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Introduction: With the rising incidence of metabolic dysfunction-associated
fatty liver disease (MAFLD) in the elderly population, this study aimed to develop
an optimal screening model by comparing ten different machine learning
(ML) algorithms to identify high-risk elderly individuals using routine health
examination data.

Methods: The study included 2,635 individuals aged 60 years and older who
underwent annual health examinations at the Health Management Center of
Southwest Medical University Affiliated Hospital from January to December 2024.
Initial feature selection was performed using the least absolute shrinkage and
selection operator (LASSO) regression, followed by univariate and multivariate
logisticregressionanalysistoidentify nineindependent predictive factors. Predictive
models were constructed using 10 ML algorithms, and model performance was
evaluated based on discriminative ability, calibration ability, and clinical utility.
Feature importance was visualized and individual-level interpretability was
provided using the Shapley Additive exPlanations (SHAP) method.

Results: The final analysis included nine variables. After 10-fold cross-validation
and hyperparameter tuning, the Random Forest (RF) model performed best,
achieving an area under the curve (AUC) of 0.892 (95% ClI: 0.870-0.914) in the
validation cohort. Feature importance analysis revealed that the TyG-BMI index,
height, and albumin levels played significant roles in predicting MAFLD risk.
Discussion: Machine learning models, particularly the random forest algorithm,
can effectively predict the risk of MAFLD in the elderly population. These models
may assist clinicians in early screening and intervention, thereby improving
patient outcomes.
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Introduction

Metabolic-associated fatty liver disease (MAFLD), formerly
known as non-alcoholic fatty liver disease (NAFLD), is a condition
strongly associated with metabolic dysfunction, including obesity,
type 2 diabetes mellitus, insulin resistance, and metabolic syndrome
(1). With the global acceleration of population aging, the prevalence
of MAFLD is rising among older adults (2).

Metabolic-associated fatty liver disease not only impairs liver
function but is also closely linked to a range of extrahepatic
complications. Studies have shown that MAFLD significantly
increases the risk of both fatal and non-fatal cardiovascular events,
and patients with MAFLD are more likely to develop chronic kidney
disease and type 2 diabetes compared to healthy individuals (3-5).
Moreover, MAFLD can progress to non-alcoholic steatohepatitis
(NASH), liver fibrosis, cirrhosis, or even hepatocellular carcinoma
(HCC), posing a serious threat to patients’ health and survival (6).
These complications are more prevalent in the elderly, further
exacerbating the disease burden. Therefore, early identification of
MAFLD in older adults is crucial for reducing healthcare costs,
improving prognosis, and enhancing quality of life.

Abdominal ultrasonography is a widely used diagnostic method
for detecting hepatic steatosis and offers high accuracy in identifying
moderate to severe fatty liver. However, its sensitivity is limited for
mild cases and is highly dependent on the operator’s expertise and
interpretation (7). Liver biopsy remains the gold standard for
diagnosing MAFLD, as it allows for direct histological assessment of
hepatic pathology and severity. Nevertheless, due to its invasive
nature, high cost, and low feasibility in routine screening, especially
among older adults with multiple comorbidities, its clinical
applicability is limited (8, 9). In addition, many MAFLD patients—
especially the elderly—may remain asymptomatic in the early stages,
making timely and accurate diagnosis particularly challenging.

Machine learning (ML) has emerged as a powerful predictive tool
in the field of medicine (10-12). Unlike traditional statistical models,
which rely on predefined assumptions and explicit mathematical
formulations, ML makes no assumptions about the underlying data
structure. It is capable of analyzing high-dimensional data and
capturing complex nonlinear relationships. Furthermore, the use of
SHapley Additive exPlanations (SHAP) enhances the interpretability
of ML models by combining optimal credit allocation with local
interpretability (13). As a result, ML is increasingly applied in clinical
diagnostic research.

This study aims to develop and validate machine learning models
to predict the risk of MAFLD among older adults, utilizing SHAP to
visualize and interpret key predictors. The goal is to assist clinicians in
identifying  high-risk  individuals and

supporting  early

clinical interventions.

Methods
Participants

This cross-sectional study was conducted between January 2024
and December 2024 at the Health Management Center of the Affiliated

Hospital of Southwest Medical University. The study population
comprised older adults who underwent annual health examinations,
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including abdominal ultrasonography. Inclusion criteria were as
follows: (1) age > 60 years; (2) completion of abdominal ultrasound
examination; and (3) availability of complete clinical data. Exclusion
criteria included: (1) age < 60 years; (2) a confirmed history of liver
diseases or previous liver surgery, such as primary hepatocellular
carcinoma, large hepatic cysts, or cirrhosis; and (3) incomplete clinical
data. Based on these criteria, a total of 3,175 individuals with complete
abdominal ultrasound data were initially assessed. After excluding 383
cases with missing data and 157 cases with major liver diseases, 2,635
participants were included in the final analysis. Among them, 1,693
were male (64.25%) and 942 were female (35.75%), with a mean age
of 67.79 £ 7.07 years. Of the total participants, 878 (33.32%) were
diagnosed with MAFLD and 1,757 (66.68%) were non-MAFLD. The
diagnosis of MAFLD was based on ultrasonographic findings
consistent with hepatic steatosis. All procedures complied with
relevant ethical regulations and guidelines. All procedures in this
study were conducted in accordance with the relevant guidelines and
regulations. Due to the retrospective nature of the study, the
requirement for written informed consent was waived. The study was
approved by the Ethics Committee of the Affiliated Hospital of
Southwest Medical University (Approval No. KY2025195).

