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Mining the risk: early
cardiovascular detection in
workers
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Gonzalo Blanco1, Ignacio Ahumada1, Alfonso Lira3 and
Felipe Feijoo3*
1Workmed, Santiago, Chile, 2Blackmind-AI, Santiago, Chile, 3School of Industrial Engineering,
Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Background: Cardiovascular disease (CVD) is the leading cause of death
worldwide. Although tools exist to assess individual cardiovascular risk (CVR),
they often fall short in unique populations such as miners, who work under
extreme conditions. To address these limitations, this study proposes the use
of machine learning (ML) and longitudinal data to predict risk progression using
accessible clinical markers. Body mass index (BMI) and blood glucose (BG) were
chosen as key CVR proxies because they are affordable, measured routinely in
occupational health checks, and responsive to metabolic stresses common in
mining environments.
Methods: We conducted a retrospective longitudinal analysis of 89,045 Chilean
mining workers (420,966 preemployment exams; 2021–2024). For each worker,
we formed successive visit pairs to model transitions between clinically defined
BMI and BG categories. Four binary outcomes based on the scenario per
biomarker were specified (any upward transition; adjacent upward transition;
obesity–morbid obesity/prediabetes–diabetes; any transition ending in morbid
obesity/diabetes). Machine learning techniques were built to assess transitions
for each scenario and biomarker. We applied a stratified 70/30 train–test split,
repeated 7-fold cross-validation within training, random hyperparameter search
(AUC objective), and downsampling of the majority classes within folds to
address the imbalance. Performance in the original (imbalanced) test set was
summarized by AUC, accuracy, sensitivity, and specificity with 95% CIs of the
cross-validation process. The correlation between models was assessed using
Pearson’s correlations of predicted probabilities.
Results: Predicting BMI transitions (N = 18,035 pairs) was highly accurate
between models. The best performance occurred for severe progression
(Scenario 4, defined as any transition ending in morbid obesity): where XGB
achieved AUC 0.95 and accuracy 0.91, with high sensitivity and strong specificity.
For broader BMI transitions across scenarios 1–3, models remained reliable
AUC 0.84–0.87. BG transitions (N = 16,161 pairs) were harder but still actionable.
The strongest results were for progression to diabetes (Scenario 4), with RF
reaching AUC 0.83 (95% CI: 0.82–0.90) and accuracy 0.76; other BG scenarios
yielded AUC 0.71–0.77. Cross-validation closely matched test performance.
Pairwise probability correlations were typically >0.90 for BMI and >0.80 for BG in
severe scenarios, indicating good generalization and no evidence of overfitting.
Conclusion: ML models effectively predict clinically relevant BMI and BG risk
transitions in the extraction of occupational health data. The use of longitudinal
visit pairs and scenario-based evaluation improves the capacity of the models to
achieve high AUC values and maintain accuracy and sensitivity, while ensuring
generalization and consistency. These findings highlight the potential of this
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approach to improve the assessment of CVR and support preventive decision-
making in high-risk working populations.

KEYWORDS

blood glucose, body mass index, cardiovascular risk, machine learning, occupational
health

1 Introduction

Cardiovascular diseases (CVD) are responsible for more
than 20.5 million deaths per year, accounting for more than
a third of global mortality, currently representing the greatest
mortality threat facing humanity (1). The impact is so significant
that, in a single year, it exceeds all deaths recorded during
the COVID-19 pandemic (2). CVD often begins silently and
asymptomatically. However, it can rapidly progress to severe
clinical manifestations such as ischemic heart disease, stroke,
heart failure, and arrhythmias, leading to a substantial burden
of morbidity and mortality. This underscores the critical need to
implement effective early detection strategies (3, 4).

Current evidence suggests that an essential component of
CVD prevention is the early identification of high-risk individuals,
allowing timely interventions and reducing both the disease
burden and its socioeconomic impact (5). Individual cardiovascular
risk (CVR), reflects the probability of experiencing a major
cardiovascular event over a given period of time, usually 5
or 10 years (6). This risk is determined by multiple factors,
including body mass index (BMI) and blood glucose (BG), two
widely available and routinely used clinical indicators, whose
association with cardiovascular events is well established in
the literature (7–9). Indeed, a BMI ≥ 35 is associated with
a 43% increase in CVD risk in men and a 32% increase
in women. Similarly, hyperglycemia in people with diabetes
increases this risk by 75% in men and 87% in women,
which contributes in particular to heart failure (10). Given the
limitations in many occupational settings, there is a growing
interest in simplifying CVR assessment by using routine low-
cost biomarkers such as BMI and BG, especially in environments
where traditional tools are impractical due to cost, logistics or
lack of comprehensive clinical data (11, 12). Given their strong
independent associations with cardiovascular events, BMI and
BG are particularly well suited for longitudinal monitoring in
occupational health programs (13). In fact, the Pan American
Health Organization (PAHO) includes both BMI and BG as key
elements for CVR evaluation and prevention strategies, particularly
in resource-limited settings, as outlined in their guidelines for
cardiovascular risk stratification (14).

The distribution, significance and evolution of these markers
can differ significantly in populations exposed to demanding work
conditions. In the mining population, this association was reported
more than 30 years ago (15, 16). This group of workers is of
particular interest in public and occupational health due to their
prolonged exposure to harsh environments characterized by high
physical workloads, long shifts, thermal stress, and, frequently,
hypoxia from high-altitude work (17). These metabolic stress

conditions contribute to an unfavorable CVR profile compared to
the general population. This is strongly associated with high rates
of hypertension, abdominal obesity, metabolic disorders, and sleep
disturbances (18–20).

