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Introduction: With the rising incidence of metabolic dysfunction-associated 
fatty liver disease (MAFLD) in the elderly population, this study aimed to develop 
an optimal screening model by comparing ten different machine learning 
(ML) algorithms to identify high-risk elderly individuals using routine health 
examination data.
Methods: The study included 2,635 individuals aged 60 years and older who 
underwent annual health examinations at the Health Management Center of 
Southwest Medical University Affiliated Hospital from January to December 2024. 
Initial feature selection was performed using the least absolute shrinkage and 
selection operator (LASSO) regression, followed by univariate and multivariate 
logistic regression analysis to identify nine independent predictive factors. Predictive 
models were constructed using 10 ML algorithms, and model performance was 
evaluated based on discriminative ability, calibration ability, and clinical utility. 
Feature importance was visualized and individual-level interpretability was 
provided using the Shapley Additive exPlanations (SHAP) method.
Results: The final analysis included nine variables. After 10-fold cross-validation 
and hyperparameter tuning, the Random Forest (RF) model performed best, 
achieving an area under the curve (AUC) of 0.892 (95% CI: 0.870–0.914) in the 
validation cohort. Feature importance analysis revealed that the TyG-BMI index, 
height, and albumin levels played significant roles in predicting MAFLD risk.
Discussion: Machine learning models, particularly the random forest algorithm, 
can effectively predict the risk of MAFLD in the elderly population. These models 
may assist clinicians in early screening and intervention, thereby improving 
patient outcomes.
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Introduction

Metabolic-associated fatty liver disease (MAFLD), formerly 
known as non-alcoholic fatty liver disease (NAFLD), is a condition 
strongly associated with metabolic dysfunction, including obesity, 
type 2 diabetes mellitus, insulin resistance, and metabolic syndrome 
(1). With the global acceleration of population aging, the prevalence 
of MAFLD is rising among older adults (2).

Metabolic-associated fatty liver disease not only impairs liver 
function but is also closely linked to a range of extrahepatic 
complications. Studies have shown that MAFLD significantly 
increases the risk of both fatal and non-fatal cardiovascular events, 
and patients with MAFLD are more likely to develop chronic kidney 
disease and type 2 diabetes compared to healthy individuals (3–5). 
Moreover, MAFLD can progress to non-alcoholic steatohepatitis 
(NASH), liver fibrosis, cirrhosis, or even hepatocellular carcinoma 
(HCC), posing a serious threat to patients’ health and survival (6). 
These complications are more prevalent in the elderly, further 
exacerbating the disease burden. Therefore, early identification of 
MAFLD in older adults is crucial for reducing healthcare costs, 
improving prognosis, and enhancing quality of life.

Abdominal ultrasonography is a widely used diagnostic method 
for detecting hepatic steatosis and offers high accuracy in identifying 
moderate to severe fatty liver. However, its sensitivity is limited for 
mild cases and is highly dependent on the operator’s expertise and 
interpretation (7). Liver biopsy remains the gold standard for 
diagnosing MAFLD, as it allows for direct histological assessment of 
hepatic pathology and severity. Nevertheless, due to its invasive 
nature, high cost, and low feasibility in routine screening, especially 
among older adults with multiple comorbidities, its clinical 
applicability is limited (8, 9). In addition, many MAFLD patients—
especially the elderly—may remain asymptomatic in the early stages, 
making timely and accurate diagnosis particularly challenging.

Machine learning (ML) has emerged as a powerful predictive tool 
in the field of medicine (10–12). Unlike traditional statistical models, 
which rely on predefined assumptions and explicit mathematical 
formulations, ML makes no assumptions about the underlying data 
structure. It is capable of analyzing high-dimensional data and 
capturing complex nonlinear relationships. Furthermore, the use of 
SHapley Additive exPlanations (SHAP) enhances the interpretability 
of ML models by combining optimal credit allocation with local 
interpretability (13). As a result, ML is increasingly applied in clinical 
diagnostic research.

This study aims to develop and validate machine learning models 
to predict the risk of MAFLD among older adults, utilizing SHAP to 
visualize and interpret key predictors. The goal is to assist clinicians in 
identifying high-risk individuals and supporting early 
clinical interventions.

Methods

Participants

This cross-sectional study was conducted between January 2024 
and December 2024 at the Health Management Center of the Affiliated 
Hospital of Southwest Medical University. The study population 
comprised older adults who underwent annual health examinations, 

including abdominal ultrasonography. Inclusion criteria were as 
follows: (1) age ≥ 60 years; (2) completion of abdominal ultrasound 
examination; and (3) availability of complete clinical data. Exclusion 
criteria included: (1) age < 60 years; (2) a confirmed history of liver 
diseases or previous liver surgery, such as primary hepatocellular 
carcinoma, large hepatic cysts, or cirrhosis; and (3) incomplete clinical 
data. Based on these criteria, a total of 3,175 individuals with complete 
abdominal ultrasound data were initially assessed. After excluding 383 
cases with missing data and 157 cases with major liver diseases, 2,635 
participants were included in the final analysis. Among them, 1,693 
were male (64.25%) and 942 were female (35.75%), with a mean age 
of 67.79 ± 7.07 years. Of the total participants, 878 (33.32%) were 
diagnosed with MAFLD and 1,757 (66.68%) were non-MAFLD. The 
diagnosis of MAFLD was based on ultrasonographic findings 
consistent with hepatic steatosis. All procedures complied with 
relevant ethical regulations and guidelines. All procedures in this 
study were conducted in accordance with the relevant guidelines and 
regulations. Due to the retrospective nature of the study, the 
requirement for written informed consent was waived. The study was 
approved by the Ethics Committee of the Affiliated Hospital of 
Southwest Medical University (Approval No. KY2025195).

