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Objective: This study aims to evaluate the value of a machine learning model 
based on tongue features in the adjunctive diagnosis of Hashimoto’s thyroiditis 
(HT) and its concomitant hypothyroidism.
Methods: Tongue images and related clinical data were retrospectively collected 
from 120 HT patients (60 each from the euthyroid group and the hypothyroidism 
group), and the tongue region was segmented by preprocessing, and the 
image feature dimensions were extracted with 1,125 dimensions. Therefore, 
four methods, namely, random forest (RF), logistic regression (LR), support 
vector machine (SVM), and decision tree (DT), were utilized for model training, 
and 80 tongue images of 40 patients from Lixin County People’s Hospital in 
Anhui Province were utilized for external validation. The model performance 
evaluation indexes included AUC (Area Under the Curve), Sensitivity, Specificity, 
Positive Predictive Value (PPV), and Negative Predictive Value (NPV).
Results: t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 
based on the test set revealed a distinguishable clustering trend between the 
two groups. The key classification features included tongue texture uniformity, 
body morphological features, and color depth. The AUC of the four models was 
higher than 0.82, confirming that the tongue image features have significant 
predictive value for HT, and the lower limit of 95% CI for all models was higher 
than 0.75, indicating that the models had stable differentiation ability. The AUC 
of SVM (0.894) was the best, significantly higher than the other models (RF: 
0.857, LR: 0.876, and DT:0.828), indicating that the SVM possesses the strongest 
ability to classify patients with and without HT and the highest stability. The 
SVM exhibited balanced performance, with a sensitivity of 0.804 and specificity 
of 0.936. Consequently, it represents the optimal model for achieving an 
equilibrium between recall and precision. In external validation, the efficacy of 
the four models is notable, and the trend is consistent with the test set. SVM 
still demonstrates notable performance and possesses the best generalization 
ability among the four models.
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Conclusion: The tongue image-based machine learning model can effectively 
assist in distinguishing euthyroid from hypothyroidism in HT, offering a non-
invasive, low-cost, and intelligent tool for auxiliary diagnosis and disease risk 
monitoring in primary care settings.

KEYWORDS

tongue image, machine learning, Hashimoto’s thyroiditis, hypothyroidism, AI-assisted 
diagnosis

1 Introduction

Primary hypothyroidism affects more than 40 million patients in 
China, of which 80% are cautilized by Hashimoto’s thyroiditis (HT) 
(1). Therefore, HT and its associated hypothyroid states usually 
present with an insidious onset of disease and nonspecific symptoms, 
leading to substantial underdiagnosis that adversely affects patient 
quality of life and long-term health outcomes (2). Currently, the 
diagnosis of HT relies on thyroglobulin (TgAb) and thyroid 
peroxidase antibody (TPOAb) detection, yet approximately 20% of 
HT patients are antibody-negative, resulting in a significant 
underdiagnosis risk (3). Although fine-needle aspiration biopsy 
(FNAB) of the thyroid gland may be utilized as a basis for confirming 
the diagnosis, which is mainly characterized by lymphocytic 
infiltration of thyroid tissue and cytoplasmic eosinophilic changes in 
follicular epithelial cells, its invasive nature limits clinical adoption (4). 
Ultrasonography serves as a noninvasive adjunct but has limited 
accuracy in differentiating euthyroid from hypothyroid states (5).

Tongue diagnosis represents a pivotal non-invasive diagnostic 
technique in both traditional Chinese medicine (TCM) and Western 
medical practice. Rooted in TCM theory that “all illnesses within the 
body must be manifested outside,” tongue alterations reflect systemic 
physiological and pathological states with significant specificity and 
quantifiability. Variations in the tongue’s color, morphology, coating, 
and texture sensitively indicate disease etiology, nature, and 
progression stage. In recent years, tongue features have been gradually 
digitized as extractable image features and applied to the diagnosis 
and monitoring of various diseases (6–8). Tongue image analysis has 
been demonstrated to assist in assessing the risk of malignancy in 
thyroid nodules (9), and its morphological markers have demonstrated 
an important role in screening for various chronic diseases such as 
diabetes mellitus, non-alcoholic fatty liver disease, and COVID-19 
(10–12) Therefore, identifying characteristic tongue features in HT 
and associated hypothyroidism, and constructing a tongue 
classification model by machine learning, possesses important clinical 
research and translational application value.

