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Addressing the current challenges
In the clinical application of
Al-based Radiomics for cancer
imaging
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Delong Huang

Department of Imaging, Yantaishan Hospital, Yantai, China

The integration of artificial intelligence (Al) into Radiomics has transformed cancer
imaging by enabling advanced predictive modeling, improved diagnostic accuracy,
and personalized treatment strategies. However, the clinical application of Al-
based Radiomics faces significant challenges that hinder its widespread adoption.
Intrinsic limitations, such as limited datasets, data heterogeneity, and the lack of
interpretability in Al models, compromise reliability and generalizability. Practical
challenges, including integration into rigid clinical workflows, infrastructural
constraints, regulatory barriers, and clinician training gaps, further complicate
implementation. Addressing these barriers requires coordinated efforts to establish
standardized imaging protocols, foster multi-institutional collaborations, and
develop centralized repositories of diverse datasets. In addition, challenges
programs for healthcare professionals and regulatory reforms are essential to
build trust and streamline adoption. Future research should prioritize enhancing
Al interpretability, conducting longitudinal studies to assess clinical impact, and
incorporating patient-centered approaches to align Al models with precision
medicine objectives. By overcoming these challenges, Al-based Radiomics can
advance cancer imaging, improve patient outcomes, and contribute to a new
era in personalized cancer care.
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1 Introduction

Radiomics has emerged as a transformative paradigm in medical imaging, providing a
novel approach to extracting quantitative data from medical images that goes beyond
conventional visual interpretation. This paradigm has been particularly impactful in oncology,
where the ability to characterize tumor phenotypes at a refined level has proven invaluable for
guiding therapeutic decisions and optimizing patient management (1). Radiomics uses
advanced image analysis techniques to extract high-dimensional features that capture the
spatial, temporal, and textural characteristics of tumors, offering a comprehensive tumor
profile (2). These insights have the potential to significantly improve prognostic assessments,
predict treatment responses, and ultimately enhance patient outcomes.

The integration of artificial intelligence (AI) into Radiomics has further revolutionized the
field, catalyzing a paradigm shift in the way imaging data is analyzed and interpreted (3-5).
Al introduces sophisticated machine learning and deep learning algorithms capable of
processing large volumes of complex imaging data with unparalleled precision and efficiency.
These algorithms excel at identifying subtle patterns and correlations within imaging datasets
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that may be imperceptible to human observers. This synergy between
Al and Radiomics has propelled advancements in predictive
modeling, diagnostic accuracy, and personalized cancer care (6-8).
For example, Al-based Radiomics models can predict tumor behavior
(9), stratify patients based on risk profiles (10), and identify
biomarkers for targeted therapies (11), thereby supporting the broader
goals of precision medicine (12).

However, despite these advancements, several challenges continue
to delay the full clinical potential of AI-based Radiomics in cancer
imaging (13-15). Issues such as data heterogeneity, inconsistencies in
imaging protocols, and the lack of large, diverse annotated datasets
present significant obstacles. In addition, the clinical adoption of these
technologies is often complicated by regulatory barriers, difficulties in
validating AT models across diverse patient populations, and the need
for seamless integration into existing diagnostic workflows. While the
scientific community has made significant progress in exploring the
concepts and technological advancements in Al-based Radiomics,
most of the current literature does not address in details the practical
and clinical challenges that must be resolved to translate these
innovations into routine practice.

This mini-review aims to bridge this gap by focusing on the main
challenges associated with the clinical application of AI in Radiomics
for cancer imaging. It aims to provide a focused discussion on the
intrinsic limitations inherent to current studies, as well as the practical
barriers that impede real-world implementation. Furthermore, the
mini-review provides actionable recommendations for integrating Al
and Radiomics into diagnostic workflows, emphasizing strategies to
ensure their effective and sustainable use in clinical settings.

2 Limitations and challenges

The integration of Al into Radiomics for cancer imaging holds
immense promise, yet it faces significant limitations and challenges
that need to be addressed to achieve widespread clinical adoption.
These obstacles can be broadly categorized into intrinsic limitations
inherent to current studies and practical challenges related to clinical
implementation. Distinguishing between these two types of barriers
is essential, as they require distinct approaches to overcome. Intrinsic
limitations primarily stem from methodological issues in research
design and data handling, while practical challenges arise from the
complexities of integrating Al technologies into real-world healthcare
systems. Together, they represent critical barriers that must be resolved
to bridge the gap between technological innovation and clinical utility.