In Chile, mining is one of the main economic drivers of
the country, employing more than 800,000 people in operations
mainly located at high altitude in the northern and central regions
(21, 22). Studies in the Chilean mining population have reported
significant rates of metabolic syndrome and CVR, far exceeding
those observed in the general population, reinforcing the need
for targeted surveillance and predictive tools adapted to the
occupational and individual context of these workers (17, 23).
Despite this, there are several tools for CVR stratification, such
as the Framingham equations and other scales proposed by the
WHO or PREVENT, developed by the American Heart Association
(10, 24, 25). The predictive power of these CVR models is well-
established for estimating the 10-year risk of CVD events, with
values of the area under the receiver operating characteristic
curve (AUC-ROC) typically ranging from 0.70 to 0.82, depending
on the model and population (26–28), although their predictive
performance often varies depending on regional calibration and
population-specific characteristics. The Framingham Risk Score,
developed from a United States cohort, achieves AUC-ROC values
of 0.75–0.78 for the prediction of coronary heart disease (26),
while the SCORE model, designed for European populations,
reports AUC-ROC values of 0.70–0.75, with performance varying
by regional calibration (27). The PREVENT model, introduced
by the American Heart Association, incorporates additional
risk factors such as kidney function and social determinants,
demonstrating an AUC-ROC of 0.82 for atherosclerotic CVD
events, surpassing the 0.76 of the Pooled Cohort Equations in
recent validations (10). However, these models may exhibit reduced
capacity when applied to diverse populations due to variations
in the prevalence of risk factors and event rates, often requiring
recalibration to avoid over or underestimation of risk (29, 30).
In addition, most risk scores do not incorporate the longitudinal
evolution of clinical indicators such as BMI and BG, which
are particularly relevant in occupational surveillance programs
where periodic measurements are available. This underscores
the need for population-specific validation to ensure robust risk
stratification, particularly in unique settings like occupational
health. In fact, these tools are widely used and were developed based
on cohorts of the general population, with a limited representation
of workers exposed to extreme conditions. This limits their
external validity, reduces clinical applicability, and compromises
their relevance in occupational health contexts. Furthermore, a
systematic review of the Framingham rule reported that, among
40 studies that validated it in external populations, 67.5% found
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poor performance. However, the model was neither reconfigured
nor updated in these cases (31).

For these reasons, there is an urgent need to develop alternative
methods that optimize CVR assessment in mining workers,
using easily available clinical indicators adapted to the unique
characteristics of this population. In this study, rather than
estimating CVR scores per se, we focus on predicting clinically
relevant transitions in the BMI and BG categories over time as
proxies of increasing CVR (11, 12). This transition-based approach
has practical advantages: it facilitates interpretation by occupational
physicians, enables early preventive actions, and aligns closely
with regulatory thresholds used in worker health evaluations. This
approach leverages routinely available and low-cost data while
capturing meaningful changes in the risk profile of workers exposed
to extreme occupational stressors (32). BMI and BG were selected
as target variables because they are easy to obtain, inexpensive and
are routinely measured in occupational health assessments. Both
have been consistently associated with an increase in CVR and
are sensitive to typical metabolic and environmental stressors of
mining work, making them practical proxies to identify high-risk
scenarios in this population (33).

In this context, machine learning (ML) has emerged as a
promising tool to predict clinical events and improve diagnostic
processes. ML models can identify complex patterns and nonlinear
relationships between variables, often undetectable by traditional
statistical methods (34). This ability is particularly relevant when
analyzing large volumes of longitudinal data, such as those
generated in periodic occupational health assessments, where
subtle changes in indicators such as BMI and glucose over time
may provide critical information to anticipate the progression of
CVR (35). Additionally, ML models offer the potential to improve
the consistency and reproducibility of evaluations, mitigating the
intra- and inter-observer variability inherent to current methods
and facilitating the implementation of personalized preventive
strategies. In addition, ML models offer greater adaptability to
local data structures and can be updated more efficiently than
traditional models, improving long-term utility in occupational
health systems.

Recent studies have demonstrated the usefulness of ML
in the cardiovascular field (36, 37). For example, models
based on regularized logistic regression (LR) and random
forests (RF) have been used to predict the occurrence of acute
coronary syndrome and cerebrovascular events with encouraging
results (38–40). More recently, algorithms such as Extreme
Gradient Boosting (XGB) have shown superior performance
in multiple clinical classification tasks, due to their ability
to handle heterogeneous data, robustness to outliers, and
computational efficiency (41). Combining these algorithms
with widely available low-cost clinical data, such as BMI and
glucose, represents an attractive alternative to implement
predictive models applicable in occupational settings such
as mining.

However, applying ML models to the prediction of CVR
still presents important challenges. Among them are the
poor adaptation of existing models to populations exposed
to extreme working conditions and the limited consideration
of the longitudinal evolution of risk factors over time (42).

In addition, most previous studies have focused on cohorts
of the general population or hospital settings, limiting the
generalizability of their results to the reality of mining workers
(43). Added to this is the lack of consensus on the best way to
operationalize clinically relevant transitions in indicators such as
BMI and glucose, key elements for adequate risk stratification in
occupational health.

For this reason, improving diagnostic accuracy and
interpretative consistency in CVR assessment among mining
workers has not only clinical implications, but also economic and
social ones, both for workers and for the country. Implementing
robust predictive models adapted to the specific needs of this
population can optimize available health resources, reduce costs
associated with work disability due to cardiovascular events,
and ultimately improve quality of life and anticipate mortality
among workers. The availability of longitudinal data from
occupational health surveillance programs provides a unique
opportunity to develop predictive models that integrate the
temporal dynamics of risk, enabling more timely and effective
preventive interventions (44).

To address these gaps, this study proposes a methodological
framework based on ML and longitudinal data to predict clinically
relevant transitions in the BMI and BG categories as proxies
of increased CVR among high-altitude mining workers. Unlike
previous studies that apply ML models to static risk estimation,
our work uniquely focuses on predicting longitudinal transitions
in risk categories using successive health evaluations. This allows
for a more dynamic and proactive approach to risk surveillance.
Furthermore, this study is the first to apply this strategy
specifically to preemployment occupational surveillance, offering
novel information on early metabolic risk changes even before job
exposure begins.