Data collection

Demographic, anthropometric, medical history, and laboratory
data were extracted from the hospital’s electronic medical examination
system. The collected variables included: Demographic Data: Age and
sex. Anthropometric Measurements: Body mass index (BMI), systolic
blood pressure (SBP), diastolic blood pressure (DBP), waist
circumference (WC), hip circumference (HC), waist-to-hip ratio
(WHR), height, and weight. Medical History: History of diabetes and
history of hypertension (self-reported or clinically documented).
Laboratory Tests: y-glutamyl transpeptidase (GGT), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT
ratio, low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), total cholesterol (TC), total bilirubin
(TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), total protein
(TP), globulin (GLO), triglycerides (TG), albumin (ALB), albumin-
to-globulin ratio (A/G), and fasting plasma glucose (FPG). In
addition, the triglyceride-glucose index (TyG) and its related
parameters were calculated using the following formulas (14, 15):

TyG index = In [TG (mg/dL) x FPG (mg/dL)/2].
TyG-BMI = TyG x BML

TyG-WC = TyG x WC.

TyG-WHR = TyG x WHR.

Diagnostic criteria for MAFLD

In this study, all enrolled participants underwent abdominal
ultrasonography performed by experienced radiologists at a tertiary
medical center. The diagnosis of hepatic steatosis was primarily based
on the following sonographic features: increased hepatic echogenicity
(“bright liver”) and/or unclear visualization of intrahepatic structures
(16). The diagnosis of metabolic dysfunction-associated fatty liver
disease (MAFLD) was established based on the presence of hepatic
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steatosis on ultrasound in addition to at least one of the following
three criteria (17): Overweight or obesity (defined as BMI > 23 kg/m?
for Asian populations); Type 2 diabetes mellitus; Lean or normal
weight (BMI < 23 kg/m” for Asian populations) with the presence of
two or more of the following metabolic risk abnormalities: (1) Waist
circumference (WC) > 90 cm in men or > 80 cm in women; (2) Blood
pressure > 130/85 mmHg or under antihypertensive treatment; (3)
Triglycerides (TG) > 1.70 mmol/L or receiving lipid-lowering therapy;
(4) HDL-C < 1.0 mmol/L in men or < 1.3 mmol/L in women, or
receiving specific treatment; (5) Prediabetes (FPG 5.6-6.9 mmol/L or
HbAlc 5.7-6.4%); (6) Homeostasis Model Assessment of Insulin
Resistance (HOMA-IR) > 2.5; (7) High-sensitivity C-reactive protein
(hs-CRP) > 2 mg/L.

Statistical analysis and model development

All statistical analyses were conducted using R software (version
4.4.2), with a two-tailed p-value < 0.05 considered statistically
significant. Continuous variables were expressed as mean + standard
deviation if normally distributed, or as median (interquartile range) if
not. Group comparisons were performed using the ¢-test for normally
distributed variables and the Mann-Whitney U test for non-normally
distributed variables. Categorical variables were presented as frequencies
(percentages) and compared using the chi-square test or Fisher’s exact
test, as appropriate. We examined the missing rates of all variables
included in the study. To ensure the accuracy and stability of the model,
variables with a missing rate exceeding 10% were excluded from the
analysis, while missing data for the remaining variables were imputed
using the Multiple Imputation by Chained Equations (MICE) method.

In this study, we used a stratified random sampling method to
divide the dataset into a training set and a validation set. All participants
were first stratified according to their MAFLD status, and then
randomly assigned within each stratum to either the training set (70%)
or the validation set (30%). The training set consisted of 1,844
individuals, and the validation set included 791 individuals. The training
set was used for model development, while the validation set was used
to evaluate model performance. Comparability between the two datasets
was assessed, and no statistically significant differences were observed
(p > 0.05). Variable selection was initially performed using least absolute
shrinkage and selection operator (LASSO) regression on the training
set. LASSO regression was implemented with the glmnet package in R,
incorporating L1 regularization to penalize model complexity by
shrinking some coefficients to zero, thereby achieving feature selection.
The issue of class imbalance was addressed by introducing the Synthetic
Minority Over-sampling Technique (SMOTE) algorithm (18).
Subsequently, variables were further filtered through univariate logistic
regression followed by multivariate logistic regression, resulting in the
identification of nine independent predictors. The variance inflation
factor (VIF) was calculated for each variable, and all VIF values were
below 5, indicating no significant multicollinearity. To further eliminate
the impact of multicollinearity on variable selection, we calculated the
Pearson correlation coefficient between TyG-BMI and BMI, which was
found to be 0.842. According to relevant literature (19-21), when the
Pearson correlation coefficient exceeds 0.85, it is necessary to exclude
one of the variables that has a weaker association with the outcome.
Therefore, after comprehensive consideration, this study retains both
TyG-BMI and BML. The flowchart of this study is shown in Figure 1.

