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Differential diagnosis of
pneumoconiosis mass shadows
and peripheral lung cancer using
CT radiomics and the AdaBoost
machine learning model
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Objective: To develop a differential diagnostic prediction model for
distinguishing large opacities in pneumoconiosis from peripheral lung cancer
based on CT radiomics.

Methods: A total of 103 cases of large opacities in pneumoconiosis and 85
cases of peripheral lung cancer were retrospectively collected from routine CT
scans at the First Affiliated Hospital of Chongqging Medical and Pharmaceutical
College between March 2021 and June 2025. Diagnosis was confirmed by
an expert panel, clinical evaluations, and pathological examinations. Patients
were randomly assigned to a training set (n = 132) and a test set (n = 56).
Lesions were delineated by at least two pneumoconiosis experts using ITK-SNAP
software. Radiomic features were extracted from CT images of lung lesions in
the training set, including first-order features, shape features (2D and 3D), texture
features (gray-level co-occurrence matrix, gray-level run-length matrix, gray-
level size-zone matrix, gray-level dependence matrix), and wavelet transform
filters. Feature dimensionality reduction was applied to construct morphological
biomarkers. Diagnostic prediction models were built using machine learning
algorithms. Model performance was evaluated using the ROC curve and the area
under the curve (AUC) in the test set.

Results: A total of 108 features were extracted from 110 large opacity regions
and 85 peripheral lung cancer regions of interest (ROIs). Dimensionality
reduction identified a subset of eight most significant features. LR, SVM, and
AdaBoost algorithms were implemented using Python to build the models. In the
training set, the accuracies of the LR, SVM, and AdaBoost models were 794, 84.0,
and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively;
the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values
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were 0.837, 0.886, and 0.900, respectively. In the test set, the accuracies of the
LR, SVM, and AdaBoost models were 80.7, 82.5, and 86.0%, respectively; the
sensitivities were 89.3, 89.3, and 82.1%, respectively; the specificities were 72 4,
75.9, and 89.7%, respectively; and the AUC values were 0.825, 0.855, and 0.900,
respectively. The AUC of the AdaBoost ROC curve was significantly superior
to those of the LR and SVM models. The AdaBoost model demonstrated the
optimal predictive performance in both the training and test sets.

Conclusion: The AdaBoost-based prediction model, developed using CT
radiomic features, effectively differentiates large opacities of stage |li
occupational pneumoconiosis from peripheral lung cancer.
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pneumoconiosis, large opacities, CT radiomics, AdaBoost, machine learning, diagnostic

model

1 Introduction

Pneumoconiosis is a progressive lung disease caused by
the long-term inhalation of harmful mineral dusts, typically
encountered in occupational settings such as mining, construction,
and manufacturing (1). The dust particles become lodged in
the pulmonary tissue, leading to inflammation, fibrosis, and the
eventual development of severe pulmonary dysfunction (2). The
disease primarily manifests as diffuse pulmonary fibrosis, which
can progress to more severe forms, including progressive massive
fibrosis (PMF) in advanced stages (3). PMF is characterized by
large opacities in the lungs, often exceeding 10 mm in diameter,
as defined by the National Occupational Health Standard of the
People’s Republic of China (4). In stage III pneumoconiosis, these
large opacities present with a long diameter of at least 20 mm
and a short diameter greater than 10 mm. Clinically, patients with
advanced pneumoconiosis, particularly those with PME, experience
progressive respiratory symptoms such as dyspnea, chronic cough,
and a significant decline in lung function (5). These clinical
manifestations are not only debilitating but also share a striking
resemblance to those seen in patients with peripheral lung cancer,
which complicates the differentiation between the two diseases (6).

