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Machine learning-assisted tongue
Image analysis for the diagnosis
of Hashimoto's thyroiditis
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Objective: This study aims to evaluate the value of a machine learning model
based on tongue features in the adjunctive diagnosis of Hashimoto's thyroiditis
(HT) and its concomitant hypothyroidism.

Methods: Tongue images and related clinical data were retrospectively collected
from 120 HT patients (60 each from the euthyroid group and the hypothyroidism
group), and the tongue region was segmented by preprocessing, and the
image feature dimensions were extracted with 1,125 dimensions. Therefore,
four methods, namely, random forest (RF), logistic regression (LR), support
vector machine (SVM), and decision tree (DT), were utilized for model training,
and 80 tongue images of 40 patients from Lixin County People’'s Hospital in
Anhui Province were utilized for external validation. The model performance
evaluation indexes included AUC (Area Under the Curve), Sensitivity, Specificity,
Positive Predictive Value (PPV), and Negative Predictive Value (NPV).

Results: t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization
based on the test set revealed a distinguishable clustering trend between the
two groups. The key classification features included tongue texture uniformity,
body morphological features, and color depth. The AUC of the four models was
higher than 0.82, confirming that the tongue image features have significant
predictive value for HT, and the lower limit of 95% ClI for all models was higher
than 0.75, indicating that the models had stable differentiation ability. The AUC
of SVM (0.894) was the best, significantly higher than the other models (RF:
0.857, LR: 0.876, and DT:0.828), indicating that the SVM possesses the strongest
ability to classify patients with and without HT and the highest stability. The
SVM exhibited balanced performance, with a sensitivity of 0.804 and specificity
of 0.936. Consequently, it represents the optimal model for achieving an
equilibrium between recall and precision. In external validation, the efficacy of
the four models is notable, and the trend is consistent with the test set. SVM
still demonstrates notable performance and possesses the best generalization
ability among the four models.
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Conclusion: The tongue image-based machine learning model can effectively
assist in distinguishing euthyroid from hypothyroidism in HT, offering a non-
invasive, low-cost, and intelligent tool for auxiliary diagnosis and disease risk
monitoring in primary care settings.
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tongue image, machine learning, Hashimoto's thyroiditis, hypothyroidism, Al-assisted

diagnosis

1 Introduction

Primary hypothyroidism affects more than 40 million patients in
China, of which 80% are cautilized by Hashimoto’s thyroiditis (HT)
(1). Therefore, HT and its associated hypothyroid states usually
present with an insidious onset of disease and nonspecific symptoms,
leading to substantial underdiagnosis that adversely affects patient
quality of life and long-term health outcomes (2). Currently, the
diagnosis of HT relies on thyroglobulin (TgAb) and thyroid
peroxidase antibody (TPOAb) detection, yet approximately 20% of
HT patients are antibody-negative, resulting in a significant
underdiagnosis risk (3). Although fine-needle aspiration biopsy
(FNAB) of the thyroid gland may be utilized as a basis for confirming
the diagnosis, which is mainly characterized by lymphocytic
infiltration of thyroid tissue and cytoplasmic eosinophilic changes in
follicular epithelial cells, its invasive nature limits clinical adoption (4)
Ultrasonography serves as a noninvasive adjunct but has limited
accuracy in differentiating euthyroid from hypothyroid states (5).

Tongue diagnosis represents a pivotal non-invasive diagnostic
technique in both traditional Chinese medicine (TCM) and Western
medical practice. Rooted in TCM theory that “all illnesses within the
body must be manifested outside,” tongue alterations reflect systemic
physiological and pathological states with significant specificity and
quantifiability. Variations in the tongue’s color, morphology, coating,
and texture sensitively indicate disease etiology, nature, and
progression stage. In recent years, tongue features have been gradually
digitized as extractable image features and applied to the diagnosis
and monitoring of various diseases (6-8). Tongue image analysis has
been demonstrated to assist in assessing the risk of malignancy in
thyroid nodules (9), and its morphological markers have demonstrated
an important role in screening for various chronic diseases such as
diabetes mellitus, non-alcoholic fatty liver disease, and COVID-19
(10-12) Therefore, identifying characteristic tongue features in HT
and associated hypothyroidism, and constructing a tongue
classification model by machine learning, possesses important clinical
research and translational application value.

