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and the emerging multifunctional
biomaterials of the bone—brain
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Cerebral ischemia, a leading cause of neurological disability and death, is characterized
by reduced cerebral blood flow that induces hypoxia, neuronal injury, and irreversible
brain damage. Its complex pathophysiology involves neuroinflammation, oxidative
stress, glial cell activation, disruption of the neurovascular unit, and increasingly
recognized bone—brain axis crosstalk. Sinomenine (SIN), a bioactive alkaloid derived
from Sinomenium acutum, exhibits notable anti-inflammatory, antioxidant, and
immunomodulatory properties, and has shown protective effects on the cardiovascular
and nervous systems. However, the clinical application of SIN is limited by its poor
pharmacokinetic properties, such as low oral bioavailability and a short half-life.
To address these limitations, nanotechnology-based delivery systems have been
designed to enhance its stability, brain-targeting ability, and therapeutic potential.
Recent studies also highlight the potential of leveraging the bone—brain axis as a
novel route for SIN delivery, offering enhanced targeting of ischemic brain tissue.
This review synthesizes current evidence on the neuroprotective mechanisms
of SIN, with particular focus on its modulation of the bone—-brain axis and the
advances in delivery technologies. Collectively, these insights support the therapeutic
potential of SIN-based nano-delivery platforms targeting the bone—brain axis in
the treatment of cerebral ischemia.
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1 Introduction

Research on the use of traditional Chinese medicine, including single herbs, classical
prescriptions, and isolated bioactive compounds for the prevention and treatment of central
nervous system (CNS) disorders has been conducted for several decades. Accumulating
evidence highlights their considerable therapeutic potential, with clinical benefits documented
across a range of neurological conditions. For example, recent studies have shown that
Lonicerae Japonicae Flos alleviates Alzheimer’s disease pathology through multiple targets and
active constituents (1). Ginsenoside Rb1 has been reported to exert neuroprotective effects
against cerebral ischemia-reperfusion injury, primarily through the regulation of antioxidant
defenses and suppression of neuroinflammatory response (2). Similarly, Zhang et al. (3)
demonstrated that mangiferin preserved neurological function and improved post-stroke
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cognitive impairment in I/R rats, primarily via regulation of
disordered lipid metabolism. Sinomenine (SIN), a major bioactive
alkaloid isolated from the root and stem of Sinomenium acutum
Rehder and E. H. Wilson or its variant Sinomenium acutum var.
cinereum, is the primary pharmacologically active component of this
traditional Chinese medicinal herb. It has been historically used in the
treatment of rheumatism and neuralgia and has a long history of
(4-6). The
pharmacological activities of SIN, which include immunomodulatory

clinical ~application in traditional medicines
and anti-inflammatory properties, are responsible for the significant
therapeutic efficacy of SIN in the treatment of conditions such as
rheumatoid arthritis, sciatic neuritis, and lumbalgia (4, 5, 7). Since its
purification in the 1920s, SIN has also been shown to regulate
histamine release, exert mild sedative and analgesic effects, and
provide neuroprotective benefits. These pharmacological actions have
been substantiated in various disorders, including ankylosing
spondylitis and CNS diseases (4, 5, 8-13).

Stroke, particularly ischemic stroke which accounts for
approximately 85% of all cases in China—is a major cause of death
and long-term disability (14-16). In the event of a stroke, the depletion
of adenosine triphosphate (ATP) triggers the ischemic cascade, which
ultimately leads to the accumulation of calcium within the cells, the
failure of the ion pump, and the glutamate-induced cell excitotoxicity
(17). In addition to the response of the central neurons, the injured
tissue also undergoes activation of the immune system. The neuronal
cells in the brain are the cells that are most vulnerable to harm from
ischemia (18). Damage associated molecular patterns (DAMPs) are
molecules that are released by necrotic neurons and non-neuronal
tissue. Examples of DAMPs include high-mobility group box 1
(HMGBI) and heat shock proteins (HSPs), which, together with other
pro-inflammatory mediators, contribute to the disruption of the
blood-brain barrier (BBB) (19). Once the BBB is breached, systemic
inflammatory cells such as monocytes, neutrophils, and T cells
continuously infiltrate the lesion, worsening the injury. In addition,
multi-omics analyses revealed that dynamic alterations in
cerebrospinal fluid lipid metabolism during the course of intracerebral
hemorrhage from onset to reperfusion are closely associated with
patient outcomes, suggesting that lipid metabolism may serve as a
potential target for therapeutic intervention and prognostic
evaluation (20).

Bone, as a fundamental structural tissue, has garnered increasing
attention for its endocrine functions. The bone-brain axis, also known
as the brain-bone axis, is a bidirectional regulatory interaction
between the brain and bone that can be formed by a variety of
methods, according to new research. The efferent neural system
controls bone homeostasis and regeneration (21-23), However, the
mechanisms behind the regulatory effects of bone on brain function
are still being studied (24-26). According to recent research, bone can
control peripheral organs’ growth and metabolism through bone-
derived cell migration and the synthesis and secretion of several
bioactive cytokines. Certain bone-derived cytokines and cells can
traverse the BBB to reach the CNS (27).

Given the multifaceted pharmacological actions of SIN and
the emerging insights into the regulatory crosstalk between bone
and brain, we propose a novel therapeutic paradigm that leverages
the bone-brain axis for the targeted delivery of SIN in the
treatment of cerebral ischemia. To illustrate the conceptual
framework and hypothesized mechanisms underlying this
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approach, we present a graphical summary (Figure 1) outlining the

pathophysiological processes of cerebral ischemia, the
pharmacological effects of SIN, and its potential delivery via the

bone-brain axis.

2 Pathophysiological mechanisms of
neurovascular injury induced by
cerebral ischemia

Studies have demonstrated that cerebral ischemia triggers a
multifactorial and complex pathological process (28). Out of all of
these mechanisms, inflammation is a significant contributor to the
pathophysiology of ischemia. Nuclear factor-kappa B (NF-kB) and
activator protein-1 (AP-1) are key transcriptional regulators of the
inflammatory response, promoting the upregulation of
pro-inflammatory cytokines such as interleukin-1p (IL-1p) and
tumor necrosis factor-a (TNF-a). The following activation of matrix
metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2) is a
consequence of this cascade (29). The activation of MMP-2, MMP-3,
and MMP-9 compromises key structural components, including the
basement membrane, tight junctions, and extracellular matrix,
thereby in-creasing BBB permeability. This results in secondary
effects, including leukocyte in-filtration, impaired transcellular
transport, pericyte damage, expansion of the peri-vascular space, and
astrocyte proliferation (30, 31). Additionally, chronic cerebral
ischemia drives the sustained activation and proliferation of M1-type
microglia and Al-type reactive astrocytes, which also increases the
release of pro-inflammatory cytokines like IL-1$ and TNF-q, as well
as neurotoxic mediators (32-34). This microglial activation of
microglia is potentiated by paracrine signaling (35). On the one
hand, IL-1f exacerbates BBB disruption by downregulating tight
junction protein Zonula Oc-cludens-1 (ZO-1), activating caspase-1
within the brain, and establishing a positive feedback loop that
amplifies IL-1p production (36). On the other hand, the upregulation
of TNF-a in endothelial cells promotes cytoskeletal rearrangement,
thereby compromising tight junction integrity and disrupting the
structural cohesion of the basement membrane (37). Moreover,
TNF-a contributes to endothelial dysfunction by activating the
NF-xB and mitogen-activated protein kinase (MAPK) signaling
pathways, which in turn promote the transcription of additional
pro-inflammatory cytokines and apoptosis-related genes. This
cascade of events exacerbates endothelial cell activation and
dysfunction (38-41).

Furthermore, activated astrocytes differentiate into neurotoxic Al
and neuroprotective A2 subtypes (42, 43). Under cerebral ischemic
conditions, reactive astrocytes predominantly adopt the Al
phenotype, characterized by the release of pro-inflammatory factors
and neurotoxic mediators. Al astrocytes are distinguished by
hypertrophy, reduced expression of essential ion channels and
neurotransmitter receptors, and upregulated glial fibrillary acidic
protein (GFAP) expression, ultimately disrupting the BBB (44). Recent
studies have demonstrated that in the bilateral carotid artery stenosis
(BCAS) mouse model of chronic cerebral ischemia, sham-operated
controls were used for comparison, and a significant increase in
GFAP~ astrocytes was observed within 28 days after surgery (45). This
astrocytic activation was accompanied by pronounced demyelination
and axonal injury in the white matter (45). Thus, microglia and
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Targeting cerebral ischemia via the bone-brain axis: therapeutic potential of Sinomenine.

astrocytes play key roles in the pathogenesis and progression of
cerebral ischemia.

Cerebral ischemia also activates inflammasomes, thereby
initiating an inflammatory response. Studies have shown that the
NOD-like receptor thermal protein domain associated protein 3
(NLRP 3) inflammasome, in response to cerebral ischemia, is activated
through the pathogen-associated molecular pattern (PAMP)/DAMP
signaling pathway, which promotes the conversion of caspase-1,
thereby accelerating the process of pyroptosis in neuronal cells (46).
Additionally, persistent cerebral ischemia induces anaerobic
metabolism in brain cells, leading to the onset of oxidative stress.
Research indicates that following cerebral ischemia, antioxidant
enzyme levels significantly de-crease, reactive oxygen species (ROS)
production increases, and excessive deposition of amyloid-beta (Af)
proteins occurs (47). Meanwhile, methyltransferase 3-mediated m6A
modification promotes the degradation of synaptosomal-associated
protein 29 mRNA, thereby impairing the restoration of autophagic
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flux, triggering mitochondrial crisis and excessive ROS accumulation,
and ultimately exacerbating oxidative stress injury in the ischemic
microenvironment (48). Consequently, these changes result in
extensive oxidative damage to proteins, DNA, and other cellular
components within the brain.

Notably, cerebral ischemia may interact with bone through
multiple pathways. Stroke, a major risk factor for fragility fractures,
increases the risk of post-stroke disability and mortality, with stroke
survivors experiencing a seven-fold higher incidence of fragility
fractures (49). Wang et al. (50) found that cerebral ischemia can
activate the sympathetic nervous system, which in turn activates
CD4" T cells in the bone marrow. Upon activation, Receptor
Activator of Nuclear Factor-kB Ligand (RANKL), is produced by
CD4" T cells, which attaches to the RANK receptor and triggers the
NF-xB and MAPK signaling pathways. This activation promotes
Nuclear Factor of Activated T-Cells Cytoplasmic 1 (NFATcl), —
osteoclast  differentiation, ultimately

mediated enhancing
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osteoclastogenesis and bone resorption (51). Conversely, bone is also
considered an endocrine organ (52), influencing the pathological
state of cerebral ischemia through cytokine-mediated indirect
mechanisms. Members of the transforming growth factor-f (TGF-f)
class, bone morphogenetic proteins (BMPs) are signaling molecules
released by osteoblasts (OBs) and osteoclasts (OCs) (53). BMPs
primarily regulate bone formation and maintenance via Smad-
dependent signaling and through crosstalk with other pathways such
as MAPK, Wnt, Hedgehog, Notch, and FGF signaling (54).
Ap-proximately 15 BMPs have been identified, with some being
implicated in ischemic brain injury (55). For example, BMP7 is
significantly upregulated following cerebral is-chemic injury, likely
due to its neuroprotective effects. In a rat model of cerebral ischemia,
Pei et al. (56) demonstrated that exogenous injection of BMP7
effectively mitigated neuronal death induced by ischemia, improved
glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD)
activities, and mitigated neuronal death caused by ischemia,
ultimately improving oxidative stress-induced brain damage.
Similarly, BMP4/Smad1/5/8 signaling is enhanced in ischemic mice
following isoflurane treatment (57), while BMP2 has been implicated
in post-ischemic brain repair (58). Additionally, osteocalcin, a bone-
derived hormone, has been shown to alleviate neuronal loss in acute
ischemic stroke by inhibiting prolyl hydroxylase domain-containing
protein 1(PHD1) and preventing the degradation of gasdermin D,
thereby improving prognosis (59). These findings underscore the
complex bidirectional interactions between bone and brain, revealing
potential therapeutic targets for cerebral ischemia and other
neurological disorders (Figure 2).