Data collection

Demographic, anthropometric, medical history, and laboratory 
data were extracted from the hospital’s electronic medical examination 
system. The collected variables included: Demographic Data: Age and 
sex. Anthropometric Measurements: Body mass index (BMI), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), waist 
circumference (WC), hip circumference (HC), waist-to-hip ratio 
(WHR), height, and weight. Medical History: History of diabetes and 
history of hypertension (self-reported or clinically documented). 
Laboratory Tests: γ-glutamyl transpeptidase (GGT), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT 
ratio, low-density lipoprotein cholesterol (LDL-C), high-density 
lipoprotein cholesterol (HDL-C), total cholesterol (TC), total bilirubin 
(TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), total protein 
(TP), globulin (GLO), triglycerides (TG), albumin (ALB), albumin-
to-globulin ratio (A/G), and fasting plasma glucose (FPG). In 
addition, the triglyceride-glucose index (TyG) and its related 
parameters were calculated using the following formulas (14, 15):

TyG index = ln [TG (mg/dL) × FPG (mg/dL)/2].
TyG-BMI = TyG × BMI.
TyG-WC = TyG × WC.
TyG-WHR = TyG × WHR.

Diagnostic criteria for MAFLD

In this study, all enrolled participants underwent abdominal 
ultrasonography performed by experienced radiologists at a tertiary 
medical center. The diagnosis of hepatic steatosis was primarily based 
on the following sonographic features: increased hepatic echogenicity 
(“bright liver”) and/or unclear visualization of intrahepatic structures 
(16). The diagnosis of metabolic dysfunction-associated fatty liver 
disease (MAFLD) was established based on the presence of hepatic 
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steatosis on ultrasound in addition to at least one of the following 
three criteria (17): Overweight or obesity (defined as BMI ≥ 23 kg/m2 
for Asian populations); Type 2 diabetes mellitus; Lean or normal 
weight (BMI < 23 kg/m2 for Asian populations) with the presence of 
two or more of the following metabolic risk abnormalities: (1) Waist 
circumference (WC) ≥ 90 cm in men or ≥ 80 cm in women; (2) Blood 
pressure ≥ 130/85 mmHg or under antihypertensive treatment; (3) 
Triglycerides (TG) ≥ 1.70 mmol/L or receiving lipid-lowering therapy; 
(4) HDL-C < 1.0 mmol/L in men or < 1.3 mmol/L in women, or 
receiving specific treatment; (5) Prediabetes (FPG 5.6–6.9 mmol/L or 
HbA1c 5.7–6.4%); (6) Homeostasis Model Assessment of Insulin 
Resistance (HOMA-IR) ≥ 2.5; (7) High-sensitivity C-reactive protein 
(hs-CRP) ≥ 2 mg/L.

Statistical analysis and model development

All statistical analyses were conducted using R software (version 
4.4.2), with a two-tailed p-value < 0.05 considered statistically 
significant. Continuous variables were expressed as mean ± standard 
deviation if normally distributed, or as median (interquartile range) if 
not. Group comparisons were performed using the t-test for normally 
distributed variables and the Mann–Whitney U test for non-normally 
distributed variables. Categorical variables were presented as frequencies 
(percentages) and compared using the chi-square test or Fisher’s exact 
test, as appropriate. We examined the missing rates of all variables 
included in the study. To ensure the accuracy and stability of the model, 
variables with a missing rate exceeding 10% were excluded from the 
analysis, while missing data for the remaining variables were imputed 
using the Multiple Imputation by Chained Equations (MICE) method.