In Recent years, we have witnessed numerous machine learning
applications for precise clinical image analysis, enabling the
construction of imaging-based screening, diagnostic, and risk
prediction models (13, 14). At present, the application of machine
learning in TCM tongue diagnosis mainly focuses on standardizing
tongue image processing, building image databases, and developing
prediction models, which helps to reduce the bias brought by
subjective judgment in the traditional manual tongue diagnosis, and
improve the objectivity and consistency of diagnosis (15, 16).
However, Limited research exists on machine learning-assisted tongue
diagnosis for Hashimotos thyroiditis (HT) and concomitant
hypothyroidism. Based on this study aimed to develop an auxiliary
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diagnostic model integrating tongue image features and machine
learning to effectively differentiate between euthyroid and hypothyroid
states among patients already diagnosed with HT. This distinction is
crucial for disease management, particularly in deciding whether to
initiate or adjust levothyroxine therapy. Thus, this work provides a
non-invasive, low-cost, and easily deployable intelligent auxiliary
screening tool for primary healthcare settings.

2 Materials and methods

2.1 Patient enrollment and data
classification

This retrospective study received ethics approval from Liaoning
Provincial People’s Hospital (no. 2023H014) and Lixin County People’s
Hospital, Anhui Province (no. LXXRMYY-2025KY015), with waiver
of informed consent. We collected clinical data and tongue images
from 120 HT patients at People’s Hospital of Liaoning Province
(January 2023-March 2024) as the training set. The ratio of the
training set to the test set was 8:2. Owing to the retrospective nature
of this study, no formal a priori power calculation was conducted.
However, a post hoc power analysis was conducted using a target effect
size (AUC of 0.85, indicating high discrimination), a significance level
(a) of 0.05, a statistical power of 0.8, and a 1:1 sample allocation ratio;
this estimation indicated that a minimum of 30-50 samples per group
would be required. Consequently, our training cohort, which
comprised 60 patients per group, exceeded this minimum sample size
requirement. Furthermore, an independent external validation set was
established, consisting of 40 patients recruited from Lixin County
People’s Hospital in Anhui Province. Rigorous privacy-protection
protocols were implemented for all patient data, including clinical
records and tongue images, to ensure anonymity and prevent
re-identification. All potentially identifiable information (e.g., hands,
apparel) was cropped or obscured from the images, which were then
irreversibly de-identified prior to subsequent processing and storage.
All data were maintained on a secure, password-encrypted server with
access restricted exclusively to authorized research staff. All tongue
images underwent quality control, excluding blurred or incomplete
specimens. Patients were stratified by thyroid function tests: euthyroid
or hypothyroid groups. Electronic records provided additional
covariates: demographics (sex, age) and levothyroxine treatment
(duration, dosage). These parameters formed two labeled
data categories.

Inclusion criteria: HT patients who met the diagnostic criteria of
the 2008 Chinese Guidelines for the Diagnosis and Treatment of
Thyroid Diseases - Thyroiditis (17). Stringent exclusion criteria were
applied to control for confounding factors from medications and
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comorbidities: pregnancy; thyroid surgery history, post 1131 therapy
for hyperthyroidism, Graves’ disease (TRAb-positive), and subacute
(e.g.
glucocorticosteroids, amiodarone, lithium, oral contraceptives,
metformin, etc.); obesity [BMI (Body Mass Index) > 28 kg/m?];
combination of severe cardiac, brain, liver, kidney and hematopoietic

thyroiditis; current/past thyroid-affecting medications

system underlying diseases.

Four standardized tongue images (frontal, left lateral, right lateral,
and basal views) were acquired per patient. All images were captured
under controlled lighting and positioning using identical equipment/
parameters to ensure consistency. The cohort flow diagram appears in
Figure 1.

2.2 Data pre-processing

All tongue images were in PNG format. Images were imported
into the Beijing Yizhun AI Darwin Research Platform, and the region
of interest (ROI) was manually delineated by an experienced TCM
practitioner and independently reviewed by a senior practitioner
(20 years of experience). The image standardization was ensured by
size normalization and color correction; the tongue features were
normalized by maximum absolute value normalization; and the
minimum redundancy maximum relevance (mRMR) (18) method
was employed for feature selection, an advanced filter-based feature
selection technique that goes beyond conventional dimensionality
reduction. This method aims to identify a subset of features from the
initial 1,125-dimensional space that maximizes relevance to HT status
while minimizing inter-feature redundancy. By balancing
discriminative power and redundancy, the mRMR algorithm

effectively reduces the risk of overfitting inherent in high-dimensional

10.3389/fmed.2025.1673891

datasets, thereby improving model performance and generalizability.
The preprocessed tongue image dataset is formed from the above steps.

