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Objective: To develop a differential diagnostic prediction model for

distinguishing large opacities in pneumoconiosis from peripheral lung cancer

based on CT radiomics.

Methods: A total of 103 cases of large opacities in pneumoconiosis and 85

cases of peripheral lung cancer were retrospectively collected from routine CT

scans at the First Affiliated Hospital of Chongqing Medical and Pharmaceutical

College between March 2021 and June 2025. Diagnosis was confirmed by

an expert panel, clinical evaluations, and pathological examinations. Patients

were randomly assigned to a training set (n = 132) and a test set (n = 56).

Lesions were delineated by at least two pneumoconiosis experts using ITK-SNAP

software. Radiomic features were extracted from CT images of lung lesions in

the training set, including first-order features, shape features (2D and 3D), texture

features (gray-level co-occurrence matrix, gray-level run-length matrix, gray-

level size-zone matrix, gray-level dependence matrix), and wavelet transform

filters. Feature dimensionality reduction was applied to construct morphological

biomarkers. Diagnostic prediction models were built using machine learning

algorithms. Model performance was evaluated using the ROC curve and the area

under the curve (AUC) in the test set.

Results: A total of 108 features were extracted from 110 large opacity regions

and 85 peripheral lung cancer regions of interest (ROIs). Dimensionality

reduction identified a subset of eight most significant features. LR, SVM, and

AdaBoost algorithms were implemented using Python to build the models. In the

training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0,

and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively;

the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values
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were 0.837, 0.886, and 0.900, respectively. In the test set, the accuracies of the 

LR, SVM, and AdaBoost models were 80.7, 82.5, and 86.0%, respectively; the 

sensitivities were 89.3, 89.3, and 82.1%, respectively; the specificities were 72.4, 

75.9, and 89.7%, respectively; and the AUC values were 0.825, 0.855, and 0.900, 

respectively. The AUC of the AdaBoost ROC curve was significantly superior 

to those of the LR and SVM models. The AdaBoost model demonstrated the 

optimal predictive performance in both the training and test sets. 

Conclusion: The AdaBoost-based prediction model, developed using CT 

radiomic features, effectively differentiates large opacities of stage III 

occupational pneumoconiosis from peripheral lung cancer. 

KEYWORDS 

pneumoconiosis, large opacities, CT radiomics, AdaBoost, machine learning, diagnostic 
model 

1 Introduction 

Pneumoconiosis is a progressive lung disease caused by 
the long-term inhalation of harmful mineral dusts, typically 
encountered in occupational settings such as mining, construction, 
and manufacturing (1). The dust particles become lodged in 
the pulmonary tissue, leading to inflammation, fibrosis, and the 
eventual development of severe pulmonary dysfunction (2). The 
disease primarily manifests as diuse pulmonary fibrosis, which 
can progress to more severe forms, including progressive massive 
fibrosis (PMF) in advanced stages (3). PMF is characterized by 
large opacities in the lungs, often exceeding 10 mm in diameter, 
as defined by the National Occupational Health Standard of the 
People’s Republic of China (4). In stage III pneumoconiosis, these 
large opacities present with a long diameter of at least 20 mm 
and a short diameter greater than 10 mm. Clinically, patients with 
advanced pneumoconiosis, particularly those with PMF, experience 
progressive respiratory symptoms such as dyspnea, chronic cough, 
and a significant decline in lung function (5). These clinical 
manifestations are not only debilitating but also share a striking 
resemblance to those seen in patients with peripheral lung cancer, 
which complicates the dierentiation between the two diseases (6). 

Lung cancer, especially in its peripheral form, is one of the 
most common and lethal malignancies worldwide. Peripheral 
lung cancer typically originates from the distal bronchioles or 
alveolar epithelium and often presents as solitary pulmonary 
nodules or masses located near the pleura (7). In its early 
stages, the disease may be asymptomatic or manifest with non-
specific respiratory symptoms such as cough or chest pain (8). 
As the tumor progresses, features such as pleural indentation, 
vascular convergence, spiculation, and local invasion become more 
apparent. These radiologic characteristics, however, can closely 
mimic those of PMF, particularly when large opacities are present 
(9). In addition, patients with pneumoconiosis who are at risk due 
to occupational exposure may concurrently develop lung cancer, 
further complicating diagnosis (9). Unlike PMF, which generally 
follows a chronic, fibrotic course, peripheral lung cancer tends to 
grow rapidly and metastasize early, leading to poor prognosis if not 
identified and treated in a timely manner (10). 