In this study, we used a stratified random sampling method to 
divide the dataset into a training set and a validation set. All participants 
were first stratified according to their MAFLD status, and then 
randomly assigned within each stratum to either the training set (70%) 
or the validation set (30%). The training set consisted of 1,844 
individuals, and the validation set included 791 individuals. The training 
set was used for model development, while the validation set was used 
to evaluate model performance. Comparability between the two datasets 
was assessed, and no statistically significant differences were observed 
(p > 0.05). Variable selection was initially performed using least absolute 
shrinkage and selection operator (LASSO) regression on the training 
set. LASSO regression was implemented with the glmnet package in R, 
incorporating L1 regularization to penalize model complexity by 
shrinking some coefficients to zero, thereby achieving feature selection. 
The issue of class imbalance was addressed by introducing the Synthetic 
Minority Over-sampling Technique (SMOTE) algorithm (18). 
Subsequently, variables were further filtered through univariate logistic 
regression followed by multivariate logistic regression, resulting in the 
identification of nine independent predictors. The variance inflation 
factor (VIF) was calculated for each variable, and all VIF values were 
below 5, indicating no significant multicollinearity. To further eliminate 
the impact of multicollinearity on variable selection, we calculated the 
Pearson correlation coefficient between TyG-BMI and BMI, which was 
found to be 0.842. According to relevant literature (19–21), when the 
Pearson correlation coefficient exceeds 0.85, it is necessary to exclude 
one of the variables that has a weaker association with the outcome. 
Therefore, after comprehensive consideration, this study retains both 
TyG-BMI and BMI. The flowchart of this study is shown in Figure 1.

Based on a comprehensive consideration of methodological 
diversity, predictive performance, and clinical interpretability. Ten 
machine learning algorithms were employed to construct predictive 
models, including logistic regression (LR), support vector machine 
(SVM), gradient boosting machine (GBM), neural network (NN), 
random forest (RF), extreme gradient boosting (XGBoost), k-nearest 
neighbor (KNN), adaptive boosting (AdaBoost), light gradient boosting 
machine (LightGBM), and categorical boosting (CatBoost). Ten-fold 
cross-validation was used to ensure model robustness, and grid search 
was applied to optimize the hyperparameters of each algorithm.

Model evaluation and interpretability

During hyperparameter tuning, the model with the highest area 
under the receiver operating characteristic (ROC) curve (AUC) was 
selected as the optimal model. The model was developed using the 
training set and internally validated using the optimal model. Model 
performance was evaluated based on AUC, sensitivity, specificity, 
F1-score, accuracy, precision, and Brier score. Additionally, calibration 
curves and decision curve analysis (DCA) were plotted to assess the 
model’s calibration and to demonstrate its potential clinical utility. To 
enhance model interpretability, SHapley Additive exPlanations 
(SHAP) were used to generate summary plots, waterfall plots, force 
plots, and feature importance rankings. This approach quantitatively 
illustrates the contribution of each feature to the model’s predictions 
(22, 23), thereby improving transparency and offering insight into 
how individual variables influence the model output.

Results

Baseline characteristics

All older adults were randomly divided into a training set 
(n = 1844, 70%) and a validation set (n = 791, 30%). Except for the 
variable hip circumference, no statistically significant differences were 
observed in baseline characteristics between the two groups (p > 0.05), 
indicating a balanced distribution of covariates (Table  1 and see 
Supplementary Material 1 for detailed information). Among the 
participants in the training set, 619 were diagnosed with MAFLD, 
yielding a prevalence rate of 33.57%. Significant differences in baseline 
characteristics were found between the MAFLD and non-MAFLD 
groups. Older adults with MAFLD exhibited notably abnormal 
metabolic indicators, including elevated levels of blood glucose, blood 
lipids, BMI, and liver function markers. Moreover, the prevalence of 
hypertension and diabetes was significantly higher in the MAFLD 
group compared to the non-MAFLD group (Table 2).

Predictor selection

Based on cross-validation of the least absolute shrinkage and selection 
operator (LASSO) regression, two regularization parameters (λ) were 
determined: λ.min (0.002995174) and λ.1se (0.01101739). To achieve an 
optimal balance between model complexity and predictive accuracy, λ.1se 
(0.01101739)—which corresponded to the minimum cross-validation 
error—was selected as the optimal parameter. A total of 13 predictors 
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were initially selected in the training set: sex, diabetes, AST/ALT, ALT, 
ALB, A/G, DBIL, HDL-C, TyG-BMI, WHR, BMI, SBP, and height. The 
LASSO selection process is illustrated in Figure 2. Subsequently, univariate 
and multivariate logistic regression analyses were performed to further 
refine the variable selection, and 9 independent predictors were ultimately 
identified: diabetes, ALT, ALB, A/G, HDL-C, TyG-BMI, BMI, SBP, and 
height (Table 3). Variance inflation factor (VIF) values were calculated for 
all variables, with all values below 5, indicating the absence of 
multicollinearity among predictors.

Model development and performance 
evaluation

In this study, 10 machine learning models were developed to assess 
the risk of MAFLD among older adults. A 10-fold cross-validation with 
grid search was applied to obtain the optimal hyperparameters for nine 
machine learning algorithms (excluding logistic regression, LR). 
Detailed information on the optimal hyperparameters for each model 
is available in Supplementary Material 1. Risk prediction models were 

FIGURE 1

Research flowchart.
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TABLE 1  Comparison of baseline data between training set and validation set.