This approach aligns with modern occupational health
strategies that seek scalable, data-driven solutions to improve the
early detection of CVR. The CVR is defined as transitions between
the BMI and BG categories detectable on simple and periodic
occupational examinations, thus reducing costs and complexity.
The framework implements and compares three widely used
artificial intelligence algorithms, LR, RF, and XGB, applied to an
extensive longitudinal occupational health database. This approach
aims to demonstrate that ML models can offer accurate, consistent,
and customized predictions for high-risk occupational populations.
We hypothesize that ML algorithms, trained in longitudinal
occupational health records, can detect early transitions in the
BMI and BG categories that signal a rise in CVR, thus supporting
timely preventive interventions in high-risk mining workers. This
hypothesis stems from the premise that traditional risk scores may
not adequately capture dynamic physiological changes in workers
facing extreme environments.

In summary, this study:

1. Demonstrates that ML models can accurately predict clinically
significant changes in BMI and BG among mining workers using
longitudinal occupational health records;

2. Compares the predictive performance of three ML algorithms
(LR, RF, and XGB) to identify the most accurate and applicable
approach to CVR stratification in this context;
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3. Proposes a practical and scalable tool aligned with the Chilean
occupational health system to improve early risk detection and
preventive care in high-risk populations.

2 Materials and methods

2.1 Study design and data extraction

A retrospective observational study with an exploratory
scope was conducted. The study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
recommendations (45). All pre-employment examinations of
mining workers conducted by a private healthcare provider
operating in different regions of the country were included. The
sample included the entire population of available records within
the study window of 36 months (from the second half of 2021 to
the first half of 2024). No probabilistic sampling was performed,
and exclusions were only applied to individuals with a single
examination, and with missing values or outliers in the variables
of interest.

2.2 Dataset characteristics

A total of 420,966 pre-employment examination records
corresponding to 89,045 unique workers were accessed. This
means that each worker often underwent more than one pre-
employment examination during the study period and therefore
multiple records were available per individual. These repeated
evaluations allowed us to construct longitudinal pairs of visits,
which were the basis for modeling transitions in the BMI and BG
categories over time. In this context, the term “pair” specifically
refers to two consecutive examinations by the same worker (for
example, exam 1–exam 2, exam 2–exam 3), rather than only the
first and last record. Each record was associated with a unique
identifier and the date of the examination, allowing information to
be grouped by individual and time point. The exam dates for each
worker were then chronologically ordered to construct successive
pairs of examinations with the aim of modeling individual clinical
changes over time.

2.3 Data preparation

Data cleaning and preparation were performed to ensure
consistency and analytical quality. Examination record without a
follow up were excluded. To ensure comparability of features and
facilitate model training, all continuous variables were standardized
to follow a standard normal distribution. Any pair of records
with missing values (NA) in any of the clinical variables of
interest was excluded from further analysis. Although certain
ensemble methods, such as Gradient Boosting and Random Forest,
are capable of handling missing data internally, we deliberately
opt for a complete case strategy. This decision was made to
ensure a fair comparison across all model families, including
logistic regression, which does not natively accommodate missing
values. By applying a uniform approach, we avoided introducing

differential sources of bias between architectures. It should be
noted that the final sample size of the data set for BMI and BG
differ due to data quality and filtering procedures (missing values,
outliers, others) applied to each clinical indicator. To ensure fair
modeling and avoid data leakage, predictor variables measured at
the second visit of each pair were excluded because they could
reflect the outcome itself. The only exception was the variable
time between tests, which was retained because of its relevance
in predicting clinical changes. Figure 1 provides an overview
of the data selection process. It is important to note that the
construction of longitudinal pairs inherently reduces the number
of observations, since for each worker with N examination dates,
only N − 1 successive pairs can be formed. This reduction accounts
for the transition in Figure 1 from 57,723 records to 34,684 pairs of
successive records.

2.4 Variables definitions and scenarios

To facilitate clinical interpretation, simplify classification,
and align the predictive model with real-world occupational
health decision making, the BMI and BG categories were
defined based on clinically established thresholds from pre-
employment examinations. These categories reflect the levels of
health risk considered when assessing a worker’s fitness for specific
occupational tasks. See Tables 1, 2.

Given the importance of early detection of health deterioration
among workers, the scenarios analyzed were defined as transitions
in the BMI and BG categories between two successive medical
visits per worker. These scenarios were specifically designed to
identify clinically relevant increases in risk, such as progression to
obesity or diabetes, that could affect occupational fitness according
to preemployment health standards.

For BMI, the following scenarios were defined: Scenario 1:
A transition from a lower category to a higher category of BMI,
such as normal to overweight or overweight to obesity, is labeled
positive; otherwise, it is labeled negative (Figure 2A). Scenario 2: A
transition to an adjacent higher category of BMI, such as normal to
overweight but not normal to obesity, is labeled positive; otherwise,
it is labeled negative (Figure 2B). Scenario 3: The transition from
the obesity category to the morbid obesity category is labeled as
positive; otherwise, it is labeled as negative (Figure 2C). Scenario
4: A transition that ends in the morbid obesity category, regardless
of the starting category, is labeled as positive; otherwise, it is labeled
as negative (Figure 2D).

Scenario 1: A transition from a lower to a higher category of
BG, such as from normal to prediabetic or from prediabetic to
diabetic, is labeled as positive; otherwise, it is labeled as negative
(Figure 3A). Scenario 2: A transition to a higher adjacent category
of BG, such as normal to prediabetic, is labeled positive; otherwise,
it is labeled negative (Figure 3B). Scenario 3: The transition from
the prediabetic category to the diabetic category is labeled as
positive; otherwise it is labeled as negative (Figure 3C). Scenario
4: A transition that ends in the diabetic category, regardless of the
initial category, is labeled as positive; otherwise, it is labeled as
negative (Figure 3D).

The case distribution is reported in Table 3 for all scenarios.
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FIGURE 1

Flowchart for data selection.

TABLE 1 BMI category definitions.

Category (code) Definition (kg/m2)

Normal (N) BMI < 25

Overweight (S) 25 ≤ BMI < 30

Obesity (O) 30 ≤ BMI < 35

Morbid obesity (M) BMI ≥ 35

BMI, Body mass index.

TABLE 2 BG category definitions.

Category (code) Definition (mg/dL)

Normal (N) BG < 100

Prediabetic (P) 100 ≤ BG < 125

Diabetic (D) BG ≥ 125

BG, Blood glucose.