The overlapping clinical and radiologic features between 
pneumoconiosis and lung cancer present significant diagnostic 
challenges. Imaging studies, especially chest X-rays and CT 
scans, often reveal large opacities that can mimic lung cancer 
masses in terms of their size, shape, and density (11). As a 
result, distinguishing between the two conditions solely based on 
traditional imaging techniques becomes increasingly diÿcult (10). 
Therefore, there is an urgent need for accurate diagnostic tools 
that can help clinicians dierentiate between these two conditions 
eectively (12). 

Radiomics, a rapidly evolving field in medical imaging, 
oers significant promise in addressing this diagnostic dilemma. 
Radiomics involves the extraction of a wide range of quantitative 
features from medical images, such as CT scans, to capture the 
complex spatial and textural characteristics of tissue. These features 
go beyond traditional imaging analysis and provide detailed 
insights into the underlying pathological changes in the tissue (13). 
Lambin et al. first proposed the concept of radiomics in 2012, 
highlighting its potential to extract clinically relevant information 
from imaging data that may not be immediately apparent to the 
human eye (14). By applying advanced machine learning (ML) 
algorithms to radiomic features, it is possible to develop predictive 
models that can aid in non-invasive disease diagnosis, prognosis, 
and treatment planning (15). 

In the context of pneumoconiosis and lung cancer, radiomics 
oers substantial diagnostic value owing to the remarkable 
similarity in imaging characteristics between progressive massive 
fibrosis (PMF) and peripheral lung tumors (16). The primary 
objective of this study was to develop a dierential diagnostic 
prediction model based on radiomic features extracted from CT 
images of pulmonary lesions. By identifying distinct quantitative 
patterns that dierentiate pneumoconiosis-related large opacities 
from malignant nodules, we aimed to enhance diagnostic precision 
and assist clinical decision-making (17). 

Leveraging the capacity of machine learning algorithms to 
analyze high-dimensional data and capture complex, non-linear 
relationships, our approach provides a robust and scalable 
framework for improving diagnostic discrimination between these 
two clinically overlapping conditions (18). This is particularly 
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important given that misdiagnosis can lead to inappropriate 
management, delayed treatment, or unnecessary invasive 
procedures (19). Overall, this study addresses a critical unmet need 
in the field of occupational lung disease and oncologic imaging. 
By integrating radiomics with advanced computational modeling, 
our work contributes to the development of a standardized, non-
invasive, and reproducible diagnostic tool capable of supporting 
accurate dierentiation between pneumoconiosis and peripheral 
lung cancer, ultimately improving patient outcomes and guiding 
more informed clinical practice. 

2 Materials and methods 

2.1 General data 

Chest CT images of patients with pneumoconiosis-related 
large opacities and peripheral lung cancer were retrospectively 
collected from the First Aÿliated Hospital of Chongqing Medical 
and Pharmaceutical College between March 2021 and June 2025. 
The study cohort was divided into two groups based on clinical 
and diagnostic criteria: Pneumoconiosis large opacity group: 
Patients diagnosed with stage III occupational pneumoconiosis 
presenting with large opacities, as confirmed by an expert 
panel in accordance with the GBZ70–2015 Diagnostic Criteria 
for Pneumoconiosis. Lesions were required to have a long-axis 
diameter ≥ 20 mm and a short-axis diameter > 10 mm. Peripheral 
lung cancer group: patients with peripheral lung cancer confirmed 
by histopathological examination, exhibiting mass lesions with a 
maximum diameter ≥ 30 mm. 

Inclusion criteria were as follows: (1) For the pneumoconiosis 
group: confirmed diagnosis of stage III pneumoconiosis with large 
opacities meeting the size thresholds (long-axis ≥ 20 mm, short-
axis > 10 mm) (Figure 1; Supplementary Figure S1). (2) For the 
lung cancer group: confirmed diagnosis of peripheral lung cancer 
by both imaging and pathology, with lesions ≥ 30 mm in diameter 
(Figure 2; Supplementary Figure S2). 

