparisons (p < 0.05, FDR
correction). Among them, 155 were PLS + genes and 185 were PLS-

In this study, the PLS system was used to explore the pattern of
association between the dALFF feature of the 50TR sliding window
(Figure 6A) and genome-wide gene expression profiles of 15,633

genes (Figure 6D).

genes. In the discovery cohort, PLS2 explained 51.37% of the cross-
modal variance. The distribution of PLS2-weighted profiles reflected
the anterior-posterior gradient of gene expression (Figure 6B).
Specifically, gene expression profiles weighted by PLS2 correlated
significantly with case-control differential t-value profiles (Pearson’s
r = 0.3742, pspin = 0.0087; Figure 6C). A total of 340 genes were
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Enrichment analysis

We performed a systematic enrichment analysis of the finely
screened PLS +and PLS- gene clusters to reveal their functional
characteristics. We systematically compared the PLS + genome with the
Gene Ontology bioprocess and KEGG pathway databases. Ontology
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FIGURE 2

closed-angle glaucoma; HC, healthy control.

This figure presents the results of the one-sample test of dALFF values in the sliding windows of 30TR (A,B), 50TR (C,D), and 80TR (E,F) for the PACG
group and HC group, respectively. Notably, despite the differences in time window parameters, both the PACG and HC groups showed very similar
spatial distribution patterns within their respective groups. dALFF, amplitude of dynamic low-frequency fluctuations; TR, repetition time; PACG, primary

terms for PLS + genes (p < 0.05, FDR-corrected) (Figure 7A). Notably,
the top 20 significantly enriched GO biological processes (e.g.,

» <«
>

“regulation of neuron projection development,” “neuron projection
development,” and “secretion”) exhibited significant associations, but
KEGG pathway analysis did not detect a PLS-gene showed significant
enrichment in GO processes, including “membrane organization,”
“ubiquitin-dependent protein catabolic process” and “secretion by cell,”
but KEGG pathway analysis also did not show significant correlation

(Figure 7B).

Frontiers in Medicine

Specific expression analysis

For genes associated with dALFF values PLS + and PLS- under
the 50TR sliding window, we performed cell-specific expression
analysis, brain-specific expression analysis, and time-specific
expression analysis. Among PLS + genes, Cellspecific expression
analysis (Figure 8A), brain-specific expression analysis (Figure 8B).
Among PLS + genes, there was significant expression in the
amygdala in early fetal life (Figure 8C); for PLS- genes, there was
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TABLE 2 Results of the dALFF two-sample test for the PACG and HC groups under different sliding windows.

Condition

MNI coordinate

peak t-value

Window size of 30 TR and sliding step of 2 TR

Temporal_Mid_L 43 =51 0 -18 3.9026
Occipital_Inf L 68 =30 —84 —12 4.6844
Cerebelum_6_R 37 36 —60 -21 5.0446
Calcarine_R 34 6 —87 0 4.3162
Temporal_Mid_R 38 45 -72 9 4.2708
Occipital_Mid_L 46 -33 -90 9 4.2042
Occipital_Mid_R_1 67 33 —84 9 4.5182
Occipital_Mid_R_2 36 33 -78 36 4.2371
Parietal_Sup_R 55 24 —69 63 4.6455
Window size of 50 TR and sliding step of 2 TR

Cerebelum_6_R 38 36 —60 -21 4.7551
Occipital_Inf_L_1 55 -30 -84 -12 4.4546
Occipital_Inf L 2 31 —51 —69 -9 4.8652
Occipital_Sup_R 34 30 =75 42 4.2786
Parietal_Sup_R 54 24 —69 63 4.8628
Window size of 80 TR and sliding step of 2 TR

Angular_R 18 33 —60 39 3.6643

Temporal_Mid_L, left middle temporal gyrus; Occipital_Inf_L, left suboccipital gyrus; Cerebellum_6_R, right Cerebellum Superior; Calcarine_R, right peri-talar fissure cortex; Temporal_
Mid_R, right middle temporal gyrus; Occipital_Mid_L, left middle occipital gyrus; Occipital_Mid_R, right middle occipital gyrus; Parietal_Sup_R, right subparietal marginal angular gyrus;
Occipital_Sup_R, right superior occipital gyrus; Angular_R, right angular gyrus; dALFE, dynamic low-frequency fluctuation amplitude; TR, repetition time; PACG, primary angle-closure

glaucoma; HC, healthy control; MNT, Montreal Neurological Institute.

cell-specific expression in cholinergic neurons of the basal forebrain
and rhabenula, and in Hypocretinergic Neurons of the Hypothalmus
with astrocytes of the cerebellum expression was significant
(Figure 8D), in brain-specific expression in the thalamus (Figure 8E),
and in time-specific expression in the cerebellum of mid-late
childhood versus the thalamus of early and late fetal, neonatal,
childhood, adolescence, and early adulthood (Figure 8F).