Lung cancer, especially in its peripheral form, is one of the
most common and lethal malignancies worldwide. Peripheral
lung cancer typically originates from the distal bronchioles or
alveolar epithelium and often presents as solitary pulmonary
nodules or masses located near the pleura (7). In its early
stages, the disease may be asymptomatic or manifest with non-
specific respiratory symptoms such as cough or chest pain (8).
As the tumor progresses, features such as pleural indentation,
vascular convergence, spiculation, and local invasion become more
apparent. These radiologic characteristics, however, can closely
mimic those of PME, particularly when large opacities are present
(9). In addition, patients with pneumoconiosis who are at risk due
to occupational exposure may concurrently develop lung cancer,
further complicating diagnosis (9). Unlike PMF, which generally
follows a chronic, fibrotic course, peripheral lung cancer tends to
grow rapidly and metastasize early, leading to poor prognosis if not
identified and treated in a timely manner (10).
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The overlapping clinical and radiologic features between
pneumoconiosis and lung cancer present significant diagnostic
challenges. Imaging studies, especially chest X-rays and CT
scans, often reveal large opacities that can mimic lung cancer
masses in terms of their size, shape, and density (11). As a
result, distinguishing between the two conditions solely based on
traditional imaging techniques becomes increasingly difficult (10).
Therefore, there is an urgent need for accurate diagnostic tools
that can help clinicians differentiate between these two conditions
effectively (12).

Radiomics, a rapidly evolving field in medical imaging,
offers significant promise in addressing this diagnostic dilemma.
Radiomics involves the extraction of a wide range of quantitative
features from medical images, such as CT scans, to capture the
complex spatial and textural characteristics of tissue. These features
go beyond traditional imaging analysis and provide detailed
insights into the underlying pathological changes in the tissue (13).
Lambin et al. first proposed the concept of radiomics in 2012,
highlighting its potential to extract clinically relevant information
from imaging data that may not be immediately apparent to the
human eye (14). By applying advanced machine learning (ML)
algorithms to radiomic features, it is possible to develop predictive
models that can aid in non-invasive disease diagnosis, prognosis,
and treatment planning (15).

In the context of pneumoconiosis and lung cancer, radiomics
offers substantial diagnostic value owing to the remarkable
similarity in imaging characteristics between progressive massive
fibrosis (PMF) and peripheral lung tumors (16). The primary
objective of this study was to develop a differential diagnostic
prediction model based on radiomic features extracted from CT
images of pulmonary lesions. By identifying distinct quantitative
patterns that differentiate pneumoconiosis-related large opacities
from malignant nodules, we aimed to enhance diagnostic precision
and assist clinical decision-making (17).

Leveraging the capacity of machine learning algorithms to
analyze high-dimensional data and capture complex, non-linear
relationships, our approach provides a robust and scalable
framework for improving diagnostic discrimination between these
two clinically overlapping conditions (18). This is particularly
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important given that misdiagnosis can lead to inappropriate

management, delayed treatment, or unnecessary invasive
procedures (19). Overall, this study addresses a critical unmet need
in the field of occupational lung disease and oncologic imaging.
By integrating radiomics with advanced computational modeling,
our work contributes to the development of a standardized, non-
invasive, and reproducible diagnostic tool capable of supporting
accurate differentiation between pneumoconiosis and peripheral
lung cancer, ultimately improving patient outcomes and guiding

more informed clinical practice.

2 Materials and methods

2.1 General data

Chest CT images of patients with pneumoconiosis-related
large opacities and peripheral lung cancer were retrospectively
collected from the First Affiliated Hospital of Chongqing Medical
and Pharmaceutical College between March 2021 and June 2025.
The study cohort was divided into two groups based on clinical
and diagnostic criteria: Pneumoconiosis large opacity group:
Patients diagnosed with stage III occupational pneumoconiosis
presenting with large opacities, as confirmed by an expert
panel in accordance with the GBZ70-2015 Diagnostic Criteria
for Pneumoconiosis. Lesions were required to have a long-axis
diameter > 20 mm and a short-axis diameter > 10 mm. Peripheral
lung cancer group: patients with peripheral lung cancer confirmed
by histopathological examination, exhibiting mass lesions with a
maximum diameter > 30 mm.

Inclusion criteria were as follows: (1) For the pneumoconiosis
group: confirmed diagnosis of stage III pneumoconiosis with large
opacities meeting the size thresholds (long-axis > 20 mm, short-
axis > 10 mm) (Figure 1; Supplementary Figure S1). (2) For the
lung cancer group: confirmed diagnosis of peripheral lung cancer
by both imaging and pathology, with lesions > 30 mm in diameter
(Figure 2; Supplementary Figure S2).