Exclusion criteria were defined to ensure image quality and 
diagnostic specificity: (1) For the pneumoconiosis group: cases with 
suboptimal CT image quality that failed to meet diagnostic imaging 
standards, or cases with coexisting pulmonary tuberculosis, 
metastatic lesions, or other respiratory comorbidities that could 
confound radiomic analysis. (2) For the lung cancer group: patients 
with concurrent tuberculosis, pulmonary metastases, or other 
comorbidities potentially interfering with imaging interpretation. 

2.2 Methods 

2.2.1 CT examination 
All subjects underwent CT scans using one of the following 

devices: GE 128-slice 256-layer Revolution ES Spiral CT 
(United States), GE Optima CT680, or United Imaging uMI 
Panorama 860 160-slice CT. Scans were performed from the 
bilateral lung apices to the lung bases for all patients. The scanning 
procedure was as follows:  verify patient ID;  prepare the 
patient;  position the patient supine;  instruct the patient 

to hold their breath during the scan;  perform the scan; 
 end the scan. 

Scanning parameters:  tube voltage: 120 kV;  rotation 
time: 0.5 s/rotation;  pitch: 0.991:1; (11) tube current: Auto 
mA;  scan slice thickness and interval: 5 mm  reconstruction 
slice thickness: 0.625 mm;  reconstruction interval: 0.625 mm. 
Images were transmitted to the GE ADW4.7 workstation for further 
processing and analysis. 

2.2.2 CT image processing and analysis 
2.2.2.1 ROI image segmentation 

CT images were imported into ITK-SNAP software1 for image 
segmentation. Two radiologists with over 5 years of experience, 
both qualified for pneumoconiosis diagnosis, manually delineated 
the ROIs for each case. For large shadow lesions, the long diameter 
was ≥ 20 mm and the short diameter > 10 mm; for peripheral 
lung cancer lesions, the size was ≥ 3 cm. Each slice was carefully 
outlined to capture the entire lesion. Completed ROIs were saved in 
the nii.gz format in the “images” and “mask” directories. A total of 
110 ROIs were outlined from the CT images of 103 pneumoconiosis 
patients, and 85 ROIs were outlined from 85 peripheral lung 
cancer patients. 

To assess the reproducibility of ROI delineation, the inter-
observer consistency of the radiomics features was evaluated using 
the Intraclass Correlation Coeÿcient (ICC). An ICC value > 0.75 
indicated good consistency between the two radiologists (20). 

2.2.2.2 Feature selection 
Radiomic features were extracted using the Pyradiomics 

software.2 The following feature extraction methods were 
applied: Neighborhood Gray Tone Dierence Matrix (NGTDM); 
 Shape features;  First-order features;  Gray-Level Co-
occurrence Matrix (GLCM);  Gray-Level Dependence Matrix 
(GLDM);  Gray-Level Run-Length Matrix (GLRLM);  Gray-
Level Size-Zone Matrix (GLSZM). Features for large shadows and 
peripheral lung cancer were labeled as 0 and 1, respectively. 

2.2.2.3 Data processing 
To minimize the impact of feature dimensionality and improve 

model performance, the data were standardized using Z-scores 
for normalization. 

2.2.2.4 Feature screening 
For normally distributed features, a t-test was applied, while 

for non-normally distributed features, a U-test was used (p < 0.05 
was considered statistically significant). Following screening, 85 
features were retained for further analysis. 

2.2.2.5 Feature dimensionality reduction 
To reduce the dimensionality of the initially extracted 

85 radiomic features, Pearson’s correlation analysis was first 
performed to assess inter-feature relationships. Features exhibiting 
high pairwise correlation (|r| > 0.9) were removed to minimize 
multicollinearity and redundancy. Subsequently, Least Absolute 
Shrinkage and Selection Operator (LASSO) regression was 

1 http://www.itksnap.org/ 

2 http://pyradiomics.readthedocs.io 
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FIGURE 1 