Variables Training set
(n = 1844)

Validation set
(n = 791)

Statistic P

Age, Mean ± SD 67.81 ± 6.99 67.73 ± 7.24 t = −0.27 0.785

AST/ALT, Mean ± SD 1.24 ± 0.44 1.22 ± 0.43 t = −1.07 0.286

LDL-C, Mean ± SD 3.16 ± 0.90 3.09 ± 0.85 t = −1.88 0.060

TC, Mean ± SD 5.11 ± 1.14 5.05 ± 1.08 t = −1.25 0.211

TBIL, Mean ± SD 14.47 ± 5.30 14.71 ± 5.10 t = 1.07 0.286

TP, Mean ± SD 74.00 ± 4.52 73.66 ± 4.12 t = −1.89 0.058

GLO, Mean ± SD 30.08 ± 4.19 29.76 ± 3.77 t = −1.90 0.057

ALB, Mean ± SD 43.91 ± 2.63 43.90 ± 2.49 t = −0.11 0.909

A/G, Mean ± SD 1.49 ± 0.24 1.50 ± 0.23 t = 1.26 0.206

DBIL, Mean ± SD 3.15 ± 1.69 3.15 ± 1.65 t = 0.10 0.918

FPG, Mean ± SD 5.96 ± 1.81 5.98 ± 1.96 t = 0.23 0.819

IBIL, Mean ± SD 11.33 ± 4.28 11.55 ± 4.10 t = 1.25 0.211

HDL-C, Mean ± SD 1.48 ± 0.37 1.48 ± 0.38 t = 0.23 0.814

TyG, Mean ± SD 5.84 ± 0.62 5.84 ± 0.63 t = −0.10 0.918

TyG-WC, Mean ± SD 500.29 ± 85.88 502.64 ± 85.39 t = 0.65 0.519

TyG-BMI, Mean ± SD 141.06 ± 26.86 142.46 ± 26.27 t = 1.23 0.218

TyG-WHR, Mean ± SD 5.27 ± 0.75 5.27 ± 0.75 t = −0.11 0.914

WHR, Mean ± SD 0.90 ± 0.06 0.90 ± 0.06 t = 0.09 0.932

BMI, Mean ± SD 24.05 ± 3.18 24.31 ± 3.01 t = 1.94 0.053

Weight, Mean ± SD 61.87 ± 10.21 62.49 ± 10.02 t = 1.45 0.146

SBP, Mean ± SD 132.36 ± 17.47 132.64 ± 16.95 t = 0.38 0.706

DBP, Mean ± SD 74.24 ± 10.54 74.77 ± 10.34 t = 1.19 0.233

WC, Mean ± SD 85.35 ± 9.21 85.81 ± 8.92 t = 1.18 0.239

HC, Mean ± SD 94.67 ± 6.14 95.18 ± 5.84 t = 1.98 0.047

Height, Mean ± SD 162.10 ± 8.11 161.43 ± 8.48 t = −1.91 0.056

GGT, M (Q₁, Q₃) 23.10 (17.00, 33.50) 22.60 (16.85, 33.00) Z = −0.32 0.752

ALT, M (Q₁, Q₃) 18.90 (14.70, 25.10) 19.40 (15.10, 25.95) Z = −1.65 0.100

AST, M (Q₁, Q₃) 22.50 (19.38, 26.20) 22.80 (19.40, 26.90) Z = −1.31 0.192

TG, M (Q₁, Q₃) 1.29 (0.95, 1.83) 1.28 (0.94, 1.82) Z = −0.14 0.885

Result, n(%) χ2 = 0.17 0.681

 � Non-MAFLD 1,225 (66.43) 532 (67.26)

 � MAFLD 619 (33.57) 259 (32.74)

Sex, n(%) χ2 = 0.67 0.413

 � Male 1,194 (64.75) 499 (63.08)

 � Female 650 (35.25) 292 (36.92)

Hypertension, n(%) χ2 = 3.74 0.053

 � No 929 (50.38) 431 (54.49)

 � Yes 915 (49.62) 360 (45.51)

Diabetes, n(%) χ2 = 0.27 0.600

 � No 1,516 (82.21) 657 (83.06)

 � Yes 328 (17.79) 134 (16.94)

t, t-test; Z, Mann–Whitney test; χ2, Chi-square test; SD, standard deviation; M, median; Q₁, 1st Quartile; Q₃, 3st Quartile; BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; WC, waist circumference; HC, hip circumference; WHR, waist-to-hip ratio; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect 
bilirubin; TP, total protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio; FPG, fasting plasma glucose.
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subsequently constructed based on the optimal hyperparameters for 
each algorithm. The area under the receiver operating characteristic 
curve (AUC) was first used as the primary metric to evaluate model 

discrimination. In the validation set, the AUC values for each model 
were as follows: LR (0.884), SVM (0.887), GBM (0.889), NN (0.859), RF 
(0.892), XGBoost (0.876), KNN (0.867), Adaboost (0.822), LightGBM 

TABLE 2  Distribution of baseline data in the training set.

