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Background: β-thalassemia is a prevalent genetic disorder in the Gannan region, 
Southern China. Mutations in the 5′ untranslated region of the β-globin gene 
are associated with diverse clinical phenotypes, posing challenges for effective 
prevention strategies in this region.
Methods: In this study, carriers of the HBB: c.-23A>G mutation were identified 
from a cohort of 192,720 individuals who underwent thalassemia gene testing in 
the Gannan region. Hematological data from these carriers were collected, and 
pedigree information was gathered for further analysis.
Results: Among the 192,720 individuals tested, 75 carriers of the HBB: c.-
23A>G mutation were identified, yielding a carrier frequency of 3.89 per 10,000. 
Statistical analysis showed no significant differences in hematological parameters 
between HBB: c.-23A>G heterozygotes and normal individuals. Furthermore, 
the minimum free energy of mRNA with the HBB: c.-23A>G mutation showed 
no significant difference compared to that of the wild-type mRNA.
Conclusion: The carrier frequency of HBB: c.-23A>G in the Gannan region 
is non-negligible. Hematological data analyses suggested that this mutation 
may be a likely benign variant. Overall, this study elucidates the molecular and 
phenotypic characteristics of the HBB: c.-23A>G mutation, providing crucial 
evidence for genetic counseling in clinical practice.
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1 Introduction

Thalassemia is a group of autosomal recessive genetic disorders caused by reduced or 
absent synthesis of the globin chains that constitute the hemoglobin (Hb) tetramer (1). Based 
on the type of globin chain affected, thalassemia is primarily classified into two categories: 
α-thalassemia and β-thalassemia. β-thalassemia is prevalent in southern China, with a carrier 
frequency ranging from 2.27 to 6.43% (2–4). Gannan, a region in southern China with a 
population of approximately 8.99 million, has previously reported a β-thalassemia carrier rate 
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of 4.06% (5). Patients with severe β-thalassemia (β-thalassemia major, 
β-TM) require regular blood transfusions or hematopoietic stem cell 
transplantation to survive, posing significant medical and public 
health challenges worldwide, particularly in Southeast Asia and 
southern China (6).

The transcriptional initiation of human β-globin mRNA occurs at 
the canonical Cap site (+1) located within the gene’s promoter region 
(7). Between this Cap site and the translation initiation codon (ATG) 
lies a 50-nucleotide 5′ untranslated region (UTR) that serves critical 
regulatory functions in mRNA stability, ribosomal scanning efficiency, 
and translational control (8, 9). For example, well-characterized 
mutations in the Kozak sequence within this region have been 
established as a significant molecular etiology of β-thalassemia (10). 
Although this region was historically considered to have low 
mutational susceptibility, the widespread implementation of next-
generation sequencing (NGS) in thalassemia carrier screening has 
revealed an expanding spectrum of pathogenic variants within this 
regulatory domain, such as HBB: c.-40C>G, HBB: c.-10A>T, HBB: 
c.-8C>G, and HBB: c.-29G>T (11, 12). These newly identified 
mutations exhibit remarkable phenotypic variability, ranging from 
silent carrier states to severe transfusion-dependent anemia, thereby 
complicating genetic counseling and posing challenges to existing 
public health strategies for thalassemia prevention in endemic regions 
(13, 14).

In this study, we investigated the clinical phenotype of the HBB: 
c.-23A>G mutation (CAP+28 [A>G]) located in the 5′ UTR of the 
β-globin gene. Notably, this mutation has not been reported in the 
specialized globin gene variant databases HbVar1 and IthaGenes2. 
Through NGS, we  identified 75 carriers of this mutation among 
192,720 individuals. We  studied the hematological data of these 
carriers to determine the clinical phenotype of this variant. Our study 
provides a theoretical basis for the screening, prevention, and 
treatment of thalassemia in this region and other areas.