Representative CT imaging features across different stages of pneumoconiosis (axial and coronal views). (a,b) Axial and coronal chest CT images 
from a patient with Stage I pneumoconiosis, revealing multiple small, round, high-density nodules predominantly distributed in the upper lobes of 
both lungs, especially in the right upper and middle fields. (c,d) Correspond to Stage II pneumoconiosis, characterized by an increased number of 
opacities involving both upper lung zones and the dorsal segment of the lower lobes. (e,f) Illustrate stage III pneumoconiosis, showing a 
homogeneous mass-like opacity in the apicoposterior segment of the right upper lobe, accompanied by scattered calcifications, pleural thickening, 
adjacent localized emphysema, and nodular interstitial markings. Notably, large opacities (long-axis diameter > 20 mm, short-axis 
diameter > 10 mm) in advanced pneumoconiosis tend to display asymmetric distribution, suggesting progressive fibrotic remodeling of lung 
parenchyma. 

employed to perform penalized feature selection and identify the 

most informative predictors. The optimal regularization parameter 

(λ) was determined using 10-fold cross-validation, where the 

value minimizing the mean binomial deviance was selected to 

balance model simplicity and predictive performance. The resulting 

optimal λ value (λ = 0.0222) achieved the lowest deviance and 

ensured a parsimonious and stable model (Table 1). 

As shown in Figure 3a, the X-axis represents the penalty 

coeÿcient (λ) and the Y-axis denotes the corresponding mean 

binomial deviance. The vertical dashed line marks the optimal 
λ value (λ = 0.0222), indicating the point of minimal deviance. 
Figure 3b displays the trajectories of regression coeÿcients for 

all features as λ increases, illustrating how stronger penalization 

gradually shrinks less relevant coeÿcients toward zero. Figure 3c 
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FIGURE 2 

CT and histopathological features of pneumoconiosis-associated and malignant lesions in advanced pneumoconiosis. (a,b) Axial and coronal CT 
images of a Stage III pneumoconiosis patient, demonstrating bilateral apical mass lesions, with a dominant lesion located in the posterior segment 
of the left upper lobe (long-axis diameter > 20 mm, short-axis diameter > 10 mm). The lesion exhibits irregular margins, peripheral fibrotic strands, 
pleural thickening, and localized adhesion, along with partial truncation of the left upper bronchus. (c) The histopathological examination of the 
lesion, revealing a heterogeneous composition of epithelial cells and inflammatory infiltrates, predominantly macrophages (45%), lymphocytes 
(40%), neutrophils (10%), and a minor fraction of other cell types (5%). (d,e) Depict a large, multilobulated mass in the posterior segment of the right 
lower lobe, showing pleural retraction and areas with ill-defined borders. (f) Demonstrates immunohistochemical (IHC) staining results, confirming 
the presence of a malignant neoplasm with focal necrosis. The tumor cells were partially positive for cytokeratin (CK), weakly positive for 
chromogranin A (CgA) and synaptophysin (Syn), partially positive for INSM1, and sporadically positive for CD56, collectively supporting a diagnosis of 
neuroendocrine carcinoma. 

TABLE 1 Selected radiomic features and corresponding regression 
coefficients after dimensionality reduction using the LASSO 
regression model. 

Type Feature name 

Selected gray-level 
non-uniformity 

texture features 
(Ngtdm) 

original_ngtdm_Busyness, 
original_ngtdm_Complexity, 

original_ngtdm_Contrast 

Shape features 
(shape) 

original_shape_Maximum3DDiameter, 
original_shape_Sphericity 

Gray-level 
co-occurrence 

matrix (Glcm) 

original_glcm_ClusterShade, original_glcm_MCC 

Gray-level size-zone 

matrix (Glszm) 
original_glszm_SmallAreaLowGrayLevelEmphasis 

summarizes the final eight selected radiomic features and their 
standardized regression coeÿcients, where positive coeÿcients 
(bars extending to the right) and negative coeÿcients (bars 
extending to the left) indicate their respective contributions to the 
predictive model. 

2.3 Statistical processing 

Data analysis was performed using the onekey V5.1.25 platform 
for imaging feature extraction. The Kolmogorov-Smirnov test was 

used to assess the normality of measurement data. Data following a 
normal distribution were expressed as means ± standard deviation 
(x ± s), while non-normally distributed data were reported as 
medians. The independent t-test or Mann-Whitney U test was 
used for group comparisons, as appropriate. Categorical data 
were expressed as percentages, and the chi-square test (χ2 test) 
was employed for inter-group comparisons. A P < 0.05 was 
considered statistically significant. The MedCalc version 20.101 
software was used to evaluate the eÿcacy of the diagnostic model 
by calculating the area under the Receiver Operating Characteristic 
(ROC) curve (AUC). 