Frontiers in Medicine

10.3389/fmed.2025.1678076

Based on a comprehensive consideration of methodological
diversity, predictive performance, and clinical interpretability. Ten
machine learning algorithms were employed to construct predictive
models, including logistic regression (LR), support vector machine
(SVM), gradient boosting machine (GBM), neural network (NN),
random forest (RF), extreme gradient boosting (XGBoost), k-nearest
neighbor (KNN), adaptive boosting (AdaBoost), light gradient boosting
machine (LightGBM), and categorical boosting (CatBoost). Ten-fold
cross-validation was used to ensure model robustness, and grid search
was applied to optimize the hyperparameters of each algorithm.

Model evaluation and interpretability

During hyperparameter tuning, the model with the highest area
under the receiver operating characteristic (ROC) curve (AUC) was
selected as the optimal model. The model was developed using the
training set and internally validated using the optimal model. Model
performance was evaluated based on AUC, sensitivity, specificity,
F1-score, accuracy, precision, and Brier score. Additionally, calibration
curves and decision curve analysis (DCA) were plotted to assess the
model’s calibration and to demonstrate its potential clinical utility. To
enhance model interpretability, SHapley Additive exPlanations
(SHAP) were used to generate summary plots, waterfall plots, force
plots, and feature importance rankings. This approach quantitatively
illustrates the contribution of each feature to the model’s predictions
(22, 23), thereby improving transparency and offering insight into
how individual variables influence the model output.

Results
Baseline characteristics

All older adults were randomly divided into a training set
(n = 1844, 70%) and a validation set (n = 791, 30%). Except for the
variable hip circumference, no statistically significant differences were
observed in baseline characteristics between the two groups (p > 0.05),
indicating a balanced distribution of covariates (Table 1 and see
Supplementary Material 1 for detailed information). Among the
participants in the training set, 619 were diagnosed with MAFLD,
yielding a prevalence rate of 33.57%. Significant differences in baseline
characteristics were found between the MAFLD and non-MAFLD
groups. Older adults with MAFLD exhibited notably abnormal
metabolic indicators, including elevated levels of blood glucose, blood
lipids, BMI, and liver function markers. Moreover, the prevalence of
hypertension and diabetes was significantly higher in the MAFLD
group compared to the non-MAFLD group (Table 2).

Predictor selection

Based on cross-validation of the least absolute shrinkage and selection
operator (LASSO) regression, two regularization parameters (1) were
determined: A.min (0.002995174) and A.1se (0.01101739). To achieve an
optimal balance between model complexity and predictive accuracy, A.1se
(0.01101739)—which corresponded to the minimum cross-validation
error—was selected as the optimal parameter. A total of 13 predictors
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Elderly individuals who underwent
examinations at the Affiliated Hospital of
Southwest Medical University from January

2024 to December 2024

Inclusion Criteria:
@ Age = 60 years;

@ Completed abdominal ultrasound
examination;
@ Complete clinical data.

The remaining samples

Exclusion Criteria:
@ Age < 60 years;

@ History of definite liver disease or
prior liver surgery, such as primary
hepatocellular carcinoma, giant
hepatic cyst, cirrhosis, etc.;

@ Incomplete clinical data.

(N=3175)
383 cases were excluded due to
missing data;
157 cases were excluded due to
significant liver disease.
Final Data
(n=2635)

Training set
(n=1844)

Variables were screened using
LASSO, univariate logistic
regression, and multivariate
logistic regression.

Ten machine learning algorithms were
employed to construct predictive models(LR,
SVM, GBM, NN, RF, XGBoost, KNN, Adaboost,

LightGBM and CatBoost) .

Validation set
(n=791)

Evaluate the predictive model's performance using
area under the ROC curve (AUC), sensitivity,
specificity, F1 score, accuracy, precision, and Brier
score; plot calibration curves and decision curve
analysis (DCA) to demonstrate the model's true
clinical utility; Enhanced model interpretability by
generating honeycomb plots, waterfall plots, force
plots, and variable importance rankings using the
SHAP method.

The best machine learning model

FIGURE 1
Research flowchart.

were initially selected in the training set: sex, diabetes, AST/ALT, ALT,
ALB, A/G, DBIL, HDL-C, TyG-BMI, WHR, BM], SBP, and height. The
LASSO selection process is illustrated in Figure 2. Subsequently, univariate
and multivariate logistic regression analyses were performed to further
refine the variable selection, and 9 independent predictors were ultimately
identified: diabetes, ALT, ALB, A/G, HDL-C, TyG-BMI, BM]I, SBP, and
height (Table 3). Variance inflation factor (VIF) values were calculated for
all variables, with all values below 5, indicating the absence of
multicollinearity among predictors.