Exclusion criteria were defined to ensure image quality and
diagnostic specificity: (1) For the pneumoconiosis group: cases with
suboptimal CT image quality that failed to meet diagnostic imaging
standards, or cases with coexisting pulmonary tuberculosis,
metastatic lesions, or other respiratory comorbidities that could
confound radiomic analysis. (2) For the lung cancer group: patients
with concurrent tuberculosis, pulmonary metastases, or other
comorbidities potentially interfering with imaging interpretation.

2.2 Methods

2.2.1 CT examination

All subjects underwent CT scans using one of the following
devices: GE 128-slice 256-layer Revolution ES Spiral CT
(United States), GE Optima CT680, or United Imaging uMI
Panorama 860 160-slice CT. Scans were performed from the
bilateral lung apices to the lung bases for all patients. The scanning
procedure was as follows: @ verify patient ID; @ prepare the
patient; @ position the patient supine; @ instruct the patient
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to hold their breath during the scan; ® perform the scan;
® end the scan.

Scanning parameters: @ tube voltage: 120 kV; @ rotation
time: 0.5 s/rotation; @ pitch: 0.991:1; (11) tube current: Auto
mA; @ scan slice thickness and interval: 5 mm ® reconstruction
slice thickness: 0.625 mm; ® reconstruction interval: 0.625 mm.
Images were transmitted to the GE ADW4.7 workstation for further
processing and analysis.

2.2.2 CT image processing and analysis
2.2.2.1 ROl image segmentation

CT images were imported into ITK-SNAP software! for image
segmentation. Two radiologists with over 5 years of experience,
both qualified for pneumoconiosis diagnosis, manually delineated
the ROIs for each case. For large shadow lesions, the long diameter
was > 20 mm and the short diameter > 10 mm; for peripheral
lung cancer lesions, the size was > 3 cm. Each slice was carefully
outlined to capture the entire lesion. Completed ROIs were saved in
the nii.gz format in the “images” and “mask” directories. A total of
110 ROIs were outlined from the CT images of 103 pneumoconiosis
patients, and 85 ROIs were outlined from 85 peripheral lung
cancer patients.

To assess the reproducibility of ROI delineation, the inter-
observer consistency of the radiomics features was evaluated using
the Intraclass Correlation Coeflicient (ICC). An ICC value > 0.75
indicated good consistency between the two radiologists (20).

2.2.2.2 Feature selection

Radiomic features were extracted using the Pyradiomics
software.? The following feature extraction methods were
applied:® Neighborhood Gray Tone Difference Matrix (NGTDM);
@ Shape features; ® First-order features; @ Gray-Level Co-
occurrence Matrix (GLCM); ® Gray-Level Dependence Matrix
(GLDM); ® Gray-Level Run-Length Matrix (GLRLM); @ Gray-
Level Size-Zone Matrix (GLSZM). Features for large shadows and
peripheral lung cancer were labeled as 0 and 1, respectively.

2.2.2.3 Data processing

To minimize the impact of feature dimensionality and improve
model performance, the data were standardized using Z-scores
for normalization.

2.2.2.4 Feature screening

For normally distributed features, a t-test was applied, while
for non-normally distributed features, a U-test was used (p < 0.05
was considered statistically significant). Following screening, 85
features were retained for further analysis.

2.2.2.5 Feature dimensionality reduction

To reduce the dimensionality of the initially extracted
85 radiomic features, Pearson’s correlation analysis was first
performed to assess inter-feature relationships. Features exhibiting
high pairwise correlation (|r] > 0.9) were removed to minimize
multicollinearity and redundancy. Subsequently, Least Absolute
Shrinkage and Selection Operator (LASSO) regression was

1 http://www.itksnap.org/
2 http://pyradiomics.readthedocs.io
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FIGURE 1

parenchyma.