2.3 Model construction and evaluation

Based on the characteristics of the data, machine learning
algorithms were employed to develop a radiomics model. Specifically,
for model selection, we chose four models: Random Forest (RF),
Logistic Regression (LR), Support Vector Machine (SVM), and
Decision Tree (DT). These models were selected because they are
commonly used as baseline models in current research and possess
representativeness. RF integrates multiple independently trained
decision trees, outputting predictions through majority voting to
confer strong overfitting resistance and nonlinear modeling capacity.
LR applies logistic functions to model relationships between
dependent and independent variables, outputting event probabilities
for binary classification. SVM constructs optimal hyperplanes to
maximize inter-category margins to achieve the optimal division of
data points, which is especially suitable for classification tasks with
small samples and high-dimensional problems (19). DT constructs a
classification structure based on a recursive splitting strategy, which
can be demonstrated as a probabilistic tree based on the statistical
significance separation results, and the optimal feature nodes can
be selected by criteria such as information gain or Gini index, which
possesses notable interpretability (20). The area under the curve
(AUC) is utilized to measure the overall discriminative ability of the
model. Meanwhile, other evaluation metrics were derived from
confusion matrices, including sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV). The
research framework diagram is detailed in Figure 2.

Lixin County, Anhui Province.

From January 2023 to March 2024, patients diagnosed with Hashimoto's thyroiditis in The People's Hospital of Liaoning Province and The People's Hospital of

v

Inclusion criteria:

Patients meeting the diagnostic criteria for HT as defined in the 2008 "Chinese Guidelines for the Diagnosis and Treatment of Thyroid Diseases — Thyroiditis"

Exclusion criteria:

1. Pregnancy;

4.Obesity (BMI > 28 kg/m?);

2. Thyroid surgery history, post 1131 therapy for hyperthyroidism, Graves' disease (TRAb-positive), and subacute thyroiditis;

3. Current/past thyroid-affecting medications (e.g., glucocorticosteroids, amiodarone, lithium, oral contraceptives, metformin, etc.);

5. Combination of severe cardiac, brain, liver, kidney, and hematopoietic system underlying diseases.

v

hypothyroid group.

A total of 160 patients were included in this study. According to the results of the five tests for thyroid function, the patients were divided into euthyroid and

v v

v

Training set (n=96)
normal thyroid function (n=48)
hypothyroidism (n=48)

Test set (n=24)

normal thyroid function (n=12)
hypothyroidism (n=12)

external validation set (n=40)
normal thyroid function (n=20)
hypothyroidism (n=20)

FIGURE 1
The cohort flow diagram.
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FIGURE 2
The study framework diagram.

TABLE 1 Baseline characteristics of HT patients: euthyroid vs. hypothyroid.

Parameter Internal training and verification set

Normal
(n = 60)

Hypothyroid
(n = 60)

p-value

External verification set

Normal
(n =20)

Hypothyroid
(n =20)

Age 55.0 (19.0-74.0) 56.0 (24.0-79.0) 0.086 47.5 (21.0-74.0) 47.5 (25.0-70.0) 0.787
Gender, n (%), 5 (8%)/55 (92%) 4(7%)/56 (93%) 0.729

(mmale/femnale 0 (0%)/20 (100%) 1(5%)/19 (95%) 0311
FT3 (nmol/L) 32(1.3-8.8) 3.0 (0.0-5.1) <0.01 #* 3.3(2.7-5.6) 2.9(1.7-3.8) <0.01 **
FT4 (nmol/L) 1.2 (0.8-1000.0) 1.1(0.1-9.2) <0.01 #* 1.2 (1.0-16.4) 1.1 (0.4-1.6) <0.05*
TSH (mIU/L) 2.3(0.0-5.5) 6.5 (0.0-137.3) <0.01 #* 1.6 (0.8-7.0) 52(0.2-90.1) <0.01 **
aTG (IU/mL) 17.8 (0.2-1000.0) 34.1 (0.2-1000.0) 0.461 2.2 (1.3-1000.0) 5.6 (0.2-458.4) 0.139
aTPO (IU/mL) 936.1 (0.7-1300.0) 1010.7 (28.0-2000.0) 0.864 93.5 (4.0-1300.0) 1300.0 (28.0-1300.0) <0.05*