Protein—protein interaction analysis

We performed PPI analysis of PLS + -associated genes and
PLS-associated genes separately and selected the genes with the highest
degree value for spatiotemporal specific expression analysis. Among
PLS + genes, a total of 64 genes formed an interconnected PPI network
(Figure 9A), among which NOP58 (degree value = 8) was selected for
spatiotemporal specific expression analysis (Figure 9B); among PLS-
genes, a total of 89 genes formed an interconnected PPI network
(Figure 9C), among which KRAS (degree value = 8) was analyzed for
spatiotemporal specific expression (Figure 9D).

Neurotransmitter receptor/transporter
correlation analysis

We correlated the dALFF values under the 50TR sliding window
with the expression matrix of neurotransmitter receptors/transporters
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obtained. The results revealed significant correlations for 2
neurotransmitter receptors/transporters, 5-hydroxytryptamine type 4
receptor (5-HT4R) and metabotropic glutamate receptor 5 (mGlu5R)
(Figure 10; Table 3).

Discussion

In this study, dALFF was analyzed in PACG patients and healthy
controls using the 30TR, 50TR and 80TR sliding window methods, and
it was found that compared to the HC group, PACG patients showed
more significant dALFF enhancement in all three time windows
analyzed, and this functional alteration was mainly focused on
neuroanatomical structures such as the occipital cortex, the upper
cerebellar region and the angular gyrus. A total of 340 genes were
identified to show significant associations with neuroimaging features
by PLS correlation analysis, including 155 PLS + genes and 185 PLS-
genes, and quantitative correlation maps between gene expression and
brain function abnormalities were established. Gene ontology
enrichment analysis revealed that these genes were significantly
enriched in key biological processes such as “neuronal projection
developmental regulation” (GO:0031175) and “biofilm organization”
(GO:0061024), suggesting that they are involved in the molecular
mechanisms of neural circuit remodeling and cell membrane stability.
Time-specific expression analysis showed that PLS-associated genes
showed significant enrichment (FDR < 0.05) at several key stages of
thalamic development, which revealed the potential role of abnormal
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FIGURE 3
This figure represents the two-sample t-test results of dALFF values in the PACG and HC groups in a 30 TR sliding window. The results indicate that the
PACG group had extensive alterations in dALFF values compared to the HC group and all of them showed elevated values. temporal_Mid_L, left middle
temporal gyrus; Occipital_Inf_L, left suboccipital gyrus; Cerebelum_6_R, right Cerebellum Superior; Calcarine_R, right perisylvian cortex; Temporal_
Mid_R, right middle temporal gyrus; Occipital_Mid_L, left middle occipital gyrus; Occipital_Mid_R, right middle occipital gyrus; Parietal_Sup_R, right
parietal inferior marginal angular gyrus; dALFF, dynamic low-frequency fluctuation amplitude; TR, repetition time; PACG, primary angle-closure
glaucoma; HC, healthy control.

thalamic development in the pathomechanism of PACG from an
ontogenetic point of view. Ppi analysis indicated that most of the genes
associated with PACG were involved in the composition of the ppi
network, of which the pivotal genes were NOP58 and KRAS. correlation
analysis with neurotransmitter receptors/transporters revealed that
5-HT4R and mGlu5R showed significant correlation. These multi-
omics findings systematically elucidated the possible molecular

Frontiers in Medicine

regulatory network of PACG, and constructed a multi-scale pathology
model from gene expression disorders to clinical phenotypes by
integrating brain functional imaging features, genetic regulatory
elements and neurotransmitter system abnormalities.

The occipital lobe, as a core brain area for visual information
processing, has the ability to integrate visual functions at multiple
levels. Its primary visual cortex (area V1) is responsible for receiving
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PACG, primary angle-closure glaucoma; HC, healthy control.