Variables Total data
(n = 1844)

Non-MAFLD
(n = 1,225)

MAFLD
(n = 619)

Statistic P

Age, Mean ± SD 67.81 ± 6.99 68.09 ± 7.22 67.25 ± 6.49 t = 2.52 0.012

AST/ALT, Mean ± SD 1.24 ± 0.44 1.32 ± 0.45 1.07 ± 0.35 t = 13.05 <0.001

LDL-C, Mean ± SD 3.16 ± 0.90 3.15 ± 0.91 3.18 ± 0.87 t = −0.74 0.461

TC, Mean ± SD 5.11 ± 1.14 5.11 ± 1.16 5.10 ± 1.10 t = 0.11 0.913

TBIL, Mean ± SD 14.47 ± 5.30 14.26 ± 5.07 14.89 ± 5.70 t = −2.43 0.015

TP, Mean ± SD 74.00 ± 4.52 73.79 ± 4.60 74.41 ± 4.34 t = −2.82 0.005

GLO, Mean ± SD 30.08 ± 4.19 30.36 ± 4.22 29.54 ± 4.10 t = 4.01 <0.001

ALB, Mean ± SD 43.91 ± 2.63 43.42 ± 2.51 44.88 ± 2.61 t = −11.59 <0.001

A/G, Mean ± SD 1.49 ± 0.24 1.46 ± 0.22 1.55 ± 0.25 t = −7.76 <0.001

DBIL, Mean ± SD 3.15 ± 1.69 3.11 ± 1.70 3.23 ± 1.67 t = −1.49 0.137

FPG, Mean ± SD 5.96 ± 1.81 5.72 ± 1.64 6.43 ± 2.04 t = −7.52 <0.001

IBIL, Mean ± SD 11.33 ± 4.28 11.16 ± 4.04 11.67 ± 4.69 t = −2.43 0.015

HDL-C, Mean ± SD 1.48 ± 0.37 1.57 ± 0.38 1.31 ± 0.29 t = 16.72 <0.001

TyG, Mean ± SD 5.84 ± 0.62 5.65 ± 0.53 6.23 ± 0.60 t = −20.43 <0.001

TyG-WC, Mean ± SD 500.29 ± 85.88 465.83 ± 69.10 568.48 ± 74.37 t = −29.35 <0.001

TyG-BMI, Mean ± SD 141.06 ± 26.86 129.51 ± 20.72 163.93 ± 22.64 t = −31.71 <0.001

TyG-WHR, Mean ± SD 5.27 ± 0.75 5.00 ± 0.63 5.81 ± 0.69 t = −25.24 <0.001

WHR, Mean ± SD 0.90 ± 0.06 0.88 ± 0.06 0.93 ± 0.06 t = −15.89 <0.001

BMI, Mean ± SD 24.05 ± 3.18 22.90 ± 2.68 26.34 ± 2.83 t = −25.56 <0.001

Weight, Mean ± SD 61.87 ± 10.21 58.80 ± 9.04 67.94 ± 9.66 t = −20.05 <0.001

SBP, Mean ± SD 132.36 ± 17.47 130.68 ± 17.33 135.68 ± 17.27 t = −5.86 <0.001

DBP, Mean ± SD 74.24 ± 10.54 73.60 ± 10.42 75.51 ± 10.68 t = −3.70 <0.001

WC, Mean ± SD 85.35 ± 9.21 82.36 ± 8.22 91.28 ± 8.13 t = −22.06 <0.001

HC, Mean ± SD 94.67 ± 6.14 93.03 ± 5.46 97.92 ± 6.10 t = −17.45 <0.001

Height, Mean ± SD 162.10 ± 8.11 160.01 ± 7.50 166.23 ± 7.69 t = −16.68 <0.001

GGT, M (Q₁, Q₃) 23.10 (17.00, 33.50) 21.00 (16.10, 29.90) 27.40 (19.70, 40.05) Z = −9.07 <0.001

ALT, M (Q₁, Q₃) 18.90 (14.70, 25.10) 17.50 (13.70, 22.40) 22.60 (17.60, 29.40) Z = −12.34 <0.001

AST, M (Q₁, Q₃) 22.50 (19.38, 26.20) 22.20 (19.10, 25.80) 22.70 (19.75, 27.40) Z = −2.90 0.004

TG, M (Q₁, Q₃) 1.29 (0.95, 1.83) 1.13 (0.85, 1.49) 1.78 (1.29, 2.47) Z = −18.37 <0.001

Sex, n(%) χ2 = 0.49 0.482

 � Male 1,194 (64.75) 800 (65.31) 394 (63.65)

 � Female 650 (35.25) 425 (34.69) 225 (36.35)

Hypertension, n(%) χ2 = 48.83 <0.001

 � No 929 (50.38) 688 (56.16) 241 (38.93)

 � Yes 915 (49.62) 537 (43.84) 378 (61.07)

Diabetes, n(%) χ2 = 67.89 <0.001

 � No 1,516 (82.21) 1,071 (87.43) 445 (71.89)