Qualitative variables are expressed in n (%), and continuous variables are expressed as median (range).The symbols * and ** are markers used to denote the significance level of p-values in
statistical tests, with * indicating p < 0.05 and ** indicating p < 0.01. FT3 (free triiodothyronine); FT4 (free thyroxine); TSH (thyroid-stimulating hormone); aTPO (antithyroid peroxidase

antibody); aTG (antithyroglobulin antibody).

2.4 Statistical analysis

The statistical analysis was performed using SPSS software
(version 26.0). Before analysis, all data were assessed for normality and
homogeneity of variance. Normally distributed quantitative data are
presented as the mean + standard deviation (x+s), while
non-normally distributed data are expressed as the median. For
quantitative variables, the t-test or Mann-Whitney U test was applied,
depending on the distribution. For categorical data, the Pearson j* test
or Fisher’s exact test was used. Quantitative results are reported as the
mean + standard deviation (SD), and a p < 0.05 was considered

statistically significant for all tests.

Frontiers in Medicine

3 Results
3.1 General clinical data

This retrospective multicenter study included 160 patients’ clinical
data and 555 tongue images from People’s Hospital of Liaoning
Province (training set) and Lixin County People’s Hospital, Anhui
Province (external validation set). As a retrospective cross-sectional
study, no strict matching for age, sex, or disease duration was
performed. However, the baseline characteristics presented in Table 1
indicate that although there was a predominance of female patients in
the HT cohort, nevertheless, no statistically significant differences
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were observed in age or sex distribution between the euthyroid and
hypothyroid groups within either the internal training set or the
external validation set. Consistent with hypothyroidism
pathophysiology, significant reductions in FT3 (Free Triiodothyronine)
and FT4 (Free Thyroxine) with elevated TSH (Thyroid-Stimulating
Hormone) were observed across both cohorts (p < 0.05), indicating
that the study subjects are well comparable on other clinical
backgrounds, offering a basis for subsequent modeling of

image features.

3.2 Tongue feature recognition and
visualization

Four machine learning methods, including random forest (RF),
logistic regression (LR), support vector machine (SVM), and decision
tree (DT), were utilized to process 1,125-dimensional clinical features
from 475 samples and construct the model. The minimum
Redundancy Maximum Relevance (mRMR) method was employed
for feature selection. This process identified a subset of tongue image
features encompassing texture, margin, chromaticity, and morphology,
which were categorized as follows: First-order statistics capture the
distribution of pixel intensities, indicating the global intensity
characteristics of the tongue body. The Gray Level Co-occurrence
Matrix (GLCM) characterizes the spatial relationships between pixel
pairs, reflecting the roughness and textural homogeneity of the tongue
coating. The Gray Level Size Zone Matrix (GLSZM) quantifies the size
distribution of homogeneous regions, revealing the aggregation and

10.3389/fmed.2025.1673891

dispersion patterns of the tongue coating. The Gray Level Dependence
Matrix (GLDM) captures the local dependencies among pixels,
corresponding to textural fineness. Two-dimensional shape
descriptors define the geometric properties and contour of the tongue
body (Shape 2D). These feature types collectively provide a
comprehensive quantitative representation of tongue images,
facilitating their processing by machine learning algorithms; notably,
their importance differed significantly during modeling (Figure 3).
First-order statistical features (e.g., Minimum, Range, Maximum,
Entropy) appeared frequently, suggesting that the distribution of dark
areas in tongue images holds significant diagnostic value for
HT. Texture features (GLCM, GLDM, GLRLM) also contributed
substantially, indicating that structural information—such as texture,
homogeneity, and run-length of the tongue coating—possesses
discriminatory power. The application of diverse preprocessing
methods demonstrated that different transformations could extract
useful information from various aspects of the images.

In addition to mRMR feature selection, the t-SNE algorithm
was employed; however, it was used solely for visualization
purposes to project the high-dimensional feature space onto a
two-dimensional plane for intuitive visualization of data
distribution and was not utilized for model training (Figure 4).
Discernible separation trend was observed between euthyroid
(red) and hypothyroid (blue) groups, confirming the significant
discriminative capacity of tongue features and validating the
classification model’s feasibility.