10.3389/fmed.2025.1677685

3 Bone-brain axis

The primary physiological function of bones has traditionally
been viewed as protecting internal organs and facilitating movement.
Given the structural characteristics of bones, they are often considered
as the body’s framework, with little attention paid to their interactions
with other organs. However, the emerging concept of the “bone-brain
axis” has challenged this traditional view (21, 60), suggesting that the
skeletal system and the CNS are interconnected entities with distinct
functions within the body. There exists a complex interaction between
the CNS and bone, with one key aspect being the neuroregulation of
bone metabolism. Researchers have discovered that the CNS mediates
neuronal circuits that directly regulate bone metabolism. Both
autonomic and sensory nerve fibers can regulate the balance between
OBs and OCs, thereby influencing bone remodeling (61). Sympathetic
nerve fibers directly control OBs and OCs, affecting bone resorption
and formation. This process is primarily mediated by the
neurotransmitter norepinephrine (NE), which binds to p2-adrenergic
receptors ($2-ARs) on OBs, triggering a signaling cascade (62) hat
upregulates receptor activator of RANKL. RANKL subsequently
promotes OC differentiation and activation, leading to increased bone
resorption and structural degradation (63).

Leptin, a hypothalamic neuropeptide primarily secreted by
adipocytes (64), plays a central role in regulating bone mass and has
been shown to be closely associated with sympathetic nervous system
(SNS) activity. Leptin directly affects bone tissue by promoting OB
differentiation and mineralization of the bone matrix (61). Moreover,
leptin can cross the BBB and bind to receptors in the arcuate nucleus
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of the hypothalamus, regulating neurotransmitters such as
neuropeptide Y (NPY), cocaine-amphetamine regulated transcript
(CART), serotonin (5-HT), and neuropeptide U (NPU), thereby
in-directly influencing the bone-brain neural network (61). These
changes lead to improved sympathetic outflow to the skeleton,
followed by activation of OB p2-ARs, leading to increased bone
resorption and decreased bone growth (65). Emerging evidence also
suggests that the parasympathetic nervous system (PNS) can
counterbalance the effects of the SNS on bone metabolism. Unlike the
SN, bone metabolic activity is primarily controlled by acetylcholine
(ACh) through nicotinic acetylcholine receptors (nAChRs) on OBs.
This interaction activates OBs, promoting their proliferation and
differentiation, and thus influencing bone anabolism (65). Other
neurotransmitters and neuropeptides, including glutamate, vasoactive
intestinal peptide (VIP), y-aminobutyric acid (GABA), calcitonin
gene-related peptide (CGRP), growth hormone releasing peptide
(GHRP), corticotropin-releasing factor (CRF), and CART (61, 62,
65-67), have also been implicated in diverse signaling pathways that
ultimately govern bone metabolism and synthesis.

Interestingly, bone also can produce regulatory factors that
influence neural activity (68). Bone-derived mediators are released
from bone cells and bone marrow, crossing the BBB to regulate
various aspects of CNS function, including memory, mood, and
cognitive abilities (65). This interaction suggests that bone can serve
as a crucial regulator of brain development, function, and
pathophysiology (69). One of the most crucial bone-derived
components for controlling brain activity is osteocalcin, a
non-collagenous bone matrix protein that is exclusively made by OBs
and is essential for preserving healthy bone mineralization. By
promoting the synthesis of monoamine neurotransmitters, inhibiting
the production of GABA, and preventing apoptosis in hippocampus
neurons, osteocalcin can pass the BBB (52). Increasing numbers of
studies have explored the regulatory effects of osteocalcin on the
brain. For instance, Bradburn et al. (70) con-ducted a study involving
225 elderly individuals and 134 young adults that plasma osteocalcin
levels were positively correlated with cognitive function and executive
ability in the elderly. Oury et al. (71) demonstrated that osteocalcin
plays a crucial role in promoting postnatal neurogenesis and
enhancing memory, while also exerting anxiolytic and antidepressant
effects. Furthermore, maternal osteocalcin can cross the placenta,
supporting fetal brain development, including the maturation of
spatial learning and memory functions. Chang et al. (72) found that
osteocalcin alleviated pathological conditions in Alzheimer’s disease
(AD) model mice by reducing A burden and enhancing the glycolysis
of astrocytes and microglia, providing new insights for AD treatment.
Moreover, osteocalcin inhibits cholinergic activity in postganglionic
parasympathetic neurons through its receptor, G protein-coupled
receptor (GPCR) 6a, thereby enhancing the acute stress response
(ASR) in animals, suggesting its role as a stress hormone regulating
neural activity under danger (73).

AAs research advances, additional bone-derived proteins with
neuroregulatory functions are being identified. Osteopontin, for
example, is involved in both inflammatory responses and bone
remodeling and metabolism, and it also affects the nervous system,
playing a dual role in tissue damage and repair. By inhibiting the
Wnt/B-catenin signaling pathway, sclerostin prevents the production of
new bone, promoting bone resorption, and potentially impairing
synaptic plasticity and memory. Both osteopontin and sclerostin
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exhibit potential as novel biomarkers for neurodegenerative diseases
(74). Osteocytes and osteoblasts (OBs) secrete fibroblast growth factor
23 (FGF23), a bone-derived hormone that may similarly influence
behavior and brain function. Studies have shown that FGF23 reduces
the expression of brain-derived neurotrophic factor (BDNF) and other
synaptic proteins, thereby impairing synaptic plasticity and cognitive
performance. Elevated FGF23 levels have been associated with
increased anxiety- and depressive-like behaviors, as well as impairments
in memory and spatial learning (65). Collectively, these bone-derived
molecules significantly impact the nervous system, not only by
influencing bone remodeling but also by modulating neurotransmitter
release and neuronal activity, ultimately shaping mood and cognition.
This connection offers new perspectives for understanding the
relationship between bone function and brain health.

Beyond neuroendocrine interactions, the bone-brain axis also
encompasses com-plex immune crosstalk. Bone marrow-derived
immune cells have been shown to play neuroprotective, neurorepair,
and neuroplastic roles in brain diseases (75). These cells can migrate
into brain tissue through various mechanisms (76). A recent study
labeled bone marrow cells residing in the skull and tibia of mice with
spectral membrane dyes as cellular trackers. Remarkably, they
discovered vascular channels connecting the brain and bone marrow.
Myeloid cells migrate through these microchannels to inflamed brain
tissue, which are located across the skull’s endothelial layer, thereby
linking the skull’s bone marrow cavity with the dura mater (77).
Macrophages, a critical myeloid immune cell type, also play an
essential role in the brain immunity. Reparative macrophages secrete
factors such as osteocalcin, insulin-like growth factor 1 (IGF-1),
platelet-derived growth factor, BMPs, and growth differentiation
factor 15 (GDF-15), all of which support neurogenesis and tissue
reconstruction. Additionally, macrophages produce angiogenic factors
that promote collateral artery growth, and depletion of these cells has
been as-sociated with increased bleeding incidents (78). T
lymphocytes are central to the immune response in the brain.
Regulatory T cells (Tregs) promote neural tissue repair by suppressing
excessive astrocyte activation and promoting myelin regeneration
(79). Furthermore, Treg-derived OBs enhance microglial repair
activity via integrin receptors on microglial cells, thus improving
white matter integrity and preserving neural function in the long term
(80). Modulating peripheral immune cell interactions with the CNS
presents a promising therapeutic avenue for enhancing recovery from
brain injury.

In conclusion, the bone-brain axis is a highly integrated system
governed by intricate regulatory mechanisms. This emerging field of
research has illuminated the multifaceted roles of skeletal tissues in
neuroregulation, metabolic control, and immune-inflammatory
processes. As illustrated in Figure 3, the pathological interplay
between cerebral ischemia and the bone-brain axis suggests that this
axis may serve as a novel therapeutic target for neurodegenerative and
cerebrovascular diseases. These in-sights not only offer fresh
perspectives for early neurological intervention, but also pave the way
for personalized treatment strategies and improved patient outcomes.

4 Pharmacokinetics of SIN

SIN, first isolated by Ishiwari from Radix Sinomenii in the 1920s,

is a morphinan alkaloid with the chemical name
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(90,130, 1401)-4-hydroxy-3,7-dimethoxy-17-methylmorphinan-6-one.
Structurally, it consists of a hydrogenated phenanthrene core linked to
an ethylamine bridge. SIN manifests as a crystalline powder, either
whitish or pale-yellow, characterized by the molecular structure
C19H23NO, and a comparative molecular mass of 329.38. This
substance melts at 161 °C and dissolves in ethanol, acetone,
chloroform, and diluted alkali, yet shows limited solubility in water,
ether, and benzene.

SIN, mainly employed in managing rheumatoid arthritis and joint
discomfort, has a broad range of pharmacological effects,
encompassing anti-inflammatory, antioxidant, immunomodulatory,
sedative, and pain-relieving impacts. Studies have shown that SIN
reduces oxidative stress and protects against organ damage by
downregulating inflammatory markers such as MDA and hydrogen
peroxide (H,O,) in rat lungs subjected to chronic intermittent
hypoxia-induced lung injury (81). Additionally, studies have shown
that SIN initiates autophagy in human glioblastoma cells by
stimulating ROS production, stopping the cell cycle during the G0/G1
phase, and reducing cell movement and invasion. It is recognized that
the hydrochloride salt form suppresses NF-kB activation, hinders
MMPs (MMP-2 and MMP-9) synthesis, and reverses the transition
from epithelial to mesenchymal traits in cancerous cells. The results
imply that SIN could be effective in preventing the spread of tumor
cells during glioblastoma therapy (82). By inhibiting Matrix
Metalloproteinase-2/—9 and preventing the transition from epithelial
to mesenchymal cells, SIN Hydrochloride prevents the growth of
human glioblastoma cells. In further studies, lipopolysaccharide
(LPS)-induced changes in keratinocyte viability, apoptosis, and
increased expression of inflammatory cytokines such as TNF-a, IL-6,
and IL-8 can be reversed by SIN intervention. The neuroprotective
effects of SIN have also been extensively demonstrated in preclinical
studies of neuro-logical diseases. According to both in vitro and
in vivo research, SIN can inhibit or block a variety of signaling
pathways that contribute to the development of neurological disorders.
It also shows neuroprotective effects by reducing inflammation,
reducing oxidative stress, and inhibiting apoptosis (83, 84). As a
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multipurpose neuroprotective agent, SIN has promise for the
treatment and prevention of neurological disorders.

The pharmacokinetics and tissue distribution of SIN have been
extensively investigated in rats. Following a single oral administration
of 25 mg/kg SIN hydrochloride, female Sprague-Dawley rats exhibited
significantly greater systemic exposure than males, with higher
AUCy-00 values (13,430.6 + 2,781.2 h-ng/mL VS.
7,221.3 £2,133.5 h-ng/mL, p<0.01) and elevated Cmax
(1,623.5 £ 299.3 ng/mL vs. 1,138.2 +213.7 ng/mL, p<0.05). In
addition, females showed a longer elimination half-life (6.2 + 1.4 h vs.
4.5 £ 1.0 h) and slower clearance (1.9 + 0.5 L/h/kg vs. 3.4 + 0.8 L/h/kg,
P <0.01) compared with males (85). Consistently, SIN concentrations
in the visceral organs of female rats were markedly higher than those
of males, confirming pronounced sex-related differences in its
pharmacokinetic and tissue distribution profiles (85). These findings
suggest that sex should be considered when evaluating the therapeutic
application of SIN. As an alkaloid, SIN readily forms water-soluble
salts upon reaction with acids, while its lipophilic nature facilitates
gastrointestinal absorption through passive diffusion. Research on
tissue distribution indicates that 45 min post-administration (oral
dose 90 mg/kg), the levels of SIN in various rat tissues, ranked from
highest to lowest, were detected as: kidney, liver, lung, spleen, heart,
brain, and testicles (86). After 90 min, there was a marked reduction
in SIN concentrations across all organs, with the liver and kidneys
maintaining relatively higher levels, suggesting these as key organs for
metabolism and elimination. The protein binding assay showed SIN
(at ~4 pg/mL in rat or rabbit plasma) has a binding rate to albumin
exceeding 60%, while binding to a-1-acid glycoprotein is only
~33% (86).