Frontiers in Medicine 04

Model development and performance
evaluation

In this study, 10 machine learning models were developed to assess
the risk of MAFLD among older adults. A 10-fold cross-validation with
grid search was applied to obtain the optimal hyperparameters for nine
machine learning algorithms (excluding logistic regression, LR).
Detailed information on the optimal hyperparameters for each model
is available in Supplementary Material 1. Risk prediction models were

frontiersin.org


https://doi.org/10.3389/fmed.2025.1678076
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Zeng et al.

TABLE 1 Comparison of baseline data between training set and validation set.

10.3389/fmed.2025.1678076

Variables Training set Validation set Statistic
(n = 1844) (n =791)
Age, Mean + SD 67.81 £6.99 67.73 £7.24 t=-027 0.785
AST/ALT, Mean + SD 1.24 £ 0.44 1.22+£0.43 t=-1.07 0.286
LDL-C, Mean + SD 3.16 £ 0.90 3.09+£0.85 t=-1.88 0.060
TC, Mean + SD 511+1.14 5.05+1.08 t=-125 0.211
TBIL, Mean + SD 14.47 £5.30 14.71 £5.10 t=1.07 0.286
TP, Mean + SD 74.00 £ 4.52 73.66 +4.12 t=-1.89 0.058
GLO, Mean + SD 30.08 £4.19 29.76 £ 3.77 t=-1.90 0.057
ALB, Mean * SD 4391 £2.63 43.90 £2.49 t=-0.11 0.909
A/G, Mean + SD 1.49 £0.24 1.50 £0.23 t=1.26 0.206
DBIL, Mean + SD 3.15+ 1.69 3.15+£1.65 t=0.10 0.918
FPG, Mean + SD 596 +1.81 5.98 +1.96 t=0.23 0.819
IBIL, Mean + SD 11.33 £4.28 11.55 £ 4.10 t=1.25 0.211
HDL-C, Mean + SD 1.48 £0.37 1.48 £ 0.38 t=0.23 0.814
TyG, Mean + SD 5.84+0.62 5.84+0.63 t=-0.10 0.918
TyG-WC, Mean + SD 500.29 + 85.88 502.64 + 85.39 t=0.65 0.519
TyG-BMI, Mean + SD 141.06 * 26.86 142.46 +26.27 t=123 0.218
TyG-WHR, Mean + SD 527+0.75 527 +0.75 t=-0.11 0.914
WHR, Mean + SD 0.90 +0.06 0.90 £ 0.06 t=0.09 0.932
BMI, Mean + SD 24.05+3.18 2431 £3.01 t=194 0.053
Weight, Mean + SD 61.87 £10.21 62.49 +10.02 t=1.45 0.146
SBP, Mean + SD 132.36 £ 17.47 132.64 + 16.95 t=10.38 0.706
DBP, Mean + SD 74.24 £10.54 74.77 £10.34 t=1.19 0.233
WC, Mean + SD 85.35+9.21 85.81 £8.92 t=1.18 0.239
HC, Mean + SD 94.67 £ 6.14 95.18 £ 5.84 =198 0.047
Height, Mean + SD 162.10 £ 8.11 161.43 +8.48 t=-191 0.056
GGT, M (Q1, Qi) 23.10 (17.00, 33.50) 22.60 (16.85, 33.00) Z=-0.32 0.752
ALT, M (Q1, Q3) 18.90 (14.70, 25.10) 19.40 (15.10, 25.95) Z=-1.65 0.100
AST, M (Q1, Q) 22.50 (19.38, 26.20) 22.80 (19.40, 26.90) Z=-131 0.192
TG, M (Q1, Qs) 1.29 (0.95, 1.83) 1.28 (0.94, 1.82) Z=-0.14 0.885
Result, n(%) =017 0.681
Non-MAFLD 1,225 (66.43) 532 (67.26)
MAFLD 619 (33.57) 259 (32.74)
Sex, n(%) 1 =067 0.413
Male 1,194 (64.75) 499 (63.08)
Female 650 (35.25) 292 (36.92)
Hypertension, n(%) =374 0.053
No 929 (50.38) 431 (54.49)
Yes 915 (49.62) 360 (45.51)
Diabetes, 1(%) 7=027 0.600
No 1,516 (82.21) 657 (83.06)
Yes 328 (17.79) 134 (16.94)

t, t-test; Z, Mann-Whitney test; y%, Chi-square test; SD, standard deviation; M, median; Q,, 1st Quartile; Qs, 3st Quartile; BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic
blood pressure; WC, waist circumference; HC, hip circumference; WHR, waist-to-hip ratio; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect
bilirubin; TP, total protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio; FPG, fasting plasma glucose.
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TABLE 2 Distribution of baseline data in the training set.