Figure 5 presents a feature heatmap with samples on the horizontal
axis, feature types on the vertical axis, and left-side color bars

Feature Importances of SelectFpr

square_firstorder_Minimum_par
original_firstorder_Minimum_par

logar ithm_gldm_DependenceNonUniformityNormal ized par
wavelet—LL_firstorder_Minimum_par
squareroot_glcm_InverseVariance par
wavelet—LL_firstorder_Range_par
original_firstorder_Range_par
squareroot_g|dm_| LargeDependenceEmphas|s_par
logar ithm_gldm DependenceEntropy par
logarithm_Tirstorder_Maximum_par
squareroot_firstorder_Range_par

logar ithm_firstorder_90Percentile_par
squareroot_glrIm_RunPercentage_par
original_g?cm InverseVariance_par

logar i thm_g|dm_DependenceVar i ance_par
squareroot_glcm_JointEntropy_par
squareroot_gldm_DependenceEntropy_par

logar ithm_glcm_SumEntropy_par
logarithm_glcem_JointEntropy_par
squareroot_glcm_SumEntropy_par
squareroot_glcem_ld_par
original_gldm_LargeDependenceEmphasis_par
gradient_gldm_DependenceNonUniformityNormal ized_par
squareroot_firstorder_Maximum_par
wavelet—LL_glr Im_RunPercentage_par

logar ithm_firstorder_Median_par
squareroot_glcm_ldm_par

logarithm_firstorder RootMeanSquared_par
logarithm_glcm_DifferenceEntropy_par
logarithm_Tirstorder_Entropy_par
original_glrlIm RunPercentage_par
logarithm_firstorder_Mean_par
wavelet—LL_gldm_LargeDependenceEmphasis_par
wavelet—LL_glrIm_RunLengthNonUniformityNormal ized_par
squareroot_firstorder_Entropy_par

wave let—LL_glcm_JointEntropy_par
wavelet—LL_glcm_Ild_par
wavelet—-LL_glem_Tdm_par
squareroot_glrIm_ShortRunEmphasis_par
squareroot_glrim_| RunLengthNonUn|?orm|tyNormaI|zed par
orlﬁlnal_glcm _JointEntropy_par
logarithm_glcm_InverseVariance_par
original_ngtdm_Complexity_par

logar ithm_g|dm_| LargeDependenceEmphasls par
exponential_firstorder_Minimum_par
wavelet—HL_firstorder_InterquartileRange_par
squareroot_glcm_DifferenceEntropy_par
original lem_ld_par
squareroot_glcm_JointAverage_par
squareroot_glcm_SumAverage_par

e e —
=——=— == ==
— _—
—————— e e |

FIGURE 3

represented by a horizontal bar reflecting its importance score].
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Bar plot of feature importance [the X-axis indicates the feature importance score (approximately 0—500); a higher score denotes a greater contribution
of the feature to predicting HT. The Y-axis lists selected key features used in the model, ranked in descending order of importance. Each feature is
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FIGURE 4

t-SNE visualization of tongue feature distributions in HT patients (lable red is euthyroid group, lable blue is hypothyroid group).

indicating feature categories. Samples are stratified by thyroid status
(green and dark green bars above). Notably, directional features
(GLCM, GLSZM, Shape2D) exhibit significantly distinct high-
expression patterns.

3.3 Model diagnostic performance
evaluation

Model performance in distinguishing euthyroid versus
hypothyroid HT states was evaluated using AUC, sensitivity,
specificity, PPV, NPV, and accuracy. Table 2 summarizes diagnostic
performance across test and external validation sets. Test set analysis
revealed that DT achieved the highest sensitivity (0.826), followed
by SVM (0.804), with RF and LR showing lower sensitivity (0.761),
and the upper limit of the 95% CI of DT amounted to 0.909, which

Frontiers in Medicine

indicated that it was best at identifying true-positive cases.
Specificity, which indicates the ability of the model to exclude false
positive cases, was significantly better for RF (1.0) and LR (0.979)
than SVM (0.936) and DT (0.83). The PPV of DT (0.826) and LR
(0.972) are consistent with their sensitivity, which indicates that the
predictions are well balanced. External validation confirmed
sustained efficacy, with SVM and LR maintaining high sensitivity,
and AUC. LR stable
specificity retention.