In Recent years, we have witnessed numerous machine learning 
applications for precise clinical image analysis, enabling the 
construction of imaging-based screening, diagnostic, and risk 
prediction models (13, 14). At present, the application of machine 
learning in TCM tongue diagnosis mainly focuses on standardizing 
tongue image processing, building image databases, and developing 
prediction models, which helps to reduce the bias brought by 
subjective judgment in the traditional manual tongue diagnosis, and 
improve the objectivity and consistency of diagnosis (15, 16). 
However, Limited research exists on machine learning-assisted tongue 
diagnosis for Hashimoto’s thyroiditis (HT) and concomitant 
hypothyroidism. Based on this study aimed to develop an auxiliary 

diagnostic model integrating tongue image features and machine 
learning to effectively differentiate between euthyroid and hypothyroid 
states among patients already diagnosed with HT. This distinction is 
crucial for disease management, particularly in deciding whether to 
initiate or adjust levothyroxine therapy. Thus, this work provides a 
non-invasive, low-cost, and easily deployable intelligent auxiliary 
screening tool for primary healthcare settings.

2 Materials and methods

2.1 Patient enrollment and data 
classification

This retrospective study received ethics approval from Liaoning 
Provincial People’s Hospital (no. 2023H014) and Lixin County People’s 
Hospital, Anhui Province (no. LXXRMYY-2025KY015), with waiver 
of informed consent. We collected clinical data and tongue images 
from 120 HT patients at People’s Hospital of Liaoning Province 
(January 2023–March 2024) as the training set. The ratio of the 
training set to the test set was 8:2. Owing to the retrospective nature 
of this study, no formal a priori power calculation was conducted. 
However, a post hoc power analysis was conducted using a target effect 
size (AUC of 0.85, indicating high discrimination), a significance level 
(α) of 0.05, a statistical power of 0.8, and a 1:1 sample allocation ratio; 
this estimation indicated that a minimum of 30–50 samples per group 
would be  required. Consequently, our training cohort, which 
comprised 60 patients per group, exceeded this minimum sample size 
requirement. Furthermore, an independent external validation set was 
established, consisting of 40 patients recruited from Lixin County 
People’s Hospital in Anhui Province. Rigorous privacy-protection 
protocols were implemented for all patient data, including clinical 
records and tongue images, to ensure anonymity and prevent 
re-identification. All potentially identifiable information (e.g., hands, 
apparel) was cropped or obscured from the images, which were then 
irreversibly de-identified prior to subsequent processing and storage. 
All data were maintained on a secure, password-encrypted server with 
access restricted exclusively to authorized research staff. All tongue 
images underwent quality control, excluding blurred or incomplete 
specimens. Patients were stratified by thyroid function tests: euthyroid 
or hypothyroid groups. Electronic records provided additional 
covariates: demographics (sex, age) and levothyroxine treatment 
(duration, dosage). These parameters formed two labeled 
data categories.

Inclusion criteria: HT patients who met the diagnostic criteria of 
the 2008 Chinese Guidelines for the Diagnosis and Treatment of 
Thyroid Diseases - Thyroiditis (17). Stringent exclusion criteria were 
applied to control for confounding factors from medications and 
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comorbidities: pregnancy; thyroid surgery history, post I131 therapy 
for hyperthyroidism, Graves’ disease (TRAb-positive), and subacute 
thyroiditis; current/past thyroid-affecting medications (e.g., 
glucocorticosteroids, amiodarone, lithium, oral contraceptives, 
metformin, etc.); obesity [BMI (Body Mass Index) > 28 kg/m2]; 
combination of severe cardiac, brain, liver, kidney and hematopoietic 
system underlying diseases.