2.5 Model development and feature
selection

To predict each of the defined scenarios, three ML models were
implemented: LR, RF, and XGB, as justified below.

Logistic regression: The LR was used as a reference model
due to its simplicity, interpretability, and widespread validation
to predict clinical risk transitions. This parametric method
assumes a linear relationship in the logarithmic odds between
predictors and outcome probability, which is suitable for
modeling the binary transitions targeted in this study, such
as a shift to a higher-risk category in BMI or BG between
successive visits. This approach enables direct quantification
of how each predictor contributes to the probability of health

deterioration, facilitating interpretation in a clinical and
occupational context. Moreover, its well-established statistical
properties make it a useful benchmark against more complex
models (46, 47).

Random forest: The RF algorithm was selected as a
robust nonparametric ensemble method capable of capturing
complex, nonlinear interactions between predictors, which are
expected when modeling BMI and BG category transitions in a
heterogeneous occupational population. This approach identifies
complex patterns in risk determinants without imposing strong
assumptions on the functional form of variable relationships. In
addition, its internal variable importance measure helps identify
key factors associated with progression to higher clinical risk
levels, helping to interpret and select characteristics in occupational
settings. Although alternative models like SVM and deep learning
were considered, they were excluded due to interpretability
constraints and computational demands in large-scale, real-world
applications. The method builds a set of decision trees, each trained
on random samples of the dataset, and combines their predictions
to minimize overall error (48).

Extreme gradient boosting: The XGB algorithm was included
because of its ability to effectively model subtle and complex
patterns in structured data, such as BMI and BG category
transitions over time. This boosting method iteratively corrects
previous prediction errors to optimize predictive accuracy, which
is particularly useful for detecting gradual, but clinically significant
changes that might go unnoticed with linear models. In general,
XGB trains sequences of decision trees by minimizing a regularized
loss function, enabling high accuracy without overfitting. Its
efficient handling of missing and heterogeneous data, together with
its competitive performance in clinical prediction tasks, makes it a
suitable tool for modeling the individual dynamics of occupational
health risk (49).
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FIGURE 2

BMI scenarios of category transitions. (A) Scenario 1: Any transition to a higher BMI category is labeled positive. (B) Scenario 2: Transition to an
adjacent higher BMI category is labeled positive. (C) Scenario 3: Transition from obesity to morbid obesity is labeled positive. (D) Scenario 4: Any
transition ending in morbid obesity, regardless of the starting category, is labeled positive. All other cases are labeled negative.

FIGURE 3

BG scenarios of category transitions. (A) Any transition to a higher BG category is labeled positive. (B) Transition to an adjacent higher BG category is
labeled positive. (C) Transition from prediabetic to diabetic is labeled positive. (D) Any transition ending in the diabetic category, regardless of the
starting category, is labeled positive. All other cases are labeled negative.

TABLE 3 Event distribution across scenarios for BMI and BG.

Scenario 1 2 3 4

BMI Negative (0) 16,158 (89.6%) 16,170 (89.7%) 5,792 (96.1%) 17,444 (96.7%)

Positive (1) 1,877 (10.4%) 1,865 (10.3%) 235 (3.9%) 591 (3.3%)

Total 18,035 (100%) 18,035 (100%) 6,027 (100%) 18,035 (100%)

BG Negative (0) 13,507 (83.6%) 13,560 (83.9%) 4,192 (97.0%) 15,870 (98.2%)

Positive (1) 2,654 (16.4%) 2,601 (16.1%) 130 (3.0%) 291 (1.8%)

Total 16,161 (100%) 16,161 (100%) 4,322 (100%) 16,161 (100%)

BMI, Body mass index; BG, Blood glucose.

All variables considered in the initial step are presented in
Table 4. The RF was used to rank the variables according to
the importance of the characteristics and the most informative
predictors were retained for each scenario. Confounders were
systematically included in all models to ensure proper adjustment.
Collinearity was evaluated at baseline, but was not used as an
exclusion criterion, since tree-based algorithms, such as RF, are
largely immune to biases caused by collinearity, as supported by
previous research (50).

2.6 Training procedure and
hyperparameter tuning

To detect category transitions in BMI and BG levels, the data
set was preprocessed to identify longitudinal changes that crossed
clinically defined thresholds. Transition events were encoded as
binary outcomes, enabling the use of classification algorithms to

predict their occurrence. Special attention was paid to ensuring
the temporal consistency of the input variables, aligning baseline
and follow-up measurements for each individual. A K-fold repeated
cross-validation was implemented to assess model robustness while
preserving the longitudinal nature of the data. During cross-
validation, feature scaling and encoding were performed within
each fold to prevent data leakage. The hyperparameters of the
RF and XGB models were optimized using a random grid search
strategy, with the objective of maximizing the area under the
receiver operating characteristic curve (AUC) while controlling for
overfitting. The data set was divided into training subsets (70%) and
testing subsets (30%), maintaining the distribution of transition
events to reflect the original prevalence, and 95% confidence
intervals were estimated for each performance metric. This pipeline
enabled models to learn relevant patterns associated with changes
in BMI and BG categories, improving predictive accuracy and
generalizability (51).

RF relies on bootstrap aggregation, which generates multiple
bootstrap samples of the dataset with replacement to train each
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TABLE 4 Sex-based differences in sociodemographic and cardiovascular risk indicators.