ROC curves were generated to comparatively assess model

accuracy, exhibited particularly

classification performance (Figure 6). Test set analysis (Figure 5A)
revealed SVM achieved optimal overall discrimination (AUC = 0.894),
with its curve closest to the upper-left corner, significantly
outperforming other models. LR demonstrated secondary
performance (AUC = 0.876). RF curve (AUC = 0.857) was in the
middle, but had extremely high specificity (1.0), sacrificing some
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sensitivity. DT showed the lowest AUC (0.828), with its curve nearest
the diagonal, yet achieved peak sensitivity (0.826). External validation
curves (Figure 5B) exhibited rightward/downward shifts toward the
diagonal relative to test set performance. This indicates that the
models face some challenges but still ensure notable recognition of
HT and hypothyroidism on never-seen external data, and the overall
trend remains consistent with the test set, with some
generalization ability.

Calibration curves were generated to evaluate prediction reliability
and generalizability for distinguishing euthyroid versus hypothyroid
HT subgroups (Figure 7). Figures 7A-D correspond, respectively, to
the RE, LR, SVM, and DT models. Orange curves represent test set
performance. RF exhibited significant underprediction at probabilities
>0.6 and minor over prediction in low-risk zones (<0.3). LR
demonstrated optimal alignment, nearly overlapping the diagonal
between 0.4 and 0.7, with minor deviations only at extremes (<0.2 or
>0.8). SVM showed systematic underprediction across all probability

ranges with a stable offset. DT demonstrates a stepwise deviation.

Frontiers in Medicine

4 Discussion

Hashimoto’s thyroiditis (HT) has become the most common
autoimmune disease and one of the leading causes of hypothyroidism
in developed countries (21). Although histopathology remains the
diagnostic gold standard, fine-needle aspiration biopsy (FNAB)
demonstrates limited screening utility due to its invasive nature,
operator dependence, and poor patient acceptance, particularly for
benign conditions or population screening. Current diagnosis
integrates clinical manifestations, serological testing, and ultrasound
structural changes (22) yet serological methods remain cost-
prohibitive for routine screening, while ultrasound exhibits limited
diagnostic accuracy. Consequently, an urgent need exists for
non-invasive, cost-effective screening tools with robust diagnostic
performance to facilitate early HT/hypothyroidism detection and
longitudinal monitoring.

In recent years, artificial intelligence (AI) has made breakthroughs
in medical image analysis and intelligent-assisted diagnosis, bringing
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technological innovation to traditional tongue diagnosis. As a
non-invasive, repeatable modality reflecting systemic physiological
status, TCM tongue diagnosis offers unique advantages. The
introduction of machine learning has shifted tongue diagnosis toward
standardization and objectivity, while retaining the traditional
advantages as a non-invasive, low-cost, and convenient tool.
Algorithmic processing, such as image segmentation, color calibration,
and texture extraction, substantially reduces acquisition biases from
equipment, illumination, and operator variability (23, 24). Machine
learning is broadly divided into two paradigms: deep learning and
traditional machine learning. Compared to deep learning, traditional
machine learning models, which rely on feature engineering, offer
superior interpretability. This characteristic is crucial for integrating
tongue image-based AI with traditional Chinese medicine theory, as
it enables clinicians to understand the decision logic of the model,
thereby facilitating clinical acceptance of Al-assisted diagnostics.
Furthermore, traditional machine learning models incur lower
computational costs for both training and inference, making them
more suitable for deployment within the hardware constraints
typically found in primary healthcare settings. Given these advantages.
In recent years, the research on tongue images based on machine
learning algorithms has increased. Jiang et al. (25) developed SVM,
RE and GBDT (boosted decision tree) models for tongue image
quality control. Zhang et al. (26) established an SVM-based diabetes
diagnosis model using standardized tongue images. What is more, Li
et al. (27) confirmed tongue features significantly enhance diabetes
risk prediction accuracy in ML models. Previous studies on machine
learning in tongue diagnosis have mainly focused on diagnostic
consistency and reducing human subjective bias, while the research
on tongue recognition for autoimmune diseases, such as HT, is still in
its infancy. This study applies traditional machine learning to explore
the value of tongue images in HT diagnosis. Enabling scalable,
standardized image databases for AI-driven disease identification and
staging models.