Four standardized tongue images (frontal, left lateral, right lateral, 
and basal views) were acquired per patient. All images were captured 
under controlled lighting and positioning using identical equipment/
parameters to ensure consistency. The cohort flow diagram appears in 
Figure 1.

2.2 Data pre-processing

All tongue images were in PNG format. Images were imported 
into the Beijing Yizhun AI Darwin Research Platform, and the region 
of interest (ROI) was manually delineated by an experienced TCM 
practitioner and independently reviewed by a senior practitioner 
(20 years of experience). The image standardization was ensured by 
size normalization and color correction; the tongue features were 
normalized by maximum absolute value normalization; and the 
minimum redundancy maximum relevance (mRMR) (18) method 
was employed for feature selection, an advanced filter-based feature 
selection technique that goes beyond conventional dimensionality 
reduction. This method aims to identify a subset of features from the 
initial 1,125-dimensional space that maximizes relevance to HT status 
while minimizing inter-feature redundancy. By balancing 
discriminative power and redundancy, the mRMR algorithm 
effectively reduces the risk of overfitting inherent in high-dimensional 

datasets, thereby improving model performance and generalizability. 
The preprocessed tongue image dataset is formed from the above steps.

2.3 Model construction and evaluation

Based on the characteristics of the data, machine learning 
algorithms were employed to develop a radiomics model. Specifically, 
for model selection, we  chose four models: Random Forest (RF), 
Logistic Regression (LR), Support Vector Machine (SVM), and 
Decision Tree (DT). These models were selected because they are 
commonly used as baseline models in current research and possess 
representativeness. RF integrates multiple independently trained 
decision trees, outputting predictions through majority voting to 
confer strong overfitting resistance and nonlinear modeling capacity. 
LR applies logistic functions to model relationships between 
dependent and independent variables, outputting event probabilities 
for binary classification. SVM constructs optimal hyperplanes to 
maximize inter-category margins to achieve the optimal division of 
data points, which is especially suitable for classification tasks with 
small samples and high-dimensional problems (19). DT constructs a 
classification structure based on a recursive splitting strategy, which 
can be demonstrated as a probabilistic tree based on the statistical 
significance separation results, and the optimal feature nodes can 
be selected by criteria such as information gain or Gini index, which 
possesses notable interpretability (20). The area under the curve 
(AUC) is utilized to measure the overall discriminative ability of the 
model. Meanwhile, other evaluation metrics were derived from 
confusion matrices, including sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV). The 
research framework diagram is detailed in Figure 2.

FIGURE 1

The cohort flow diagram.
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2.4 Statistical analysis

The statistical analysis was performed using SPSS software 
(version 26.0). Before analysis, all data were assessed for normality and 
homogeneity of variance. Normally distributed quantitative data are 
presented as the mean ± standard deviation (x ± s), while 
non-normally distributed data are expressed as the median. For 
quantitative variables, the t-test or Mann–Whitney U test was applied, 
depending on the distribution. For categorical data, the Pearson χ2 test 
or Fisher’s exact test was used. Quantitative results are reported as the 
mean ± standard deviation (SD), and a p < 0.05 was considered 
statistically significant for all tests.

3 Results

3.1 General clinical data

This retrospective multicenter study included 160 patients’ clinical 
data and 555 tongue images from People’s Hospital of Liaoning 
Province (training set) and Lixin County People’s Hospital, Anhui 
Province (external validation set). As a retrospective cross-sectional 
study, no strict matching for age, sex, or disease duration was 
performed. However, the baseline characteristics presented in Table 1 
indicate that although there was a predominance of female patients in 
the HT cohort, nevertheless, no statistically significant differences 

FIGURE 2

The study framework diagram.

TABLE 1  Baseline characteristics of HT patients: euthyroid vs. hypothyroid.