Representative CT imaging features across different stages of pneumoconiosis (axial and coronal views). (a,b) Axial and coronal chest CT images
from a patient with Stage | pneumoconiosis, revealing multiple small, round, high-density nodules predominantly distributed in the upper lobes of
both lungs, especially in the right upper and middle fields. (c,d) Correspond to Stage Il pneumoconiosis, characterized by an increased number of
opacities involving both upper lung zones and the dorsal segment of the lower lobes. (e,f) Illustrate stage Il pneumoconiosis, showing a
homogeneous mass-like opacity in the apicoposterior segment of the right upper lobe, accompanied by scattered calcifications, pleural thickening,
adjacent localized emphysema, and nodular interstitial markings. Notably, large opacities (long-axis diameter > 20 mm, short-axis

diameter > 10 mm) in advanced pneumoconiosis tend to display asymmetric distribution, suggesting progressive fibrotic remodeling of lung

employed to perform penalized feature selection and identify the
most informative predictors. The optimal regularization parameter
(\) was determined using 10-fold cross-validation, where the
value minimizing the mean binomial deviance was selected to
balance model simplicity and predictive performance. The resulting
optimal A value (A = 0.0222) achieved the lowest deviance and

ensured a parsimonious and stable model (Table 1).

Frontiers in Medicine

As shown in Figure 3a, the X-axis represents the penalty
coefficient (\) and the Y-axis denotes the corresponding mean
binomial deviance. The vertical dashed line marks the optimal
X value (A = 0.0222), indicating the point of minimal deviance.
Figure 3b displays the trajectories of regression coeflicients for
all features as ) increases, illustrating how stronger penalization
gradually shrinks less relevant coefficients toward zero. Figure 3c
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FIGURE 2

neuroendocrine carcinoma.

CT and histopathological features of pneumoconiosis-associated and malignant lesions in advanced pneumoconiosis. (a,b) Axial and coronal CT
images of a Stage Ill pneumoconiosis patient, demonstrating bilateral apical mass lesions, with a dominant lesion located in the posterior segment
of the left upper lobe (long-axis diameter > 20 mm, short-axis diameter > 10 mm). The lesion exhibits irregular margins, peripheral fibrotic strands,
pleural thickening, and localized adhesion, along with partial truncation of the left upper bronchus. (c) The histopathological examination of the
lesion, revealing a heterogeneous composition of epithelial cells and inflammatory infiltrates, predominantly macrophages (45%), lymphocytes
(40%), neutrophils (10%), and a minor fraction of other cell types (5%). (d,e) Depict a large, multilobulated mass in the posterior segment of the right
lower lobe, showing pleural retraction and areas with ill-defined borders. (f) Demonstrates immunohistochemical (IHC) staining results, confirming
the presence of a malignant neoplasm with focal necrosis. The tumor cells were partially positive for cytokeratin (CK), weakly positive for
chromogranin A (CgA) and synaptophysin (Syn), partially positive for INSM1, and sporadically positive for CD56, collectively supporting a diagnosis of

TABLE 1 Selected radiomic features and corresponding regression

coefficients after dimensionality reduction using the LASSO

regression model.
Type

Selected gray-level

Feature name ‘

original_ngtdm_Busyness,
non-uniformity original_ngtdm_Complexity,
texture features

(Ngtdm)

original_ngtdm_Contrast

Shape features original_shape_Maximum3DDiameter,

(shape) original_shape_Sphericity

Gray-level original_glem_ClusterShade, original_glem_MCC
co-occurrence

matrix (Glem)

Gray-level size-zone original_glszm_SmallAreaLowGrayLevelEmphasis

matrix (Glszm)

summarizes the final eight selected radiomic features and their
standardized regression coefficients, where positive coeflicients
(bars extending to the right) and negative coefficients (bars
extending to the left) indicate their respective contributions to the
predictive model.

2.3 Statistical processing

Data analysis was performed using the onekey V5.1.25 platform
for imaging feature extraction. The Kolmogorov-Smirnov test was

Frontiers in Medicine

used to assess the normality of measurement data. Data following a
normal distribution were expressed as means + standard deviation
(x £ s), while non-normally distributed data were reported as
medians. The independent ¢-test or Mann-Whitney U test was
used for group comparisons, as appropriate. Categorical data
were expressed as percentages, and the chi-square test (x? test)
was employed for inter-group comparisons. A P < 0.05 was
considered statistically significant. The MedCalc version 20.101
software was used to evaluate the efficacy of the diagnostic model
by calculating the area under the Receiver Operating Characteristic
(ROC) curve (AUC).