2 Materials and methods

2.1 Participant recruitment

This study included a total of 192,720 participants, covering 
thalassemia gene testing data from two groups. The first group 
consisted of 136,312 individuals of childbearing age who were either 
registered residents of Gannan or lived in Gannan on a regular basis, 
and the data were collected from April 2019 to April 2021. The second 
group included 56,408 pregnant women who were either registered 
residents of Gannan or lived in Gannan on a regular basis, with data 
collected from April 2023 to December 2024. In addition, the study 
integrated hematological data from 75 individuals carrying the HBB: 
c.-23A>G mutation, as well as relevant information from 22 pedigrees. 
All participants signed written informed consent forms before the 
study began. The study was approved by the Ethics Committee of 
Ganzhou Maternal and Child Health Hospital (Approval Number: 

1  https://globin.bx.psu.edu/hbvar/

2  https://www.ithanet.eu/db/ithagenes

2024108) and was conducted in accordance with the ethical guidelines 
for research involving human subjects.

2.2 Sample collection and genomic DNA 
extraction

First, 2 mL of peripheral blood samples were collected using 
ethylene diamine tetraacetic acid K2 (EDTA-K2) anticoagulated tubes. 
Genomic DNA was extracted from 200 μL whole blood samples using 
the QIAamp DNA blood Mini kit (Qiagen, Hilden, Germany). DNA 
extracts were then arrayed in 96-well plates, and concentration was 
quantified using a qubit 3.0 fluorometer (Thermo fisher scientific, 
Waltham, MA, USA). All samples were required to have a DNA 
concentration >10 ng/μL and an A260/A280 ratio between 1.8 and 2.0 
for subsequent analysis.

2.3 Next-generation sequencing

The polymerase chain reaction (PCR) technique was employed to 
amplify the HBA1, HBA2, and HBB genes. The HBA1 and HBA2 genes 
were amplified from 35 bp upstream of the cap site to 150 bp 
downstream of the termination codon, generating amplicons of 
approximately 900 bp. Amplification of the HBB gene was divided into 
two segments. The first segment extended from 135 bp upstream of 
the CAP site at the 5’end to 150 bp into the second intron, generating 
a DNA fragment of approximately 760 bp. The second segment 
spanned from 630 bp into the second intron to 150 bp downstream of 
the termination codon at the 3’end, producing a DNA fragment of 
approximately 560 bp. After amplification, the DNA fragments were 
sheared into approximately 200 bp segments by ultrasonication. 
Following end-repair, sequencing adapters were ligated to construct 
the sequencing library. Sequencing was carried out on the MGISEQ-
200 chip (MGI, Shenzhen, China) in paired-end (PE100) mode. 
Finally, sequencing data were analyzed using the Halos system to 
identify mutation sites in the relevant genes.

2.4 Site verification and pedigree 
verification

For positive samples carrying the HBB: c.-23A>G mutation, the 
variant was verified by Sanger sequencing (ABI 310, Applied 
Biosystems, USA). To exclude other potential mutations in the HBB 
gene, DNA samples were also subjected to third-generation 
sequencing (Guangdong Hybribio Biotechnology Co., Ltd., 
Guangzhou, China). Additionally, 22 family members were tested to 
determine the cis/trans configuration of two compound heterozygotes 
and to confirm co-segregation of the HBB: c.-23A>G mutation in 
the pedigrees.

2.5 Hematological data and analysis

Hematological parameters were measured using the Mindray 7,500 
blood cell analyzer (Shenzhen, China). Hemoglobin electrophoresis 
analysis was performed with the Capillarys 3 capillary electrophoresis 
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instrument (Sebia, France). Hematological data were collected from 80 
healthy adults (40 males and 40 females), 60 β0 heterozygote carriers 
(30 males and 30 females), 30 β+ heterozygote carriers (15 males and 
15 females), 30 βN/βN with --SEA/αα carriers (15 males and 15 females), 
20 β0/βN with --SEA/αα carriers, 10 β+/βN with --SEA/αα carriers, and 20 
HBB: c.-11_-8delAACA and 10 HBB: c.-29G>A (Common mutations 
of 5′ UTR in Gannan region) heterozygotes (10 males and 10 females 
for the former, 5 males and 5 females for the latter) as the control group 
(Supplementary Table S1). These data were used to analyze the 
hematological characteristics of HBB: c.-23A>G carriers and explore 
the potential impact of this mutation on β-chain expression.

