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The integration of artificial intelligence (AI) into Radiomics has transformed cancer 
imaging by enabling advanced predictive modeling, improved diagnostic accuracy, 
and personalized treatment strategies. However, the clinical application of AI-
based Radiomics faces significant challenges that hinder its widespread adoption. 
Intrinsic limitations, such as limited datasets, data heterogeneity, and the lack of 
interpretability in AI models, compromise reliability and generalizability. Practical 
challenges, including integration into rigid clinical workflows, infrastructural 
constraints, regulatory barriers, and clinician training gaps, further complicate 
implementation. Addressing these barriers requires coordinated efforts to establish 
standardized imaging protocols, foster multi-institutional collaborations, and 
develop centralized repositories of diverse datasets. In addition, challenges 
programs for healthcare professionals and regulatory reforms are essential to 
build trust and streamline adoption. Future research should prioritize enhancing 
AI interpretability, conducting longitudinal studies to assess clinical impact, and 
incorporating patient-centered approaches to align AI models with precision 
medicine objectives. By overcoming these challenges, AI-based Radiomics can 
advance cancer imaging, improve patient outcomes, and contribute to a new 
era in personalized cancer care.
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1 Introduction

Radiomics has emerged as a transformative paradigm in medical imaging, providing a 
novel approach to extracting quantitative data from medical images that goes beyond 
conventional visual interpretation. This paradigm has been particularly impactful in oncology, 
where the ability to characterize tumor phenotypes at a refined level has proven invaluable for 
guiding therapeutic decisions and optimizing patient management (1). Radiomics uses 
advanced image analysis techniques to extract high-dimensional features that capture the 
spatial, temporal, and textural characteristics of tumors, offering a comprehensive tumor 
profile (2). These insights have the potential to significantly improve prognostic assessments, 
predict treatment responses, and ultimately enhance patient outcomes.

The integration of artificial intelligence (AI) into Radiomics has further revolutionized the 
field, catalyzing a paradigm shift in the way imaging data is analyzed and interpreted (3–5). 
AI introduces sophisticated machine learning and deep learning algorithms capable of 
processing large volumes of complex imaging data with unparalleled precision and efficiency. 
These algorithms excel at identifying subtle patterns and correlations within imaging datasets 
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that may be imperceptible to human observers. This synergy between 
AI and Radiomics has propelled advancements in predictive 
modeling, diagnostic accuracy, and personalized cancer care (6–8). 
For example, AI-based Radiomics models can predict tumor behavior 
(9), stratify patients based on risk profiles (10), and identify 
biomarkers for targeted therapies (11), thereby supporting the broader 
goals of precision medicine (12).

However, despite these advancements, several challenges continue 
to delay the full clinical potential of AI-based Radiomics in cancer 
imaging (13–15). Issues such as data heterogeneity, inconsistencies in 
imaging protocols, and the lack of large, diverse annotated datasets 
present significant obstacles. In addition, the clinical adoption of these 
technologies is often complicated by regulatory barriers, difficulties in 
validating AI models across diverse patient populations, and the need 
for seamless integration into existing diagnostic workflows. While the 
scientific community has made significant progress in exploring the 
concepts and technological advancements in AI-based Radiomics, 
most of the current literature does not address in details the practical 
and clinical challenges that must be  resolved to translate these 
innovations into routine practice.

This mini-review aims to bridge this gap by focusing on the main 
challenges associated with the clinical application of AI in Radiomics 
for cancer imaging. It aims to provide a focused discussion on the 
intrinsic limitations inherent to current studies, as well as the practical 
barriers that impede real-world implementation. Furthermore, the 
mini-review provides actionable recommendations for integrating AI 
and Radiomics into diagnostic workflows, emphasizing strategies to 
ensure their effective and sustainable use in clinical settings.

2 Limitations and challenges

The integration of AI into Radiomics for cancer imaging holds 
immense promise, yet it faces significant limitations and challenges 
that need to be addressed to achieve widespread clinical adoption. 
These obstacles can be broadly categorized into intrinsic limitations 
inherent to current studies and practical challenges related to clinical 
implementation. Distinguishing between these two types of barriers 
is essential, as they require distinct approaches to overcome. Intrinsic 
limitations primarily stem from methodological issues in research 
design and data handling, while practical challenges arise from the 
complexities of integrating AI technologies into real-world healthcare 
systems. Together, they represent critical barriers that must be resolved 
to bridge the gap between technological innovation and clinical utility.