2.1 Intrinsic limitations of current studies

Intrinsic limitations in AI-Radiomics research are deeply rooted
in the methodological, technical, and practical aspects of study design
and implementation. These limitations significantly hinder the
translation of Al-based Radiomics models into routine clinical
practice and compromise their reliability, reproducibility, and
generalizability. Addressing these challenges is essential for advancing
the field and ensuring the clinical utility of AI-Radiomics technologies.

A significant challenge in AI-Radiomics research is the reliance
on small sample sizes and limited datasets (16), often sourced from
single institutions or homogeneous patient populations. This restricts
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the generalizability of AI models across diverse clinical settings and
demographics, as specific imaging protocols and scanner types may
not represent broader patient groups (17). Consequently, the lack of
diversity undermines the robustness of Al algorithms, making them
less applicable in real-world scenarios. In addition, small sample sizes
reduce statistical power, increase bias and decrease confidence in
findings, as models trained on insufficient data may yield unreliable
predictions (18). The scarcity of large, annotated datasets is
exacerbated by privacy concerns, proprietary restrictions, and
non-standardized data formats, underscoring the urgent need for
multi-institutional collaborations and centralized imaging repositories
to enhance access to diverse, high-quality datasets.

Another significant limitation is the tendency of AI models to
overfit when trained on insufficient or narrowly focused data.
Opverfitting occurs when a model performs exceptionally well on the
training dataset but fails to maintain accuracy when applied to new,
unseen data (19). This issue is particularly problematic in Radiomics,
where the high dimensionality of extracted features increases the risk
of overfitting. Models trained on small or homogeneous datasets may
learn patterns that are specific to the training data rather than
generalizable trends, leading to poor performance in external
validation studies (20).

The absence of standardized protocols for feature extraction and
data preprocessing further exacerbates this problem. Variability in
imaging acquisition methods (such as differences in scanner types,
resolution, imaging protocols, and reconstruction algorithms)
introduces inconsistencies in the extracted Radiomics features (21).
For example, the same tumor imaged on different scanners or using
different protocols may yield significantly different Radiomics
signatures, complicating the training and validation of AT models (22).
In addition, pre-processing parameters and disease characteristics
strongly influenced the reproducibility of Radiomics features (23).
These inconsistencies highlight the need for standardized imaging
protocols and preprocessing workflows to ensure the reproducibility
and comparability of Radiomics studies.

The “black-box” nature of many AI models, particularly deep
learning algorithms, presents a critical challenge in clinical
applications. While these models often achieve high accuracy, their
lack of interpretability makes it difficult for clinicians to understand
the reasoning behind their predictions (24). This limitation creates
skepticism among healthcare professionals, who require clear and
evidence-based explanations to inform clinical decision-making. For
example, an Al model may predict that a tumor is likely to
be aggressive, but without an explanation of the features or patterns
driving this prediction, clinicians may be hesitant to rely on the
model’s output. The lack of interpretability also complicates the
regulatory approval process for Al models, as transparent and
explainable algorithms are more likely to gain acceptance from
regulatory agencies (25). Techniques such as attention mechanisms,
feature importance mapping, and explainable AI frameworks are
being explored to address this limitation (26), but their adoption
remains limited in current studies. Incorporating interpretability into
Al-Radiomics models is essential for building trust among clinicians
and ensuring their integration into routine practice.

Many studies fail to incorporate external validation or longitudinal
data, which are relevance for assessing the reliability and clinical
impact of AI-Radiomics models. External validation involves testing
a model on independent datasets that were not used during training,

frontiersin.org


https://doi.org/10.3389/fmed.2025.1674397
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Xu et al.

providing a more accurate assessment of its generalizability. However,
the lack of diverse and annotated datasets often limits the ability to
perform robust external validation, leading to inflated performance
metrics that may not translate to real-world settings.

Longitudinal data is equally important for evaluating the long-
term reliability and clinical relevance of AT models (27). For example,
tracking patient outcomes over time can provide insights into whether
Al-driven predictions align with actual disease progression or
treatment responses (28, 29). The absence of longitudinal studies in
current research limits the ability to assess the true impact of
Al-Radiomics on patient care, highlighting the need for studies that
go beyond cross-sectional analyses to include temporal dimensions.