Although SIN shows potential in pharmacology, its practical use
in clinical settings is constrained due to its brief elimination half-life
and minimal oral bioavailability, hovering around 30%. These factors
somewhat limit its clinical application. Despite the various
pharmacological effects of SIN in treating cerebral ischemia, its short
half-life and low bioavailability increase the risk of adverse reactions.
Therefore, the development of new drug delivery systems for SIN,
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aimed at achieving sustained release, reducing clinical dosages,
increasing drug concentrations in the brain, and improving
These
developments might offer a new approach in pharmacology for

therapeutic outcomes, is of significant importance.

addressing cerebral ischemic conditions (Figure 4).

5 Pharmacological activities of SIN

Recent studies improved understanding of the cardiovascular
protective effects of SIN, highlighting its roles in anti-inflammation,
anti-oxidation, and endothelial protection. To reflect these advances,
Table 1 presents an updated and comprehensive summary of the
pharmacological actions of SIN in various cardiovascular disease
models, incorporating findings from in vitro and in vivo studies
(Figure 5).

5.1 Anti-inflammatory effects

NF-kB is a key nuclear transcription factor in eukaryotic cells. In
most quiescent cells, NF-kB exists in an inactive complex in the
cytplasm through its interaction with IkB. Upon stimulation by
hypoxia, oxidative stress, or pro-inflammatory cytokines, IkB
undergoes degradation, releasing NF-kB to translocate into the
nucleus and induce transcriptional activity (87). Extensive research
highlights the pivotal role of NF-kB in inflammatory diseases, with
therapeutic interventions aimed at inhibiting NF-xB signaling
showing potential for disease modulation. SIN achieves its

10.3389/fmed.2025.1677685

anti-inflammatory properties by inhibiting the binding of NF-xB,
consequently reducing the expression of inflammatory elements at the
mRNA stage (88). Study by Xu et al. (89) in animal models confirmed
that SIN attenuates inflammation by inhibiting both NF-kB and
MAPK signaling pathways, leading to the downregulation of
pro-inflammatory cytokines, such as IL-6 and TNF-a. Additionally,
Yi et al. (90) reported the effects ofSINSIN on fibroblast-like
synoviocytes (FLS) in adjuvant-induced arthritis (AIA) rat models.
The research indicated that SIN amplifies the expression of adenosine
A2A receptors in AIA rats and FLS via the a7 nicotinic acetylcholine
receptor (a7nAChR) pathway, concurrently suppressing NF-kB
activation, thereby mitigating arthritis. «®7nAChR, an integral part of
the cholinergic anti-inflammatory pathway (CAP), controls
inflammation through acetylcholine signaling mediated by the vagus
nerve. Remarkably, the elimination of a7nAChR nullified SIN’s
inhibition of NF-kB activation, indicating a reliance on a7nAChR for
its anti-inflammatory effects. Additionally, SIN influences the nuclear
factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)
pathway, leading to the suppression of NF-kB activity in mouse
chondrocytes, thereby curbing inflammatory reactions and the
breakdown of extracellular matrix elements.

SIN influences this route through the suppression of CD14/
Toll-like receptor 4 (TLR4) and Janus Kinase 2 (JAK2)/ STAT3
signaling pathways, leading to a decrease in TNF-a, MCP-1, MIF,
and MMP-9 levels in RAW 264.7 cells stimulated by LPS, and
concurrently hindering the secretion of calcium ions within cells
(91). Within AIA rats, TNF-a enhances FLS growth, increases
a7nAChR levels, and stimulates the ERK/Egr-1 pathway, while SIN
mitigates these impacts by reducing FLS growth, a7nAChR levels,
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TABLE 1 Summary of the cardiovascular protective effects exerted by SIN.

Experimental system Model type Dose/Concentration = Key findings Validation methods Ref.
1: PAF, ET-1, TBX2, TF, Fbg, |: Duration, incidence of ventricular
PAI-1, Ck-MB, Ck, Tnl, fibrillation, ventricular ectopic beat, Lo .
ECG analysis, biochemical assays,
Anti-arrhythmia I/R injury rats model MDA, LDH, AST, hs-CRP, 5,10, 20 mg/kg ventricular tachycardia, arrhythmia . 2022 (191)
O histopathology, ELISA
MCP-1, TNF-a, IL-1f, IL-6 score, myocardial infarct area,
1:SOD. GPx. CAT platelet aggregation parameters
J: Cell surface area, ANP,
BNP, B-MHC, cell apoptosis
) . Ang II-treated HIC2 cells, L
Ameliorates cardiac hypertrophy | rate, caspase3, Bax, MDA, 40, 80 mg/kg 1: HW index, LVW index Western blot, RT-qPCR, TUNEL staining 2021 (192)
isoproterenol-treated rat
ROS
1: Bcl-2, Nrf2, HO-1
1: Total cholesterol,
triglyceride, LDL, VLDL,
ET-1, hs-CRP, TXB2,
cTnl, LDH, CK-MB, total
protein, HMG-CoA/
) . . Mevalonate ratio, collagen, 1: Body weight, water and food Lipid profile analysis, histopathology,
Anti-atherosclerosis Atherosclerosis model 5,10, 20 mg/kg 2024 (193)
calcium, FFA, MDA, IL-1a, intake ELISA
IL-1p, TNF-a, IL-6, IL-17,
MCP-2, MCP-3, VCAM-1,
ICAM-1
1: HDL, NO, CAT, SOD, GPx,
GR, IL-10
Spontaneously
1: Vascular relaxation Blood pressure
hypertensive rats, A7r5rat | |:Ca?" |: Systolic blood pressure
Vascular relaxation 2.5, 5,10 mg/kg monitoring, vascular tension 2007 (194)
aortic smooth muscle cell 1: Bcl-2, Nrf2, HO-1 1: vascular relaxation
measurement, Western blot
line
1: CK, LDH, caspase-3, . . . . .
. . . L . |: The ratio of infarct area to area at 1: Cardiac function TTC staining,
Protection against myocardial Myocardial ischemia- caspase-9, Bax, MDA, ROS, . L .
. . o o . 80 mg/kg risk, the ratio of infarct area to left echocardiography, TUNEL assay, 2022 (118)
ischemia reperfusion injury reperfusion injury mice DHE, IL-1p, TNF-a, IL-6 . . o
ventricle, TUNEL-positive cells oxidative stress markers
1: EE, Bcl-2, GSH, T-AOC
1: ANP, type I and IIT |: LVEDd, LVEDs, LVPWd, §
Stress load-induced model Echocardiography, Masson’s trichrome,
Improve heart failure collagen 120 mg/kg inflammatory cell infiltration 2020 (195)
of heart failure in mice ELISA
1. IL-10/IL-17 1: ejection fraction, shortened score
1: 1L-1p, TNF-a, IL-6, IEN -7,
CXCLS, JNK1, JAK1, JAK2,
Protect against sepsis-induced STAT3, NF-B, cleaved- Flow cytometry, Western blot,
o Sepsis model 50, 100 mg/kg 1: Apoptosis of cardiomyocytes . 2023 (196)
myocardial injury caspase3/caspase3, LVID, echocardiography
LDH, CK-MB, cMLCI, cTnl
1: EF
(Continued)
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TABLE 1 (Continued)

Experimental system

Treatment of vascular

Model type

Rat VSMCs, carotid artery

l: MAPK signalling, AKT/
GSK3p signalling, STAT3
phosphorylation, PDGFR-p

Dose/Concentration

Key findings

1: VSMC proliferation, VSMC cell

cycle progression, VSMC migration,

Validation methods

Immunohistochemistry, flow cytometry,

150 mg/kg artery injury-induced proliferative 2013 (197)
proliferative disease wire injury model phosphorylation Western blot
response, VSMC phenotype
1: SM a-actin, smoothelin,
dedifferentiation
SMA
Myocardial infarction 1: LDH
Reduce myocardial infarction 50 mg/kg 1: Myocardial infarction area TTC staining, echocardiography 2022 (198)
model 1:EE, FS
Treatment of rheumatic carditis
HUVEC 1: VCAM-1 NR Flow cytometry, RT-qPCR 2007 (199)
or rtheumatic heart disease
1: miR-143-5p, mmu-mir- Alizarin Red staining, RT-qPCR, Western
Alleviated vascular calcification Uremic rats 40 mg/kg |: Vascular calcification 2025 (200)
143-5p blot
Uremic rats, primary rat 1: NLRP3, Caspase-1, |: Calcified area, vascular
Ameliorate vascular calcification 30 mg/kg Von Kossa staining, Western blot 2025 (201)
VSMCs GSDMD, AEG-1 calcification
1: Phosphorylation of
Treatment of vascular ERK1/2 and p38, Akt, |: Formation of neointima and
VSMC 150 mg/kg Immunofluorescence, Western blot 2013 (197)
proliferative disease GSK3p, STAT3, and number of PCNAP cells.
PDGER-p.
1: Occludin, Nr.
1: RhoA/ROCK signal
transduction activation,
Transwell permeability assay, Western
Improving renal function HRGECs abnormal occlusive protein bl 2016 (202)
ot
distribution reversion, RhoA/
ROCK, Cell permeability, and
ROS.
1: NLRP3, cleaved caspase-1, |: Infarction volume, brain water
Middle cerebral artery cleaved caspase-3, IL-16, content, neuronal loss and apoptosis, | TTC staining, TUNEL assay, behavioral
Neuroprotection 10 or 20 mg/kg 2016 (83)
occlusion mice model IL-6, IL-18, TNF-« neurological deficiency, activation of | tests
1:EE FS astrocytes and microglia
|: TNF-a, IL-1f, SOD, GPx,
IL-6, NOS2, Arg-1, IL-10,
inhibition of OGD-induced
Middle cerebral artery
Anti-inflammatory and cerebral IkBa phosphorylation and |: Brain water content
occlusion model mice, 20 mg/kg Immunofluorescence, Western blot 2021 (203)

protective functions

BV2 cells

NF-kB p65 nuclear
translocation

1:Nrf2, HO-1, NQO1, NOS2,
Arg-1,1L-10

1: Nrf2

(Continued)
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TABLE 1 (Continued)

Experimental system

Model type

1: Astrocytic activation,

STATS3 phosphorylation,

Dose/Concentration

Key findings

|: Infarction volume, brain water

Validation methods

1: GSH, SOD

cytotoxicity

Middle cerebral artery IL-1p, IL-6, IL-18, TNF-q,
content
Suppresses neuroinflammation occlusion mice model, nuclear translocation of 10, 20 mg/kg Western blot, ELISA 2016 (97)
1: alleviated neurological
primary astrocyte CRYAB
impairment
1: DRD2, aB-crystallin,
activation of STAT3
Attenuates brain injury in ICH mouse model, BV2 1: IL-1p, IL-6, TNF-a, ROS, 1: Brain water content, neurological Behavioral tests, ELISA,
20 mg/kg 2014 (204)
intracerebral hemorrhage cells NF- kB, microglial migration deficit scores immunohistochemistry
: Brain water content, early brain
|: Cleaved caspase-3, Bax, injury, neuronal apoptosis, neuronal
Subarachnoid hemorrhage
Anti-inflammatory &l NF-kB, IL-1p, IL-6 50 mg/kg degeneration, microglial activation, TUNEL assay, Western blot, MRI 2023 (84)
model
1: Nrf2, HO-1, NQO1, Bcl-2 nrf2 expression, nuclear translocati
1: neurological functions
1: Brain water content, neurological
|: Matrix metalloproteinase
Autologous blood models, impairment, microglia mediated
Attenuates inflammatory injury 3/9,iNOS, IL-1p, TNF-o 20 mg/kg Immunofluorescence, ELISA 2016 (205)
hippocampal tissue toxicity to neurons, inflammation
1:1L-10, Arg-1
1: microglia m2 polarization
|: LDH, Bax, caspase-3,
phosphorylation of CaMKII,
Middle cerebral artery L-type calcium currents,
Protects against ischaemic brain Electrophysiology, TTC staining, Western
occlusion mice model, ASICla currents, KCl and 10, 30 mg/kg 1: Ischaemic sections Hl 2011 (144)
injur ot
J PC12 cells acidification-mediated
increase in [Ca*];
1: Bcl-2/Bax
J: MDA, Nrf2, activation of 1: H202-induced cytotoxicity,
Anti-oxidative stress PC12 neuronal cells NOX oxidative injury, H202-induced MTT assay, ROS detection, Western blot 2017 (206)
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and ERK/Egr-1 pathway activation (92). Research on lung cancer
revealed that SIN suppresses a7nAChR, pERK1/2, ERK1/2, and the
transcription factors TTF-1 and SP-1, simultaneously boosting
Egr-1 (93).
Ad-ditionally, SIN diminishes the unusually elevated expression of
a7nAChR through the a7nAChR/ERK/Egr-1 feedback process,
thus hindering M1 polarization in macrophages and reducing

expression for its cancer-fighting properties

inflammation (94).