2.6 Prediction of mRNA secondary 
structure

Using the RNAfold web server (15), we predicted the secondary 
structures of HBB gene mRNA for the wild type, HBB: c.-23A>G 
mutant, and HBB: c.-29G>A mutant. A comparative analysis of the 
minimum free energy and differences in internal stem-loop structures 
among the three types of mRNA secondary structures was carried out.

2.7 Data analysis and statistics

Statistical analysis was conducted using SPSS 27.0 software. 
Measured data were expressed as mean ± standard deviation (SD), and 
count data were expressed as percentage (%). Differences between 
groups were examined using the independent samples t-test. A p value 
of < 0.05 was considered statistically significant.

3 Results

3.1 Gene testing results of β-thalassemia

After analyzing the screening results of 192,720 individuals, a total 
of 7,968 β-thalassemia carriers were identified, resulting in a carrier 
rate of 4.134% in this population. Among these β-thalassemia carriers, 
75 individuals were identified as carrying the HBB: c.-23A>G 
mutation, with a carrier frequency of 3.89 per 10,000 in this region. 
The genotypic distribution was as follows: 65 were βHBB:c.-23A>G/βN with 
αα/αα, 7 were βHBB:c.-23A>G/βN with --SEA/αα, 1 was βHBB:c.-23A>G/βN with 
-α3.7/αα, 1 was βHBB:c.-23A>G/βHBB:c.126_129delCTTT with αα/αα, and 1 was 
βHBB:c.-23A>G/βHBB:c.316-197C>T with αα/αα. Pedigree follow-up revealed that 
four carriers had spouses who were also β-thalassemia carriers, and 
two carriers were sisters (Supplementary Table S2).

3.2 Mutation verification

Sanger sequencing of DNA samples harboring the HBB: c.-23A>G 
mutation validated all NGS results, confirming the accuracy of the 
NGS method (Figure 1A). Moreover, third-generation sequencing 
provided additional verification and confirmed the absence of other 
pathogenic HBB gene mutations (Figure 1B).

For the carrier with βHBB: c.-23A>G/βHBB: c.316-197C>T genotype, pedigree 
verification revealed that HBB: c.-23A>G was inherited from the 

father, while HBB: c.316-197C>T was inherited from the mother. 
Additionally, her daughter inherited the HBB: c.-23A>G mutation 
(Figure  2A). In another carrier with βHBB: c.-23A>G/βHBB: c.126_129delCTTT 
genotype, pedigree verification showed that HBB: c.-23A>G was 
inherited from the mother, while HBB: c.126_129delCTTT was 
inherited from the father. In addition, his son inherited the HBB: 
c.126_129delCTTT mutation (Figure  2B). Notably, among the 18 
families with heterozygous carriers, the mutation was transmitted to 
the next generation in 8 cases (Supplementary Table S3).

3.3 Hematological analysis

After excluding the carriers with iron-deficiency anemia, 
we obtained the hematological data of 69 heterozygotes, 6 heterozygotes 
with αα/--SEA, 1 heterozygote with αα/-α3.7, and 2 compound 
heterozygotes (Supplementary Table S4). The mean corpuscular volume 
(MCV) of the 69 heterozygotes was 92.07 ± 3.94 fL, while the mean 
corpuscular hemoglobin (MCH) was 30.58 ± 1.49 pg, and the mean 
hemoglobin A2 (Hb A2) was 2.70 ± 0.17%. In comparison, the MCV, 
MCH, and Hb A2 of the 6 heterozygotes with αα/--SEA, were 
70.07 ± 1.99 fL, 21.58 ± 0.67 pg, and 2.28 ± 0.07%, respectively (Table 1).