In addition to the previously mentioned challenges of limited
datasets, data heterogeneity, and interpretability of AI model results,
we recognize the importance of explainability and the integration of
effective decision support systems in enhancing the clinical utility of
Al-based Radiomics. The explainability of AI models is of primary
relevance for fostering trust among clinicians and ensuring that
Al-driven insights are actionable in clinical settings. Explainability
refers to the ability of AI systems to provide understandable and
interpretable outputs that clinicians can rely on when making
diagnostic or treatment decisions. Without clear explanations of how
Al models arrive at their predictions, clinicians may be hesitant to
incorporate these tools into their practice. We have elaborated on
techniques such as attention mechanisms and feature importance
mapping, which can enhance the explainability of AI models. The
integration of Al into clinical workflows necessitates the development
of robust decision support systems that can effectively translate AI
insights into actionable clinical recommendations. These systems
should be designed to assist clinicians in interpreting AI outputs and
integrating them into their decision-making processes. By providing
contextual information and supporting collaborative decision-
making, these systems can improve the overall effectiveness of Al
in Radiomics.

Additional intrinsic limitations include the lack of consensus on
optimal feature selection methods, which can lead to the inclusion of
irrelevant or redundant features that dilute model performance.
Furthermore, the computational demands of AI-Radiomics models,
including the need for high-performance hardware and specialized
software, can pose practical challenges for widespread adoption.

2.2 Practical challenges for the clinical
application of Al in Radiomics for cancer
imaging

The clinical application of Al-based Radiomics in cancer imaging
faces numerous practical challenges that arise from the complexities
of integrating advanced technologies into existing healthcare systems.
These challenges span technical, operational, infrastructural,
regulatory, and cultural domains, collectively limiting the widespread
adoption and effective utilization of AI tools in routine clinical
practice. Addressing these issues is essential to unlocking the full
potential of AlI-Radiomics in improving diagnostic precision,
treatment personalization, and patient outcomes.

One of the most pressing practical challenges is the difficulty of
incorporating Al tools into established diagnostic workflows, which
are often rigid and resistant to change. Traditional healthcare systems
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are structured around standardized processes and protocols that
prioritize consistency and reliability. Introducing Al technologies into
these frameworks requires significant adjustments, including the
redesign of workflows to accommodate Al-driven insights (30).
However, such changes are often met with resistance from clinicians
and administrators who may perceive Al tools as disruptive or
unnecessary additions to their current practices (31).

Healthcare professionals frequently lack the technical expertise
required to operate Al systems effectively, further complicating their
integration into clinical workflows (24). The complexity of Al models,
coupled with their reliance on advanced data processing techniques,
can be intimidating for clinicians who are accustomed to conventional
diagnostic tools. This lack of familiarity creates a barrier to adoption,
as clinicians may struggle to trust or use Al-driven tools in their
practice (32). To address this, comprehensive training programs must
be developed to equip healthcare professionals with the knowledge
and skills needed to interact with Al systems confidently (33).

Cultural and organizational resistance within healthcare systems
further complicates the adoption of Al-based Radiomics. Many
clinicians and administrators are skeptical of AI technologies, viewing
them as experimental or unreliable tools that lack the evidence base
required for widespread use (34). This skepticism is often fueled by the
“black-box” nature of AI models, which makes it difficult to
understand the reasoning behind their predictions. Clinicians, who
rely on transparent and evidence-based approaches to decision-
making, may be reluctant to trust Al tools that cannot provide clear
explanations for their outputs (35). Fostering a cultural shift toward
embracing technology-driven approaches to care is essential for
building trust and acceptance among clinicians.

Organizational resistance may also stem from concerns about
workflow disruption, increased workload, and the potential for errors
or inaccuracies in Al-driven diagnostics (36). Institutions may
be hesitant to invest in AI technologies if they perceive them as adding
complexity rather than streamlining processes (37). Addressing these
concerns requires the development of user-friendly Al systems that
integrate seamlessly into existing workflows, minimizing disruption
and enhancing efficiency. Furthermore, efforts to educate clinicians
and administrators about the benefits and limitations of Al tools can
help overcome skepticism and foster acceptance.

The infrastructural requirements of Al-based Radiomics present
significant barriers to implementation, particularly in resource-
constrained settings. AI models demand high-performance
computing resources, including powerful processors, GPUs, and
large-scale data storage systems, to handle the computationally
intensive tasks of feature extraction, model training, and validation
(38). These technologies are expensive and may be inaccessible to
smaller healthcare institutions or those operating in low- and middle-
income countries (39). The financial burden of acquiring and
maintaining such infrastructure can deter institutions from investing
in Al tools, regardless of their potential benefits.