This figure represents the results of the two-sample t-test for dALFF values in the PACG and HC groups in the 50TR sliding window. The results show
that compared to the HC group, the PACG group had altered dALFF values in a wide range of brain regions mainly in the occipital lobe and all of them
showed elevated dALFF values. occipital_Inf_L, left suboccipital gyrus; Cerebelum_6_R, right Cerebellum Superior; Occipital_Sup_R, right superior
occipital gyrus; Parietal_Sup_R, right inferior parietal marginal angle gyrus; dALFF, dynamic low-frequency fluctuation amplitude; TR, repetition time;

and parsing visual signals transmitted from the retina and completing
the recognition of basic features such as light, shape, and color (76),
whereas the higher visual cortex (e.g., mid-occipital region) is involved
in complex visual tasks including object recognition, spatial
localization, and facial emotion perception, and plays an important
role in visual memory and dream generation (77, 78). In PACG,
elevated IOP due to atrial angle obstruction not only directly damages
optic ganglion cells, but may also indirectly affect occipital lobe
function by disrupting visual conduction pathways (48, 79). For
example, the occipital cortex of PACG patients showed significant
functional reorganization characteristics (34). As found in this study,
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patients with PACG showed a wide range of abnormally elevated
occipital dALFF values, and this elevation can be interpreted from a
variety of layers. At the level of neural mechanisms, the occipital lobe
may be involved in the pathological process of PACG through
compensatory mechanisms: reduced visual input triggers enhanced
compensatory neural activity, such as the right inferior occipital lobe
that may compensate for peripheral visual field deficits by enhancing
face processing (33, 34). Further, high dALFF values in the right
inferior occipital lobe may reflect local neuronal hyper-
synchronization activity, a compensatory mechanism that alleviates
dysfunction associated with visual field deficits by enhancing complex
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FIGURE 5
This figure represents the two-sample t-test results of the dALFF values in the PACG and HC groups in the 80 TR sliding window. The results indicate
that the dALFF values of the right angular gyrus were altered and elevated in the PACG group compared with the HC group. angular_R, right angular
gyrus; dALFF, amplitude of dynamic low-frequency fluctuations; TR, repetition time; PACG, primary angle-closure glaucoma; HC, healthy control.

visual information processing (34, 80). At the clinical level, changes in
these dynamic parameters show a correlation with the degree of visual
impairment, e.g., the magnitude of elevation of right inferior occipital
ALFF is negatively correlated with the thinning of the optic nerve fiber
layer (r = —0.456, p < 0.01) (34), suggesting that it can be used as an
objective indicator for noninvasive assessment of disease severity. In
addition, the development of cognitive complications in PACG may
also involve functional reorganization of the occipital lobe, which has
been found to correlate with altered functional connectivity in
attention and executive function networks (77, 81). Genomics studies
have further revealed that PACG susceptibility genes such as
COLI11A1 may directly influence the metabolic activity of the occipital

Frontiers in Medicine

11

lobe, providing new directions for understanding the genetic basis of
central compensatory mechanisms (79, 82, 83). In summary, the
functional remodeling of the occipital lobe in PACG is the result of the
interaction between visual pathway damage and central compensation.
The dynamic changes in its dALFF values not only reflect the
pathophysiological characteristics of the disease, but also provide a
theoretical basis for the development of novel therapeutic strategies
targeting visual-neuroprotection.

The superior cerebellum consists of the anterior, superior-
posterior, middle and anterior-superior portions of the earth, which
regulate postural coordination, motor planning, sensory integration
and balance functions, respectively, and its deeper nuclei such as the

frontiersin.org


https://doi.org/10.3389/fmed.2025.1679910
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Hu et al. 10.3389/fmed.2025.1679910
Regional dALFF_50 Difference Weight Gene ExpressionMap
(Case-Control T-map) (PLS2 Score)
1.5 T T T 1200
1000
Y
E 1 i ) 800
7 2
- 3
I g 600
& 05F . g
= 3
=) 400
7
Q
g of 4 200
@]
0
-4 -3 -2 -1 0 1 2 3 4
-0.5 ! ! ! PLS2 weighted Z score
0.4 0.2 0 0.2 0.4 Gene  TEX30 KRAS SMAD2 - SMPDI SOX SE2W CPLX2 AMDI CSorf24
C PLS2 score z-score 466 462 458 -~ 328 0.0/  0.01 475 490 5.00
e 1 —
P, .<0.05 P, .<0.05
FIGURE 6
dALFF values under the 50TR sliding window correlate with cortical gene expression. (A) Distribution of brain regions with two-sample test t-values for
dALFF values in the 50TR sliding window in the left hemisphere region. (B) Three-dimensional spatial distribution of weighted gene expression profiles
constructed by the left hemisphere regional PLS2 algorithm in the left hemisphere cortex. (C) Scatterplot of regional PLS2 scores (weighted sum of
15,633 gene expression scores) and changes in dALFF values (Pearson’s r = 0.3742, pspin = 0.0087) under a 50TR sliding window. (D) Schematic
diagram of the process of performing PLS + versus PLS- gene screening. dALFF, dynamic low-frequency fluctuation amplitude; PLS, partial least
squares; PACG, primary angle-closure glaucoma; HC, healthy control.