In the context of cerebral ischemia, SIN mitigates the
inflammatory cascade triggered by ischemia, which is closely linked
to inflammatory cytokines, inflammasomes, and inflammation-
inducing enzymes. SIN protects neuronal cells by reducing the
activation of microglia brought on by ischemia conditions and
lowering inflammatory chemicals like IL-1f and TNF-a. This action
is likely related to SIN’s ability to enhance IkBa protein expression,
effectively inhibiting NF-kB signaling and regulating micro-glial
inflammation (4, 95, 96). Moreover, SIN inhibits inflammasome
activation during the initiation of CNS inflammation, targeting the
NLRP3 inflammasome via an AMPK-dependent pathway and
modulating astrocyte dopamine D2 receptors and the Alpha
B-crystallin (CRYAB)/STAT3 axis to exert neuroprotective effects
(97). SIN has also been shown to dose-dependently downregulate the
expression of COX-2, a key inflammatory enzyme that facilitates
prostaglandin synthesis and amplifies the inflammatory response (98).
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Notably, SIN inhibits the Src/FAK/P130Cas axis, reducing macrophage
migration to inflamed regions and limiting the infiltration of
peripheral macrophages into the brain, thus diminishing the overall
inflammatory response (99). In a rat model of reversible arterial
occlusion simulating cerebral ischemia, pre-treatment with SIN
(90 mg/kg) via tail vein injection provided neuroprotection through
an-ti-inflammatory effects, amelioration of acidosis, improvement of
energy metabolism, and suppression of ASIC-1a levels (100). Likewise,
in lab-based mouse models for brain ischemia and lack of oxygen-
glucose, SIN mitigated conditions like cerebral infarction, edema,
neuron death, and neurological impairments, simultaneously
suppressing  NLRP3 inflammasome activation and regulating
neuroinflammation through the AMPK route (83, 97). These results
SIN’s
neuroprotective properties.

collectively highlight potent anti-inflammatory and

5.2 Immunoregulation

Lymphocytes hold a pivotal position in the body’s immune
reaction and are crucial in the adaptive immune system. Studies
indicate that SIN has the ability to control proteins associated with the
cell cycle and apoptosis, thereby simultaneously influencing the cell
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cycle and apoptosis in T cells and B cells. SIN also reduces
inflammatory cell infiltration and mesangial cell proliferation, thus
improving and preventing IgA nephropathy (101). Additionally, SIN
has been reported to prevent the cell cycle from progressing from the
GO0/G1 phase to the S phase, as well as from G2/M phase, with its
immunosuppressive activity on CD4* primary lymphocytes mainly
mediated by cystein-aspartate protease (Caspase-3)-mediated cell
apoptosis. The expression levels of B-cell lymphoma-2 (Bcl-2) in
activated T cells remain largely unchanged, indicating a potential
non-involvement of Bcl-2 in SIN-triggered T cell apoptosis (102). SIN
successfully reduced the levels of T-box transcription factor (T-bet),
interferon-y (IFN-y), and IFN-y/IL-4, T-bet/ GATA-binding protein-3
(GATA3) in the decidua and serum of mice with recurrent
spontaneous abortions, according to research using a mouse model of
recurrent spontaneous abortion. However, it had no effect on the
expression of GATA-3 and IL-4. Given that GATA-3 is a Th2
transcription factor and T-bet is a Th1 transcription factor, it follows
that SIN significantly inhibits Th1 production. Alterations in T-bet/
GATA-3 ratios indicate SIN’s function in maintaining the equilibrium
between Th1 and Th2 (103).

Through various pathways, SIN suppresses the M1 polarization in
macrophages, leading to a decrease in the production and secretion of
diverse chemokines and pro-inflammatory cytokines, including
TNF-a and IL-8 (89, 104). This action helps alleviate the damage of
TNF-a, IL-8, and others to the immune system and improving
macrophage phagocytosis and immune response. Further research
indicates that the effects of SIN on macrophages are context-
dependent. Specifically, SIN may inhibit a7nAChR expression
through the regulation of the ERK1/2/Egr-1 pathway (92), thereby
suppressing M1 polarization and promoting a shift toward the M2
phenotype (105, 106). This results in reduced secretion of M1-type
cytokines (TNF-a, IL-1p, IL-6) and enhanced expression of M2-type
cytokines such as Arginase-1 (Arg-1) and IL-10 via Nrf2 signaling
(106), suggesting an immunoregulatory role in the ischemic brain.
Conversely, in the immortalized murine macrophage-like cell line
RAW?264.7, SIN has been shown to induce apoptosis by activating
ERK and altering the balance of Bcl-2 family proteins (107). These
findings are not contradictory to those in T cells (102) but rather
reflect cell type-specific responses: SIN-induced T-cell apoptosis
proceeds via caspase-3-dependent mechanisms without Bcl-2
involvement, whereas in macrophages, apoptosis is mediated through
ERK activation and modulation of Bcl-2 family proteins. Together,
these studies highlight that SIN may exert dual roles in immune
regulation depending on the cellular context and microenvironment.
In RAW264.7 cells stimulated with LPS, Zhu et al. (91) demonstrated
that SIN significantly inhibited the production of TNF-a, MCP-1,
MIF, and MMP-9, downregulated CD14 and TLR4 expression, and
reduced intracellular free calcium release. Mechanistically, SIN
enhanced STAT3 phosphorylation, and this effect was attenuated by
a7nAChR antagonists. Moreover, the JAK2 inhibitor AG490
diminished SIN’s inhibitory effect on TNF-a, indicating that SIN
exerts anti-inflammatory actions by activating the a7nAChR/JAK2/
STAT3 pathway. Consistent results have been reported in other
studies, where SIN suppressed NF-kB activation and reduced the
release of pro-inflammatory cytokines such as TNF-a, IL-1f, and IL-6
(108). In addition, Qin et al. (106) confirmed that SIN activates Nrf2
signaling, thereby downregulating MI-type cytokines while
upregulating Arg-1, IL-10, and HO-1. Collectively, these findings
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indicate that SIN regulates multiple signaling pathways, including
a7nAChR/JAK2/STAT3, NF-kB, and Nrf2, to inhibit macrophage
pro-inflammatory activity. Through these mechanisms, SIN helps to
maintain the dynamic balance between M1 and M2 macrophages,
reduces macrophage chemotaxis and secretion, and inhibits
macrophage apoptosis, thereby exerting potent immunosuppressive
effects (Figure 4).

5.3 Antioxidant stress

ROS, emerging naturally from standard oxygen metabolism, are
crucial in the process of cell signal transmission. Yet, when faced with
environmental stress, ROS levels may swiftly rise, and oxidative stress
denotes the harm resulting from the over-production of ROS in
tissues and cells (8). Research indicates that SIN increases Bcl-2 levels
and reduces the expression of bcl-2-associated X protein (Bax) and
Caspase-3. SIN, through diminishing oxidative stress and obstructing
the NF-kB signaling route, boosts anti-inflammatory abilities and
adjusts associated cytokines, thus lessening liver dam-age caused by
apoptosis and easing persistent lead poisoning (109). Within a mouse
model of kidney fibrosis, SIN stimulated the Nrf2 signaling route,
enhancing both the expression and function of enzymes involved in
antioxidant and detoxification. This also disrupted the pro-fibrotic
pathways of TGFf/Smad and Wnt/p-catenin, altering pro-fibrotic
protein levels in kidney cells treated with TGFp and lessening renal
fibrosis caused by one-sided ureteral blockage, suggesting SIN’s ability
to suppress oxidative stress and safeguard the kidneys (110). Ramazi
etal. (111) reported that a dose of 50 mg/kg SIN significantly restored
levels of ROS, MDA, HO-1, and SOD in a temporal lobe epilepsy rat
model, partially inhibiting the increase in NF-kB, TLR4, TNF-q,
GFAP, and Caspase-1, although the effect on glutathione levels was
not significant.

SIN mainly controls ROS generation via the Nrf2-related signaling
route and is crucial in the development of chronic inflammatory
conditions like rheumatoid arthritis. Under basal conditions, Nrf2 is
bound to its inhibitor, Keapl. When activated by ROS or electrophilic
substances, Nrf2 exits Keapl and moves to the nucleus, functioning as
a transcription factor to enhance the production of subsequent
antioxidant and detoxi-fying enzymes like HO-1, NAD (P)H, NQO-1,
SOD, and GSH-PX (112, 113). Examining SIN’s effects on a mouse
model of E. coli-induced acute lung injury (ALI), Liu et al. (114)
discovered that SIN greatly raised the protein expression of HO-1,
Nrf2, and NQO-1, hence supporting Nrf2 nuclear translocation. By
means of the Nrf2 signaling pathway, SIN reduces oxidative damage
brought on by E. coli, as shown by these findings. Qin et al. (110)
further showed that SIN alleviates oxidative stress induced by
unilateral ureteral obstruction through the regulation of the Nrf2
signaling pathway, inhibit TGF-f-associated pro-fibrotic activity, and
alleviate renal interstitial fibrosis. This suggests that SIN can suppress
oxidative agents induced by TGF-f or H202 in renal cells and
enhance detoxifying enzyme activity, such as SOD and GSH-PX, in
both renal cells and fibrotic kidneys. It has also been confirmed that
SIN phosphorylates p62 at the Ser351 site (corresponding to Ser349 in
humans), leading to the degradation of Keapl and upregulation of
Nrf2 expression. SIN also promotes phosphorylation at the Thr269/
Ser272 sites of p62, thereby activating the p62-Keap1-Nrf2 signaling
pathway, exerting anti-arthritic effects (115).
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In neuronal cells, SIN markedly enhances the production of
antioxidant enzymes like HO-1 and SOD, affecting both protein and
mRNA levels, thereby triggering the Nrf2 pathway (116, 117). This, in
turn, reduces MDA levels in brain tissue, thereby enhancing neuronal
resistance to oxidative stress. Furthermore, SIN decreases Caspase-9
expression, inhibiting cell apoptosis and protecting neural cells from
oxidative stress-induced damage (118).