We analyzed standardized tongue images from patients with HT
and its accompanying hypothyroidism, extracting high-dimensional
features via machine learning to quantify disease-state recognition
value. Notably, stringent adherence to inclusion and exclusion criteria
during the image acquisition phase was essential to establish a
comparable foundation for tongue image feature modeling and to
minimize confounders such as medication use and comorbidities that
may affect tongue appearance. Moreover, subtle factors including
dietary habits and oral hygiene may influence microbial flora or
induce coating discoloration, thereby altering tongue image
presentation. Previous studies have suggested that marker bacteria
associated with different tongue coating types can vary across diseases
(28). Although efforts were made to control for known confounders,
factors such as dietary habits and oral hygiene, which were not fully
controlled, may still exert subtle influences on tongue images.
Therefore, future studies could further optimize the model by
collecting more comprehensive clinical data, including detailed
medical interviews and lifestyle habit surveys. Following
preprocessing, tongue images acquired under the current inclusion/
exclusion criteria retained discriminative features across texture,
margin, chromaticity, and morphology. Analysis of top-ranking
features indicated that “contrast” (from GLCM), as well as “area” and
“perimeter” (from Shape2D descriptors), contributed substantially to
classification performance. The results demonstrate that the GLCM
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Receiver operating characteristic (ROC) curves of models (A) depicts the ROC of the test set, and (B) depicts the ROC of the external validation set.
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and decision tree (DT) models.
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value of hypothyroidism patients is significantly higher, indicating an
increase in the complexity of tongue texture, which may be related to
the thickening and uneven distribution of the tongue; prominent
Shape2D features suggested hypothyroidism patients’ tongue
hypertrophy and marginal irregularity; the change of the First Order
is significant, which corresponds to the change of the tongue color
shades, indicating that the tongue color of the hypothyroidism
patients is pale or cyanosis; while glszm (gray-scale region size matrix)
and gldm (gray-scale dependency matrix) is relatively weak, indicating
that their contribution to the classification is limited. These alterations
align with hypothyroid pathophysiology (e.g., slowed basal
metabolism, water and fluid retention, and slowed circulation), which
are prominent in the thermograms, validating the ability of the AI
model to perceive the pathological features of the tongue.

t-SNE dimensionality reduction confirmed that the tongue
features could effectively differentiate between normal and
hypothyroid individuals in high-dimensional space. The euthyroid
and hypothyroid groups demonstrated a discernible separation trend
in the two-dimensional projection, indicating the model’s strong
discriminatory capability. However, some boundary blurring and
overlapping clusters were observed. These overlapping samples likely
correspond to patients in the subclinical or early stages of the disease,
where tongue manifestations are not yet typical. In such cases, single-
modality tongue image features may be insufficient to form distinct
clusters, representing a limitation in model identification. Potential
solutions for future research directions include: firstly, developing a
multimodal fusion model by integrating tongue image data with
serological indicators (e.g., antibody levels, TSH) and ultrasonographic
features. This approach could leverage the complementary information
from different data modalities, thereby improving the accuracy of
identifying early-stage or subclinical disease. Secondly, conducting
prospective cohort studies to periodically collect tongue images from
euthyroid HT patients and monitor their thyroid function changes
could explore whether alterations in tongue appearance serve as early
warning indicators for predicting progression to hypothyroidism.

Comprehensive analysis of the above visualization results
demonstrates that tongue image features such as texture uniformity
and roughness of tongue moss, size and edge contour of the tongue
body, and color depth of the tongue body are important discriminative
indicators for distinguishing euthyroid and hypothyroid. Therefore,
this is highly consistent with TCM diagnostic principles of “observing
the color, examining the shape, and identifying the moss” Which
further validates the feasibility and effectiveness of quantitative tongue
features in Al-driven diagnostic modeling.