3 Results

3.1 General patient data

A total of 188 patients were enrolled in this study, consisting
of 103 patients in the pneumoconiosis large shadow group (all
male, with a mean age of 58.37 £ 7.34 years) and 85 patients
with peripheral lung cancer (male-to-female ratio approximately
2.6:1, with a mean age of 70.95 + 10.82 years). Among the
103 pneumoconiosis patients with large shadows, the pathological
diagnoses included 32 cases of lung adenocarcinoma, 15 cases of
squamous cell carcinoma, 1 case of neuroendocrine carcinoma,
1 case of adenosquamous carcinoma, 6 cases of small cell lung
cancer, 2 cases of non-small cell lung cancer, and 28 cases where the

frontiersin.org


https://doi.org/10.3389/fmed.2025.1675840
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Lietal. 10.3389/fmed.2025.1675840
010 ——
005 ——————+
0.4
= -
o =
By 3
g2 03 S -0.0s
g g
=1 ‘7
g gﬂ-o.lo .
2}
o~
0.2 -0.15 //
020
107" 107 10" 10° 10 107 10" 10°
Lambda(2=0.0222) Lambda(1=0.0222)
Penalty coefficient value Penalty coefficient value
(a) (b)
L B Coefficients
original_ngtdm_Busyness
original_shape_Sphericity _
v
£
g original_ngtdm_Contrast -
o
|
‘< original_glszm_SmallAreaLowGrayLevelEmphasi
g original_glszm_SmallAreaLowGrayLevelEmphasis -
2
original_glem ]
£ iginal_glem_MCC
2
&
original_shape_Maximum3DDiameter -
original_glem_ClusterShade _
-0.15 -0.10 -0.05 0.00 0.05
Feature regression coefficients
(©)
FIGURE 3

Penalized feature selection and regression coefficients for pneumoconiosis large opacities and peripheral lung cancer classification. (a) The
relationship between the penalty coefficient value (x) and the binomial deviance (Y-axis), with the X-axis showing the corresponding number of
features. The vertical dashed line indicates the optimal » value (» = 0.0222). (b) The regression coefficients for each feature plotted against the
penalty coefficient value (1), illustrating the shrinkage effect of the penalty term and the evolution of feature coefficients with increasing x. (c) A
horizontal bar chart displaying the selected features with their corresponding regression coefficients. The Y-axis shows the radiomic feature names,
and the X-axis represents the magnitude and direction of the coefficients, where bars to the right indicate positive coefficients and those to the left

indicate negative coefficients.

pathological type remained unknown. These patients had all been
diagnosed with stage IIT pneumoconiosis, and the large shadows
were confirmed as massive fibrosis by expert clinical evaluation and
imaging analysis. For the peripheral lung cancer group, all cases
were pathologically confirmed after biopsy and surgery. The study
population exhibited a range of underlying conditions, with some
patients presenting with comorbidities such as chronic obstructive
pulmonary disease (COPD) or cardiovascular disease, which were
considered during the analysis to prevent bias in the feature
extraction process.

3.2 Construction of classifiers

The 188-patient dataset was randomly divided into a training
set and a validation set at a ratio of 7:3, resulting in 132
patients for the training set and 56 for the validation set. Several
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common machine learning algorithms were employed to construct
predictive models, using the onekey AI V5.1.25 platform: (1)
Logistic Regression (LR): a generalized linear model that maps the
linear regression output to a probability space through a logistic
function, which is used for classification purposes. LR is widely used
for its interpretability and simplicity, making it a strong baseline
method for binary classification tasks. (2) Support Vector Machine
(SVM): a supervised learning algorithm that performs classification
by finding the optimal hyperplane that maximizes the margin
between different classes. SVM is effective for classifying complex,
non-linear data and is particularly useful for high-dimensional
feature spaces, such as the radiomic features extracted from CT
images. (3) Adaptive Boosting (AdaBoost): an ensemble learning
method that combines multiple weak classifiers to form a strong
classifier. By giving higher weights to misclassified samples in each
iteration, AdaBoost improves the overall model accuracy. Notably,

frontiersin.org


https://doi.org/10.3389/fmed.2025.1675840
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Li et al.

AdaBoost is known for its ability to reduce overfitting and enhance
the generalization capability of the model, even when training
errors approach zero.