Data privacy and security concerns further compound these
infrastructural challenges. AI models often rely on large volumes
of sensitive patient information, including imaging data, clinical
records, and genomic profiles. Ensuring the secure storage,
transmission, and processing of this data is critical to maintaining
patient confidentiality and compliance with privacy regulations
(40). However, achieving this requires robust cybersecurity
measures and adherence to complex regulatory frameworks, such
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as the General Data Protection Regulation (GDPR) in Europe or
the Health Insurance Portability and Accountability Act (HIPAA)
in the United States. These measures can be resource-intensive and
challenging to implement, particularly for institutions with limited
technical expertise or funding.

Ethical and legal concerns represent another layer of practical
challenges for the clinical application of AI in Radiomics (41, 42).
Legal challenges include liability issues, such as determining
accountability for errors or adverse outcomes resulting from AI-driven
diagnostics. If an Al tool provides an incorrect prediction that leads
to a misdiagnosis or inappropriate treatment, questions may arise
about whether the responsibility lies with the developer, the clinician,
or the institution. Establishing clear legal frameworks for AI use in
healthcare is essential for resolving these issues and ensuring the
ethical deployment of Al technologies.

Regulatory barriers represent another major practical challenge
for the clinical application of Al in Radiomics. AI tools must undergo
rigorous validation and approval processes to demonstrate their safety,
efficacy, and reliability before they can be used in clinical practice (43).
These processes often involve extensive testing across diverse patient
populations, ensuring that the models perform consistently and
accurately in real-world scenarios (44). However, the lack of
standardized guidelines for validating AT models creates uncertainty
for developers and healthcare providers, slowing the adoption of
these technologies.

The lengthy and unclear nature of regulatory approval processes
can discourage innovation and investment in Al-driven diagnostics
(45). Developers may face difficulties navigating the complex
requirements for clinical trials, data submission, and performance
evaluation, while healthcare providers may hesitate to adopt Al tools
that have not yet received regulatory approval (46). Additionally,
reimbursement policies for Al-driven diagnostics remain poorly
defined, creating financial disincentives for healthcare institutions to
invest in these technologies. Without clear frameworks for
reimbursement, the cost of adopting AI tools may outweigh their
perceived benefits, even if they offer significant improvements in
diagnostic accuracy and patient outcomes.

Overcoming these practical challenges requires coordinated
efforts across multiple domains. Educational initiatives should focus
on training healthcare professionals to use Al systems effectively and
fostering a cultural shift toward embracing technology-driven
approaches to care. Infrastructure development must prioritize the
acquisition of high-performance computing resources and the
implementation of robust data privacy and security measures.
Regulatory reform is needed to streamline validation and approval
processes, establish clear reimbursement policies, and encourage
innovation in Al-driven diagnostics. Finally, addressing ethical and
legal concerns requires the development of transparent, unbiased, and
accountable AI models that prioritize fairness and equity in
healthcare delivery.

3 Implications for future research and
clinical practice

The integration of Al and Radiomics into cancer imaging offers
transformative potential, but its successful implementation requires
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deliberate strategies and focused research efforts. Addressing both
intrinsic limitations and practical challenges will pave the way for
seamless integration into clinical workflows while enhancing the
reliability and relevance of AI-Radiomics models. This section outlines
key recommendations for integration and highlights priority areas for
future research to ensure the widespread adoption and clinical utility
of these technologies.

3.1 Recommendations for integration

To facilitate the effective integration of Al and Radiomics into
diagnostic workflows, several strategies must be prioritized. First, the
development of standardized protocols for data collection,
preprocessing, and feature extraction is essential. Standardization will
mitigate variability in imaging data and ensure consistency across
studies, enabling the creation of robust and generalizable AI models
(47,48). Establishing universal guidelines for imaging acquisition and
analysis will also enhance reproducibility and comparability of results,
fostering trust in Al-driven diagnostics.

However, it is essential to recognize that the integration of diverse
data types, such as imaging modalities, clinical data, and genomic
information, poses significant challenges. These data types often
exhibit inherent variability in formats, scales, and quality, which can
hinder the harmonization process. Therefore, a concerted effort is
required to develop frameworks that facilitate the integration of
heterogeneous data sources. This includes the adoption of common
data models and ontologies that can bridge gaps between different
datasets, ensuring that Al algorithms can effectively learn from a wide
range of inputs.