Parameter Internal training and verification set p-value External verification set P-value

Normal 
(n = 60)

Hypothyroid 
(n = 60)

Normal 
(n = 20)

Hypothyroid 
(n = 20)

Age 55.0 (19.0–74.0) 56.0 (24.0–79.0) 0.086 47.5 (21.0–74.0) 47.5 (25.0–70.0) 0.787

Gender, n (%), 

(male/female)

5 (8%)/55 (92%) 4 (7%)/56 (93%) 0.729
0 (0%)/20 (100%) 1 (5%)/19 (95%) 0.311

FT3 (nmol/L) 3.2 (1.3–8.8) 3.0 (0.0–5.1) <0.01 ** 3.3 (2.7–5.6) 2.9 (1.7–3.8) <0.01 **

FT4 (nmol/L) 1.2 (0.8–1000.0) 1.1 (0.1–9.2) <0.01 ** 1.2 (1.0–16.4) 1.1 (0.4–1.6) <0.05*

TSH (mIU/L) 2.3 (0.0–5.5) 6.5 (0.0–137.3) <0.01 ** 1.6 (0.8–7.0) 5.2 (0.2–90.1) <0.01 **

aTG (IU/mL) 17.8 (0.2–1000.0) 34.1 (0.2–1000.0) 0.461 2.2 (1.3–1000.0) 5.6 (0.2–458.4) 0.139

aTPO (IU/mL) 936.1 (0.7–1300.0) 1010.7 (28.0–2000.0) 0.864 93.5 (4.0–1300.0) 1300.0 (28.0–1300.0) <0.05*

Qualitative variables are expressed in n (%), and continuous variables are expressed as median (range).The symbols * and ** are markers used to denote the significance level of p-values in 
statistical tests, with * indicating p < 0.05 and ** indicating p < 0.01. FT3 (free triiodothyronine); FT4 (free thyroxine); TSH (thyroid-stimulating hormone); aTPO (antithyroid peroxidase 
antibody); aTG (antithyroglobulin antibody).
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were observed in age or sex distribution between the euthyroid and 
hypothyroid groups within either the internal training set or the 
external validation set. Consistent with hypothyroidism 
pathophysiology, significant reductions in FT3 (Free Triiodothyronine) 
and FT4 (Free Thyroxine) with elevated TSH (Thyroid-Stimulating 
Hormone) were observed across both cohorts (p < 0.05), indicating 
that the study subjects are well comparable on other clinical 
backgrounds, offering a basis for subsequent modeling of 
image features.

3.2 Tongue feature recognition and 
visualization

Four machine learning methods, including random forest (RF), 
logistic regression (LR), support vector machine (SVM), and decision 
tree (DT), were utilized to process 1,125-dimensional clinical features 
from 475 samples and construct the model. The minimum 
Redundancy Maximum Relevance (mRMR) method was employed 
for feature selection. This process identified a subset of tongue image 
features encompassing texture, margin, chromaticity, and morphology, 
which were categorized as follows: First-order statistics capture the 
distribution of pixel intensities, indicating the global intensity 
characteristics of the tongue body. The Gray Level Co-occurrence 
Matrix (GLCM) characterizes the spatial relationships between pixel 
pairs, reflecting the roughness and textural homogeneity of the tongue 
coating. The Gray Level Size Zone Matrix (GLSZM) quantifies the size 
distribution of homogeneous regions, revealing the aggregation and 

dispersion patterns of the tongue coating. The Gray Level Dependence 
Matrix (GLDM) captures the local dependencies among pixels, 
corresponding to textural fineness. Two-dimensional shape 
descriptors define the geometric properties and contour of the tongue 
body (Shape 2D). These feature types collectively provide a 
comprehensive quantitative representation of tongue images, 
facilitating their processing by machine learning algorithms; notably, 
their importance differed significantly during modeling (Figure 3). 
First-order statistical features (e.g., Minimum, Range, Maximum, 
Entropy) appeared frequently, suggesting that the distribution of dark 
areas in tongue images holds significant diagnostic value for 
HT. Texture features (GLCM, GLDM, GLRLM) also contributed 
substantially, indicating that structural information—such as texture, 
homogeneity, and run-length of the tongue coating—possesses 
discriminatory power. The application of diverse preprocessing 
methods demonstrated that different transformations could extract 
useful information from various aspects of the images.