Variables

Total data

(n = 1844)

Non-MAFLD
(n =1,225)

10.3389/fmed.2025.1678076

NEHH

Age, Mean + SD 67.81 £6.99 68.09 +7.22 67.25 £ 6.49 t=2.52 0.012
AST/ALT, Mean + SD 1.24 £ 0.44 1.32 £0.45 1.07 £0.35 t=13.05 <0.001
LDL-C, Mean + SD 3.16 £0.90 3.15+0.91 3.18£0.87 t=-0.74 0.461
TC, Mean + SD 511+1.14 511+1.16 5.10£1.10 t=0.11 0.913
TBIL, Mean + SD 14.47 £ 5.30 14.26 £ 5.07 14.89 £ 5.70 t=-243 0.015
TP, Mean + SD 74.00 £ 4.52 73.79 £ 4.60 7441 £ 4.34 t=-2.82 0.005
GLO, Mean + SD 30.08 +4.19 30.36 +4.22 29.54 £4.10 t=4.01 <0.001
ALB, Mean * SD 4391 £2.63 43.42 +£2.51 4488 +2.61 t=-11.59 <0.001
A/G, Mean + SD 1.49 £0.24 1.46 +0.22 1.55+0.25 t=-7.76 <0.001
DBIL, Mean + SD 315+ 1.69 311+£1.70 323+1.67 t=-149 0.137
FPG, Mean + SD 596 +1.81 572+ 1.64 6.43 £2.04 t=-752 <0.001
IBIL, Mean + SD 11.33 £4.28 11.16 £ 4.04 11.67 £ 4.69 t=-243 0.015
HDL-C, Mean + SD 1.48 £0.37 1.57 £0.38 1.31 £0.29 t=16.72 <0.001
TyG, Mean + SD 5.84 + 0.62 5.65+0.53 6.23 £0.60 t=-2043 <0.001
TyG-WC, Mean + SD 500.29 + 85.88 465.83 = 69.10 568.48 + 74.37 t=-29.35 <0.001
TyG-BMI, Mean + SD 141.06 + 26.86 129.51 +£20.72 163.93 + 22.64 t=-31.71 <0.001
TyG-WHR, Mean + SD 527 +0.75 5.00 £ 0.63 5.81 £0.69 t=-25.24 <0.001
WHR, Mean + SD 0.90 £ 0.06 0.88 £ 0.06 0.93 £0.06 t=-15.89 <0.001
BMI, Mean + SD 24.05+3.18 22.90 +2.68 26.34 £2.83 t=-25.56 <0.001
Weight, Mean + SD 61.87 £10.21 58.80 +9.04 67.94 £ 9.66 t=-20.05 <0.001
SBP, Mean + SD 132.36 +17.47 130.68 +17.33 135.68 +17.27 t=-5.86 <0.001
DBP, Mean + SD 74.24 £10.54 73.60 £ 10.42 75.51 £10.68 t=-3.70 <0.001
WC, Mean + SD 85.35+£9.21 82.36 £ 8.22 91.28 £8.13 t=-22.06 <0.001
HC, Mean + SD 94.67 £ 6.14 93.03 +5.46 97.92 £ 6.10 t=-17.45 <0.001
Height, Mean + SD 162.10 + 8.11 160.01 + 7.50 166.23 +7.69 t=-16.68 <0.001
GGT, M (Q1, Qs) 23.10 (17.00, 33.50) 21.00 (16.10, 29.90) 27.40 (19.70, 40.05) Z=-9.07 <0.001
ALT, M (Q1, Qs) 18.90 (14.70, 25.10) 17.50 (13.70, 22.40) 22.60 (17.60, 29.40) Z=-12.34 <0.001
AST, M (Q1, Qs) 22.50 (19.38, 26.20) 22.20 (19.10, 25.80) 22.70 (19.75, 27.40) Z=-290 0.004
TG, M (Qi1, Qs) 1.29 (0.95, 1.83) 1.13 (0.85, 1.49) 1.78 (1.29,2.47) Z=-18.37 <0.001
Sex, n(%) =049 0.482

Male 1,194 (64.75) 800 (65.31) 394 (63.65)

Female 650 (35.25) 425 (34.69) 225 (36.35)
Hypertension, n(%) 7 =48.83 <0.001

No 929 (50.38) 688 (56.16) 241 (38.93)

Yes 915 (49.62) 537 (43.84) 378 (61.07)
Diabetes, 1(%) 27 =67.89 <0.001

No 1,516 (82.21) 1,071 (87.43) 445 (71.89)

Yes 328 (17.79) 154 (12.57) 174 (28.11)

t, t-test; Z, Mann-Whitney test; y%, Chi-square test; SD, standard deviation; M, median; Q,, 1st Quartile; Qs, 3st Quartile; BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic
blood pressure; WC, waist circumference; HC, hip circumference; WHR, waist-to-hip ratio; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect
bilirubin; TP, total protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio; FPG, fasting plasma glucose.