 � Yes 328 (17.79) 154 (12.57) 174 (28.11)

t, t-test; Z, Mann–Whitney test; χ2, Chi-square test; SD, standard deviation; M, median; Q₁, 1st Quartile; Q₃, 3st Quartile; BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; WC, waist circumference; HC, hip circumference; WHR, waist-to-hip ratio; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect 
bilirubin; TP, total protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio; FPG, fasting plasma glucose.
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(0.854), and CatBoost (0.889). Among these, the random forest (RF) 
model demonstrated the best discriminatory performance. Further 
evaluation of model performance included accuracy, sensitivity, 
specificity, precision, F1 score, and Brier score. Detailed metrics for all 
10 models are presented in Table 4. Notably, the RF model achieved the 
highest F1 score (0.739) and sensitivity (0.919), along with the lowest 
Brier score (0.125), indicating excellent predictive capability and 
calibration. Additionally, calibration curves and decision curve analysis 
(DCA) were plotted to assess the models’ calibration and clinical utility 
in both the training and validation sets (see ROC curves, calibration 
curves, and DCA in Figure 3). Taking all performance metrics into 
account, the RF model demonstrated the best overall performance, with 
strong calibration and clinical applicability, making it the most suitable 
predictive model in this study.

Model interpretability

To further interpret the results of the RF model, SHAP (SHapley 
Additive exPlanations) value-based visualizations were employed. As 
shown in Figure  4A, a summary (beeswarm) plot illustrates the 
distribution of SHAP values for each feature. In this plot, each point 
represents an individual patient; the X-axis indicates the magnitude 
and direction of the feature’s impact on the model output, while the 
Y-axis ranks the features by importance. Features positioned higher 
on the Y-axis have a greater influence on model predictions. The 
analysis identified nine key predictors for MAFLD in older adults: 
TyG-BMI, height, ALB, BMI, A/G, ALT, HDL-C, SBP, and diabetes. 
Among them, TyG-BMI, height, and ALB were the top three 
contributors to model predictions. Figures 4B,C present a detailed 
case study using SHAP waterfall and force plots to illustrate the 
prediction process for a specific individual. The waterfall plot reveals 

how the model prediction is formed by sequentially adding the SHAP 
values of individual features to a baseline value. The force plot offers a 
more intuitive visual summary of the collective “push and pull” effect 
of features on the prediction outcome for that patient. Additionally, 
Figure 4D displays a bar chart of feature importance ranked by their 
mean absolute SHAP values, clearly highlighting the relative 
contribution of each variable to the RF model. Features appearing at 
the top of the chart exert the most significant influence on the 
model’s predictions.

Discussion

Metabolic-associated fatty liver disease (MAFLD) has a global 
prevalence of 38.77%, affecting more than one-third of the world’s 
population (24). A systematic review and meta-analysis forecast that 
by 2030, approximately 314.58 million people in China will 
be diagnosed with MAFLD (25). MAFLD has become an increasingly 
serious public health issue, imposing significant socioeconomic 
burdens. Epidemiological evidence indicates that the prevalence of 
MAFLD exhibits a distinct age-dependent pattern, with elderly 
individuals bearing a substantially higher burden of risk factors (26). 
Therefore, this study aims to develop machine learning models to 
enable early identification of high-risk elderly populations with 
MAFLD, thereby reducing medical and socioeconomic costs.

Our study identified TyG-BMI, height, albumin (ALB), body mass 
index (BMI), albumin/globulin ratio (A/G), alanine aminotransferase 
(ALT), systolic blood pressure (SBP), and diabetes as risk factors for 
MAFLD in the elderly, while high-density lipoprotein cholesterol 
(HDL-C) served as a protective factor. SHAP visualization further 
highlighted TyG-BMI, height, and ALB as the three most critical 
independent predictors.

FIGURE 2

Clinical feature selection via the lasso regression model. (A) The partial likelihood deviance (binomial deviance) curve was plotted vs. log (lambda). The 
dotted vertical lines represent the optimal predictors using the minimum criteria (min. criteria) and the 1 SE of the minimum criteria (1-SE criteria). 
(B) Lasso coefficients of a total of 13 clinical features. Dynamic process diagram of lasso screening variables.
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TABLE 4  Confusion matrix results of 10 machine learning models.