In addition to mRMR feature selection, the t-SNE algorithm 
was employed; however, it was used solely for visualization 
purposes to project the high-dimensional feature space onto a 
two-dimensional plane for intuitive visualization of data 
distribution and was not utilized for model training (Figure 4). 
Discernible separation trend was observed between euthyroid 
(red) and hypothyroid (blue) groups, confirming the significant 
discriminative capacity of tongue features and validating the 
classification model’s feasibility.

Figure 5 presents a feature heatmap with samples on the horizontal 
axis, feature types on the vertical axis, and left-side color bars 

FIGURE 3

Bar plot of feature importance [the X-axis indicates the feature importance score (approximately 0–500); a higher score denotes a greater contribution 
of the feature to predicting HT. The Y-axis lists selected key features used in the model, ranked in descending order of importance. Each feature is 
represented by a horizontal bar reflecting its importance score].
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indicating feature categories. Samples are stratified by thyroid status 
(green and dark green bars above). Notably, directional features 
(GLCM, GLSZM, Shape2D) exhibit significantly distinct high-
expression patterns.

3.3 Model diagnostic performance 
evaluation

Model performance in distinguishing euthyroid versus 
hypothyroid HT states was evaluated using AUC, sensitivity, 
specificity, PPV, NPV, and accuracy. Table 2 summarizes diagnostic 
performance across test and external validation sets. Test set analysis 
revealed that DT achieved the highest sensitivity (0.826), followed 
by SVM (0.804), with RF and LR showing lower sensitivity (0.761), 
and the upper limit of the 95% CI of DT amounted to 0.909, which 

indicated that it was best at identifying true-positive cases. 
Specificity, which indicates the ability of the model to exclude false 
positive cases, was significantly better for RF (1.0) and LR (0.979) 
than SVM (0.936) and DT (0.83). The PPV of DT (0.826) and LR 
(0.972) are consistent with their sensitivity, which indicates that the 
predictions are well balanced. External validation confirmed 
sustained efficacy, with SVM and LR maintaining high sensitivity, 
accuracy, and AUC. LR exhibited particularly stable 
specificity retention.

ROC curves were generated to comparatively assess model 
classification performance (Figure 6). Test set analysis (Figure 5A) 
revealed SVM achieved optimal overall discrimination (AUC = 0.894), 
with its curve closest to the upper-left corner, significantly 
outperforming other models. LR demonstrated secondary 
performance (AUC = 0.876). RF curve (AUC = 0.857) was in the 
middle, but had extremely high specificity (1.0), sacrificing some 

FIGURE 4

t-SNE visualization of tongue feature distributions in HT patients (lable red is euthyroid group, lable blue is hypothyroid group).
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sensitivity. DT showed the lowest AUC (0.828), with its curve nearest 
the diagonal, yet achieved peak sensitivity (0.826). External validation 
curves (Figure 5B) exhibited rightward/downward shifts toward the 
diagonal relative to test set performance. This indicates that the 
models face some challenges but still ensure notable recognition of 
HT and hypothyroidism on never-seen external data, and the overall 
trend remains consistent with the test set, with some 
generalization ability.

Calibration curves were generated to evaluate prediction reliability 
and generalizability for distinguishing euthyroid versus hypothyroid 
HT subgroups (Figure 7). Figures 7A–D correspond, respectively, to 
the RF, LR, SVM, and DT models. Orange curves represent test set 
performance. RF exhibited significant underprediction at probabilities 
>0.6 and minor over prediction in low-risk zones (<0.3). LR 
demonstrated optimal alignment, nearly overlapping the diagonal 
between 0.4 and 0.7, with minor deviations only at extremes (<0.2 or 
>0.8). SVM showed systematic underprediction across all probability 
ranges with a stable offset. DT demonstrates a stepwise deviation.