subsequently constructed based on the optimal hyperparameters for  discrimination. In the validation set, the AUC values for each model
each algorithm. The area under the receiver operating characteristic = were as follows: LR (0.884), SVM (0.887), GBM (0.889), NN (0.859), RF
curve (AUC) was first used as the primary metric to evaluate model ~ (0.892), XGBoost (0.876), KNN (0.867), Adaboost (0.822), LightGBM
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FIGURE 2

Clinical feature selection via the lasso regression model. (A) The partial likelihood deviance (binomial deviance) curve was plotted vs. log (lambda). The
dotted vertical lines represent the optimal predictors using the minimum criteria (min. criteria) and the 1 SE of the minimum criteria (1-SE criteria).
(B) Lasso coefficients of a total of 13 clinical features. Dynamic process diagram of lasso screening variables.
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(0.854), and CatBoost (0.889). Among these, the random forest (RF)
model demonstrated the best discriminatory performance. Further
evaluation of model performance included accuracy, sensitivity,
specificity, precision, F1 score, and Brier score. Detailed metrics for all
10 models are presented in Table 4. Notably, the RF model achieved the
highest F1 score (0.739) and sensitivity (0.919), along with the lowest
Brier score (0.125), indicating excellent predictive capability and
calibration. Additionally, calibration curves and decision curve analysis
(DCA) were plotted to assess the models’ calibration and clinical utility
in both the training and validation sets (see ROC curves, calibration
curves, and DCA in Figure 3). Taking all performance metrics into
account, the RF model demonstrated the best overall performance, with
strong calibration and clinical applicability, making it the most suitable
predictive model in this study.

Model interpretability

To further interpret the results of the RF model, SHAP (SHapley
Additive exPlanations) value-based visualizations were employed. As
shown in Figure 4A, a summary (beeswarm) plot illustrates the
distribution of SHAP values for each feature. In this plot, each point
represents an individual patient; the X-axis indicates the magnitude
and direction of the feature’s impact on the model output, while the
Y-axis ranks the features by importance. Features positioned higher
on the Y-axis have a greater influence on model predictions. The
analysis identified nine key predictors for MAFLD in older adults:
TyG-BMI, height, ALB, BMI, A/G, ALT, HDL-C, SBP, and diabetes.
Among them, TyG-BMI, height, and ALB were the top three
contributors to model predictions. Figures 4B,C present a detailed
case study using SHAP waterfall and force plots to illustrate the
prediction process for a specific individual. The waterfall plot reveals
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how the model prediction is formed by sequentially adding the SHAP
values of individual features to a baseline value. The force plot offers a
more intuitive visual summary of the collective “push and pull” effect
of features on the prediction outcome for that patient. Additionally,
Figure 4D displays a bar chart of feature importance ranked by their
mean absolute SHAP values, clearly highlighting the relative
contribution of each variable to the RF model. Features appearing at
the top of the chart exert the most significant influence on the
model’s predictions.

Discussion

Metabolic-associated fatty liver disease (MAFLD) has a global
prevalence of 38.77%, affecting more than one-third of the world’s
population (24). A systematic review and meta-analysis forecast that
by 2030, approximately 314.58 million people in China will
be diagnosed with MAFLD (25). MAFLD has become an increasingly
serious public health issue, imposing significant socioeconomic
burdens. Epidemiological evidence indicates that the prevalence of
MAFLD exhibits a distinct age-dependent pattern, with elderly
individuals bearing a substantially higher burden of risk factors (26).
Therefore, this study aims to develop machine learning models to
enable early identification of high-risk elderly populations with
MAFLD, thereby reducing medical and socioeconomic costs.

Our study identified TyG-BMLI, height, albumin (ALB), body mass
index (BMI), albumin/globulin ratio (A/G), alanine aminotransferase
(ALT), systolic blood pressure (SBP), and diabetes as risk factors for
MAFLD in the elderly, while high-density lipoprotein cholesterol
(HDL-C) served as a protective factor. SHAP visualization further
highlighted TyG-BMI, height, and ALB as the three most critical
independent predictors.
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TABLE 3 Univariate and multivariate regression analysis of the variables after LASSO screening.

Variables Univariate regression Multivariate regression
OR (95%Cl) OR (95%Cl) P

Sex

Male 1.00 (Reference)

Female 1.07 (0.88 ~ 1.32) 0.482
Diabetes

No 1.00 (Reference) 1.00 (Reference)