After comparing with hematological data of control group, the 
MCV, MCH, and Hb A2 of the 69 heterozygotes showed significant 
differences (p < 0.001) with those of β0 heterozygote carriers, β+ 
heterozygote carriers, and HBB: c.-29G>A heterozygotes. In contrast, 
there were no significant differences in MCV, MCH, and Hb A2 
between the 69 heterozygotes and the normal population or HBB: 
c.-11_-8delAACA heterozygotes (Figure 3). There were no statistically 
significant differences in Hb A2 between the 6 compound αα/--SEA 
heterozygotes and the βN/βN with --SEA/αα group. However, significant 
differences were observed when compared with the normal 
population, the βHBB: c.-23A>G/βN with αα/αα group, the β0/βN with --SEA/
αα group, and the β+/βN with --SEA/αα group (Figure 3D).

The two compound heterozygotes (βHBB:c.-23A>G/βHBB:c.316-197C>T and 
βHBB:c.-23A>G/βHBB:c.126_129delCTTT) exhibited hemoglobin levels of 125 and 
130 g/L, respectively, with microcytic hypochromic erythrocytes (MCV: 
68.8 fL and 62.8 fL; MCH: 21.6 pg and 20.6 pg) and elevated Hb A2 (4.8 
and 5.4%). No elevation of Hb F was found in either of them (Table 1). 
Both individuals were asymptomatic and did not require transfusion or 
chelation therapy. Their clinical presentations were consistent with 
β-thalassemia trait rather than thalassemia intermedia or major.

3.4 Secondary structure prediction of 
mRNA

Secondary structures of wild-type and mutant (HBB: c.-23A>G 
and HBB: c.-29G>A) HBB gene mRNA were predicted using the 
RNAfold web server. We analyzed the minimum free energy (MFE) 
structures, centroid structures, and per-nucleotide binding 
probabilities (Figures 4A–I). The MFE values for the wild-type, HBB: 
c.-23A>G mutant, and HBB: c.-29G>A mutant mRNAs were 
-224.10 kcal/mol (Figure  4A), -222.90 kcal/mol (Figure  4D), and 
-221.60 kcal/mol (Figure 4G), respectively. Statistical analysis revealed 
that the differences among these three MFEs were not statistically 
significant (p > 0.05). Compared with the wild type, the HBB gene 
mRNA of the HBB: c.-23A>G mutant exhibited only a change from 

https://doi.org/10.3389/fmed.2025.1675600
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shen et al.� 10.3389/fmed.2025.1675600

Frontiers in Medicine 04 frontiersin.org

AU pairing to GU pairing in the first internal loop (Figure 4D). In 
contrast, the HBB gene mRNA of the HBB: c.-29G>A mutant altered 
the structure of the hairpin loop (Figure 4G).

4 Discussion

β-thalassemia exhibits a broad global distribution with 
striking heterogeneity in its mutational spectrum across 
geographic and ethnic populations. This diversity is evident in the 

distinct profiles of common pathogenic alleles, such as the IVS-I-
110, IVS-I-1, and IVS-I-6 variants prevalent in Turkey and 
Lebanon (16, 17), which contrast sharply with the IVS-II-654 
(HBB: c.316-197C>T) and CD41-42 (HBB: c.126_129delCTTT) 
mutations common in China. This principle of geographic 
stratification extends to the regulatory 5′ UTR, where despite a 
limited number of reported mutations, distinct ethnogeographic 
patterns are observed: HBB: c.-29G>A is primarily found in Black 
Sea-bordering countries like Turkey and Bulgaria (18), HBB: 
c.-50A>C has been identified in South Asian Indian populations 

FIGURE 1

Verification of the HBB: c.-23A>G mutation. (A) Sanger sequencing. (B) Third-generation sequencing. The red squares and arrow represent the 
positions of the HBB: c.-23A>G mutation.
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(19), and HBB: c.-11_-8delAACA demonstrates high frequency in 
China (20).