4 Discussion

Hashimoto’s thyroiditis (HT) has become the most common 
autoimmune disease and one of the leading causes of hypothyroidism 
in developed countries (21). Although histopathology remains the 
diagnostic gold standard, fine-needle aspiration biopsy (FNAB) 
demonstrates limited screening utility due to its invasive nature, 
operator dependence, and poor patient acceptance, particularly for 
benign conditions or population screening. Current diagnosis 
integrates clinical manifestations, serological testing, and ultrasound 
structural changes (22), yet serological methods remain cost-
prohibitive for routine screening, while ultrasound exhibits limited 
diagnostic accuracy. Consequently, an urgent need exists for 
non-invasive, cost-effective screening tools with robust diagnostic 
performance to facilitate early HT/hypothyroidism detection and 
longitudinal monitoring.

In recent years, artificial intelligence (AI) has made breakthroughs 
in medical image analysis and intelligent-assisted diagnosis, bringing 

FIGURE 5

Heatmap of tongue image features.
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technological innovation to traditional tongue diagnosis. As a 
non-invasive, repeatable modality reflecting systemic physiological 
status, TCM tongue diagnosis offers unique advantages. The 
introduction of machine learning has shifted tongue diagnosis toward 
standardization and objectivity, while retaining the traditional 
advantages as a non-invasive, low-cost, and convenient tool. 
Algorithmic processing, such as image segmentation, color calibration, 
and texture extraction, substantially reduces acquisition biases from 
equipment, illumination, and operator variability (23, 24). Machine 
learning is broadly divided into two paradigms: deep learning and 
traditional machine learning. Compared to deep learning, traditional 
machine learning models, which rely on feature engineering, offer 
superior interpretability. This characteristic is crucial for integrating 
tongue image-based AI with traditional Chinese medicine theory, as 
it enables clinicians to understand the decision logic of the model, 
thereby facilitating clinical acceptance of AI-assisted diagnostics. 
Furthermore, traditional machine learning models incur lower 
computational costs for both training and inference, making them 
more suitable for deployment within the hardware constraints 
typically found in primary healthcare settings. Given these advantages. 
In recent years, the research on tongue images based on machine 
learning algorithms has increased. Jiang et al. (25) developed SVM, 
RF, and GBDT (boosted decision tree) models for tongue image 
quality control. Zhang et al. (26) established an SVM-based diabetes 
diagnosis model using standardized tongue images. What is more, Li 
et al. (27) confirmed tongue features significantly enhance diabetes 
risk prediction accuracy in ML models. Previous studies on machine 
learning in tongue diagnosis have mainly focused on diagnostic 
consistency and reducing human subjective bias, while the research 
on tongue recognition for autoimmune diseases, such as HT, is still in 
its infancy. This study applies traditional machine learning to explore 
the value of tongue images in HT diagnosis. Enabling scalable, 
standardized image databases for AI-driven disease identification and 
staging models.

We analyzed standardized tongue images from patients with HT 
and its accompanying hypothyroidism, extracting high-dimensional 
features via machine learning to quantify disease-state recognition 
value. Notably, stringent adherence to inclusion and exclusion criteria 
during the image acquisition phase was essential to establish a 
comparable foundation for tongue image feature modeling and to 
minimize confounders such as medication use and comorbidities that 
may affect tongue appearance. Moreover, subtle factors including 
dietary habits and oral hygiene may influence microbial flora or 
induce coating discoloration, thereby altering tongue image 
presentation. Previous studies have suggested that marker bacteria 
associated with different tongue coating types can vary across diseases 
(28). Although efforts were made to control for known confounders, 
factors such as dietary habits and oral hygiene, which were not fully 
controlled, may still exert subtle influences on tongue images. 
Therefore, future studies could further optimize the model by 
collecting more comprehensive clinical data, including detailed 
medical interviews and lifestyle habit surveys. Following 
preprocessing, tongue images acquired under the current inclusion/
exclusion criteria retained discriminative features across texture, 
margin, chromaticity, and morphology. Analysis of top-ranking 
features indicated that “contrast” (from GLCM), as well as “area” and 
“perimeter” (from Shape2D descriptors), contributed substantially to 
classification performance. The results demonstrate that the GLCM T
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FIGURE 6

Receiver operating characteristic (ROC) curves of models (A) depicts the ROC of the test set, and (B) depicts the ROC of the external validation set.