3 Results 

3.1 General patient data 

A total of 188 patients were enrolled in this study, consisting 
of 103 patients in the pneumoconiosis large shadow group (all 
male, with a mean age of 58.37 ± 7.34 years) and 85 patients 
with peripheral lung cancer (male-to-female ratio approximately 
2.6:1, with a mean age of 70.95 ± 10.82 years). Among the 
103 pneumoconiosis patients with large shadows, the pathological 
diagnoses included 32 cases of lung adenocarcinoma, 15 cases of 
squamous cell carcinoma, 1 case of neuroendocrine carcinoma, 
1 case of adenosquamous carcinoma, 6 cases of small cell lung 
cancer, 2 cases of non-small cell lung cancer, and 28 cases where the 
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FIGURE 3 

Penalized feature selection and regression coefficients for pneumoconiosis large opacities and peripheral lung cancer classification. (a) The 
relationship between the penalty coefficient value (λ) and the binomial deviance (Y-axis), with the X-axis showing the corresponding number of 
features. The vertical dashed line indicates the optimal λ value (λ = 0.0222). (b) The regression coefficients for each feature plotted against the 
penalty coefficient value (λ), illustrating the shrinkage effect of the penalty term and the evolution of feature coefficients with increasing λ. (c) A 
horizontal bar chart displaying the selected features with their corresponding regression coefficients. The Y-axis shows the radiomic feature names, 
and the X-axis represents the magnitude and direction of the coefficients, where bars to the right indicate positive coefficients and those to the left 
indicate negative coefficients. 

pathological type remained unknown. These patients had all been 
diagnosed with stage III pneumoconiosis, and the large shadows 
were confirmed as massive fibrosis by expert clinical evaluation and 
imaging analysis. For the peripheral lung cancer group, all cases 
were pathologically confirmed after biopsy and surgery. The study 
population exhibited a range of underlying conditions, with some 
patients presenting with comorbidities such as chronic obstructive 
pulmonary disease (COPD) or cardiovascular disease, which were 
considered during the analysis to prevent bias in the feature 
extraction process. 

3.2 Construction of classifiers 

The 188-patient dataset was randomly divided into a training 
set and a validation set at a ratio of 7:3, resulting in 132 
patients for the training set and 56 for the validation set. Several 

common machine learning algorithms were employed to construct 
predictive models, using the onekey AI V5.1.25 platform: (1) 
Logistic Regression (LR): a generalized linear model that maps the 

linear regression output to a probability space through a logistic 

function, which is used for classification purposes. LR is widely used 

for its interpretability and simplicity, making it a strong baseline 

method for binary classification tasks. (2) Support Vector Machine 

(SVM): a supervised learning algorithm that performs classification 

by finding the optimal hyperplane that maximizes the margin 

between dierent classes. SVM is eective for classifying complex, 
non-linear data and is particularly useful for high-dimensional 
feature spaces, such as the radiomic features extracted from CT 

images. (3) Adaptive Boosting (AdaBoost): an ensemble learning 

method that combines multiple weak classifiers to form a strong 

classifier. By giving higher weights to misclassified samples in each 

iteration, AdaBoost improves the overall model accuracy. Notably, 
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AdaBoost is known for its ability to reduce overfitting and enhance 
the generalization capability of the model, even when training 
errors approach zero. 

3.3 Model performance results 

The performance of each model was evaluated based on 
various metrics, including accuracy, AUC (Area Under the Curve), 
sensitivity, specificity, precision, recall, F1 score, and predictive 
values. The detailed results for each model are as follows: 

LR Model:  accuracy: 79.4%;  AUC: 0.837 (95% CI: 0.7687-
0.9059);  sensitivity: 74.1%;  specificity: 83.6%;  positive 
Predictive Value (PPV): 78.2%;  precision: 78.2%;  Negative 
Predictive Value (NPV): 80.3%; Recall: 74.1%;  F1 Score: 76.1%. 