3.3 Model performance results

The performance of each model was evaluated based on
various metrics, including accuracy, AUC (Area Under the Curve),
sensitivity, specificity, precision, recall, F1 score, and predictive
values. The detailed results for each model are as follows:

LR Model: @ accuracy: 79.4%; @ AUC: 0.837 (95% CI: 0.7687-
0.9059); @ sensitivity: 74.1%; @ specificity: 83.6%; ® positive
Predictive Value (PPV): 78.2%; ® precision: 78.2%; @ Negative
Predictive Value (NPV): 80.3%; Recall: 74.1%; ® F1 Score: 76.1%.

SVM Model: @ accuracy: 84.0%; @ AUC: 0.886 (95% CIL
0.8277-0.9437); ® sensitivity: 74.1%; @ specificity: 91.8%; ® PPV:
87.8%; ® precision: 87.8%; @ NPV: 81.7%; recall: 74.1%; @
F1 Score: 80.4%.

AdaBoost Model: @ accuracy: 80.9%; @ AUC: 0.900 (95% CI:
0.8498-0.9497); ® sensitivity: 81.0%; @ specificity: 80.8%; ® PPV:
77.0%; ® precision: 77.0%; @ NPV: 84.3%; recall: 81.0%;®
F1 Score: 79.0% (Table 2).

The AdaBoost model achieved the highest performance
across all metrics, with an accuracy of 80.9% and an AUC
of 0.900, suggesting its superior ability to distinguish between
pneumoconiosis large opacities and peripheral lung cancer. The
SVM model also demonstrated robust performance with an
accuracy of 84.0% and an AUC of 0.886, while the LR model
provided a solid baseline, achieving an accuracy of 79.4% and
an AUC of 0.837.

3.4 Net benefit and clinical relevance

Further evaluation of the models clinical relevance was
performed by calculating the net benefit within different probability
threshold ranges. In the low threshold probability range (0-
0.4), the AdaBoost model showed a significantly higher net
benefit compared to the “treat all” strategy, indicating its capacity
to accurately identify patients who would benefit from early
intervention. In the moderate threshold probability range (0.4-0.6),
the net benefit of the AdaBoost model remained higher than both
the “treat all” and “treat none” strategies, suggesting its substantial
clinical predictive value.

Figures 4, 5 illustrate the detailed net benefit curves for
each model across different probability thresholds, providing a

10.3389/fmed.2025.1675840

comprehensive view of their decision-making potential. These
figures demonstrate the AdaBoost model’s superior performance
in maximizing clinical benefit while minimizing unnecessary
treatments.

4 Discussion

Radiomics enables the quantitative extraction and analysis of
high-dimensional features from medical imaging data, providing
a non-invasive, reproducible, and multidimensional assessment
of disease characteristics (21). By integrating multimodal and
multiparametric information, radiomics facilitates early diagnosis,
individualized treatment planning, and disease monitoring, thus
serving as a cornerstone of precision medicine (22).

In the context of pneumoconiosis and lung cancer, the
diagnostic challenge arises from the striking similarity in their
radiologic manifestations, particularly in Stage III occupational
pneumoconiosis with progressive (PMF)
(23). Advanced fibrotic lesions in PMF often exhibit imaging
characteristics, e.g., abnormal CT attenuation, calcification,
satellite nodules, spiculation, pleural thickening, and cavitation-

massive fibrosis

that closely mimic those of peripheral lung malignancies (24).
The situation becomes even more complex when pneumoconiosis
coexists with lung cancer, which may lead to misinterpretation
and delayed diagnosis (25). Epidemiological data suggest that
approximately 3.2% of patients with simple pneumoconiosis
progress to PMF over an 8-year follow-up, and these patients
have higher mortality rates than those with uncomplicated
pneumoconiosis (26). Therefore, accurate differentiation between
PMF-related large opacities and lung cancer is crucial for guiding
clinical management and preventing inappropriate or delayed
interventions (27).

Previous studies have explored the use of supplementary
imaging modalities, such as MRI, including T2-weighted and
diffusion-weighted imaging, to distinguish PMF from malignancies
t (28). However, MRI is often impractical in patients with
advanced pneumoconiosis, who typically exhibit severe respiratory
impairment (29). This limitation underscores the urgent need
for non-invasive, efficient, and clinically applicable diagnostic
tools (30). In this regard, artificial intelligence (AI)-based
radiomics and machine learning approaches have shown significant
promise in decoding complex imaging patterns that exceed
human perceptual capability (31). Prior investigations, such
as those by Warkentin et al. and Dong et al, demonstrated
the potential of ML algorithms in predicting lung nodule
malignancy and assessing pneumoconiosis risk, respectively

TABLE 2 Performance metrics of LR, SVM, and AdaBoost models in the training and test sets.