FIGURE 7

Calibration curves for each model (A–D) correspond, respectively, to the random forest (RF), logistic regression (LR), support vector machine (SVM), 
and decision tree (DT) models.
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value of hypothyroidism patients is significantly higher, indicating an 
increase in the complexity of tongue texture, which may be related to 
the thickening and uneven distribution of the tongue; prominent 
Shape2D features suggested hypothyroidism patients’ tongue 
hypertrophy and marginal irregularity; the change of the First Order 
is significant, which corresponds to the change of the tongue color 
shades, indicating that the tongue color of the hypothyroidism 
patients is pale or cyanosis; while glszm (gray-scale region size matrix) 
and gldm (gray-scale dependency matrix) is relatively weak, indicating 
that their contribution to the classification is limited. These alterations 
align with hypothyroid pathophysiology (e.g., slowed basal 
metabolism, water and fluid retention, and slowed circulation), which 
are prominent in the thermograms, validating the ability of the AI 
model to perceive the pathological features of the tongue.

t-SNE dimensionality reduction confirmed that the tongue 
features could effectively differentiate between normal and 
hypothyroid individuals in high-dimensional space. The euthyroid 
and hypothyroid groups demonstrated a discernible separation trend 
in the two-dimensional projection, indicating the model’s strong 
discriminatory capability. However, some boundary blurring and 
overlapping clusters were observed. These overlapping samples likely 
correspond to patients in the subclinical or early stages of the disease, 
where tongue manifestations are not yet typical. In such cases, single-
modality tongue image features may be insufficient to form distinct 
clusters, representing a limitation in model identification. Potential 
solutions for future research directions include: firstly, developing a 
multimodal fusion model by integrating tongue image data with 
serological indicators (e.g., antibody levels, TSH) and ultrasonographic 
features. This approach could leverage the complementary information 
from different data modalities, thereby improving the accuracy of 
identifying early-stage or subclinical disease. Secondly, conducting 
prospective cohort studies to periodically collect tongue images from 
euthyroid HT patients and monitor their thyroid function changes 
could explore whether alterations in tongue appearance serve as early 
warning indicators for predicting progression to hypothyroidism.

Comprehensive analysis of the above visualization results 
demonstrates that tongue image features such as texture uniformity 
and roughness of tongue moss, size and edge contour of the tongue 
body, and color depth of the tongue body are important discriminative 
indicators for distinguishing euthyroid and hypothyroid. Therefore, 
this is highly consistent with TCM diagnostic principles of “observing 
the color, examining the shape, and identifying the moss.” Which 
further validates the feasibility and effectiveness of quantitative tongue 
features in AI-driven diagnostic modeling.

In terms of model construction, all four ML models demonstrated 
great discriminative capacity for HT and hypothyroidism classification 
(AUC > 0.82), and models were stable in differentiating ability (CI 
lower bounds >0.75). What is more, SVM achieved optimal AUC 
(0.894), significantly outperforming RF (0.857), LR (0.876), and DT 
(0.828), indicating superior classification stability. DT showed peak 
sensitivity (0.826; 95% CI upper: 0.909), making it ideal for identifying 
true-positive cases and suitable for primary screening scenarios, while 
SVM followed (0.804), with RF/LR lowest (0.761). Specificity indicates 
the model’s ability to exclude false positive cases, with RF (1.0) and LR 
(0.979), significantly exceeding SVM (0.936) and DT (0.830). CI lower 
bounds of RF (0.924) is still higher than other models with the 
strongest reliability. RF and LR achieved highest PPV (1.0 and 0.972, 
respectively), ensuring maximal reliability for positive predictions. The 

PPV and sensitivity of DT (0.826) and LR (0.972) are consistent with 
each other, indicating that the predictions are well balanced. In 
summary, SVM emerged as the optimal balanced model (AUC = 0.894, 
sensitivity = 0.804, specificity = 0.936), which best reconciled recall 
and precision requirements. The 95% CI of all metrics did not overlap 
(e.g., 0.798–0.953 for LR and 0.819–0.969 for SVM), indicating that 
the differences between models were statistically significant.