2.1 Intrinsic limitations of current studies

Intrinsic limitations in AI-Radiomics research are deeply rooted 
in the methodological, technical, and practical aspects of study design 
and implementation. These limitations significantly hinder the 
translation of AI-based Radiomics models into routine clinical 
practice and compromise their reliability, reproducibility, and 
generalizability. Addressing these challenges is essential for advancing 
the field and ensuring the clinical utility of AI-Radiomics technologies.

A significant challenge in AI-Radiomics research is the reliance 
on small sample sizes and limited datasets (16), often sourced from 
single institutions or homogeneous patient populations. This restricts 

the generalizability of AI models across diverse clinical settings and 
demographics, as specific imaging protocols and scanner types may 
not represent broader patient groups (17). Consequently, the lack of 
diversity undermines the robustness of AI algorithms, making them 
less applicable in real-world scenarios. In addition, small sample sizes 
reduce statistical power, increase bias and decrease confidence in 
findings, as models trained on insufficient data may yield unreliable 
predictions (18). The scarcity of large, annotated datasets is 
exacerbated by privacy concerns, proprietary restrictions, and 
non-standardized data formats, underscoring the urgent need for 
multi-institutional collaborations and centralized imaging repositories 
to enhance access to diverse, high-quality datasets.

Another significant limitation is the tendency of AI models to 
overfit when trained on insufficient or narrowly focused data. 
Overfitting occurs when a model performs exceptionally well on the 
training dataset but fails to maintain accuracy when applied to new, 
unseen data (19). This issue is particularly problematic in Radiomics, 
where the high dimensionality of extracted features increases the risk 
of overfitting. Models trained on small or homogeneous datasets may 
learn patterns that are specific to the training data rather than 
generalizable trends, leading to poor performance in external 
validation studies (20).

The absence of standardized protocols for feature extraction and 
data preprocessing further exacerbates this problem. Variability in 
imaging acquisition methods (such as differences in scanner types, 
resolution, imaging protocols, and reconstruction algorithms) 
introduces inconsistencies in the extracted Radiomics features (21). 
For example, the same tumor imaged on different scanners or using 
different protocols may yield significantly different Radiomics 
signatures, complicating the training and validation of AI models (22). 
In addition, pre-processing parameters and disease characteristics 
strongly influenced the reproducibility of Radiomics features (23). 
These inconsistencies highlight the need for standardized imaging 
protocols and preprocessing workflows to ensure the reproducibility 
and comparability of Radiomics studies.

The “black-box” nature of many AI models, particularly deep 
learning algorithms, presents a critical challenge in clinical 
applications. While these models often achieve high accuracy, their 
lack of interpretability makes it difficult for clinicians to understand 
the reasoning behind their predictions (24). This limitation creates 
skepticism among healthcare professionals, who require clear and 
evidence-based explanations to inform clinical decision-making. For 
example, an AI model may predict that a tumor is likely to 
be aggressive, but without an explanation of the features or patterns 
driving this prediction, clinicians may be  hesitant to rely on the 
model’s output. The lack of interpretability also complicates the 
regulatory approval process for AI models, as transparent and 
explainable algorithms are more likely to gain acceptance from 
regulatory agencies (25). Techniques such as attention mechanisms, 
feature importance mapping, and explainable AI frameworks are 
being explored to address this limitation (26), but their adoption 
remains limited in current studies. Incorporating interpretability into 
AI-Radiomics models is essential for building trust among clinicians 
and ensuring their integration into routine practice.

Many studies fail to incorporate external validation or longitudinal 
data, which are relevance for assessing the reliability and clinical 
impact of AI-Radiomics models. External validation involves testing 
a model on independent datasets that were not used during training, 
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providing a more accurate assessment of its generalizability. However, 
the lack of diverse and annotated datasets often limits the ability to 
perform robust external validation, leading to inflated performance 
metrics that may not translate to real-world settings.

Longitudinal data is equally important for evaluating the long-
term reliability and clinical relevance of AI models (27). For example, 
tracking patient outcomes over time can provide insights into whether 
AI-driven predictions align with actual disease progression or 
treatment responses (28, 29). The absence of longitudinal studies in 
current research limits the ability to assess the true impact of 
AI-Radiomics on patient care, highlighting the need for studies that 
go beyond cross-sectional analyses to include temporal dimensions.