BG dataset BMI dataset

Biomarker Female (n = 611) Male (n = 15,550) p-value Female (n = 929) Male (n = 17,106) p-value

Age (years) 35.33 ± 9.02 40.09 ± 10.5 <0.001 37.2 ± 10.95 39.97 ± 10.64 <0.001

BMI (kg/m2) 27.84 ± 4.48 28.62 ± 3.83 <0.001 28.40 ± 5 28.64 ± 3.97 0.156

Glucose (mg/dL) 88.78 ± 12.82 94.96 ± 16.07 <0.001 90.72 ± 17.31 94.64 ± 14.94 <0.001

Triglycerides (mg/dL) 122.25 ± 54.52 150.36 ± 83.17 <0.001 126.1 ± 52.86 149.75 ± 83.85 <0.001

Cholesterol (mg/dL) 183.18 ± 28.73 190.09 ± 31.95 <0.001 184.47 ± 29.89 189.95 ± 31.65 <0.001

HDL (mg/dL) 53.24 ± 13.74 46.51 ± 9.39 <0.001 52.6 ± 13.64 46.57 ± 9.39 <0.001

HR (bpm) 73.32 ± 10.42 70.88 ± 11.13 <0.001 73.7 ± 10.54 70.91 ± 11.13 <0.001

Systolic BP (mmHg) 119.98 ± 11.20 125.73 ± 10.17 <0.001 120.76 ± 12.17 125.73 ± 10.29 <0.001

Diastolic BP (mmHg) 74.72 ± 9.32 79.43 ± 8.17 <0.001 75.19 ± 9.84 79.35 ± 8.29 <0.001

CVR (risk score, 0–1) 0.01 ± 0.004 0.01 ± 0.007 <0.001 0.01 ± 0.004 0.01 ± 0.007 <0.001

Hemoglobin (g/dL) 14.8 ± 1.30 15.87 ± 2.11 <0.001 15.06 ± 1.18 15.89 ± 1.31 <0.001

Exercise (+) 281 (46.0%) 10,562 (67.9%) <0.001 400 (43.1%) 13,999 (81.8%) <0.001

Smoking (+) 238 (39.0%) 6,507 (41.8%) 0.167 342 (36.8%) 7,137 (41.7%) 0.003

Alcohol (+) 130 (21.3%) 4,311 (27.7%) <0.001 196 (21.1%) 4,753 (27.8%) <0.001

Chilean∗ (+) 561 (91.8%) 14,603 (93.9%) 0.043 803 (86.4%) 16,001 (93.5%) <0.001

BMI, Body mass index; HDL, High-Density Lipoprotein; HR, Heart rate; BP, Blood pressure; CVR, Cardiovascular risk; ∗Chilean: individuals identified with Chilean nationality. P-values for
categorical variables were obtained using the Chi-square test.

Hyper
Parameter
Tuning

FIGURE 4

Workflow diagram.

decision tree. In contrast, the downsampling procedure used
to correct the class imbalance during training was performed
without replacement, ensuring that the majority class was
reduced in a controlled and unbiased manner within each

training fold. To address the class imbalance observed in the
outcome distribution, several resampling strategies were evaluated,
including oversampling, downsampling, and hybrid approaches.
The downsampling technique was selected, as the minority class
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represented only 1.8%–16.4% (depending on the biomarker and
scenario) of the observations and, hence, oversampling frequently
resulted in severe overfitting. The procedure consisted of random
sampling from the majority class within each training fold to
match the minority distribution, combined with repeated K-
fold cross-validation (K = 7 was used) to ensure robustness
and mitigate variability introduced by the sampling process.
To further guarantee consistency, we compared results across
models using Pearson correlation coefficient. To classify predicted
probabilities into binary outcomes, we applied the conventional 0.5
threshold. It is important to note that while the training process
was balanced, the final model evaluation, including sensitivity,
specificity, and related performance metrics, was conducted on the
original imbalanced test set, which preserves the real prevalence
of outcomes.

2.7 Model evaluation and statistical
analysis

Descriptive statistics summarized the overall results of the
pre-employment examinations, reporting categorical variables as
frequencies and percentages, and quantitative variables as means
and standard deviations. Data normality was assessed using the
Shapiro-Wilk test. Categorical variables were compared using the
Chi-square test, while quantitative variables were compared using
Student’s t test or the Mann–Whitney U test, depending on data
distribution. Pearson correlation coefficient was used to compare
the correlation among the outcomes of the different proposed
models. Confusion matrices were calculated to derive true positives
(TP), false positives (FP), false negatives (FN), and true negatives
(TN), reflecting the ability of binary classifiers to correctly identify
individuals transitioning to higher-risk BMI or BG categories.
The primary evaluation metric was the area under the receiver
operating characteristic curve (AUC-ROC), complemented by
accuracy, sensitivity, and specificity to provide a comprehensive
assessment of model performance.

The analysis provided a reliable estimate of the ability
of the models to anticipate category transitions and inform
early intervention strategies. All analyses and visualizations were
performed using the R statistical software package (version 4.1.3).
Sampling, model training, and cross-validation were performed
using the caret package (version 7.0-1). Data visualization and
performance evaluation were performed using pROC (version
1.18.5) and ggplot2 (version 3.5.1). Statistical significance was
established at p < 0.05. Figure 4 presents an overview of the
workflow and variable analysis.

3 Results

The study performed a detailed analysis of BMI and BG as
primary proxies of CVR, given their critical role in evaluating
metabolic health and glycemic control. Other biomarkers and
lifestyle factors, such as age, lipid profiles, blood pressure, heart
rate, hemoglobin, exercise habits, smoking, alcohol consumption,
and nationality, were included solely for sociodemographic

characterization and contextual purposes, without in-depth
evaluation, to provide a comprehensive background for the
primary analysis of BMI and BG. Table 4 shows the description of
the data set for each of the biomarkers of interest, BMI and BG.

Tables 5, 6 report the performance of LR, RF, and XGB models
in four classification tasks, for BMI and BG, respectively. For
each task, the test results are presented alongside cross-validation
metrics and their corresponding confidence intervals.

Table 5 presents the performance of the LR, RF and XGB
models in predicting transitions in the BMI categories in four
scenarios. All models showed a strong predictive capacity, with
XGB performing best in Scenario 4 (increase in morbid obesity,
of any origin), achieving an AUC-ROC of 0.95 (95% CI 0.94–
0.98) and accuracy of 0.91 (95% CI 0.91–0.93) in the test set. In
this scenario, XGB also demonstrated high sensitivity (0.98) and
specificity (0.83), indicating excellent detection of transitions to
morbid obesity. For Scenarios 1 (any category increase), 2 (one-
step category increase), and 3 (increase from obesity to morbid
obesity), the models maintained good performance, with AUC-
ROC values ranging from 0.84 to 0.87. Scenario 3 showed greater
variability, likely due to fewer positive cases (235, Table 3), leading
to wider confidence intervals (e.g., LR AUC-ROC: 0.83 ± 0.06).
RF slightly outperformed in sensitivity for Scenarios 1 (0.84) and
3 (0.88), while XGB excelled in Scenarios 2 (sensitivity: 0.94).
The cross-validation results closely matched the test set outcomes,
suggesting minimal overfitting. The high correlation coefficients
(0.9016–0.9724, Table 7) confirmed consistent predictions between
models, particularly in Scenario 4. As shown in Figure 5, true
positives in Scenario 4 were predominantly classified as high
or very high risk, with few negative cases misclassified. These
results demonstrate the reliability of the models in predicting BMI
transitions, especially for severe risk increases, supporting their
utility for early intervention in occupational health programs.