Data set Model Accuracy Sensitivity Specificity Precision F1 score Brier 
score

AUC

Train LR 0.828 0.871 0.806 0.694 0.772 0.110 0.918

SVM 0.820 0.897 0.782 0.675 0.770 0.110 0.918

GBM 0.844 0.903 0.815 0.711 0.796 0.095 0.937

NN 0.815 0.842 0.802 0.682 0.753 0.122 0.901

RF 1.000 1.000 1.000 1.000 1.000 0.015 1.000

XGBoost 0.873 0.855 0.882 0.786 0.819 0.132 0.943

KNN 0.882 0.948 0.848 0.759 0.843 0.077 0.968

Adaboost 0.797 0.850 0.771 0.652 0.738 0.136 0.855

LightGBM 0.917 0.929 0.911 0.841 0.883 0.059 0.971

CatBoost 0.858 0.848 0.864 0.759 0.801 0.238 0.933

Valid LR 0.803 0.842 0.784 0.655 0.736 0.131 0.884

SVM 0.805 0.834 0.791 0.661 0.737 0.130 0.887

GBM 0.785 0.888 0.735 0.620 0.730 0.129 0.889

NN 0.775 0.834 0.746 0.615 0.708 0.143 0.859

RF 0.788 0.919 0.724 0.618 0.739 0.125 0.892

XGBoost 0.795 0.819 0.784 0.648 0.724 0.156 0.876

KNN 0.804 0.734 0.838 0.688 0.710 0.138 0.867

Adaboost 0.767 0.834 0.735 0.605 0.701 0.159 0.822

LightGBM 0.761 0.873 0.707 0.592 0.705 0.160 0.854

CatBoost 0.784 0.896 0.729 0.617 0.731 0.247 0.889

Train: training set; Valid, validation set; LR, logistic regression; SVM, support vector machine; GBM, Gradient Boosting Machine; NN, NeuralNetwork; RF, random forest; XGBoost, eXtreme 
Gradient Boosting; KNN, K-Nearest Neighbor; Adaboost, Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; CatBoost, Categorical Boosting.

TABLE 3  Univariate and multivariate regression analysis of the variables after LASSO screening.

Variables Univariate regression Multivariate regression

OR (95%CI) P OR (95%CI) P

Sex

 � Male 1.00 (Reference)

 � Female 1.07 (0.88 ~ 1.32) 0.482

Diabetes

 � No 1.00 (Reference) 1.00 (Reference)

 � Yes 2.72 (2.13 ~ 3.47) <0.001 1.79 (1.27 ~ 2.54) <0.001

AST/ALT 0.13 (0.09 ~ 0.18) <0.001

ALT 1.04 (1.03 ~ 1.04) <0.001 1.02 (1.01 ~ 1.03) <0.001

ALB 1.26 (1.21 ~ 1.32) <0.001 1.16 (1.08 ~ 1.24) <0.001

A/G 5.41 (3.52 ~ 8.32) <0.001 3.15 (1.53 ~ 6.45) 0.002

DBIL 1.04 (0.99 ~ 1.10) 0.138

HDL-C 0.09 (0.06 ~ 0.12) <0.001 0.54 (0.33 ~ 0.89) 0.015

TyG-BMI 1.08 (1.07 ~ 1.09) <0.001 1.06 (1.05 ~ 1.07) <0.001

WHR 525551.49 (82496.05 ~ 3348092.04) <0.001

BMI 1.60 (1.52 ~ 1.68) <0.001 1.12 (1.03 ~ 1.22) 0.007

SBP 1.02 (1.01 ~ 1.02) <0.001 1.01 (1.01 ~ 1.02) 0.001

Height 1.12 (1.10 ~ 1.13) <0.001 1.11 (1.09 ~ 1.14) <0.001

BMI, Body Mass Index; SBP, systolic blood pressure; WHR, waist-to-hip ratio; ALT, alanine aminotransferase; HDL-C, high-density lipoprotein cholesterol; DBIL, direct bilirubin; TP, total 
protein; GLO, globulin; TG, triglycerides; ALB, albumin; A/G, albumin-to-globulin ratio.
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FIGURE 3

Comparison of the ROC curves for 10 machine learning models. (A) Comparison of ROC curves in the training set, (B) comparison of ROC curves on 
the validation set. (C) Comparison of calibration curves in the training set, (D) comparison of calibration curves on the validation set. (E) Comparison of 
DCA in the training set, (F) comparison of DCA on the validation set. LR, logistic regression; SVM, support vector machine; GBM, Gradient Boosting 
Machine; NN, NeuralNetwork; RF, random forest; XGBoost, eXtreme Gradient Boosting; KNN, K-Nearest Neighbor; Adaboost, Adaptive Boosting; 
LightGBM, Light Gradient Boosting Machine; CatBoost, Categorical Boosting.
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TyG-BMI, a widely studied marker of metabolic dysregulation in 
recent years, integrates triglycerides (TG), fasting plasma glucose 
(FPG), and BMI, providing a comprehensive reflection of insulin 
resistance and metabolic abnormalities (27). Yang et  al. (28) 

demonstrated a positive association between TyG-BMI and MAFLD, 
which remained significant after adjustments in multiple models. 
Additionally, a study based on the U. S. National Health and Nutrition 
Examination Survey (NHANES) data showed that TyG-BMI was 

FIGURE 4

(A) Hive plot of the SHAP values of the model constructed by the RF algorithm. Vertical coordinates show the importance of the features, sorted in 
descending order of variable importance, while the variables above are more important to the model. For horizontal positions, the ‘Shap value’ shows 
whether the effect of this value is related to higher or lower predictions. The color of each SHAP value point indicates whether the observed value is 
high (yellow) or low (purple). (B) The waterfall plot of SHAP values for the model constructed by the RF algorithm. (C) SHAP value force plot of the 
model constructed using the RF algorithm. (D) The SHAP variable importance ranking plot of the model constructed using the RF algorithm.
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significantly associated with all-cause mortality in MAFLD patients 
and had strong predictive value across different populations (29). Our 
findings that TyG-BMI is an independent predictor of MAFLD align 
with these previous reports.