In addition to the previously mentioned challenges of limited 
datasets, data heterogeneity, and interpretability of AI model results, 
we recognize the importance of explainability and the integration of 
effective decision support systems in enhancing the clinical utility of 
AI-based Radiomics. The explainability of AI models is of primary 
relevance for fostering trust among clinicians and ensuring that 
AI-driven insights are actionable in clinical settings. Explainability 
refers to the ability of AI systems to provide understandable and 
interpretable outputs that clinicians can rely on when making 
diagnostic or treatment decisions. Without clear explanations of how 
AI models arrive at their predictions, clinicians may be hesitant to 
incorporate these tools into their practice. We have elaborated on 
techniques such as attention mechanisms and feature importance 
mapping, which can enhance the explainability of AI models. The 
integration of AI into clinical workflows necessitates the development 
of robust decision support systems that can effectively translate AI 
insights into actionable clinical recommendations. These systems 
should be designed to assist clinicians in interpreting AI outputs and 
integrating them into their decision-making processes. By providing 
contextual information and supporting collaborative decision-
making, these systems can improve the overall effectiveness of AI 
in Radiomics.

Additional intrinsic limitations include the lack of consensus on 
optimal feature selection methods, which can lead to the inclusion of 
irrelevant or redundant features that dilute model performance. 
Furthermore, the computational demands of AI-Radiomics models, 
including the need for high-performance hardware and specialized 
software, can pose practical challenges for widespread adoption.

2.2 Practical challenges for the clinical 
application of AI in Radiomics for cancer 
imaging

The clinical application of AI-based Radiomics in cancer imaging 
faces numerous practical challenges that arise from the complexities 
of integrating advanced technologies into existing healthcare systems. 
These challenges span technical, operational, infrastructural, 
regulatory, and cultural domains, collectively limiting the widespread 
adoption and effective utilization of AI tools in routine clinical 
practice. Addressing these issues is essential to unlocking the full 
potential of AI-Radiomics in improving diagnostic precision, 
treatment personalization, and patient outcomes.

One of the most pressing practical challenges is the difficulty of 
incorporating AI tools into established diagnostic workflows, which 
are often rigid and resistant to change. Traditional healthcare systems 

are structured around standardized processes and protocols that 
prioritize consistency and reliability. Introducing AI technologies into 
these frameworks requires significant adjustments, including the 
redesign of workflows to accommodate AI-driven insights (30). 
However, such changes are often met with resistance from clinicians 
and administrators who may perceive AI tools as disruptive or 
unnecessary additions to their current practices (31).

Healthcare professionals frequently lack the technical expertise 
required to operate AI systems effectively, further complicating their 
integration into clinical workflows (24). The complexity of AI models, 
coupled with their reliance on advanced data processing techniques, 
can be intimidating for clinicians who are accustomed to conventional 
diagnostic tools. This lack of familiarity creates a barrier to adoption, 
as clinicians may struggle to trust or use AI-driven tools in their 
practice (32). To address this, comprehensive training programs must 
be developed to equip healthcare professionals with the knowledge 
and skills needed to interact with AI systems confidently (33).

Cultural and organizational resistance within healthcare systems 
further complicates the adoption of AI-based Radiomics. Many 
clinicians and administrators are skeptical of AI technologies, viewing 
them as experimental or unreliable tools that lack the evidence base 
required for widespread use (34). This skepticism is often fueled by the 
“black-box” nature of AI models, which makes it difficult to 
understand the reasoning behind their predictions. Clinicians, who 
rely on transparent and evidence-based approaches to decision-
making, may be reluctant to trust AI tools that cannot provide clear 
explanations for their outputs (35). Fostering a cultural shift toward 
embracing technology-driven approaches to care is essential for 
building trust and acceptance among clinicians.

Organizational resistance may also stem from concerns about 
workflow disruption, increased workload, and the potential for errors 
or inaccuracies in AI-driven diagnostics (36). Institutions may 
be hesitant to invest in AI technologies if they perceive them as adding 
complexity rather than streamlining processes (37). Addressing these 
concerns requires the development of user-friendly AI systems that 
integrate seamlessly into existing workflows, minimizing disruption 
and enhancing efficiency. Furthermore, efforts to educate clinicians 
and administrators about the benefits and limitations of AI tools can 
help overcome skepticism and foster acceptance.

The infrastructural requirements of AI-based Radiomics present 
significant barriers to implementation, particularly in resource-
constrained settings. AI models demand high-performance 
computing resources, including powerful processors, GPUs, and 
large-scale data storage systems, to handle the computationally 
intensive tasks of feature extraction, model training, and validation 
(38). These technologies are expensive and may be inaccessible to 
smaller healthcare institutions or those operating in low- and middle-
income countries (39). The financial burden of acquiring and 
maintaining such infrastructure can deter institutions from investing 
in AI tools, regardless of their potential benefits.