SVM Model:  accuracy: 84.0%;  AUC: 0.886 (95% CI: 
0.8277–0.9437);  sensitivity: 74.1%;  specificity: 91.8%;  PPV: 
87.8%;  precision: 87.8%;  NPV: 81.7%;  recall: 74.1%; 

F1 Score: 80.4%. 
AdaBoost Model:  accuracy: 80.9%;  AUC: 0.900 (95% CI: 

0.8498–0.9497);  sensitivity: 81.0%;  specificity: 80.8%;  PPV: 
77.0%;  precision: 77.0%;  NPV: 84.3%;  recall: 81.0%;
F1 Score: 79.0% (Table 2). 

The AdaBoost model achieved the highest performance 
across all metrics, with an accuracy of 80.9% and an AUC 
of 0.900, suggesting its superior ability to distinguish between 
pneumoconiosis large opacities and peripheral lung cancer. The 
SVM model also demonstrated robust performance with an 
accuracy of 84.0% and an AUC of 0.886, while the LR model 
provided a solid baseline, achieving an accuracy of 79.4% and 
an AUC of 0.837. 

3.4 Net benefit and clinical relevance 

Further evaluation of the models’ clinical relevance was 
performed by calculating the net benefit within dierent probability 
threshold ranges. In the low threshold probability range (0– 
0.4), the AdaBoost model showed a significantly higher net 
benefit compared to the “treat all” strategy, indicating its capacity 
to accurately identify patients who would benefit from early 
intervention. In the moderate threshold probability range (0.4–0.6), 
the net benefit of the AdaBoost model remained higher than both 
the “treat all” and “treat none” strategies, suggesting its substantial 
clinical predictive value. 

Figures 4, 5 illustrate the detailed net benefit curves for 
each model across dierent probability thresholds, providing a 

comprehensive view of their decision-making potential. These 
figures demonstrate the AdaBoost model’s superior performance 
in maximizing clinical benefit while minimizing unnecessary 
treatments. 

4 Discussion 

Radiomics enables the quantitative extraction and analysis of 
high-dimensional features from medical imaging data, providing 
a non-invasive, reproducible, and multidimensional assessment 
of disease characteristics (21). By integrating multimodal and 
multiparametric information, radiomics facilitates early diagnosis, 
individualized treatment planning, and disease monitoring, thus 
serving as a cornerstone of precision medicine (22). 

In the context of pneumoconiosis and lung cancer, the 
diagnostic challenge arises from the striking similarity in their 
radiologic manifestations, particularly in Stage III occupational 
pneumoconiosis with progressive massive fibrosis (PMF) 
(23). Advanced fibrotic lesions in PMF often exhibit imaging 
characteristics, e.g., abnormal CT attenuation, calcification, 
satellite nodules, spiculation, pleural thickening, and cavitation-
that closely mimic those of peripheral lung malignancies (24). 
The situation becomes even more complex when pneumoconiosis 
coexists with lung cancer, which may lead to misinterpretation 
and delayed diagnosis (25). Epidemiological data suggest that 
approximately 3.2% of patients with simple pneumoconiosis 
progress to PMF over an 8-year follow-up, and these patients 
have higher mortality rates than those with uncomplicated 
pneumoconiosis (26). Therefore, accurate dierentiation between 
PMF-related large opacities and lung cancer is crucial for guiding 
clinical management and preventing inappropriate or delayed 
interventions (27). 

Previous studies have explored the use of supplementary 
imaging modalities, such as MRI, including T2-weighted and 
diusion-weighted imaging, to distinguish PMF from malignancies 
t (28). However, MRI is often impractical in patients with 
advanced pneumoconiosis, who typically exhibit severe respiratory 
impairment (29). This limitation underscores the urgent need 
for non-invasive, eÿcient, and clinically applicable diagnostic 
tools (30). In this regard, artificial intelligence (AI)-based 
radiomics and machine learning approaches have shown significant 
promise in decoding complex imaging patterns that exceed 
human perceptual capability (31). Prior investigations, such 
as those by Warkentin et al. and Dong et al., demonstrated 
the potential of ML algorithms in predicting lung nodule 
malignancy and assessing pneumoconiosis risk, respectively 

TABLE 2 Performance metrics of LR, SVM, and AdaBoost models in the training and test sets. 