Yes 2.72(2.13 ~ 3.47) <0.001 1.79 (1.27 ~ 2.54) <0.001
AST/ALT 0.13 (0.09 ~ 0.18) <0.001
ALT 1.04 (1.03 ~ 1.04) <0.001 1.02 (1.01 ~ 1.03) <0.001
ALB 1.26 (1.21 ~ 1.32) <0.001 1.16 (1.08 ~ 1.24) <0.001
AIG 5.41(3.52 ~ 8.32) <0.001 3.15 (1.53 ~ 6.45) 0.002
DBIL 1.04 (0.9 ~ 1.10) 0.138
HDL-C 0.09 (0.06 ~ 0.12) <0.001 0.54 (0.33 ~ 0.89) 0.015
TyG-BMI 1.08 (1.07 ~ 1.09) <0.001 1.06 (1.05 ~ 1.07) <0.001
WHR 525551.49 (82496.05 ~ 3348092.04) <0.001
BMI 1.60 (1.52 ~ 1.68) <0.001 1.12 (1.03 ~ 1.22) 0.007
SBP 1.02 (1.01 ~ 1.02) <0.001 1.01 (1.01 ~ 1.02) 0.001
Height 112 (1.10 ~ 1.13) <0.001 111 (1.09 ~ 1.14) <0.001

BMI, Body Mass Index; SBP, systolic blood pressure; WHR, waist-to-hip ratio; ALT, alanine aminotransferase; HDL-C, high-density lipoprotein cholesterol; DBIL, direct bilirubin; TP, total
protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio.

TABLE 4 Confusion matrix results of 10 machine learning models.

Data set Model Accuracy Sensitivity Specificity Precision F1 score Brier
score
Train LR 0.828 0.871 0.806 0.694 0.772 0.110 0.918
SVM 0.820 0.897 0.782 0.675 0.770 0.110 0.918
GBM 0.844 0.903 0.815 0.711 0.796 0.095 0.937
NN 0.815 0.842 0.802 0.682 0.753 0.122 0.901
RE 1.000 1.000 1.000 1.000 1.000 0.015 1.000
XGBoost 0.873 0.855 0.882 0.786 0.819 0.132 0.943
KNN 0.882 0.948 0.848 0.759 0.843 0.077 0.968
Adaboost 0.797 0.850 0.771 0.652 0.738 0.136 0.855
LightGBM 0917 0.929 0.911 0.841 0.883 0.059 0.971
CatBoost 0.858 0.848 0.864 0.759 0.801 0.238 0.933
Valid LR 0.803 0.842 0.784 0.655 0.736 0.131 0.884
SVM 0.805 0.834 0.791 0.661 0.737 0.130 0.887
GBM 0.785 0.888 0.735 0.620 0.730 0.129 0.889
NN 0.775 0.834 0.746 0.615 0.708 0.143 0.859
RF 0.788 0.919 0.724 0.618 0.739 0.125 0.892
XGBoost 0.795 0.819 0.784 0.648 0.724 0.156 0.876
KNN 0.804 0.734 0.838 0.688 0.710 0.138 0.867
Adaboost 0.767 0.834 0.735 0.605 0.701 0.159 0.822
LightGBM 0.761 0.873 0.707 0.592 0.705 0.160 0.854
CatBoost 0.784 0.896 0.729 0.617 0.731 0.247 0.889

Train: training set; Valid, validation set; LR, logistic regression; SVM, support vector machine; GBM, Gradient Boosting Machine; NN, NeuralNetwork; RE, random forest; XGBoost, eXtreme
Gradient Boosting; KNN, K-Nearest Neighbor; Adaboost, Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; CatBoost, Categorical Boosting.
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FIGURE 3

Comparison of the ROC curves for 10 machine learning models. (A) Comparison of ROC curves in the training set, (B) comparison of ROC curves on
the validation set. (C) Comparison of calibration curves in the training set, (D) comparison of calibration curves on the validation set. (E) Comparison of
DCA in the training set, (F) comparison of DCA on the validation set. LR, logistic regression; SVM, support vector machine; GBM, Gradient Boosting
Machine; NN, NeuralNetwork; RF, random forest; XGBoost, eXtreme Gradient Boosting; KNN, K-Nearest Neighbor; Adaboost, Adaptive Boosting;
LightGBM, Light Gradient Boosting Machine; CatBoost, Categorical Boosting.
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(A) Hive plot of the SHAP values of the model constructed by the RF algorithm. Vertical coordinates show the importance of the features, sorted in
descending order of variable importance, while the variables above are more important to the model. For horizontal positions, the ‘Shap value’ shows
whether the effect of this value is related to higher or lower predictions. The color of each SHAP value point indicates whether the observed value is
high (yellow) or low (purple). (B) The waterfall plot of SHAP values for the model constructed by the RF algorithm. (C) SHAP value force plot of the
model constructed using the RF algorithm. (D) The SHAP variable importance ranking plot of the model constructed using the RF algorithm.

TyG-BMLI, a widely studied marker of metabolic dysregulation in
recent years, integrates triglycerides (TG), fasting plasma glucose
(FPG), and BMI, providing a comprehensive reflection of insulin
resistance and metabolic abnormalities (27). Yang et al. (28)

Frontiers in Medicine

demonstrated a positive association between TyG-BMI and MAFLD,
which remained significant after adjustments in multiple models.
Additionally, a study based on the U. S. National Health and Nutrition
Examination Survey (NHANES) data showed that TyG-BMI was
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significantly associated with all-cause mortality in MAFLD patients
and had strong predictive value across different populations (29). Our
findings that TyG-BMI is an independent predictor of MAFLD align
with these previous reports.