Data privacy and security concerns further compound these 
infrastructural challenges. AI models often rely on large volumes 
of sensitive patient information, including imaging data, clinical 
records, and genomic profiles. Ensuring the secure storage, 
transmission, and processing of this data is critical to maintaining 
patient confidentiality and compliance with privacy regulations 
(40). However, achieving this requires robust cybersecurity 
measures and adherence to complex regulatory frameworks, such 
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as the General Data Protection Regulation (GDPR) in Europe or 
the Health Insurance Portability and Accountability Act (HIPAA) 
in the United States. These measures can be resource-intensive and 
challenging to implement, particularly for institutions with limited 
technical expertise or funding.

Ethical and legal concerns represent another layer of practical 
challenges for the clinical application of AI in Radiomics (41, 42). 
Legal challenges include liability issues, such as determining 
accountability for errors or adverse outcomes resulting from AI-driven 
diagnostics. If an AI tool provides an incorrect prediction that leads 
to a misdiagnosis or inappropriate treatment, questions may arise 
about whether the responsibility lies with the developer, the clinician, 
or the institution. Establishing clear legal frameworks for AI use in 
healthcare is essential for resolving these issues and ensuring the 
ethical deployment of AI technologies.

Regulatory barriers represent another major practical challenge 
for the clinical application of AI in Radiomics. AI tools must undergo 
rigorous validation and approval processes to demonstrate their safety, 
efficacy, and reliability before they can be used in clinical practice (43). 
These processes often involve extensive testing across diverse patient 
populations, ensuring that the models perform consistently and 
accurately in real-world scenarios (44). However, the lack of 
standardized guidelines for validating AI models creates uncertainty 
for developers and healthcare providers, slowing the adoption of 
these technologies.

The lengthy and unclear nature of regulatory approval processes 
can discourage innovation and investment in AI-driven diagnostics 
(45). Developers may face difficulties navigating the complex 
requirements for clinical trials, data submission, and performance 
evaluation, while healthcare providers may hesitate to adopt AI tools 
that have not yet received regulatory approval (46). Additionally, 
reimbursement policies for AI-driven diagnostics remain poorly 
defined, creating financial disincentives for healthcare institutions to 
invest in these technologies. Without clear frameworks for 
reimbursement, the cost of adopting AI tools may outweigh their 
perceived benefits, even if they offer significant improvements in 
diagnostic accuracy and patient outcomes.

Overcoming these practical challenges requires coordinated 
efforts across multiple domains. Educational initiatives should focus 
on training healthcare professionals to use AI systems effectively and 
fostering a cultural shift toward embracing technology-driven 
approaches to care. Infrastructure development must prioritize the 
acquisition of high-performance computing resources and the 
implementation of robust data privacy and security measures. 
Regulatory reform is needed to streamline validation and approval 
processes, establish clear reimbursement policies, and encourage 
innovation in AI-driven diagnostics. Finally, addressing ethical and 
legal concerns requires the development of transparent, unbiased, and 
accountable AI models that prioritize fairness and equity in 
healthcare delivery.

3 Implications for future research and 
clinical practice

The integration of AI and Radiomics into cancer imaging offers 
transformative potential, but its successful implementation requires 

deliberate strategies and focused research efforts. Addressing both 
intrinsic limitations and practical challenges will pave the way for 
seamless integration into clinical workflows while enhancing the 
reliability and relevance of AI-Radiomics models. This section outlines 
key recommendations for integration and highlights priority areas for 
future research to ensure the widespread adoption and clinical utility 
of these technologies.

3.1 Recommendations for integration

To facilitate the effective integration of AI and Radiomics into 
diagnostic workflows, several strategies must be prioritized. First, the 
development of standardized protocols for data collection, 
preprocessing, and feature extraction is essential. Standardization will 
mitigate variability in imaging data and ensure consistency across 
studies, enabling the creation of robust and generalizable AI models 
(47, 48). Establishing universal guidelines for imaging acquisition and 
analysis will also enhance reproducibility and comparability of results, 
fostering trust in AI-driven diagnostics.

However, it is essential to recognize that the integration of diverse 
data types, such as imaging modalities, clinical data, and genomic 
information, poses significant challenges. These data types often 
exhibit inherent variability in formats, scales, and quality, which can 
hinder the harmonization process. Therefore, a concerted effort is 
required to develop frameworks that facilitate the integration of 
heterogeneous data sources. This includes the adoption of common 
data models and ontologies that can bridge gaps between different 
datasets, ensuring that AI algorithms can effectively learn from a wide 
range of inputs.