Multi-institutional collaborations should be encouraged to
address the current scarcity of large, diverse datasets (49-51).
Institutions can create comprehensive datasets that reflect diverse
patient populations and imaging techniques by pooling resources and
expertise. Such collaborations will improve the generalizability of AI
models and also accelerate the development of clinically relevant tools.
Furthermore, initiatives to share annotated datasets and imaging
repositories should be supported to reduce redundancy and promote
innovation in the field.

Training programs for clinicians are another critical component
of successful integration (52). Healthcare professionals must
be equipped with the knowledge and skills to understand, operate, and
interpret Al-driven tools. Educational initiatives should focus on
demystifying Al technologies, emphasizing their applications in
Radiomics, and providing practical guidance on their use in clinical
workflows (53, 54). These programs will help build trust and
confidence in Al systems, fostering a culture of collaboration between
clinicians and technology developers.

3.2 Future research directions

Future research should focus on addressing gaps that currently
limit the clinical adoption and impact of AI-Radiomics. One key area
is the exploration of Al interpretability (55). Developing models that
provide transparent and explainable outputs will enhance trust among
clinicians, enabling them to understand the rationale behind
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Al-driven decisions (56). Research into techniques such as attention
mechanisms and feature importance mapping can help make AI
systems more accessible and trustworthy (57).

Longitudinal studies are also urgently needed to evaluate the long-
term impact of AI-Radiomics on patient outcomes (58). By tracking
patients over time, researchers can assess how Al-driven insights
influence treatment decisions, disease progression, and overall
survival rates (59, 60). Such studies will provide critical evidence of
the clinical utility of AI technologies, supporting their adoption in
routine practice.

In addition, patient-centered approaches should be investigated
to enhance the relevance of Al findings. This includes exploring ways
to incorporate patient-specific factors, such as genetic profiles and
lifestyle data, into Radiomics analyses (61). Tailoring AI models to
individual patients enhances diagnostic accuracy and enables
personalized treatment strategies, effectively aligning with the broader
objectives of precision medicine.

3.3 Framework for implementation

In this subsection, we summarize the key actionable
recommendations to enhance the integration of Al-based Radiomics
into clinical practice. These recommendations aim to address the
challenges identified in previous sections and facilitate the effective
application of Al technologies in cancer imaging. To facilitate the
effective integration of AI and Radiomics into diagnostic workflows,
we present a summary of the current state of the art and actionable
recommendations in Table 1.

TABLE 1 Summary of current challenges and recommended actions for
integrating Al-based Radiomics in clinical practice.

State of the art To-do actions

Limited datasets and data Establish multi-institutional collaborations

heterogeneity for dataset sharing and creation of

centralized repositories.

Lack of interpretability in AT Develop and implement explainable Al

models frameworks and techniques.

Rigid clinical workflows Redesign workflows to integrate Al tools
seamlessly and provide training for

clinicians.

Regulatory barriers and lengthy Advocate for regulatory reforms to

approval processes streamline approval processes and

establish clear reimbursement policies.

Insufficient clinician training on AI | Implement comprehensive training

technologies programs for healthcare professionals on
Al tools and their applications in

Radiomics.

Absence of standardized protocols Develop universal guidelines for imaging

for data handling acquisition, data preprocessing, and

feature extraction.

Need for longitudinal studies to Conduct longitudinal studies tracking

assess clinical impact patient outcomes to evaluate Al's

effectiveness over time.
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4 Concluding remarks

This mini review highlights the transformative potential of Al and
Radiomics in cancer imaging while discussing the intrinsic limitations
of current studies, alongside practical challenges like integration into
clinical workflows, clinician training, and regulatory barriers.
these methodological

multi-institutional collaborations,

Overcoming challenges will require

advancements, standardized
protocols, and education-driven efforts to ensure seamless adoption.
Future research should focus on enhancing AI interpretability,
conducting longitudinal studies, and adopting patient-centered
approaches to ensure clinical relevance. Addressing these challenges
will advance cancer imaging, improve diagnostic accuracy, and
contribute to precision medicine, which requires a collective effort to
bridge the gap between innovation and clinical application for a new
era in cancer care.
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