Functional studies suggest that within this short 50-nucleotide 
5′ UTR, different “sub-regions” may be associated with distinct 
regulatory functions (21). The complex interplay between genotype 
and phenotype (22), further complicated by population migration 
spreading thalassemia beyond traditional endemic regions (23), 
must be  considered when evaluating any variant’s clinical 
significance. Phenotypic variability, even for the same mutation 
across different reports, often presents diagnostic challenges for 
clinicians (24). Many studies have attempted to address this 
challenge by using online prediction tools and sequence 
interpretation databases, such as the Hb Var database (25), Itha 
Genes (26), and the LOVD database (27). However, the American 
College of Medical Genetics and Genomics (ACMG) guidelines 
explicitly caution against overreliance on in silico pathogenicity 
predictions, stating they “should not be  used as standalone 

evidence for clinical interpretation” (8). The ACMG framework 
mandates rigorous evaluation of multiple evidentiary categories, 
emphasizing that comprehensive evaluation of published clinical 
data remains imperative when assessing potential variant 
pathogenicity (28).

Through literature retrieval, we found that the HBB: c.-23A>G 
variant was first submitted to the ClinVar database by Women’s Health 
and Genetics/Laboratory Corporation of America, LabCorp on March 
17, 2018 (Variant ID: rs1010004981) (29). Given the lack of clinical 
information and functional studies, the variant is classified as a variant 
of uncertain significance (VUS). In addition, this study identified 
descriptions of this site in two publications, both of which reported 
case information of one individual carrying the mutation from China 
(2, 30). Nonetheless, neither of these two publications conducted 
in-depth research on this mutation. Based on the information 
retrieved, it is indeed challenging to determine the pathogenicity of 
this mutation.

FIGURE 2

Pedigrees of two compound heterozygotes. (A) Pedigree of case 21; (B) pedigree of case 48. The red arrow indicates the proband; orange indicates 
the presence of the HBB: c.-23AG mutation, purple indicates the presence of the HBB: c.316-197C > T mutation, and blue indicates the presence of 
the HBB: c.126_129delCTTT mutation.

TABLE 1  Hematological data statistics of HBB: c.-23A>G mutation carriers.

Genotype
Number of 
cases

RBC (1012/L) HB (g/L) MCV (fL) MCH (pg) Hb A2 (%)

αα/αα βHBB: c.-23A>G/βN

69 4.45 ± 0.65 135.51 ± 17.84 92.07 ± 3.94 30.58 ± 1.49 2.70 ± 0.17

25 (Male) 5.07 ± 0.53 153.44 ± 13.97 91.21 ± 3.40 30.30 ± 1.14 2.66 ± 0.17

44 (Female) 4.09 ± 0.40 125.32 ± 10.10 92.57 ± 4.14 30.73 ± 1.64 2.72 ± 0.17

αα/--SEA βHBB: c.-23A>G/βN

6 5.60 ± 0.33 121.00 ± 9.42 70.07 ± 1.99 21.58 ± 0.67 2.28 ± 0.07

2 (Male) 5.36,6.25 110,140 6.95,70.1 20.4,22.4 2.2,2.3

4 (Female) 5.50 ± 0.18 119 ± 2.92 70.20 ± 2.42 21.68 ± 0.40 2.30 ± 0.07

αα/-α3.7 βHBB: c.-23A>G/βN 1 (Male) 5.88 160 82.6 27.2 2.6

αα/αα 

βHBB: c.-23A>G/βHBB: c.316-197C>T
1 (Female) 5.80 125 68.8 21.6 4.8

αα/αα 

βHBB: c.-23A>G/βHBB:c.126_129delCTTT
1 (Male) 6.32 130 62.8 20.6 5.4
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In previous studies, the carrier rate of β-thalassemia in this region 
was relatively high (5), and the carrier rate in this study is consistent 
with the previously reported data (4.134% vs. 4.056%). The prevalence 
of the HBB: c.-23A>G variant in this region also represents a 
non-negligible frequency. Through follow-up, we found that among 
75 carriers, four of them had spouses who were also carriers of 
β-thalassemia. Given that when both husband and wife are carriers of 
β-thalassemia, there is a risk of having a child with β-TM (31), 
we  performed prenatal diagnosis for one couple when we  first 
identified this variant, due to the unclear phenotype and limitations 
in genetic counseling capabilities. Fortunately, the diagnosis showed 
that the fetus is βHBB: c.316-197C>T/βN, highlighting the particular necessity 
to study the clinical phenotype of HBB: c.-23A>G. The literature 
indicates that globin chain synthesis studies are the established 
standard for determining the pathogenicity of a variant, as they help 
to determine whether the variant has led to a reduction in β-globin 
chains (8). In this study, we performed hemoglobin electrophoresis 
analysis and hemoglobin component analysis on HBB: c.-23A>G 
carriers in our region to assess the hematological phenotype and 
indirectly infer whether HBB: c.-23A>G truly causes a reduction in 
β-globin chains.