95% CI

LR (train) 0.794 0.837 0.7687-0.9059
LR (test) 0.807 0.825 0.7121-0.9381
SVM (train) 0.84 0.886 0.8277-0.9437
SVM (test) 0.825 0.855 0.7547-0.9547
AdaBoost (train) 0.809 0.900 0.8498-0.9497
AdaBoost (test) 0.860 0.869 0.7634-0.9755
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0.741 0.836 0.782 0.803 0.761
0.893 0.724 0.758 0.875 0.82
0.741 0.918 0.878 0.817 0.804
0.893 0.759 0.781 0.88 0.833
0.810 0.808 0.770 0.843 0.790
0.821 0.897 0.885 0.839 0.852
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ROC curves and AUC values for the AdaBoost, LR, and SVM models in predicting pneumoconiosis large opacities and peripheral lung cancer in the
training and test sets. (a) the ROC curves and corresponding AUC values for the AdaBoost, LR, and SVM models in the training set, with the AUC
values for AdaBoost, LR, and SVM being 0.900, 0.837, and 0.886, respectively. (b) the ROC curves and AUC values for the models in the test set, with
the AUC values for AdaBoost, LR, and SVM being 0.869, 0.825, and 0.855, respectively. These results demonstrate the performance of each model in
differentiating between pneumoconiosis large opacities and peripheral lung cancer, highlighting AdaBoost as the top performer in both the training
and test sets.
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FIGURE 5

Net benefit of the AdaBoost model in the training and test sets based on DCA Curves, compared with “Treat all” and “Treat none” strategies. The DCA
curves for the AdaBoost model, showing the net benefit in both the training (a) and test sets (b) at various threshold probabilities. The net benefit is
calculated as the correct decision gain minus the loss from incorrect decisions. The horizontal axis represents the threshold probability, which
indicates the minimum probability threshold for classifying a sample as positive. The vertical axis represents the net benefit. The model's
performance (blue line) is compared with the “treat all” (black line) and “treat none” (dashed black line) strategies. The shaded pink area indicates the
range where the AdaBoost model provides a higher net benefit compared to both “treat all” and “treat none” strategies. The AdaBoost model
demonstrates significantly higher net benefit in the low threshold probability range (0—0.4), indicating its ability to effectively identify patients who
require treatment at an early stage. In the moderate threshold range (0.4-0.6), the model still outperforms both the “treat all” and “treat none”
strategies, suggesting its predictive value for clinical decision-making.

(32, 33). Collectively, these findings establish a foundation
for applying Al-driven radiomics to differential diagnosis in
occupational lung diseases.

The present study developed and validated multiple ML-
based diagnostic models-including AdaBoost, LR, and SVM-to
differentiate pneumoconiosis-associated large opacities from
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peripheral lung cancer. Among these, the AdaBoost model
demonstrated superior performance, achieving an accuracy
of 80.9%, sensitivity of 81.0%, specificity of 80.8%, and an
area under the ROC curve (AUC) of 0.900. These results
affirm the feasibility of integrating radiomic features with ML
algorithms to construct clinically valuable, non-invasive predictive
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models. Importantly, DCA further verified the net clinical
benefit of the proposed models, surpassing both “treat-all”
and “treat-none” strategies across a broad range of threshold
probabilities (34).

From a methodological standpoint, our study highlights
the synergistic potential of combining traditional statistical
models (e.g, LR) with more advanced ensemble learning
techniques (e.g., AdaBoost and SVM) (35). This hybrid approach
leverages both interpretability and predictive power, offering a
balanced framework for clinical implementation. The inclusion
of LASSO regression and Pearson correlation for dimensionality
reduction ensured that only the most relevant, non-redundant
features were retained, optimizing model performance and
generalizability (36).