Height emerged as a key predictor of MAFLD in our study, 
potentially related to differences in fat distribution among the elderly. 
Prior studies have shown significant correlations between height and 
both fat distribution and metabolic dysfunction, with taller individuals 
generally exhibiting higher basal metabolic rates and healthier fat 
distribution patterns (30–32). Albumin, synthesized by the liver (33), 
reflects hepatic synthetic function and reserve capacity. Chen et al. 
(34) reported that MAFLD patients tend to have lower ALB levels, 
indicating some degree of hepatic impairment. Li et al. (35) also found 
that decreased ALB levels were associated with an increased risk of 
MAFLD, potentially due to ALB’s anti-inflammatory and antioxidant 
properties. Our results corroborate these findings, confirming ALB as 
a risk factor for MAFLD in the elderly.

In addition to these three key predictors, BMI, A/G, ALT, SBP, and 
diabetes were also identified as risk factors for MAFLD in older adults. 
Studies have established a significant association between BMI and 
MAFLD risk, with BMI serving as a reliable predictor for MAFLD 
occurrence (36, 37). Due to hepatic fat accumulation and 
inflammation, immune activation leads to increased globulin 
synthesis, resulting in decreased A/G ratio. This change reflects 
hepatic synthetic function and overall health, indirectly indicating 
MAFLD risk (38). A prospective cohort study demonstrated that 
persistently high-normal ALT levels were significantly associated with 
increased risk of incident MAFLD, underscoring the importance of 
ALT monitoring for early identification of high-risk individuals (39). 
Furthermore, numerous studies have reported that MAFLD patients 
often present with hypertension and diabetes, with SBP ≥ 130 mmHg 
and diabetes significantly positively correlated with MAFLD risk 
(40–42).

HDL-C facilitates the transport of cholesterol from peripheral 
tissues to the liver for metabolism and excretion. One study indicated 
that low HDL-C levels may increase the risk of liver fibrosis and 
hepatocellular carcinoma in MAFLD patients, suggesting that higher 
HDL-C levels might be  protective against MAFLD development, 
consistent with our findings (43).

Among the models developed, random forest (RF) demonstrated 
superior predictive accuracy and high sensitivity, making it the 
optimal model for predicting MAFLD risk in elderly populations. RF 
achieved the highest area under the ROC curve (AUC), with 
calibration curves closely aligned with the ideal line, and decision 
curve analysis (DCA) showing maximal net benefit across different 
threshold probabilities. At the same time, SHAP visualization was 
used to enhance the model’s interpretability, with the creation of hive 
plots, force plots, waterfall plots, and importance ranking plots for 
visual representation. These visualizations highlight how these factors 
interact and influence the prevalence of MAFLD in the elderly 
population. This interpretability ensures that the model is a 
transparent tool that clinicians and researchers can trust.

This study has several limitations. First, the RF model exhibited 
near-perfect performance on the training set, indicating a risk of 
overfitting. Although 10-fold cross-validation and regularization 
techniques were applied, further validation through nested cross-
validation, early stopping, ensemble methods, or external validation 
on larger datasets is needed to ensure model robustness and 

generalizability. Second, all participants in this study were recruited 
from the Affiliated Hospital of Southwest Medical University, and the 
representativeness and regional applicability of the study population 
require further external validation using multi-center, large-scale 
clinical data to assess the generalizability of the findings. Third, this 
study is a cross-sectional study, and all sample data were drawn from 
the population undergoing health examinations at this hospital in 
2024. Data from a single year may be subject to temporal and selection 
biases and cannot reflect the dynamic progression of the disease over 
time. Future studies should conduct prospective validation over longer 
follow-up periods and multiple time points to further ensure the 
robustness of the model. Fourth, the diagnosis of fatty liver disease in 
this study was based on abdominal ultrasound findings, which 
generally provide lower-level evidence compared to liver biopsy or 
magnetic resonance imaging (MRI). In addition, one of the diagnostic 
criteria for MAFLD is a plasma high-sensitivity C-reactive protein 
(hs-CRP) level ≥2 mg/L; however, this parameter was not routinely 
measured in the examined population. Other important factors 
affecting MAFLD risk, such as lifestyle habits and dietary patterns, 
were also not systematically recorded, which may have affected the 
accuracy of the prediction. Future research should aim to incorporate 
more comprehensive and detailed data to further enhance model 
performance and interpretability.

Conclusion

The increasing prevalence of MAFLD among the elderly 
population has drawn considerable public attention, underscoring the 
need for large-scale early screening models tailored to this 
demographic. In this study, 10 machine learning models were 
developed and their performances compared, with the random forest 
model identified as the optimal predictor for MAFLD. Furthermore, 
SHAP visualization was employed to elucidate the interactions 
between various risk factors and MAFLD. The findings demonstrate 
that the proposed MAFLD screening model exhibits satisfactory 
predictive performance, offering a novel, cost-effective approach for 
the prevention and early detection of MAFLD in the elderly.
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