This study revealed that the MCV, MCH, and Hb A2 levels of 
heterozygotes with this mutation showed no significant statistical 
differences compared with those of the normal population, aligning 
with a previous report (2). Additionally, we observed that the MCV, 

MCH, and Hb A2 levels of compound heterozygotes carrying this 
variant and β0/+ showed no statistical differences compared with 
those of β0/+ heterozygotes alone. The MCV, MCH, and Hb A2 levels 
of a previously reported case of βHBB: c.316-197C>T/βHBB: c.-23A>G compound 
heterozygote also were consistent with the results of this study (30). 
Crucially, none of these cases exhibited the compensatory high Hb 
F expression observed in β-TM. The level of Hb A2 is considered an 
important indicator for assessing the expression of α- and β-globin 
chains (32). When α-thalassemia occurs, the reduced synthesis of 
α-globin chains leads to a decrease in Hb A2 levels. In contrast, 
when β-thalassemia occurs, the reduced synthesis of β-globin chains 
results in an increase in Hb A2 levels. However, in patients who 
carry both α- and β-thalassemia, despite the reduced synthesis of 
both α- and β-globin chains, the Hb A2 levels are elevated. 
We observed that in the heterozygotes for this variant, their Hb A2 
levels did not increase. In the cases of βHBB c.-23A>G/βN with --SEA/αα, 
the Hb A2 levels did not increase but decreased instead. Based on 
the above data, this study concluded that the HBB: c.-23A>G 
mutation does not lead to a reduction in the production of β-globin 
chains. This mutation is likely to be  mainly distributed in the 
Chinese population, and its phenotype is consistent with silent β++ 
phenotype. According to the ACMG guidelines, genetic 
interpretation experts, in conjunction with the data from this study, 
classified the HBB: c.-23A>G mutation as likely benign (BS4 
and BP4).

FIGURE 3

Comparison of hematological data between HBB c.-23AG mutation carriers and the control group. (A) Comparison of MCV between HBB: c.-23A>G 
heterozygotes and the control group; (B) comparison of MCH between HBB: c.-23A>G heterozygotes and the control group; (C) comparison of Hb A2 
between HBB: c.-23A>G heterozygotes and the control group; (D) comparison of Hb A2 between the βHBB: c.-23A>G/βN with αα/αα group and the control 
group. “NS” indicates no statistically significant difference between the two groups, while “***” signifies an extremely significant statistical difference 
between the two groups (p < 0.001).
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FIGURE 4

Prediction of mRNA secondary structure. (A) MFE structure drawing encoding base-pair probabilities in normal individuals; (B) centroid structure 
drawing encoding base-pair probabilities in normal individuals; (C) the binding strength at each site on mRNA in normal individuals; (D) MFE structure 
drawing encoding base-pair probabilities in HBB: c.-23A>G mutants; (E) centroid structure drawing encoding base-pair probabilities in HBB: c.-23A>G 
mutants; (F) the binding strength at each site on mRNA in HBB: c.-23A>G mutants; (G) MFE structure drawing encoding base-pair probabilities in HBB: 
c.-29G>A mutants; (H) centroid structure drawing encoding base-pair probabilities in HBB: c.-29G>A mutants; (I) the binding strength at each site on 
mRNA in HBB: c.-29G>A mutants.
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Compared to other known 5′ UTR mutations, HBB: c.-23A>G 
demonstrates a distinct phenotypic profile. This region exhibits a 
spectrum of phenotypic outcomes across different populations: the 
HBB: c.-29G>A mutation, prevalent in Turkey and Bulgaria, is 
associated with a typical β+ thalassemia phenotype (18); the HBB: 
c.-50A>C mutation, identified in South Asian Indian populations, 
presents a β++ phenotype (19); and the HBB: c.-11_-8delAACA 
mutation, common in China, manifests as a silent β++ phenotype (20). 
Our study establishes HBB: c.-23A>G as a silent β++ variant, based on 
the absence of significant hematological alterations in heterozygotes. 
This marked variability underscores the functional diversity within the 
5′ UTR and cautions against overgeneralizing the effects of a given 
mutation across different populations.