5.4 Pharmacological effects of SIN in other
diseases

SIN has exhibited therapeutic efficacy in various diseases,
including colitis (119), atherosclerosis (120), myocardial ischemia—
reperfusion injury (100), chronic sciatic nerve injury (CCI) (121),
renal injury (122), colorectal cancer (123), lung cancer, liver cancer,
cervical cancer, bladder cancer, gastric cancer, and renal cancer (93,
124, 125). By downregulating pro-inflammatory factors including
TNEF-a and IL-6 and upregulating anti-inflammatory factors, SIN has
anti-inflammatory actions that greatly improve experimental colitis
(119). The anti-atherosclerotic effects of SIN (SIN) are attributed to its
ability to inhibit inflammation progression, modulate immune cell
functions, and suppress smooth muscle cell proliferation.
Mechanistically, SIN reduces the expression of pro-inflammatory
factors such as vascular cell adhesion molecule-1 (VCAM-1) and
platelet-derived growth factor receptor-f (PDGFR-f) via multiple
signaling pathways (120, 121, 126). B By blocking the TLR4/NF-kB
signaling pathway, SIN successfully reduces oxidative stress and
inflammation, reducing the atherosclerosis that rats get from a
high-fat diet and vitamin D3 (127). SIN mitigates myocardial ischemia
reperfusion injury by inhibiting myocardial cell apoptosis, oxidative
stress, and reducing calcium ion levels, further alleviating arrhythmias
caused by ischemia-reperfusion. SIN protects myocardial cells by
increasing SOD system activity and clearing abnormal accumulation
of ROS, and inhibition of NF-kB signaling pathway activation (128).

In a CCI rat model, SIN exerts dose-dependent analgesic effects,
significantly alleviating heat hyperalgesia and mechanical allodynia by
increasing withdrawal reflex latency and elevating pain thresholds
(121). These effects are accompanied by reduced expression of
proinflammatory cytokines (TNF-a, IL-1p, IL-6) and downregulation
of RIP3, phosphorylated JNK, and c-Fos in the spinal cord, as well as
an increased number of surviving neurons in the dorsal horn,
indicating attenuation of CCI-induced neuronal death (121). The
anticancer mechanisms of SIN primarily involve the regulation of
NE-kB, tyrosine kinase, and STAT pathways, which inhibit the
proliferation, invasion, and migration of tumor cells (93, 124, 125).
Thioredoxin reductase (TrxR), an important component of the
antioxidant system, is highly expressed in various malignant tumors
and negatively correlates with patient prognosis, making it a potential
novel target for cancer therapy (129). SIN is a novel TrxR inhibitor
that effectively sup-presses TrxR activity, inducing excessive ROS
production in tumor cells, mediating oxidative stress responses, and
promoting tumor cell apoptosis (125). Additionally, SIN exhibits
synergistic anticancer effects when combined with chemotherapeutic
agents, such as 5-fluorouracil and cisplatin, potentiating their efficacy
against multiple tumor types (120).

Beyond its role in inflammation and cancer, SIN also shows
potential therapeutic efficacy in diseases such as diabetes,
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endotoxemia, asthma, cough, and depression. SIN has therapeutic
effects in streptozotocin-induced gestational diabetes mellitus (GDM)
rats with high safety, which is associated with the inhibition of
inflammation and oxidative stress via the TLR4/MyD88/NF-xB
signaling pathway (130). Moreover, SIN enhances pancreatic p-cell
function and enhances insulin secretion, thereby preventing the
occurrence of GDM and its related complications during pregnancy;,
offering a novel approach for the prevention and treatment of early
diabetes. SIN inhibits dose-dependently the temperature elevation,
cell adhesion, and systemic inflammatory responses induced by LPS
in piglets, suggesting an anti-endotoxemia effect, though its main
pathway requires further investigation (131). By inhibiting the
activation of the TGF-p1/Smad3 signaling pathway and suppressing
epithelial-mesenchymal transition, SIN significantly improves airway
remodeling in an asthma mouse model, demonstrating
bronchodilatory properties (132). On the other hand, SIN also exhibits
therapeutic effects on chronic cough. It inhibits the expression of
transient receptor potential vanilloid 1 (TRPV1) and decreases the
expression of sex-determining region Y-box protein 5 (SOX5), thereby
lowering intracellular Ca2 + concentration, reducing cough sensitivity,
and alleviating chronic cough symptoms (133). Additionally, SIN
exhibits antidepressant effects, significantly reversing the decrease of
NE and serotonin levels in the hippocampus of mice subjected to
chronic unpredictable mild stress, with improvements in depression-
related symptoms (134). Further pharmacological effects of SIN are
still to be explored.

6 Potential mechanisms of SIN in
treating cerebral ischemia through the
bone-brain Axis

Recent studies have indicated that there is bidirectional regulation
between the bone and the brain, with communication occurring
through inflammatory mediators, bone metabolic products, and the
endocrine system. Research by Otto et al. (27) demonstrated that
bioactive cytokines secreted by bones can enter the peripheral
circulation and cross the BBB, thus modulating the function and
metabolism of the CNS, playing a crucial central regulatory role. Ren
etal. (135) also confirmed the existence of this communication pathway.
Through this mechanism, bone-derived factors in circulation can
regulate brain development and physiological processes. In particular,
they support angiogenesis, improve synaptic plasticity, lower
neuroinflammation, and pre-serve neuronal structure and function.
Additionally, Herisson et al. (77) found vascular pathways connecting
the brain and cranial bone marrow, which functioned as a route for
bone marrow cell migration. According to this research, bone marrow
cells and cytokines may have an impact on how brain disorders develop.
In-depth studies have shown a close relationship between bone and
cerebrovascular diseases. The occurrence of cerebrovascular diseases
such as cerebral ischemia is often accompanied by BBB disruption,
which facilitates the entry of bone marrow cells and bone-derived
cytokines into the CNS, where they can have a variety of consequences.
Moreover, bone marrow cavity injection can directly affect the bone-
brain axis, thus providing a new approach and direction for drug
delivery systems to act within the bone-brain axis, offering novel
insights for the treatment of ischemic brain diseases. SIN itself has been
reported to cross the blood-brain barrier and reach brain tissue after
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systemic administration. For example, Wu et al. (46) demonstrated that
administration of SIN (10-30 mg/kg, i.p.) led to detectable levels in rat
brain and significantly reduced infarct size in a middle cerebral artery
occlusion (MCAO) model, via inhibition of acid-sensing ion channel
la and L-type calcium channels. Moreover, SIN has ability to penetrate
the CNS and exert neuroprotective outcomes in vivo (136). Cerebral
ischemia triggers widespread activation of the peripheral immune
system, releasing a large number of immune cells, inflammatory
cytokines, and chemokines, which promote immune cell infiltration
into the brain and further exacerbate brain injury (137). Therefore,
inhibiting peripheral immune inflammatory responses is crucial in the
treatment of ischemic brain diseases. Several studies have confirmed
that intraarticular injection of SIN can effectively exert its
pharmacological effects (138). SIN modulates M1 polarization of OCs
through multiple mechanisms and promotes their polarization to the
M2 type, thus maintaining the dynamic balance between the M1 and
M2 subtypes of OCs. On one hand, SIN can lower the levels of
pro-inflammatory M1 cytokines, while inhibiting the activity of NF-kB,
NFATcl, MAPK, Ca2+, JAK/STAT, and other signaling pathways to
suppress osteoclast differentiation, exerting immunosuppressive effects
(139-141). Additionally, SIN can promote the secretion of anti-
inflammatory M2 cytokines, which are bone-derived factors that can
enter the peripheral circulation and cross the BBB, exerting anti-
inflammatory effects at the site of brain injury (142). In addition to its
immunomodulatory functions, accumulating evidence supports the
direct neuroprotective role of SIN in the CNS. SIN attenuates amyloid
B-induced astrocytic activation, reduce the release of ROS and
inflammatory mediators, and protect both rodent and human neurons
against indirect toxicity, suggesting its broader neuroprotective potential
in neurodegenerative conditions (143). Beyond immunomodulation,
experimental evidence has shown that SIN exerts direct neuroprotective
effects in the CNS. In the same study by Wu et al. (144), sinomenine
suppressed neuronal overactivation and reduced neuronal apoptosis in
ischemic models via modulation of calcium channel activity. Also,
recent comprehensive reviews summarizing multiple in vivo studies
confirm SIN’s capability to inhibit microglial activation, reduce
oxidative stress, and enhance neuronal survival after cerebral ischemia
(136). Furthermore, Fu et al. demonstrated in a rat subarachnoid
hemorrhage model that SIN administration improved neurological
outcomes, attenuated brain edema and neuronal apoptosis, and
suppressed microglial inflammatory responses via activation of the
Nrf2/HO-1/NQO-1 signaling pathway (84).

In addition, various cells in the bone marrow can migrate to the
CNS and influence the progression of CNS disorders. With the aid of
many receptors, integrins, selectins, and proteases, bone mesenchymal
stem cells (BMSCs) can penetrate the BBB and go to the injured brain
region (145). Nasal delivery of BMSCs can improve mental disorders
in rats, significantly reduce infarct size, repair the BBB and neuro-
vascular damage, and improve local cerebral blood flow in ischemic
cortical areas. Furthermore, bone-derived cells can rescue social
deficits in rats and promote the recovery of sensory-motor and
olfactory functions (146). According to the emerging re-search, bone-
derived macrophages may be crucial in the management of ischemic
brain disorders. By utilizing the phagocytic, migratory, and targeting
abilities of macrophages, they can serve as important drug delivery
carriers (43), avoiding immune system phagocytosis, prolonging drug
circulation time and half-life, and improving drug stability.
Nanoparticle-based drug encapsulation is a promising strategy to
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enhance drug efficacy and minimize side effects. In this context, SIN
has been shown to be capable of crossing the BBB (97, 144, 147), but
its concentration in the brain is typically low. Liu et al. confirmed that
45 min after oral administration of SIN in rats, the drug was widely
distributed across various organs, with the highest concentration
observed in the kidneys, followed by the liver. In contrast, the drug
concentrations in the brain and testes were relatively low (86). Huang
et al. (85) also confirmed this finding. In addition, they observed a
significant gender difference in the response of rats to sinomenine,
with higher levels of SIN found in female rats compared to male rats.
Currently, numerous studies have suggested that nanoparticle-
mediated drug delivery may be a successful, non-invasive method of
treating brain disorders (148). This strategy offers a novel avenue for
SIN-targeted de-livery via the bone-brain axis, holding significant
promise for ischemic brain therapy. Indeed, recent work in a chronic
cerebral hypoperfusion (CCH) rat model showed that SIN promotes
microglial polarization to the M2 phenotype and increases release of
neuronal exosomes enriched in miRNA-223-3p, which when taken up
by neurons inhibits NLRP3-mediated pyroptosis and improves
cognitive function (149). In addition, dendrimer-SIN conjugates were
demonstrated to selectively target activated microglia/macrophages in
a rabbit model of pediatric traumatic brain injury, where they
significantly attenuated acute neuroinflammation and oxidative stress
compared with the free drug (150). These examples highlight that SIN
can be delivered directly to the CNS via BBB-crossing carriers such as
exosomes or dendrimer conjugates. Importantly, such direct CNS
delivery does not negate the role of the bone-brain axis, which
provides an additional, complementary pathway by which SIN can
modulate systemic immunity and bone-derived signaling, ultimately
influencing cerebral ischemia outcomes. Therefore, direct
BBB-crossing delivery and bone-brain axis-mediated regulation
should be considered parallel and complementary mechanisms, rather

than mutually exclusive (Figure 6).

7 Advancements in novel dosage
forms of SIN

The conventional preparation of SIN hydrochloride is unstable
under light, heat and alkaline conditions, prone to decomposition,
with a short-term biological half-life and low bioavailability. It also
tends to promote the release of histamine, leading to adverse reactions
such as rashes and gastrointestinal distress, which limits its wide-
spread use in the management of the disease (4). To address these
issues, scholars both domestically and internationally have combined
pharmaceutical formulation theories with new technologies to
improve the dosage form of SIN hydrochloride. Recent advancements
have focused on the on new formulations such as SIN nanoparticles,
exosomes, liposomes, microneedles, solute liquid crystal gels, and
delivery systems, with the aim of exploring their application in the
treatment of cerebral ischemia. Recent advancements in novel dosage
forms of SIN are summarized in Table 2.