Table 6 presents the performance of the LR, RF and XGB
models in predicting the transitions of the category of BG
in four scenarios. All models demonstrated robust predictive
performance, with the strongest results in Scenario 4 (increase
to diabetic, any origin). Here, RF achieved an AUC-ROC of
0.83 (95% CI: 0.82–0.90) and an accuracy of 0.76 (95% CI:
0.69–0.81) in the test set, with balanced sensitivity (0.70) and
specificity (0.83), indicating a reliable detection of transitions to
the diabetic category. For Scenarios 1 (any category increase),
2 (one-step category increase), and 3 (increase from prediabetic
to diabetic), performance was slightly lower, with AUC-ROC
values ranging from 0.71 to 0.77. Scenario 3 showed greater
variability, likely due to fewer positive cases (130, Table 3), leading
to wider confidence intervals (e.g., LR AUC-ROC: 0.66 ± 0.08
during training cross-validation). LR excelled in sensitivity for
Scenario 1 (0.74) and Scenario 2 (0.77), while RF led in Scenario
3 (0.69). The cross-validation results were closely aligned with
the results of the test set, confirming minimal overfitting. The
correlation coefficients between the prediction of the model
(Table 7), ranging from 0.7255 to 0.9150, indicated a strong
agreement, particularly in Scenario 4. The models effectively
predicted BG transitions, especially for severe risk escalations.
Although slightly less robust than BMI predictions, probably
due to glucose level variability and lower sample size, these
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TABLE 5 Model performance metrics for BMI prediction (α = 0.05).

Testing 7 Fold cross validation

Model Metric 1 2 3 4 1 2 3 4

Logistic regression Accuracy 0.78 0.79 0.81 0.91 0.78 ± 0.03 0.78 ± 0.02 0.77 ± 0.05 0.91 ± 0.02

Sensitivity 0.81 0.86 0.83 0.95 0.82 ± 0.04 0.82 ± 0.05 0.79 ± 0.06 0.94 ± 0.03

Specificity 0.76 0.72 0.80 0.86 0.76 ± 0.04 0.74 ± 0.03 0.75 ± 0.07 0.89 ± 0.03

AUC-ROC 0.87 0.86 0.86 0.97 0.86 ± 0.02 0.86 ± 0.01 0.83 ± 0.06 0.96 ± 0.01

Random forest Accuracy 0.79 0.79 0.83 0.90 0.79 ± 0.02 0.78 ± 0.01 0.79 ± 0.06 0.91 ± 0.03

Sensitivity 0.84 0.85 0.88 0.94 0.83 ± 0.02 0.82 ± 0.02 0.82 ± 0.05 0.93 ± 0.02

Specificity 0.75 0.74 0.78 0.86 0.75 ± 0.02 0.72 ± 0.02 0.74 ± 0.09 0.89 ± 0.06

AUC-ROC 0.86 0.87 0.85 0.96 0.86 ± 0.01 0.85 ± 0.01 0.85 ± 0.06 0.96 ± 0.02

XGB Accuracy 0.79 0.78 0.83 0.91 0.80 ± 0.02 0.77 ± 0.02 0.82 ± 0.03 0.92 ± 0.01

Sensitivity 0.85 0.94 0.93 0.98 0.87 ± 0.03 0.93 ± 0.03 0.94 ± 0.03 0.96 ± 0.02

Specificity 0.73 0.62 0.72 0.83 0.73 ± 0.04 0.62 ± 0.06 0.70 ± 0.06 0.88 ± 0.03

AUC-ROC 0.86 0.87 0.84 0.95 0.86 ± 0.02 0.85 ± 0.02 0.86 ± 0.03 0.96 ± 0.02

AUC-ROC, Area Under the Receiver Operating Characteristic Curve; XGB, Extreme Gradient Boosting.

results highlight the potential of the models to support targeted
interventions in occupational health settings, even with limited
event counts in some scenarios.

To further assess the consistency of the behavior of the model,
Table 7 summarizes the pairwise correlations between the predicted
probabilities of each model, providing insight into the degree
of agreement between the modeling approaches. The correlation
analysis revealed strong agreement between the models for the
predictions of BMI and BG. These findings confirm that although
all models performed well, XGB consistently provided the highest
sensitivity and AUC, especially in severe transitions, making it
more suitable for early alerts in occupational health. For example,
RF and XGB had correlation coefficients greater than 0.95 in all
scenarios of BMI. LR was also strongly aligned with both models.
This consistency suggests that the choice of model has a limited
impact on the predictions, reinforcing both the robustness of the
modeling framework and the underlying correlations in the data.
The variable importance identified by the RF, XGB, and LR models
are shown in the Supplementary Tables 9, 10.