dentate nucleus and the raphe nucleus are widely connected to the
central nervous system through the midbrain peduncle, and together
they are involved in motor execution and cognitive-emotional
regulation (84-87). Studies have shown that in addition to the
anatomical factors of mechanical obstruction of atrial water
drainage, the development of PACG may have an indirect interactive
effect with abnormalities in the cerebellar functional network (48,
88, 89). Specifically, the anterior cerebellar lobes and the earthworms
influence the activity of brainstem autonomic nuclei through specific
neural pathways, and their dysfunctional connectivity may interfere
with atrial water dynamic homeostasis (85, 86, 88). In this study,
we found that dALFF in the upper cerebellum of PACG patients
showed abnormally elevated dALFF, which may be mainly due to
two reasons: on the one hand, the enhanced compensatory dynamic
activity of neurons may partially alleviate the sensory-motor
dysfunction caused by visual injury (34, 88), for example, the MRI
evidence showed that neuronal synchronization and local coherence
(ReHo) in their specific regions of the cerebellum were significantly
enhanced, suggesting that the compensatory neural network
remodeling in response to visual input deficits (34, 88, 90, 91); on
the other hand, chronic IOP abnormalities may induce alterations
in cerebellar-cortical synaptic plasticity, resulting in an abnormal
functional state of high energy consumption and low efficiency (33,
92). In addition, the cerebellar dALFF dynamic parameter combined
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with a machine learning model can differentiate PACG patients with
high precision, and its degree of abnormality is significantly
correlated with retinal nerve fiber layer thinning, suggesting the
potential value of this index as a biomarker for disease progression
assessment (33, 88). Nevertheless, in the future, the integration of
multimodal imaging and molecular genetics data is still needed to
systematically elucidate the precise mechanism of the cerebellar
network’s role in the regulation of atrial fluid dynamics and
neurodegenerative processes.

The angular gyrus is an important brain region in the posterior
parietal lobe, located at the junction of the temporal, parietal, and
occipital lobes, and its functions are characterized by a high degree of
multimodal integration (93, 94), encompassing, e.g., language
processing (95, 96), memory integration and retrieval (97, 98),
mathematical spatial and cognitive (99, 100), and self-awareness and
social cognition (94, 96). The main reason for the abnormally elevated
dALFF values in the angular gyrus found in PACG patients in this
study may be twofold. On the one hand, there is a neural
compensatory mechanism whereby reduced visual input may force
the angular gyrus to enhance multimodal integration functions (e.g.,
dependence on auditory or tactile information), leading to increased
fluctuations in local activity (101, 102). Similar mechanisms have
been reported in diabetic optic neuropathy (DON), in which elevated
prefrontal dALFF is associated with reallocation of attentional
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FIGURE 7
Enrichment analysis of genes associated with dALFF values PLS + and PLS- under the 50TR sliding window. (A) Ontology terms for PLS + genes
(p < 0.05, FDR-corrected). (B) Ontological terms for PLS- genes (p < 0.05, FDR-corrected). dALFF, dynamic low-frequency fluctuation amplitude; PLS,
partial least squares; PACG, primary angle-closure glaucoma; HC, healthy control.

resources (103). On the other hand, chronic IOP elevation may lead
to transsynaptic degenerative changes, and the angular gyrus, as a
multimodal hub, may be abnormally excited due to input imbalance
(e.g., visual- proprioceptive mismatch) (102, 104). Furthermore,
PACG is not only an ocular disorder, but also involves
neurodegenerative changes throughout the brain. Its patients have
reduced functional connectivity of the default mode network, salience
network, which may lead to abnormal functioning of the angular
gyrus in memory and contextual integration (81, 101). elevated
dALFF may predict early cognitive impairment risk, especially in
semantic memory and situational recall tasks, and its correlation with
PACG progression needs to be verified in conjunction with
longitudinal studies (43, 105). Therefore, further studies are needed
to clarify its clinical significance and specific differences with other
cognitive disorders.