Height emerged as a key predictor of MAFLD in our study,
potentially related to differences in fat distribution among the elderly.
Prior studies have shown significant correlations between height and
both fat distribution and metabolic dysfunction, with taller individuals
generally exhibiting higher basal metabolic rates and healthier fat
distribution patterns (30-32). Albumin, synthesized by the liver (33),
reflects hepatic synthetic function and reserve capacity. Chen et al.
(34) reported that MAFLD patients tend to have lower ALB levels,
indicating some degree of hepatic impairment. Li et al. (35) also found
that decreased ALB levels were associated with an increased risk of
MAFLD, potentially due to ALB’s anti-inflammatory and antioxidant
properties. Our results corroborate these findings, confirming ALB as
arisk factor for MAFLD in the elderly.

In addition to these three key predictors, BMI, A/G, ALT, SBP, and
diabetes were also identified as risk factors for MAFLD in older adults.
Studies have established a significant association between BMI and
MAFLD risk, with BMI serving as a reliable predictor for MAFLD
occurrence (36, 37). Due to hepatic fat accumulation and
inflammation, immune activation leads to increased globulin
synthesis, resulting in decreased A/G ratio. This change reflects
hepatic synthetic function and overall health, indirectly indicating
MAFLD risk (38). A prospective cohort study demonstrated that
persistently high-normal ALT levels were significantly associated with
increased risk of incident MAFLD, underscoring the importance of
ALT monitoring for early identification of high-risk individuals (39).
Furthermore, numerous studies have reported that MAFLD patients
often present with hypertension and diabetes, with SBP > 130 mmHg
and diabetes significantly positively correlated with MAFLD risk
(40-42).

HDL-C facilitates the transport of cholesterol from peripheral
tissues to the liver for metabolism and excretion. One study indicated
that low HDL-C levels may increase the risk of liver fibrosis and
hepatocellular carcinoma in MAFLD patients, suggesting that higher
HDL-C levels might be protective against MAFLD development,
consistent with our findings (43).

Among the models developed, random forest (RF) demonstrated
superior predictive accuracy and high sensitivity, making it the
optimal model for predicting MAFLD risk in elderly populations. RF
achieved the highest area under the ROC curve (AUC), with
calibration curves closely aligned with the ideal line, and decision
curve analysis (DCA) showing maximal net benefit across different
threshold probabilities. At the same time, SHAP visualization was
used to enhance the model’s interpretability, with the creation of hive
plots, force plots, waterfall plots, and importance ranking plots for
visual representation. These visualizations highlight how these factors
interact and influence the prevalence of MAFLD in the elderly
population. This interpretability ensures that the model is a
transparent tool that clinicians and researchers can trust.

This study has several limitations. First, the RF model exhibited
near-perfect performance on the training set, indicating a risk of
overfitting. Although 10-fold cross-validation and regularization
techniques were applied, further validation through nested cross-
validation, early stopping, ensemble methods, or external validation
on larger datasets is needed to ensure model robustness and
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generalizability. Second, all participants in this study were recruited
from the Affiliated Hospital of Southwest Medical University, and the
representativeness and regional applicability of the study population
require further external validation using multi-center, large-scale
clinical data to assess the generalizability of the findings. Third, this
study is a cross-sectional study, and all sample data were drawn from
the population undergoing health examinations at this hospital in
2024. Data from a single year may be subject to temporal and selection
biases and cannot reflect the dynamic progression of the disease over
time. Future studies should conduct prospective validation over longer
follow-up periods and multiple time points to further ensure the
robustness of the model. Fourth, the diagnosis of fatty liver disease in
this study was based on abdominal ultrasound findings, which
generally provide lower-level evidence compared to liver biopsy or
magnetic resonance imaging (MRI). In addition, one of the diagnostic
criteria for MAFLD is a plasma high-sensitivity C-reactive protein
(hs-CRP) level >2 mg/L; however, this parameter was not routinely
measured in the examined population. Other important factors
affecting MAFLD risk, such as lifestyle habits and dietary patterns,
were also not systematically recorded, which may have affected the
accuracy of the prediction. Future research should aim to incorporate
more comprehensive and detailed data to further enhance model
performance and interpretability.

Conclusion

The increasing prevalence of MAFLD among the elderly
population has drawn considerable public attention, underscoring the
need for large-scale early screening models tailored to this
demographic. In this study, 10 machine learning models were
developed and their performances compared, with the random forest
model identified as the optimal predictor for MAFLD. Furthermore,
SHAP visualization was employed to elucidate the interactions
between various risk factors and MAFLD. The findings demonstrate
that the proposed MAFLD screening model exhibits satisfactory
predictive performance, offering a novel, cost-effective approach for
the prevention and early detection of MAFLD in the elderly.
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