Figures 5a, b present the predicted risk levels vs. BMI for the
LR and RF models in Scenario 4, offering a detailed assessment of
their ability to classify the transitions to morbid obesity. The scatter
plots display risk probabilities (risk identified by the corresponding
model) on the y axis, ranging from 0 to 1, plotted against the
BMI values on the x axis, with data points colored by predicted
risk categories: low risk (<0.25), yellow for low-mid risk (0.25–
<0.50), orange for mid-high risk (0.50–<0.75) and high red risk
(≥0.75). The black color code indicates individuals who actually
did not have the event of interest. Individuals who had a positive
event (true positive - TP) are coded by the corresponding risk
identified by the model. For both models, the probability of
risk demonstrates a consistent increase with higher BMI values,
particularly exceeding the BMI of 30, where the majority of TP
(red and orange points) are concentrated, indicating an effective
identification of people who transition to morbid obesity. The LR

plot exhibits a pronounced increase in risk probability around a
BMI of 35, with most true positives clustered above a predicted risk
of 0.9, suggesting high predictive confidence for severe transitions.
Likewise, the RF plot shows a marked elevation beyond the BMI
of 30, with a dense aggregation of TP in the high- and very-
high-risk zones, corroborating its predictive accuracy. Figures 5c,
d also display the predicted risk, but for the test set, as a function
of the BMI measured at the most recent examination for the
test set for Scenario 4. As noted in the Methods section, the
test set is highly imbalanced, with only 3.3% positive cases. This
imbalance explains the predominance of black dots in both figures.
Similar to the training set plots (Figures 5a, b), an S-shaped
distribution can be observed. The Random Forest model provides
better discrimination of high-risk workers compared to the Logistic
Regression model. This is consistent with Table 5, which shows that
sensitivity exceeds specificity across all evaluated models. In the
case, for the training set, misclassifications are limited, with few FN
occurring in the high-risk range, and the majority of non-events
(black points) remaining below a predicted risk of 0.25, reflecting
strong discriminative power. This visual evidence aligns with the
quantitative results, where the AUC-ROC values reach 0.97 (LR)
and 0.96 (RF), Table 5, strengthening the reliability of the models
in identifying at-risk individuals based on the previous BMI and
supporting their application for early intervention in occupational
health settings.

4 Discussion

The findings of this study confirm that ML models are
accessible and robust tools to predict clinically relevant changes
in CVR indicators, such as BMI and BG, among mining
workers. Overall, the algorithms implemented demonstrated strong
performance, particularly in predicting progression to more severe
BMI categories. In particular, the results suggest that BMI changes
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TABLE 6 Model performance metrics for BG prediction (α = 0.05).

Testing 7 Fold cross validation

Model Metric 1 2 3 4 1 2 3 4

Logistic regression Accuracy 0.69 0.69 0.64 0.74 0.70 ± 0.02 0.69 ± 0.02 0.63 ± 0.05 0.79 ± 0.03

Sensitivity 0.74 0.77 0.54 0.69 0.77 ± 0.01 0.77 ± 0.03 0.64 ± 0.08 0.76 ± 0.05

Specificity 0.64 0.62 0.74 0.76 0.63 ± 0.03 0.61 ± 0.04 0.62 ± 0.09 0.83 ± 0.05

AUC-ROC 0.76 0.77 0.71 0.81 0.77 ± 0.01 0.76 ± 0.02 0.66 ± 0.08 0.87 ± 0.04

Random forest Accuracy 0.68 0.68 0.68 0.76 0.69 ± 0.02 0.68 ± 0.02 0.72 ± 0.05 0.75 ± 0.06

Sensitivity 0.72 0.71 0.69 0.70 0.74 ± 0.03 0.73 ± 0.02 0.75 ± 0.11 0.72 ± 0.09

Specificity 0.64 0.64 0.67 0.83 0.64 ± 0.03 0.62 ± 0.04 0.69 ± 0.07 0.79 ± 0.05

AUC-ROC 0.75 0.75 0.77 0.83 0.75 ± 0.01 0.74 ± 0.02 0.74 ± 0.07 0.86 ± 0.04

XGB Accuracy 0.66 0.66 0.65 0.74 0.67 ± 0.01 0.66 ± 0.01 0.64 ± 0.05 0.76 ± 0.06

Sensitivity 0.68 0.68 0.67 0.76 0.70 ± 0.01 0.68 ± 0.03 0.64 ± 0.09 0.74 ± 0.08

Specificity 0.65 0.64 0.64 0.72 0.64 ± 0.03 0.63 ± 0.02 0.65 ± 0.10 0.78 ± 0.08

AUC-ROC 0.72 0.73 0.71 0.83 0.73 ± 0.02 0.72 ± 0.02 0.69 ± 0.09 0.85 ± 0.04

AUC-ROC, Area Under the Receiver Operating Characteristic Curve; XGB, Extreme Gradient Boosting.

TABLE 7 Pearson’s correlation coefficients between model predictions
for BMI and BG.

Prediction Comparison 1 2 3 4

BMI LR vs. RF 0.9016 0.9198 0.9099 0.9630

RF vs. XGB 0.9517 0.9520 0.9724 0.9525

XGB vs. LR 0.9256 0.9273 0.9301 0.9696

BG LR vs. RF 0.8601 0.8753 0.7742 0.9042

RF vs. XGB 0.8349 0.8461 0.8305 0.9150

XGB vs. LR 0.7278 0.7362 0.7255 0.8432

BMI, Body mass index; BG, Blood glucose; LR, Logistic regression; RF, Random forest; XGB,
Extreme Gradient Boosting.

can be accurately predicted using longitudinal occupational health
data, allowing timely preventive interventions. These findings
align with previous studies showing that ML models outperform
traditional tools. In this research, although this study does not
estimate CVR scores directly (e.g., Framingham), it evaluates two
key clinical variables that directly relate to CVR. For example, the
literature has identified that the presence of diabetes increases the
risk of heart failure by 1.87 (1.71 to 2.05) in women and 1.75 (1.59
to 1.93) in men. Similarly, women with a BMI greater than 30, who
increase their BMI by 5kg/m2, have a risk of heart failure of 1.32
(1.26–1.38), while men have a risk of 1.43 (1.36–1.51) (10).

Consistent with the literature, the high concordance observed
between models in BMI predictions reinforces the stability and
reliability of this approach, regardless of the algorithm used, and
underscores the need for future research to employ larger, more
comparable datasets and a broader range of ML models (52). In
contrast, glucose predictions were less accurate and showed greater
variability, likely due to the more unstable nature of this biomarker
and the lower number of positive cases in certain categories, as
previously reported in studies on diabetes in occupational settings

(53, 54). However, the models performed better in scenarios with
more balanced class distributions, and their generalization ability
was adequate, as the test results aligned with the cross-validation
estimates, indicating no evidence of overfitting (55). The better
performance in the prediction of BMI can be explained by the more
stable and cumulative nature of this indicator over time, compared
to glucose, which tends to fluctuate due to the influence of dietary,
metabolic and environmental factors on glycemic variability (56).
Previous research has also highlighted the lower reproducibility
of glucose as a CVR marker in populations exposed to adverse
conditions, supporting our findings (57, 58).