“Regulation of neuron projection development” and
‘membrane organization’ affect the pathological process of PACG
from the dimensions of neuronal morphology and function
establishment and membrane dynamic balance, respectively. The
“Regulation of Neuron Projection Development” pathway is
involved in the morphogenesis, orientation and functional
establishment of neuronal axons and dendrites through the
cascade of transcription factors (106), cytoskeletal and migratory
regulation (107), and functional diversity establishment (108).
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This optic nerve axonal degeneration plays a major role in the
pathophysiology of PACG. For example, axonal damage in retinal
ganglion cells (RGCs) of PACG patients may be associated with
SARMI1-mediated NAD + depletion (109). Furthermore, aberrant
phosphorylation of tau proteins leads to decreased microtubule
stability, which likewise exacerbates axonal transport impairment
(110). Inflammatory factors (e.g., IL-6) also inhibit axon
regeneration-related gene expression through the MAPK pathway
(111, 112). The “Membrane Organization” pathway encompasses
membrane structure dynamics, lipid-protein interactions and
signaling (113-115). Previous studies have suggested that
trabecular meshwork extracellular matrix (ECM) remodeling
(e.g., COL11A1 mutation) is dependent on the integrin signaling
pathway and that structural abnormalities in membrane lipid rafts
may interfere with integrin-ECM interactions, resulting in
blocked atrial water circulation (116). This blockage of the atrial
water circulation pathway is a key factor in the development of
PACG. In addition, oxidative stress markers such as MDA and
AOPP are elevated in the serum of PACG patients, suggesting that
membrane lipid peroxidation may impair trabecular meshwork
cell membrane function and exacerbate IOP fluctuations (117).
Future studies need to further integrate transcriptional regulation,
and microenvironmental

membrane signaling networks,

interactions to develop multi-target therapeutic strategies.
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This figure shows the specific expression analysis of genes associated with dALFF values PLS + and PLS- under the 50TR sliding window. (A,D) Cell-
specific expression analysis. (B,E) Brain-specific expression analysis. (C,F) Time-specific expression analysis. (Thresholds were set at p = 0.05, p = 0.01,
p = 0.001 and p = 0.0001). dALFF, dynamic low frequency fluctuation amplitude; PLS, partial least square.

Specific expression analysis revealed that genes negatively correlated
with PACG are greatly involved in most stages of thalamogenesis. The
development of thalamus occurs in stages of neurogenesis, nucleus
differentiation, axon guidance and establishment of thalamo-cortical
connections. Thalamic neurons are formed during the embryonic
period, with differences in gene expression in different nuclei
determining their functional specificity (118); this is followed by a
gradual development of axon guidance and connection establishment
(119); and reciprocal thalamo-cortical connections continue to
be perfected during the postnatal period (120). There are overlapping
genes between the PACG and thalamic development, such as COL11A1,
PLEKHA?7, and CNTNAP5, and abnormalities in gene regulation affect
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the development of the thalamic nuclei (48, 121). Besides, the lateral
thalamic geniculate body (LGN) is a relay station for retinal signaling to
the cortex. Developmental axonal misorientation or abnormal synapse
formation may result in decreased visual information processing
efficiency and increased optic nerve sensitivity to elevated IOP (122,
123). This visual information processing disorder may influence the
development of the thalamus after birth. Further exploration of brain-eye
interaction mechanisms is needed in the future to provide new targets
for early diagnosis and intervention of PACG.

PPI analysis revealed that both PLS +and PLS- genes
associated with PACG could be constructed into a PPI network, in
which the genes with the highest degree values were NOP58 and
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FIGURE 9

protein—protein interaction.