The 5′ UTR region downstream of the cap site can be transcribed 
into mRNA. Mutations in this region primarily reduce β-chain 
synthesis by affecting mRNA stability and translational efficiency (33). 
As early as 2003, Sgourou found that the stability of mRNA containing 
four mutation sites in the 5′ UTR of the β-globin gene (HBB: c.-43C>T, 
HBB: c.-41delT, HBB: c.-29G>A, HBB: c.-11_-8delAACA) was 
reduced to varying degrees (34). However, research in recent years and 
data from our region indicated that the phenotype of HBB: c.-11_-
8delAACA may be a benign variant (20), suggesting that the stability 
of mRNA at this site may not change significantly.

It is widely acknowledged that mRNA sequences are typically 
composed of permutations of four nucleotides (A, C, G, U). In base 
pairing interactions, AU and GC pairs form the most stable 
configurations through Watson-Crick base pairing, while GU pairs 
constitute less stable wobble base pairings (33). These nucleotide 
pairings serve as fundamental components of RNA secondary 
structure (35). The thermodynamic stability of Watson-Crick base 
pairs (GC > AU) significantly influences RNA structural formation 
(36), with GU wobble pairs providing structural flexibility while 
maintaining partial pairing stability (37). This structural 
organization plays crucial roles in post-transcriptional regulation, 
particularly in mRNA processing and translation initiation 
mechanisms (38). Using the RNAfold web server to predict the 
secondary structure of mRNA (15), we found that the secondary 
structure of mRNA with the HBB: c.-23A>G mutation did not 
significantly differ in stability compared to the normal sequence, and 
it did not alter the hairpin loop or stem-loop structures. The only 
change was that the alteration of this nucleotide caused the first 
internal loop of the mRNA to change from a stable Watson-Crick 
pair (AU) to a less stable wobble base pair (GU). This may be the 
reason why this variant has almost no impact on β-chain synthesis. 
In contrast, another mutation in this region (HBB: c.-29G>A), 
manifests as typical β+ thalassemia (39), likely because this mutation 
affects the hairpin loop of the mRNA.

A limitation of this study is the absence of functional assays, such 
as in vitro globin chain synthesis studies or luciferase reporter assays, 
to directly quantify the impact of the HBB: c.-23A>G mutation on 
translational efficiency or mRNA stability. Furthermore, the potential 
clinical consequence of co-inheritance with α-globin triplication 
remains unexplored. Previous reports have indicated that the 
coexistence of β-thalassemia and α-globin triplication can exacerbate 
the α/β-globin chain imbalance, potentially leading to a more severe 
anemic phenotype (40). In a prior investigation from our laboratory, 
1,443 carriers of α-globin triplication were identified among 73,967 
individuals in this region, yielding a carrier rate of 1.95% (41). 

Regrettably, due to the current sample size limitations, none of the 
75 carriers of the HBB: c.-23A>G mutation in this study were found 
to co-inherit α-globin triplication. Consequently, we were unable to 
investigate the clinical manifestations of the combination of HBB: 
c.-23A>G and ααα. It is anticipated that future studies with larger 
sample sizes may identify such compound cases, allowing for a 
comprehensive assessment of their phenotypic impact.

5 Conclusion

In conclusion, we  systematically characterized the clinical 
phenotype associated with the HBB: c.-23A>G mutation and 
elucidated the molecular rationale for its likely benign clinical 
manifestations. Additionally, comparative analysis of mRNA 
secondary structures demonstrated minimal thermodynamic 
destabilization compared to the wild-type sequence, with preserved 
hairpin loop and stem-loop architectures. Collectively, our findings 
provide valuable insights for improving genetic counseling for carriers 
of this mutation in clinical practice.
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