7.1 Nanoparticles

Nanoparticles, materials with at least one dimension on the
nanoscale, with properties such as high surface area, easy surface
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FIGURE 6
Potential mechanisms of SIN in treating cerebral ischemia through the bone-brain axis.

modification, strong stability, high encapsulation efficiency, targeted
delivery, and the ability to simultaneously deliver therapeutic agents,
have attracted great attention in the field of biomedical applications.
Prussian blue nanoparticles (PBNPs) have emerged as promising drug
carriers because of high permeability and strong biocompatibility, and
can serve as drug carriers for targeted drug delivery, release control,
bioavailability, and dosage reduction. The cell membrane after binding
with nanoparticles can escape immune phagocytosis, further
enhancing the biological functions of the drug delivery system, such
as prolonged circulation and active targeting. To treat rheumatoid
arthritis, multifunctional nanoparticles of hydrochloride SIN
(HA@M@PB@SINNPs) was designed, using hyalu-ronic acid (HA) as
a targeting molecule, with the drug loaded onto PBNPs to form PB@
SINNPs The red blood cell membrane and macrophage membrane
were fused by sonication and subsequent magnetic stirring at 37 °C to
form hybrid vesicles, which were then used to disguise PB@SINNPs
(151). In vitro, HA@M@PB@SINNPs inhibited fibroblast-like
synoviocyte proliferation by scavenging ROS and suppressing the
secretion of pro-inflammatory cytokines. In vivo, in an AIA rat model,
the circulation half-life of HA@M@PB@SINNPs at the site of arthritis
reached 6.51h, which is eight times that of free sinomenine
hydrochloride (SH), significantly enhancing drug accumulation. This
study demonstrates that HA@M@PB@SINNPs are excellent carriers
for controlling the liberation and targeted accumulation of SIN in
rheumatoid synovial joints. Shang et al. constructed a SIN-loaded
nanomedicine with HA as the backbone, which had subchondral bone
ad-sorption ability, prolonged residence time in inflamed joints and
responsiveness to ROS (152). In brief, the amine-functionalized
polyethylene glycol (PEG), alendronate (Ald), and ethyl L-methionine
(Met) were sequentially coupled with the carboxyl group of HA
through amination, followed by electrostatic and hydrophobic
interactions to self-assemble with Sin, forming the PAM-HA@Sin
NPs. PAM-HA@Sin NPs effectively prolonged the retention time of
the drug in the joint cavity. The therapeutic PAM-HA polymer carrier
could increase joint lubrication and reduce oxidative stress. At the
same time, pro-inflammatory factors (TNF-a and IL-1p) were
downregulated and anti-inflammatory factors (Arg-1 and IL-10) were
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upregulated due to SIN produced through the NF-kB pathway, which
decreased M1 macrophage levels and increased M2 macrophage
levels. Lin et al. (153) developed a biomimetic nanomedicine system
targeting synovial macrophages and FLS. This system loaded SIN onto
graphene oxide quantum dots (GOQDs) and combined them with
hybrid membranes incorporating HA to construct a novel
nanomedicine system named HA@RFM@GP@SIN NPs. HA@RFM@
GP@SIN NPs promoted the transition from M1 to M2 macrophages
and inhibited the abnormal proliferation of FLS in vitro. Notably, it
was demonstrated that HA@RFM@GP@SIN NPs had anti-arthritic
effects via interfering with the PI3K/Akt/SGK/FoxO pathway, ovarian
steroidogenesis, steroid biosynthesis, and the metabolism of
tryptophan and tyrosine. In another study, SIN was combined with
hy-droxyl-terminated fourth-generation PAMAM dendrimers to
prepare nanoparticles (D-Sino) to alleviate early inflammation in
traumatic brain injury (TBI). D-Sino in-creased the uptake of
dendrimers by 1.8 times, enhancing the intracellular bioavailability of
Sino. D-Sino complexes alleviated early/acute inflammation in mouse
macro-phages by inhibiting pro-inflammatory cytokines (TNF-a,
IL-1pB, CCL-3, and IL-6), effectively preventing LPS-induced NF-kB
activation and nuclear translocation, and targeting activated microglia
in the brain injury domain, significantly reducing pro-inflammatory
microglial activation (150).

7.2 Exosomes

Exosomes are vesicles secreted by various cells that contain
bioactive substances. They have a diameter of 30-100 nm and possess
a negatively charged phospholipid bi-layer structure (154). Due to their
excellent biocompatibility, targeting ability, and high stability, they can
serve as a potentially effective drug delivery system. Using differential
centrifugation, exosomes were isolated from the plasma of SD rats and
loaded with SIN, resulting in Exo-SIN with a particle size of 90 + 4 nm
(155). Exo-SIN was shown to inhibit the migration of HepG2 liver
cancer cells, induce cell cycle arrest, and promote apoptosis in a dose-
dependent manner. Exo-SIN was able to continuously release over a
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TABLE 2 Application of sinomenine nano-delivery system in the treatment of cerebral ischemia.

Nano-delivery Targeting Model (In Key parameters Therapeutic Proposed Advantages
system strategy Vitro/In Vivo) outcomes mechanism
Nanoparticle DSPE-PEG,y-HA AIA rats Size: 110.2 + 12.35 nm, |: Hind paw volume, |: Activated macrophage, Controlled release, prolonged circulation half-life, 2022 (151)
zeta potential: —12.65mV | arthritic score, rough TNF-a, G-CSE ROS, viability specific arthritis-targeting abilit, escape from
bone surfaces, severe of HFLS-RA, inflammation immune surveillance
bone destruction of
inflamed joints,
synovial hyperplasia,
inflammatory cell
infiltration, joint space
narrowing, cartilage
destruction and bone
erosion
Alendronate sodium Collagen-induced Size: 396 + 9.07 nm, drug |: Thickness of CIA rat 1:ROS, MDA, IL-1f, TNF-a, Prolong the drug retention time inside the joint 2023 (152)
arthritis rat model, loading content: 11.6 + 1.3, | paws, arthritis scores, p-p65, inflammation cavity, easy to synthesize, modify, and scale
RAW264.7 cells drug loading efficiency: degree of redness and 1:1L-10, Arg-1, M2
60% swelling in rats macrophages
HA-DSPE-PEG, AIA rats Size: 115.00 + 3.86 nm, |: Hind paw volume, 1: TNF-a, IL-6, the viability of | Precise targeting of the synovial lesion site in 2024 (153)
load capacity: 103.10%, arthritic score, synovial = RAFLS, proliferating cells, arthritis
encapsulation capacity: inflammation, cartilage | cyclin B1, IL-6, TNF-a, PI3K/
28.96%, zeta potential: loss, chondrocyte Akt, SGK, cell cycle pathway
-9.23+0.23 mV count, loss of the t: M2 macrophages, IL-10,
cartilage matrix, rough FoxO, cell apoptosis
joint surfaces,
prominent marginal
osteophytes, narrowed
joint cavities, impaired
interphalangeal and
metatarsal joint
correspondence
D-Sino conjugates Traumatic brain Size: 4.87 + 0.43 nm, zeta 1: TNF-a, NO, IL-1p, CCL-3, Cross BBB, specifically targeted activated 2020 (150)
injury rabbits model | potential: =0.16 + 0.17 mV IL-1, IL-6, iNOS, NF-xB microglia/macrophages at the site of injury in the
activation and its nuclear brain, increasing the therapeutic window
translocation
Exosomes HepG2 and LO2 cells = Average diameter: 1: Cell cycle arrest, cellular Improve the bioavailability of SIN and enhance the 2021 (155)
84 + 3 nm, loading apoptosis anti-tumor efficacy of SIN
efficiency: 17-19% |: migration of HepG2 cells,
CD44

(Continued)
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TABLE 2 (Continued)

Nano-delivery Targeting Model (In Key parameters Therapeutic Proposed Advantages
system strategy Vitro/In Vivo) outcomes mechanism
Hybrid exosomes Collagen-induced Size: 132.70 + 4.07 nm, 1: Microvascular 1: TNF-a, IL-6 More stable and durable drug effect, prolonged the 2017 (156)
arthritis rats Zeta potential: comprehensive score, half-life of drugs
—17.90 £2.13 mV, vascular resistance
encapsulation rate: 1: general condition,
48.21% * 3.12%, drug swelling degree of foot,
loading: 3.17% + 0.36% arthritis index and
immune organ index
Liposomes Passive targeting, RA model rats Size: 100 nm 1: Thickness of the paw, | |: TNF-a, IL-6 Effectively taken up by lipopolysaccharide- 2020 (159)
microwave EE%: 90% or more arthritic scores, activated HUVECs
hyperthermia destruction, bone loss,
synovial inflammation,
pannus formation, bone
erosion
Ethosomes Topical application Xylene-induced Size: 157.08 + 11.72 nm 1: Xylene-induced ear Enhance transdermal permeation of SH, strong 2016 (161)
mouse ear edema cumulative amount for edema anti-inflammatory activity on the xylene-induced
model 24 h: 663.8 + 27.4 pg/cm® ear edema
Transfersomes New Zealand Size: 109.10 + 1.80 nm, Better in vitro skin permeation property than 2017 (166)
rabbits, Male PDI: 0.156 + 0.007, Zeta conventional liposomes, high trandermal drug
sprague dawley rats potential: —18.90 + 2.21, delivery rate, excellent transdermal drug-delivery
Elasticity: 24.50 + 0.50, EE: carriers, good percutaneous permeation property
22.38+0.79
Topical application New Zealand Size: 102.00 + 1.05 nm, Penetrate deeply into the skin layers, deliver more 2020 (167)
rabbits, Male PDI: 0.090 + 0.029, Zeta drug to joint cavities and less to blood
sprague dawley rats potential: —8.37 + 0.40,
Elasticity: 40.84 + 1.01, EE:
20.12+1.63
Transdermal New Zealand Size: 83.31 + 0.08 nm, PDI: Penetrate through stratum corneum into deeper 2022 (168)
administration rabbits, Male 0.062 + 0.017, Zeta epidermis, broke down rapidly and released SH
sprague dawley rats potential: —32.57 + 3.27, after entering the deep parts of the skin
EE: 39.82 + 0.97
(Continued)
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TABLE 2 (Continued)

Nano-delivery Targeting Model (In Key parameters Therapeutic Proposed Advantages Year Ref.
system strategy Vitro/In Vivo) outcomes mechanism
Microneedles Transdermal drug Male sprague dawley | Length: 0.5 mm, center-to- Increased the cumulative permeability and 2020 (174)
delivery rats center spacing: 1.0 mm, in permeability rates, enhanced the percutaneous
skin: T}, 188.54 + 5.16, penetration effect of SH
T 99.48 + 3.65, Tmax:
240, C,,4,: 10.80 + 0.43,
AUC, : 2378.97 + 58.68,
MRT,_: 272.84 + 1.15, in
blood: T, 108.49 + 8.91,
Ty 383.98 £ 6.51, T
300, C,..x: 6.80 £ 0.26,
AUC,  1327.53 + 11.73,
MRT,_: 306.68 + 1.37
Transdermal Wistar rats Length: 500 pm, distance: Provide a longer retention time in blood for SH, 2016 (175)
administration 1 mm, permeation rate: lower clearance, longer retention time, higher
129.29 +7.52 pgecm>h, bioavailability and stability
accumulation osmolality:
5567.48 + 206.57 pg cm™?,
Transdermal Wistar rats Interspacing of needles: Transdermal absorption of SH was enhanced and 2017 (176)
administration 1.0 mm, height: 600 pm, sustained
diameter at the base:
300 pm, weighted:
1204001 g
Transdermal New Zealand rabbits = Length: 0.8 mm, base Enhanced bioavailability and permeability of SH 2015 (177)
administration diameter: 0.3 mm
Hexagonal liquid Transdermal Sprague-Dawley rats | Hexagonal phases Penetration-promoting effect for transdermal 2022 (179)
crystalline system applications applications in SH
(Continued)

e

G89//97'G202'PW/6855°0T


https://doi.org/10.3389/fmed.2025.1677685
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

BUIDIPaN Ul SI21U0I4

6T

B10"uISI1UO0L

TABLE 2 (Continued)