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV F1 

LR (train) 0.794 0.837 0.7687–0.9059 0.741 0.836 0.782 0.803 0.761 

LR (test) 0.807 0.825 0.7121–0.9381 0.893 0.724 0.758 0.875 0.82 

SVM (train) 0.84 0.886 0.8277–0.9437 0.741 0.918 0.878 0.817 0.804 

SVM (test) 0.825 0.855 0.7547–0.9547 0.893 0.759 0.781 0.88 0.833 

AdaBoost (train) 0.809 0.900 0.8498–0.9497 0.810 0.808 0.770 0.843 0.790 

AdaBoost (test) 0.860 0.869 0.7634–0.9755 0.821 0.897 0.885 0.839 0.852 
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FIGURE 4 

ROC curves and AUC values for the AdaBoost, LR, and SVM models in predicting pneumoconiosis large opacities and peripheral lung cancer in the 
training and test sets. (a) the ROC curves and corresponding AUC values for the AdaBoost, LR, and SVM models in the training set, with the AUC 
values for AdaBoost, LR, and SVM being 0.900, 0.837, and 0.886, respectively. (b) the ROC curves and AUC values for the models in the test set, with 
the AUC values for AdaBoost, LR, and SVM being 0.869, 0.825, and 0.855, respectively. These results demonstrate the performance of each model in 
differentiating between pneumoconiosis large opacities and peripheral lung cancer, highlighting AdaBoost as the top performer in both the training 
and test sets. 

FIGURE 5 

Net benefit of the AdaBoost model in the training and test sets based on DCA Curves, compared with “Treat all” and “Treat none” strategies. The DCA 
curves for the AdaBoost model, showing the net benefit in both the training (a) and test sets (b) at various threshold probabilities. The net benefit is 
calculated as the correct decision gain minus the loss from incorrect decisions. The horizontal axis represents the threshold probability, which 
indicates the minimum probability threshold for classifying a sample as positive. The vertical axis represents the net benefit. The model’s 
performance (blue line) is compared with the “treat all” (black line) and “treat none” (dashed black line) strategies. The shaded pink area indicates the 
range where the AdaBoost model provides a higher net benefit compared to both “treat all” and “treat none” strategies. The AdaBoost model 
demonstrates significantly higher net benefit in the low threshold probability range (0–0.4), indicating its ability to effectively identify patients who 
require treatment at an early stage. In the moderate threshold range (0.4–0.6), the model still outperforms both the “treat all” and “treat none” 
strategies, suggesting its predictive value for clinical decision-making. 

(32, 33). Collectively, these findings establish a foundation 
for applying AI-driven radiomics to dierential diagnosis in 
occupational lung diseases. 

The present study developed and validated multiple ML-
based diagnostic models-including AdaBoost, LR, and SVM-to 
dierentiate pneumoconiosis-associated large opacities from 

peripheral lung cancer. Among these, the AdaBoost model 
demonstrated superior performance, achieving an accuracy 
of 80.9%, sensitivity of 81.0%, specificity of 80.8%, and an 
area under the ROC curve (AUC) of 0.900. These results 
aÿrm the feasibility of integrating radiomic features with ML 
algorithms to construct clinically valuable, non-invasive predictive 
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models. Importantly, DCA further verified the net clinical 
benefit of the proposed models, surpassing both “treat-all” 
and “treat-none” strategies across a broad range of threshold 
probabilities (34). 

From a methodological standpoint, our study highlights 
the synergistic potential of combining traditional statistical 
models (e.g., LR) with more advanced ensemble learning 
techniques (e.g., AdaBoost and SVM) (35). This hybrid approach 
leverages both interpretability and predictive power, oering a 
balanced framework for clinical implementation. The inclusion 
of LASSO regression and Pearson correlation for dimensionality 
reduction ensured that only the most relevant, non-redundant 
features were retained, optimizing model performance and 
generalizability (36). 