This graph shows the PPl analysis of genes associated with dALFF values PLS + and PLS- under the 50TR sliding window. (A,C) shows the PPI analysis
plot for all genes, where the wired connections are the genes that make up the PPI network. (B,D) indicates the spatiotemporal specific expression
analysis maps of the selected genes with the highest degree values. dALFF, dynamic low frequency fluctuation amplitude; PLS, partial least squares; PPI,
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KRAS, respectively. NOP58 is a key protein involved in ribosome
biosynthesis in the nucleolus accumbens, and forms a complex
with NOP56 and NOP1 to regulate the processing and methylation
of rRNA precursors (124). Obstruction of ribosome synthesis may
exacerbate mitochondrial dysfunction, leading to reactive oxygen
species (ROS) accumulation, which in turn damages the trabecular
meshwork or iris stromal cells (111). KRAS, as a member of the
RAS family, regulates cell proliferation, survival, and metabolism
through pathways such as MAPK, PI3K/Akt, and others (125-127).
Down-regulation of KRAS inhibits the Hippo pathway activity of
the effector molecule YAP, and the Hippo pathway is involved in
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eye development and anterior chamber structure formation (128).
Alternatively, KRAS silencing inhibits oxidative stress-induced
iron death and may alleviate oxidative damage in trabecular
meshwork cells, thereby maintaining the integrity of the atrial
aqueous efflux pathway (126). Both NOP56 and KRAS may affect
the synthesis of collagen eggs and matrix metalloproteinases,
which both play key roles in iris stromal remodeling and atrial
angle adhesion in PACG (48, 116). The synergistic effect of the two
may provide new perspectives on the multi-mechanism
pathogenesis of PACG, but further experimental validation is
still needed.
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FIGURE 10

Results of correlation analysis of dALFF values with receptors/transporters under 50TR sliding window. (A) Indicates the radar plot of r-value of
correlation analysis of each receptor/transporter with dALFF values, *indicates significant results (p < 0.05, pspin<0.05), **indicates significant results
(p < 0.01, pspin<0.01). (B) Graphs indicating the correlation analysis of each receptor/transporter with dALFF values with significant results.
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TABLE 3 Results of correlation analysis of abnormal dALFF values in 50
TR with significant receptors/transporters.

Receptor/ p value Pspin Value r value
Transporter

SHT4R 0.03 0.01 0.23 ‘
mGIuR5R <0.01 0.01 0.27 ‘

5-HT4R is expressed in the ciliary body, iris, and choroid (129),
and increases cAMP levels through activation of adenylate cyclase
(AC), which in turn regulates downstream pathways such as PKA
and Epac (130, 131). This mechanism may affect the atrial fluid
secretion function of the ciliary body. In addition, 5-HT4R is
involved in the regulation of ciliary and ophthalmic artery
contraction. Obstruction of atrial aqueous outflow is a central
pathologic feature of PACG, and alterations in vascular tone may
indirectly affect the dynamic balance of intraocular pressure (IOP).
On the other hand, 5-HT4R activation reduces astrocyte responses
and inflammatory mediators such as IL-1f, and chronic
inflammation is an important causative factor of optic nerve
damage in glaucoma (130, 131). mGlu5R hyperactivation enhances
NMDA  receptor-mediated
accumulation is a key mechanism of RGC death in glaucoma (132,

excitotoxicity, and glutamate
133). In chronic IOP models, mGlu5R may increase intracellular
Ca’" overload through the Gaq-PLCB-IP3 pathway, leading to
neuronal damage (134). Taken together, 5-HT4R and mGlu5R may
be involved in the pathological process of PACG through multiple
10P
inflammatory regulation, and future studies need to explore their

pathways such as regulation, neuroprotection, and

interactions and feasibility as therapeutic targets in depth.
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Several limitations of this study remain to be elucidated: (1)
Due to the relatively restricted sample size, the current findings
may be significantly affected by sampling error, and subsequent
studies should confirm the robustness of the results by enlarging
the sample size. (2) The limitations of the temporal resolution of
the dALFF parameter need to be emphasized - the metric simulates
dynamic temporal evolution through a sliding time window
simulates dynamic time evolution, which is still essentially a
quasi-static metric, and its calculation process is susceptible to
systematic interference from rs-fMRI-related confounding
variables. (3) The architectural flaws of adopting the AHBA
database are noteworthy, as the dataset covers gene expression
profiles of the left hemisphere brain regions only, leading to
potential bias in neuroimaging studies based on hemispheric
asymmetry, especially for dALFF and other brain regions with
functional The interpretation of biomarkers characterized by
lateralization of brain regions, such as dALFF, needs to
be kept cautious.

Conclusion

Using dALFF analysis, the present study revealed extensive
dynamic functional remodeling in the occipital visual cortex of PACG
patients by systematically evaluating their dynamic functional
variability over multiple time windows, and suggested that both visual
pathway damage and neurological compensation exist in this
population. By integrating genome-wide transcriptomic profiling and
whole-brain quantitative analysis of neurotransmitter receptor/
transporter spatial distribution patterns, the present study elucidated
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the potential association between cortical layer-specific functional
the
and laid the foundation of molecular

abnormalities and  alterations in neuromolecular
microenvironment,
neuroscience for the development of innovative therapeutic strategies

for PACG.
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