In terms of model construction, all four ML models demonstrated
great discriminative capacity for HT and hypothyroidism classification
(AUC > 0.82), and models were stable in differentiating ability (CI
lower bounds >0.75). What is more, SVM achieved optimal AUC
(0.894), significantly outperforming RF (0.857), LR (0.876), and DT
(0.828), indicating superior classification stability. DT showed peak
sensitivity (0.826; 95% CI upper: 0.909), making it ideal for identifying
true-positive cases and suitable for primary screening scenarios, while
SVM followed (0.804), with RF/LR lowest (0.761). Specificity indicates
the model’s ability to exclude false positive cases, with RF (1.0) and LR
(0.979), significantly exceeding SVM (0.936) and DT (0.830). CI lower
bounds of RF (0.924) is still higher than other models with the
strongest reliability. RF and LR achieved highest PPV (1.0 and 0.972,
respectively), ensuring maximal reliability for positive predictions. The
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PPV and sensitivity of DT (0.826) and LR (0.972) are consistent with
each other, indicating that the predictions are well balanced. In
summary, SVM emerged as the optimal balanced model (AUC = 0.894,
sensitivity = 0.804, specificity = 0.936), which best reconciled recall
and precision requirements. The 95% CI of all metrics did not overlap
(e.g., 0.798-0.953 for LR and 0.819-0.969 for SVM), indicating that
the differences between models were statistically significant.

In clinical practice, a reliable auxiliary diagnostic model requires
both excellent classification accuracy and trustworthy predicted
probabilities. The former is measured by the Area Under the Curve
(AUC), while the latter can be assessed through calibration.
According to the calibration curve (Figure 7), the good calibration of
the Logistic Regression (LR) model indicates that its predicted risk
probabilities (e.g., 50, 70%) closely align with the actual observed
disease prevalence. This is crucial for clinical decision-making, as it
enables physicians to perform more accurate risk stratification and
patient communication based on the model’s specific probability
outputs—for instance, determining the necessity for further
serological or ultrasonographic examination. In contrast, although
the Support Vector Machine (SVM) model achieved the highest AUC
(0.894), its systematic miscalibration could lead to an underestimation
of patient risk by clinicians.

The external validation set is an important criterion for
assessing the generalization ability of the models. Although this
study was conducted within a Chinese population, data were
specifically collected from two medical centers in different
provinces (Liaoning and Anhui), and an independent external
validation set was employed to assess the model’s generalizability.
All models retained significant HT/hypothyroidism recognition
capacity in external validation, mirroring test set performance
trends. SVM maintained superior performance (AUC = 0.879)
with peak sensitivity (0.933) and NPV (0.917), demonstrating
robust diagnostic capability and strong clinical translation
potential. LR achieved balanced performance (AUC = 0.858,
sensitivity = 0.800, specificity = 0.813, accuracy = 0.806), showing
stable clinical utility through optimal sensitivity-specificity
equilibrium. RF preserved perfect specificity and PPV but
exhibited significant sensitivity degradation (0.533) and reduced
accuracy (0.774), indicating overfitting susceptibility, which
reflected a certain risk of overfitting. Risk. DT demonstrated
limited generalizability needs to be improved (AUC = 0.644,
accuracy = 0.645).

There are still some limitations in this study. Firstly, while our
single-center modeling and multi-center external validation
preliminarily established the diagnostic utility of tongue imaging for
HT/hypothyroidism, broader validation across diverse populations and
regions is required to enhance generalizability and clinical
implementation. The next step is to conduct a more mature external
validation in multi-center, multi-region to further train the
generalizability of the model and optimize the benefits of the model in
the actual clinical workflow. To enhance the validity of our findings,
future investigations will incorporate a prospective design, multi-center
collaboration, and a formal a priori power calculation to ensure
adequate statistical power, thereby improving the robustness and
generalizability of the conclusions. Furthermore, although this study
focused on classifying patients with HT by developing a binary classifier
for thyroid functional status, future work incorporating healthy controls
or non-HT hypothyroid patients (e.g., those with hypothyroidism due
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to iodine deficiency or post-thyroidectomy) to construct a multi-class
model would further broaden its clinical applicability.

5 Conclusion

Early detection of HT and associated hypothyroidism is critically
significant in improving patient prognosis and implementing
individualized management. We developed and validated four AI
diagnostic models using multidimensional tongue imaging features.
The results demonstrate that Tongue features demonstrated significant
discriminative capacity for euthyroid and hypothyroid, and machine-
learning-assisted tongue image possesses feasibility and validity in
screening HT and its concomitant hypothyroidism, which still
maintains a notable performance in an independent external
validation. These findings establish tongue imaging as a novel
noninvasive biomarker for HT diagnosis and risk stratification. In the
future, joint modeling with multimodal medical data is expected to
improve the diagnostic accuracy and provide a new path for intelligent
screening and individualized management of thyroid diseases.
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