Multi-institutional collaborations should be  encouraged to 
address the current scarcity of large, diverse datasets (49–51). 
Institutions can create comprehensive datasets that reflect diverse 
patient populations and imaging techniques by pooling resources and 
expertise. Such collaborations will improve the generalizability of AI 
models and also accelerate the development of clinically relevant tools. 
Furthermore, initiatives to share annotated datasets and imaging 
repositories should be supported to reduce redundancy and promote 
innovation in the field.

Training programs for clinicians are another critical component 
of successful integration (52). Healthcare professionals must 
be equipped with the knowledge and skills to understand, operate, and 
interpret AI-driven tools. Educational initiatives should focus on 
demystifying AI technologies, emphasizing their applications in 
Radiomics, and providing practical guidance on their use in clinical 
workflows (53, 54). These programs will help build trust and 
confidence in AI systems, fostering a culture of collaboration between 
clinicians and technology developers.

3.2 Future research directions

Future research should focus on addressing gaps that currently 
limit the clinical adoption and impact of AI-Radiomics. One key area 
is the exploration of AI interpretability (55). Developing models that 
provide transparent and explainable outputs will enhance trust among 
clinicians, enabling them to understand the rationale behind 
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AI-driven decisions (56). Research into techniques such as attention 
mechanisms and feature importance mapping can help make AI 
systems more accessible and trustworthy (57).

Longitudinal studies are also urgently needed to evaluate the long-
term impact of AI-Radiomics on patient outcomes (58). By tracking 
patients over time, researchers can assess how AI-driven insights 
influence treatment decisions, disease progression, and overall 
survival rates (59, 60). Such studies will provide critical evidence of 
the clinical utility of AI technologies, supporting their adoption in 
routine practice.

In addition, patient-centered approaches should be investigated 
to enhance the relevance of AI findings. This includes exploring ways 
to incorporate patient-specific factors, such as genetic profiles and 
lifestyle data, into Radiomics analyses (61). Tailoring AI models to 
individual patients enhances diagnostic accuracy and enables 
personalized treatment strategies, effectively aligning with the broader 
objectives of precision medicine.

3.3 Framework for implementation

In this subsection, we  summarize the key actionable 
recommendations to enhance the integration of AI-based Radiomics 
into clinical practice. These recommendations aim to address the 
challenges identified in previous sections and facilitate the effective 
application of AI technologies in cancer imaging. To facilitate the 
effective integration of AI and Radiomics into diagnostic workflows, 
we present a summary of the current state of the art and actionable 
recommendations in Table 1.

4 Concluding remarks

This mini review highlights the transformative potential of AI and 
Radiomics in cancer imaging while discussing the intrinsic limitations 
of current studies, alongside practical challenges like integration into 
clinical workflows, clinician training, and regulatory barriers. 
Overcoming these challenges will require methodological 
advancements, multi-institutional collaborations, standardized 
protocols, and education-driven efforts to ensure seamless adoption. 
Future research should focus on enhancing AI interpretability, 
conducting longitudinal studies, and adopting patient-centered 
approaches to ensure clinical relevance. Addressing these challenges 
will advance cancer imaging, improve diagnostic accuracy, and 
contribute to precision medicine, which requires a collective effort to 
bridge the gap between innovation and clinical application for a new 
era in cancer care.
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TABLE 1  Summary of current challenges and recommended actions for 
integrating AI-based Radiomics in clinical practice.

State of the art To-do actions

Limited datasets and data 

heterogeneity

Establish multi-institutional collaborations 

for dataset sharing and creation of 

centralized repositories.

Lack of interpretability in AI 

models

Develop and implement explainable AI 

frameworks and techniques.

Rigid clinical workflows Redesign workflows to integrate AI tools 

seamlessly and provide training for 

clinicians.

Regulatory barriers and lengthy 

approval processes

Advocate for regulatory reforms to 

streamline approval processes and 

establish clear reimbursement policies.

Insufficient clinician training on AI 

technologies

Implement comprehensive training 

programs for healthcare professionals on 

AI tools and their applications in 

Radiomics.

Absence of standardized protocols 

for data handling

Develop universal guidelines for imaging 

acquisition, data preprocessing, and 

feature extraction.

Need for longitudinal studies to 

assess clinical impact

Conduct longitudinal studies tracking 

patient outcomes to evaluate AI’s 

effectiveness over time.
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