Nano-delivery Targeting Model (In Key parameters Therapeutic Proposed Advantages
system strategy Vitro/In Vivo) outcomes mechanism
Hydrogel Topical application Atopic dermatitis Size: 133.8 + 14.5, 1: Ear Swelling, 1: Hydroxyl radicals Slow and controlled release, stable properties, good 2024 (180)
model viscosity: Epithelial dispersion, an excellent dermal penetration effect
9.83 £0.11 mPa-s, pH: keratinization,
7.27 £ 0.01, encapsulation | hyperplasia of the spiny
rate: 72.27% layer, inflammatory
infiltrate around the
blood vessels in the
dermis
1: structure of each
layer was more
complete with clear
borders
Kunming mice Viscosities: 12.6679 mPa, |: DPPH radicals, H,0,, Good sustained-release and antioxidant effects 2022 (181)
drug loading: MDA
1.98 £0.01 mg/mL
LPS-induced RAW264 OA model Sol-gel transition 1: Trabecular thickness, | 1: Chondrocyte proliferation, Controlled release capabilities, prolonged retention 2025 (182)
cells temperature: 21.8 °c, SMN | bone volume-to-tissue M2 macrophage polarization, in the synovial fluid
release after 48 h: volume ratio |: apoptosis, MMP3, ROS,
44.72 +7.83% |: osteophyte MMP-13,
formation, knee joint
pain, trabecular
separation, IL-1f
In situ gel Topical administration Experimental Drug release: 96.3%, overa | |: Inflammatory |: Inflammatory cells The percorneal retention was improved from 2013 (183)
autoimmune uveitis period of 480 min response 10 min to 25 min, enhance bioavailability through
animal models its longer elimination time and the ability to sustain
drug release
In situ hexagonal liquid | Injected into the left AA rats Cumulative SMH release 1: Synovial hyperplasia, | |:IL-1f Significantly reduced the leakage of SMH into 2019 (186)
crystal knee joint of each rat 0f 99.9% within 240 h, inflammatory cell systemic circulation,
infiltration
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period of 48 h at pH 7.4 and 37 °C, with a cumulative release amount
reaching 86.15%, significantly improving the bioavailability of SIN and
extending its duration of action. Additionally, milk exosomes were
fused with liposomes to create a mixed exosome formulation loaded
with SIN, with milk exosomes used as a control group (156). The mixed
exosome formulation demonstrated improved performance, with
higher encapsulation efficiency (48.21% + 3.12%) and drug loading
(3.17% + 0.36%) compared to the milk exosomes alone (31.64% + 2.48
and 2.35% + 0.52%, respectively). Compared to the control group, the
mixed exosomes demonstrated more stable and sustained drug effects
while also successfully enhancing the drug loading and biocompatibility
of the liposomes.

7.3 Liposomes

Liposomes exhibit excellent biocompatibility, which can reduce
irritation and side effects of drugs, and are commonly used in
transdermal drug delivery. SIN encapsulated in liposomes for local
delivery can concentrate SIN at the target site, reducing systemic
absorption-related side effects. Traditional liposomes, made from
materials such as soybean phospholipids, cholesterol, and vitamin E,
can be used to encapsulate SIN. In recent years, stimulus-responsive
liposomes have attracted considerable attention, as modifying
liposomes allows for more precise control over the timing and location
of drug release, enhancing drug delivery and dosage control, thus
improving therapeutic efficacy (157, 158). pH gradient methods were
successfully used to prepare SIN hydrochloride thermosensitive
liposomes (SIN-TSL). These liposomes were composed of dipalmitoyl
phosphatidylcholine, hydrogenated soy lecithin, and cholesterol, with
an encapsulation efficiency of up to 90% and a particle size of
approximately 116.3 +5.03 nm, showing high drug loading.
Thermosensitive liposomes exhibited stronger targeting capabilities
than conventional liposomes. SIN-TSL could release the drug
efficiently and controllably at the RA rat hind limb for 48 h, extending
the drug’s half-life (159). A novel transdermal drug delivery system for
SIN, based on fatty acid-arginine vesicles ([Arg][Dec]), was also
developed to enhance SIN’s transdermal absorption (160). Importantly,
the centrifugal stability (CS) improved to 90.4% and the encapsulation
efficiency of SIN in [Arg][Dec] vesicles rose to 83.5%. In addition,
in vitro release studies showed that SIN rapidly released into the water
within the first 3 h, with the cumulative release rate exceeding 95%
after 17 h. In transdermal experiments, the cumulative permeability of
[Arg][Dec] vesicles was 1665.59 pg-cm ™2, significantly higher than the
663.8 pg-cm ™ reported in the literature (161). Traditional liposomes,
due to their larger particle size, high manufacturing costs, and low
stability, are less efficient in penetrating the skin. Ethosomal liposomes,
a novel type of liposome containing a high concentration of ethanol
(162), can deliver SIN via the stratum corneum to reach deeper skin
layers and even the bloodstream (161). Yan et al. (161) prepared a novel
SIN-loaded ethosome (SE) by injection. Within 24 h, the cumulative
transdermal flux of SIN in SE was 663.8 pg/cm?, with a deposition of
18.5 pg/cm?, whereas the cumulative transdermal flux of SIN in an
ethanol-water solution was only 329.2 pg/cm?’ with a deposition of
5.2 pg/cm?, indicating that SE significantly improved SIN’s transdermal
performance. In a xylene-induced mouse ear edema model, SE showed
significant inhibition of ear edema (30.01%), significantly higher than
the inhibition rate of SIN-HCI ethanol-water solution (20.83%).
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Transfersomes (TFs) are a novel class of lipid vesicles made from
edge activators and phospholipids. Edge activators cause lipid vesicles’
bilayer membrane to become less stable, become more deformable,
and facilitate vesicles’ passage through the skin’s micropores while
avoiding the stratum corneum barrier, which is the primary barrier
and rate-limiting step for drug diffusion through the skin (163, 164).
Furthermore, TFS can increase drug deposition in the skin and extend
the duration of effective drug concentrations, reducing the frequency
of administration (165). Conventional liposomes and sodium
deoxycholate edge-activated transfersomes (DTFS) served as controls
whereas mixed monoterpenes were employed as edge activators to
create mixed monoterpenes edge-activated PEGylated transfersomes
(MMPTs) (166). In in vitro skin permeation studies, the cumulative
skin permeation of SIN in the optimized TFSs3 formulation was 1.5
times higher than DTFS and 3 times higher than conventional
liposomes. This indicates that MMPTs exhibited better skin
permeation properties than traditional liposomes. In in vivo
pharmacokinetic studies, the steady-state concentration (Css) and
AUCO = t increased, while the MRTO — inf was shortened,
suggesting that MMPTs had a higher transdermal drug delivery rate.
The distribution of MMPTs in various skin layers and the
pharmacokinetics of SIN in the blood and joint cavity were examined
in another study utilizing MMPTs using confocal laser scanning
microscopy (CLSM) and dual-site micro dialysis in conjunction with
LCMS/MS (167). The results showed that, compared to other types of
vesicles, a moderate number of mixed mono-terpenes significantly
increased the elasticity of MMPTs. CLSM analysis indicated that LPS
was confined to the stratum corneum, while MMPTs were mainly
localized in the deeper skin layers, indicating their potential to
facilitate transdermal delivery of SIN. Furthermore, LC-MS/MS
analysis showed that, in the joint cavity, the steady-state concentration
(Css) and the area under the concentration-time curve (AUCO — t)
of SIN delivered by MMPTs were 2.1- and 2.5-fold higher, respectively,
than those achieved with LPS. In contrast, in the blood, the Css and
AUCO — t of SIN in MMPTs were ap-proximately one-third of those
in LPS. Therefore, MMPTs also enhanced SIN delivery to the joint
cavity. Sodium deoxycholate was used as an edge activator to prepare
SIN hydrochloride transfersomes (SHTs), with SH liposomes (SHLSs)
prepared as a control formulation (168). In in vitro permeation tests,
after 36h of administration, the cumulative permeation and
cumulative permeation rate of SH in SHTs were ap-proximately 1.7
times those in SHLs. Furthermore, compared to SHLs, SHTs exhibited
a 62% higher deposition percentage (Qp) in the subcutaneous skin
layer beneath the stratum corneum. The Css and AUCO — t of SHTs
were roughly 8.8 and 8.0 times those of SHLs, respectively, according
to pharmacokinetic data. According to blood pharmaco-kinetic data,
SHTs Css and AUCO — t were roughly 3.7 and 2.9 times greater than
SHLs, respectively. These experiments confirmed that TES
demonstrated superior transdermal penetration compared to
conventional liposomes.

7.4 Microneedles

Microneedles can overcome the skin barrier and deliver drugs
trans dermally with minimal invasiveness (169-172). Microneedles
consist of multiple micro-projections less than 2 mm in height and,
due to their direct action on the lesion, can reduce the dosage and
enhance safety, playing a vital role in transdermal drug delivery
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systems (173). A dissolving microneedle (SH-MN) loaded with SIN
was fabricated using a casting method from polyethylene pyrrolidone
and chondroitin sulfate (174). SH-MN showed higher cumulative
permeation and permeation rates than SH-G, with cumulative
permeation and permeation rates of 5.31 and 5.06 times, respectively.
In the skin and blood, the area under the curve (AUC) for SH-MN
was 1.43 and 1.63 times that of SH-G, respectively, indicating that
microneedles enhanced SIN’s transdermal penetration and increased
its bioavailability (175). Pharmacokinetic analysis further revealed
that the maximum plasma concentration (Cmax) of SIN in the
microneedle group (0.74 + 0.13 mg/mL) was more than twice that of
the hydrogel group (0.33 +0.029 mg/mL). The time to reach
maximum concentration (Tmax) was significantly prolonged in the
microneedle group (18.24 +5.26 h) compared with the hydrogel
group (7.32 £ 0.21 h), suggesting a more sustained release profile.
After 4 h, the microneedle tips had almost completely dissolved, and
the drug concentration in the skin reached its peak, with a
subcutaneous penetration depth of 200 pm. A microneedle array
made of polyvinyl alcohol (PVA) and maltose (MT) showed better
performance compared to SH-loaded hydrogel (175). The MT/PVA
microneedle array loaded with SH demonstrated lower clearance,
longer retention time, higher bioavailability, and better stability.
Another study used liquid crystal (H2)-composite dissolving
microneedles (DM) for transdermal delivery of SH (176). Compared
to other control groups, the composite DM enhanced and maintained
SH’s transdermal delivery, with a significantly increased cumulative
permeation. Wu et al. prepared dissolving microneedles (SH-DM)
using MT and poly (lactic-co-glycolic acid) (PLGA) copolymer as
materials (177). During the in vivo transdermal study in rabbits,
SH-DM was administered at a dose of 50 mg/kg by pressing the
microneedle array (7 x 10) into the shaved dorsal skin for 20 s, while
SH-G was applied topically at the same dose. The results showed that
SH-DM exhibited a 1.99-fold higher AUC compared to SH-G, with a
relative bioavailability of 199.21%, indicating that SH-DM significantly
enhanced the bioavailability and permeability of SH (177).