Nevertheless, several limitations warrant acknowledgment. 
Firstly, this was a single-center, retrospective study, which may 
introduce selection bias and limit external generalizability (37). 
Secondly, although the models achieved satisfactory accuracy, 
external validation using independent, multicenter datasets is 
essential to confirm robustness and clinical applicability (38). 
Thirdly, the current analysis relied solely on imaging-derived 
features and basic clinical parameters, without incorporating 
molecular, genomic, or proteomic biomarkers (39). Integrating 
multi-omics data in future studies could further enhance 
diagnostic precision and biological interpretability (39). 
Additionally, the implementation of explainable AI (XAI) 
frameworks may help elucidate model decision pathways, 
thereby increasing clinician confidence and promoting real-world 
adoption (40). 

5 Conclusion 

In conclusion, this study demonstrates that machine learning– 
based radiomic models, particularly the AdaBoost algorithm, 
can eectively dierentiate between pneumoconiosis with 
large opacities and peripheral lung cancer, achieving robust 
diagnostic accuracy and measurable clinical benefit. With further 
multicenter validation and model interpretability enhancements, 
such AI-driven approaches hold great potential as practical, 
non-invasive decision-support tools in occupational and oncologic 
respiratory medicine, ultimately contributing to more accurate 
diagnosis, optimized treatment strategies, and improved patient 
outcomes (41). 
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SUPPLEMENTARY FIGURE 1 

Representative CT images showing different stages of pneumoconiosis 
(axial and coronal views). (a,b) Axial and coronal chest CT images of a Stage 
I pneumoconiosis patient demonstrate multiple scattered, small, round, 
high-density nodules distributed in both lungs, predominantly in the right 
middle lung field. (c,d) Stage II pneumoconiosis is characterized by an 
increased number of small nodules and linear opacities, primarily clustered 
in the posterior segment of the right upper lobe. (e,f) Stage III 
pneumoconiosis exhibits more extensive and symmetrical large opacities 
(long diameter > 20 mm, short diameter > 10 mm) in the apical and 
posterior segments of both upper lobes. The lesions are accompanied by 
pleural thickening, traction, and partial calcification within the masses, 
along with multiple peripheral nodular opacities. Interpretation: as 
pneumoconiosis progresses from Stage I to Stage III, CT imaging reveals a 
gradual increase in nodule size and density, evolving into confluent fibrotic 
masses with pleural involvement and architectural distortion, consistent 
with advanced PMF. 

SUPPLEMENTARY FIGURE 2 

CT imaging and immunohistochemical (IHC) profiles of different 
histological types of lung cancer. (a,b) Axial and coronal CT images of 
squamous cell carcinoma in the left upper lobe reveal a soft-tissue mass 
located in the anterior segment, exhibiting short spiculation and 
well-defined margins. IHC profile: CK (+), CK7(+), CK5/6(few +), TTF-1(−), 
NapsinA(−), CgA(−), Syn(−), P40(+), P63(+), CDX-2(−), CK20(−), Ki-67 
(∼80% +), Villin(−). Diagnosis: Squamous cell carcinoma of the lung. (c) 
Axial CT image of poorly differentiated adenocarcinoma in the right middle 
lobe shows an ill-defined mass with partial truncation of the middle 
bronchus. IHC profile: CK (+), CK7(+), TTF-1(+), NapsinA(−), CgA(−), Syn(−), 
CD56(−), INSM-1(+), CK5/6(−), P40(−), P63(−), Ki-67 (∼70% +). Diagnosis: 
Poorly differentiated adenocarcinoma. (d) Axial CT image of a poorly 
differentiated small cell carcinoma in the right lower lobe demonstrates a 
large, irregular mass with unclear margins, bronchial obstruction, and 
significant mass effect. IHC profile: CK (+), Ki-67 (∼60% +), CK7(+), P63(−), 
P40(−), TTF-1(−), NapsinA(−), Syn(weak +), CgA(−), CK5/6(weak +), 
INSM-1(−), CD56(weak +), HMB-45(−), LCA(−), INI-1(+), S100(−), NUT(−), 
CD20(−). Diagnosis: Poorly differentiated small cell carcinoma confirmed 
by immunohistochemistry. Interpretation: Distinct CT and 
immunohistochemical patterns are evident among different lung cancer 
subtypes. While squamous cell carcinoma typically presents as a 
well-circumscribed lesion with peripheral spiculation, adenocarcinoma and 
small cell carcinoma often exhibit irregular borders, bronchial involvement, 
and aggressive radiologic behavior. Combined radiologic and IHC 
assessment remains essential for accurate histopathological classification. 
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