Nevertheless, several limitations warrant acknowledgment.
Firstly, this was a single-center, retrospective study, which may
introduce selection bias and limit external generalizability (37).
Secondly, although the models achieved satisfactory accuracy,
external validation using independent, multicenter datasets is
essential to confirm robustness and clinical applicability (38).
Thirdly, the current analysis relied solely on imaging-derived
features and basic clinical parameters, without incorporating
molecular, genomic, or proteomic biomarkers (39). Integrating
in future studies could further enhance
diagnostic  precision and biological interpretability (39).
Additionally, the implementation of explainable AI (XAI)
frameworks may help elucidate model decision pathways,
thereby increasing clinician confidence and promoting real-world
adoption (40).

multi-omics data

5 Conclusion

In conclusion, this study demonstrates that machine learning-
based radiomic models, particularly the AdaBoost algorithm,
with
large opacities and peripheral lung cancer, achieving robust

can effectively differentiate between pneumoconiosis
diagnostic accuracy and measurable clinical benefit. With further
multicenter validation and model interpretability enhancements,
such Al-driven approaches hold great potential as practical,
non-invasive decision-support tools in occupational and oncologic
respiratory medicine, ultimately contributing to more accurate
diagnosis, optimized treatment strategies, and improved patient
outcomes (41).
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SUPPLEMENTARY FIGURE 1

Representative CT images showing different stages of pneumoconiosis
(axial and coronal views). (a,b) Axial and coronal chest CT images of a Stage
| pneumoconiosis patient demonstrate multiple scattered, small, round,
high-density nodules distributed in both lungs, predominantly in the right
middle lung field. (c,d) Stage Il pneumoconiosis is characterized by an
increased number of small nodules and linear opacities, primarily clustered
in the posterior segment of the right upper lobe. (e,f) Stage IlI
pneumoconiosis exhibits more extensive and symmetrical large opacities
(long diameter > 20 mm, short diameter > 10 mm) in the apical and
posterior segments of both upper lobes. The lesions are accompanied by
pleural thickening, traction, and partial calcification within the masses,
along with multiple peripheral nodular opacities. Interpretation: as
pneumoconiosis progresses from Stage | to Stage Ill, CT imaging reveals a
gradual increase in nodule size and density, evolving into confluent fibrotic
masses with pleural involvement and architectural distortion, consistent
with advanced PMF.

SUPPLEMENTARY FIGURE 2

CT imaging and immunohistochemical (IHC) profiles of different
histological types of lung cancer. (a,b) Axial and coronal CT images of
squamous cell carcinoma in the left upper lobe reveal a soft-tissue mass
located in the anterior segment, exhibiting short spiculation and
well-defined margins. IHC profile: CK (+), CK7(+), CK5/6(few +), TTF-1(—),
NapsinA(=), CgA(-), Syn(—), P40(+), P63(+), CDX-2(-), CK20(-), Ki-67
(~80% +), Villin(—). Diagnosis: Squamous cell carcinoma of the lung. (c)
Axial CT image of poorly differentiated adenocarcinoma in the right middle
lobe shows an ill-defined mass with partial truncation of the middle
bronchus. IHC profile: CK (+), CK7(+), TTF-1(+), NapsinA(—), CgA(-), Syn(-),
CD56(—), INSM-1(+), CK5/6(—), P40(-), P63(—), Ki-67 (~70% +). Diagnosis:
Poorly differentiated adenocarcinoma. (d) Axial CT image of a poorly
differentiated small cell carcinoma in the right lower lobe demonstrates a
large, irregular mass with unclear margins, bronchial obstruction, and
significant mass effect. IHC profile: CK (+), Ki-67 (~60% +), CK7(+), P63(—),
P40(—), TTF-1(—), NapsinA(—), Syn(weak +), CgA(—), CK5/6(weak +),
INSM-1(—), CD56(weak +), HMB-45(—), LCA(-), INI-1(+), S100(-), NUT(-),
CD20(—). Diagnosis: Poorly differentiated small cell carcinoma confirmed
by immunohistochemistry. Interpretation: Distinct CT and
immunohistochemical patterns are evident among different lung cancer
subtypes. While squamous cell carcinoma typically presents as a
well-circumscribed lesion with peripheral spiculation, adenocarcinoma and
small cell carcinoma often exhibit irregular borders, bronchial involvement,
and aggressive radiologic behavior. Combined radiologic and IHC
assessment remains essential for accurate histopathological classification.
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