In clinical practice, a reliable auxiliary diagnostic model requires 
both excellent classification accuracy and trustworthy predicted 
probabilities. The former is measured by the Area Under the Curve 
(AUC), while the latter can be  assessed through calibration. 
According to the calibration curve (Figure 7), the good calibration of 
the Logistic Regression (LR) model indicates that its predicted risk 
probabilities (e.g., 50, 70%) closely align with the actual observed 
disease prevalence. This is crucial for clinical decision-making, as it 
enables physicians to perform more accurate risk stratification and 
patient communication based on the model’s specific probability 
outputs—for instance, determining the necessity for further 
serological or ultrasonographic examination. In contrast, although 
the Support Vector Machine (SVM) model achieved the highest AUC 
(0.894), its systematic miscalibration could lead to an underestimation 
of patient risk by clinicians.

The external validation set is an important criterion for 
assessing the generalization ability of the models. Although this 
study was conducted within a Chinese population, data were 
specifically collected from two medical centers in different 
provinces (Liaoning and Anhui), and an independent external 
validation set was employed to assess the model’s generalizability. 
All models retained significant HT/hypothyroidism recognition 
capacity in external validation, mirroring test set performance 
trends. SVM maintained superior performance (AUC = 0.879) 
with peak sensitivity (0.933) and NPV (0.917), demonstrating 
robust diagnostic capability and strong clinical translation 
potential. LR achieved balanced performance (AUC = 0.858, 
sensitivity = 0.800, specificity = 0.813, accuracy = 0.806), showing 
stable clinical utility through optimal sensitivity-specificity 
equilibrium. RF preserved perfect specificity and PPV but 
exhibited significant sensitivity degradation (0.533) and reduced 
accuracy (0.774), indicating overfitting susceptibility, which 
reflected a certain risk of overfitting. Risk. DT demonstrated 
limited generalizability needs to be  improved (AUC = 0.644, 
accuracy = 0.645).

There are still some limitations in this study. Firstly, while our 
single-center modeling and multi-center external validation 
preliminarily established the diagnostic utility of tongue imaging for 
HT/hypothyroidism, broader validation across diverse populations and 
regions is required to enhance generalizability and clinical 
implementation. The next step is to conduct a more mature external 
validation in multi-center, multi-region to further train the 
generalizability of the model and optimize the benefits of the model in 
the actual clinical workflow. To enhance the validity of our findings, 
future investigations will incorporate a prospective design, multi-center 
collaboration, and a formal a priori power calculation to ensure 
adequate statistical power, thereby improving the robustness and 
generalizability of the conclusions. Furthermore, although this study 
focused on classifying patients with HT by developing a binary classifier 
for thyroid functional status, future work incorporating healthy controls 
or non-HT hypothyroid patients (e.g., those with hypothyroidism due 
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to iodine deficiency or post-thyroidectomy) to construct a multi-class 
model would further broaden its clinical applicability.

5 Conclusion

Early detection of HT and associated hypothyroidism is critically 
significant in improving patient prognosis and implementing 
individualized management. We  developed and validated four AI 
diagnostic models using multidimensional tongue imaging features. 
The results demonstrate that Tongue features demonstrated significant 
discriminative capacity for euthyroid and hypothyroid, and machine-
learning-assisted tongue image possesses feasibility and validity in 
screening HT and its concomitant hypothyroidism, which still 
maintains a notable performance in an independent external 
validation. These findings establish tongue imaging as a novel 
noninvasive biomarker for HT diagnosis and risk stratification. In the 
future, joint modeling with multimodal medical data is expected to 
improve the diagnostic accuracy and provide a new path for intelligent 
screening and individualized management of thyroid diseases.
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