7.5 Gels

Gels are semi-solid drug delivery carriers with a three-
dimensional network structure. They exhibit high drug loading
capacity and are suitable for lipophilic, hydrophilic, and amphiphilic
drugs, making them a promising novel transdermal drug delivery
system (178). A hexagonal phase liquid crystal gel was prepared to
co-load the hydrophilic drug SIN hydrochloride and the lipophilic
drug cinnamaldehyde. Small-angle X-ray scattering, rheological
techniques, laser scanning confocal fluorescence microscopy, and
in vitro release studies showed that the addition of an appropriate
amount of lipophilic drug to the hexagonal phase liquid crystal gel
enhanced the permeability of the hydrophilic drug while slowing
down the release of both drugs, thereby prolonging the drug retention
time and improving local bioavailability (179). SIN hydrochloride
liposomes (SINH-L) were uniformly dispersed in a hyaluronic acid gel
matrix to form SINH-LH, with an encapsulation efficiency of 72.27%
(180). SINH-LH demonstrated good transdermal effects, enabling
slow drug release while maintaining moisture at the application site,
and exhibited strong antioxidant proper-ties with notable scavenging
abilities against hydroxyl and ABT free radicals. Another study also
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confirmed the antioxidant effect of SIN-loaded liposomal hydrogel,
which also showed some ability to clear MDA in ex vivo organ
homogenates (181). Sheng et al. (182) developed a hydrogel system
carrying SIN-loaded cerium dioxide nanoparticles (SMN-CeO,@G).
Within 48 h, the cumulative release of SIN from SMN-CeO,@G was
44.72 +7.83%. At a concentration of 0.5 pg/mL, SMN-CeO,@G
promoted proliferation and reduced apoptosis of ATDC5
chondrocytes while decreasing IL-1p-induced MMP-13 secretion. It
also reduced ROS levels in chondrocytes by promoting macrophage
M2 polarization. A single intra-articular injection of SMN-CeO,@G
significantly reduced osteophyte formation, normalized subchondral
bone, alleviated pain sensitivity, and lowered serum levels of IL-1p and
MMP-13 in an osteoarthritis model. Song et al. (183) developed and
optimized an in situ gel of SIN hydrochloride for the treatment of
uveitis. The optimal formulation, F2-3, containing 0.5% SIN, released
96.3% of its drug content within 480 min. Pharmacokinetic studies
showed that the AUC 0-t and C_max values for the aqueous humor
in the gel group were 2.70 times and 1.79 times higher, respectively,
than those in the control group. Lyotropic liquid crystals (LLC),
formed by the self-assembly of amphiphilic molecules in water into
highly ordered lamellar and non-lamellar phases, including hexagonal
phase and cubic phase liquid crystals, can control drug release and
enhance drug solubility, thereby maintaining a more stable drug
concentration (184, 185). An in situ hexagonal liquid crystal filled
with SIN hydrochloride for intraarticular injection was used to create
a unique medication delivery method. In order to improve patient
compliance, this system can stay in the joint cavity for more than
seven days, minimizing systemic exposure and lowering the need for
frequent injections (186).

8 Discussion and conclusion

Cerebral ischemia remains a major global health challenge due
to its high rates of morbidity, mortality, and long-term neurological
disability. The
neuroinflammation,

complex pathological cascade, including

oxidative stress, blood-brain barrier
disruption, and glial cell activation, critically contributes to
irreversible brain damage. At present, therapeutic strategies for
ischemic stroke primarily involve thrombolysis with tissue
plasminogen activator and mechanical thrombectomy procedures.
However, the narrow therapeutic time window greatly limits both
the efficacy and safety of these interventions (187). In addition, a
study has shown that certain surgical procedures fail to improve
patient recovery and may even be linked to worse outcomes,
including higher mortality and functional impairment (188).
Consequently, there is an urgent need to explore alternative, more
effective therapeutic approaches, making the development of novel
pharmacological agents for stroke an imperative priority. Notably,
some compound drugs have already shown encouraging results in
this field; for instance, studies have indicated that DL-3-n-
butylphthalide together with Edaravone dexborneol can enhance
neurological performance and mitigate cognitive deficits in
experimental models of ischemic stroke by jointly inhibiting
inflammatory responses and oxidative stress (189, 190). This review
highlights the multifaceted neuroprotective potential of SIN, a
bioactive alkaloid with well-documented anti-inflammatory,
antioxidant, and immunomodulatory properties.
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However, despite promising preclinical results, the clinical
translation of SIN is limited by its poor pharmacokinetic profile,
including low oral bioavailability and rapid systemic clearance.
Advances in nanotechnology-based drug delivery systems, such as
microneedles, hydrogels, and liposomal formulations, have
demonstrated significant improvements in SIN’s stability, brain-
targeting capacity, and therapeutic efficacy. These novel delivery
strategies not only enhance drug bioavailability but also offer sustained
release and improved patient compliance, which are essential for
effective treatment of cerebral ischemia.

An emerging focus of this review is the bone-brain axis, a
bidirectional communication pathway that has recently garnered
attention for its potential in modulating neurological diseases. Bone-
derived cytokines, osteocalcin, and other mediators can cross the
BBB and influence CNS functions, offering a unique route for
targeted drug delivery. Leveraging this axis for SIN administration
could represent a transformative approach, potentially enhancing
therapeutic concentrations at the ischemic brain sites while
minimizing systemic side effects.

Furthermore, the proposed bone marrow cavity injection-based
delivery system may selectively modulate microglial polarization by
suppressing the pro-inflammatory M1 phenotype and promoting the
anti-inflammatory M2 phenotype, thereby facilitating neuroprotection.
The interaction between microglia and astrocytes, particularly the
activation of neuroprotective A2 astrocytes, could further contribute
to mitigating neuroinflammation and restoring neural homeostasis.

A potential point of contention lies in the possibility that if drugs
can cross the BBB and act directly within the CNS, the regulatory
influence of the bone-brain axis may be relatively diminished. This
issue can be approached by considering the distinct mechanisms of
action of the two strategies. The bone-brain axis may play a more
critical role in chronic or long-term regulation. On the one hand, it
alleviates neuroinflammation by modulating immune responses; on
the other hand, bone-derived cells and metabolites are capable of
crossing the BBB, thereby providing sustained immune regulation
and neuroprotection. In contrast, drugs that act directly on the
CNS—for instance, via nanoparticle-based delivery systems capable
of penetrating the BBB—can exert more rapid neuroprotective effects
during the acute phase. Such approaches enable direct delivery of
therapeutic agents to ischemic regions, alleviating brain tissue injury
within a short time frame. Nevertheless, these two mechanisms are
not mutually exclusive but rather complementary. The bone-brain
axis provides continuous immune modulation and long-term
neuroprotection, whereas direct CNS drug delivery offers immediate
mitigation of acute brain injury. The integration of these strategies
has the potential to markedly enhance therapeutic efficacy,
particularly in ischemic brain injury, by improving outcomes across
both the acute and chronic phases.

Nevertheless, several challenges remain before clinical application
can be realized. The precise mechanisms governing the bone-brain
axis-mediated delivery and SIN’s interaction with neural and immune
cells require further elucidation. Additionally, comprehensive in vivo
studies and well-designed clinical trials are needed to validate the
safety, efficacy, and optimal dosing regimens of SIN nanoformulations
targeting the bone-brain axis.

In summary, SIN can improve the inflammatory microenvironment
through various mechanisms, inhibit neuronal damage, alleviate
symptoms of cerebral ischaemia and improve patients’ quality of life.
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However, due to the inherent limitations of traditional Chinese medicine,
we believe that the combination of novel dosage forms with traditional
drug delivery systems can reduce the required dosage of SIN, improve its
targeting ability and provide new approaches for the treatment of
cerebral ischemia. We propose a bone marrow cavity injection-based
drug delivery system designed to suppress M1 microglial polarization
while promoting M2 polarization, thereby facilitating the release of anti-
inflammatory factors and reducing neuronal damage. In addition, given
the ‘cross-talk’ between microglia and astrocytes, this system could
potentially activate A2 reactive astrocytes, which may help limit the
excessive production of pro-inflammatory factors and oxidative stress
molecules, ultimately restoring neural homeostasis. In conclusion, as a
widely used traditional medicine, further research on SIN will be of
significant clinical value and may contribute to the development of
advanced therapeutic approaches.
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Glossary

SIN - Sinomenine

CNS - Central nervous system

ATP - Adenosine triphosphate

DAMPs - Damage associated molecular patterns
HMGBI1 - High-mobility group box 1
HSPs - Heat shock proteins

BBB - Blood-brain barrier

NF-kB - Nuclear Factor kappa B

AP-1 - Activator Protein 1

TNF-o - Tumor necrosis factor-o

IL-1p - Interleukin-1

COX2 - Cyclooxygenase-2

MMP - Matrix Metalloproteinases

Z0-1 - Zonula Occludens-1

MAPK - Mitogen-activated protein kinase
GFAP - Glial fibrillary acidic protein

NLRP 3 - NOD-like receptor thermal protein domain associated
protein 3

PAMP - Pathogen-associated molecular pattern

ROS - Reactive oxygen species

AP - Amyloid-beta

RANKL - Receptor activator of nuclear factor-kB ligand
NFATc1 - Nuclear factor of activated T-cells cytoplasmic 1
BMPs - Bone morphogenetic proteins

TGEF-p - Transforming growth factor-f

OBs - Osteoblasts

OCs - Osteoclasts

MDA - Malondialdehyde

SOD - Superoxide dismutase
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GSH-PX - Glutathione peroxidase

PHD1 - Prolyl hydroxylase domain-containing protein 1
NE - Norepinephrine

SNS - Sympathetic nervous system

NPY - Neuropeptide Y

CART - Cocaine-amphetamine regulated transcript
5-HT - Serotonin

NPU - Neuropeptide U

PNS - Parasympathetic nervous system
Ach - Acetylcholine

nAChRs - Nicotinic acetylcholine receptors
VIP - Vasoactive intestinal peptide

CGRP - Calcitonin gene-related peptide
GABA - y-aminobutyric acid

GHRP - Growth hormone releasing peptide
CREF - Corticotropin-releasing factor

AD - Alzheimer’s disease

GPCR - G protein-coupled receptor

ASR - Acute stress response

FGF23 - Fibroblast growth factor 23

BDNF - Brain-derived neurotrophic factor
IGF-1 - Insulin-like growth factor 1
GDF-15 - Growth differentiation factor 15
Treg - Regulatory T cell

H.O; - Hydrogen peroxide

LPS - Lipopolysaccharide

FLS - Fibroblast-like synoviocytes

AIA - Adjuvant-induced arthritis

o7nAChR - a7 nicotinic acetylcholine receptor
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CAP - Cholinergic anti-inflammatory pathway
Nrf2 - Nuclear factor erythroid 2-related factor 2
HO-1 - Heme oxygenase-1

TLR4 - Toll-like receptor 4

JAK2 - Janus kinase 2

STATS3 - Signal transducer and activator of transcription 3

ERK - Extracellular signal-regulated kinase
Egr-1 - Early growth response 1

CRYAB - Alpha B-crystallin

Caspase-3 - Cystein-aspartate protease
Bcl-2 - B-cell lymphoma-2

T-bet - T-box transcription factor

IFN-vy - Interferon-y

GATA3 - GATA-binding protein-3

Arg-1 - Arginase-1

MyD88 - Myeloid differentiation factor 88
Bax - Bcl-2-associated X protein
NAD(P)H - Nicotinamide adenine dinucleotide
NQO-1 - Quinone dehydrogenase-1

ALI - Acute lung injury

VCAM-1 - Vascular cell adhesion molecule-1

PDGFR-f - Platelet-derived growth factor receptor-f

TrxR - Thioredoxin reductase

GDM - Gestational diabetes mellitus

SOX35 - Sex-determining region Y-box protein 5
TRPV1 - Transient receptor potential vanilloid 1

MCAO - Middle cerebral artery occlusion
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BMSCs - Bone mesenchymal stem cells
CCH - Chronic cerebral hypoperfusion
PBNPs - Prussian blue nanoparticles
HA - Hyaluronic acid

SH - Sinomenine hydrochloride

PEG - Polyethylene glycol

Ald - Alendronate

Met - Ethyl L-methionine

GOQDs - Graphene oxide quantum dots
TBI - Traumatic brain injury

SIN-TSL - Sinomenine hydrochloride thermosensitive liposomes
CS - Centrifugal stability

SE - SIN-loaded ethosome

TFs - Transfersomes

MMPTs - Mixed monoterpenes edge-activated
PEGylated transfersomes

DTFs - Deoxycholate edge-activated transfersomes
C,, - Steady-state concentration

CLSM - Confocal laser scanning microscopy
SHTs - Sinomenine hydrochloride transfersomes
SHLs - SH liposomes

AUC - Area under the curve

PVA - Polyvinyl alcohol

MT - Maltose

DM - Dissolving microneedles

PLGA - Poly(lactic-co-glycolic acid)

SINH-L - Sinomenine hydrochloride liposomes
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