Classical tools for estimating CVR, such as the Framingham
and SCORE equations, have shown important limitations,
especially when applied in contexts different from those in which
they were developed. In particular, they tend to underestimate the
actual risk by not taking into account the particularities of the
environment and the longitudinal evolution of clinical indicators,
as is the case for workers exposed to extreme environments, such
as miners, where specific occupational factors are not considered,
requiring recent adaptations (59). However, some scores lack
validation in external cohorts and others have demonstrated a
tendency to miscalculate risk when applied to populations different
from their origin relying on classical risk factors, which limit
their sensitivity and do not explain all observed cardiovascular
events (30). Instead of creating entirely new models, future research
should prioritize the adaptation and optimization of current
frameworks, focusing on their alignment with occupational cohorts
and real-time data acquisition (60). In contrast, the ML models
presented in this study overcome these limitations by incorporating
temporal data pairs and adapting to the specific characteristics of
the population studied, consistent with recent research promoting
the use of AI to improve risk stratification in special groups (61, 62).

Another relevant aspect concerns the trade-off between model
interpretability and predictive performance. Although complex
models such as XGB and RF offer high accuracy and flexibility, they
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FIGURE 5

Training and testing sets in Scenario 4 showing Risk BMI for LR and RF models. (a) Logistic Regression (LR), training set. (b) Random Forest (RF),
training set. (c) Logistic Regression (LR), testing set. (d) Random Forest (RF), testing set.

often lack the transparency required for clinical interpretability
and trust. Conversely, simpler models such as logistic regression
facilitate understanding and decision-making but may fail to
capture nonlinear interactions and temporal dynamics. This trade-
off has been extensively discussed in occupational health modeling,
where stakeholder participation and regulatory compliance often
favor interpretable models (63). Therefore, the selection of
models should align not only with predictive accuracy, but
also with practical implementation constraints in workplace
health systems.

However, this study has several limitations. First, using BMI
and BG as a proxy of CVR might not be sufficient. However,
there are no publicly available data on specific cardiovascular
events in individuals belonging to the mining cohort. However, the
literature shows that miners and other industrial workers are at
increased risk of CVR (64). Another limitation relates to the lack
of external validation in other populations. Furthermore, the low
prevalence of events in some BG scenarios affected the stability of
the model in those categories. Future studies should aim to include
a broader range of clinical variables and prospectively validate

these models to assess their real-world impact on the prevention
of cardiovascular events.

Another methodological aspect concerns the handling of class
imbalance. Several approaches were tested, including oversampling
and hybrid techniques, but these frequently led to overfitting
because of the small size of the minority class. In contrast,
downsampling combined with repeated cross-validation yielded
more stable and generalizable results, as confirmed by cross-
model comparisons (Table 7). This supports the robustness of
the chosen strategy, although future research should explore
complementary approaches in external datasets. It is also important
to note that a classifier may perform better on one class than
the other, as sensitivity and specificity measure different aspects
of performance, depending on its decision threshold, feature
representation, or inherent model bias, even when trained on
balanced data. In this context, model outcomes are reported using
an unbalanced test dataset, replicating the actual data distribution.
The proposed model achieved high AUC-ROC, sensitivity, and
specificity. However, the consistently higher sensitivity compared
to specificity indicates that the models are more effective at
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identifying true positive cases, namely workers who are actually
at risk.

From a practical point of view, the findings of this study have
direct implications for occupational health programs in mining
populations. Implementing ML-based predictive models enables
early identification of workers at risk of progressing to higher-
risk categories, optimizing resources, and reducing the burden of
disease and disability in this group. This approach aligns with
current trends that promote more dynamic and personalized
strategies in occupational health through the use of advanced
technologies for the monitoring and follow-up of CVR (65,
66). Therefore, it is highly recommended that these predictive
tools be used in conjunction with clinical follow-ups, nutritional
interventions, physical activity programs, and periodic health
checks to improve the health outcomes of workers.

Finally, this study not only supports the potential of ML
as a complementary tool for healthcare teams, strengthening
epidemiological surveillance in occupational populations, but
also bridges the gap toward more precise, targeted and cost-
effective interventions for high-risk workers. Integrating these
models into occupational health systems represents a significant
advance and a step forward toward more preventive, predictive,
and personalized medicine. This reinforces the notion that ML,
when contextualized and applied to dynamic occupational data,
represents not just a predictive advance, but a paradigm shift in
workplace CVR management.

5 Conclusion

This study demonstrates that ML models can effectively predict
clinically significant changes in BMI and BG levels among mining
workers, based on longitudinal occupational health data. Among
the models tested, XGB showed particularly strong performance
in predicting BMI transitions, with high accuracy and consistent
results in different scenarios. These findings underscore the
value of incorporating ML-based predictions into occupational
health programs to support earlier and more targeted preventive
strategies, ultimately improving CVR management in high-risk
worker populations by enhancing accuracy and sensitivity as
demonstrated in BMI predictions (AUC up to 0.97; sensitivity up
to 0.98).

Future research should explore the integration of additional
risk factors, such as sleep quality, stress levels, and genetic
predispositions, to further refine risk stratification in occupational
cohorts. In addition, health authorities could adopt ML-based
alert systems to guide targeted preventive actions on a scale.
Future studies should aim to externally validate these models
in other high-risk occupational settings, such as construction
or transportation, where periodic health evaluations and
similar physiological stressors are common. Replicating this
approach using datasets with longitudinal pre-employment
or annual check-up data would provide robust evidence of
their generalizability across diverse occupational contexts.
Finally, this study provides a scalable evidence-based strategy
to improve the early detection of CVR in vulnerable worker
populations, aligning with global efforts to reduce the burden of
noncommunicable diseases.
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