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Objective: Post-hepatectomy liver failure (PHLF) is a severe complication
for hepatocellular carcinoma (HCC) patients post-surgery. This study explores
PHLF risk factors and creates a nomogram for prediction using pre- and
intraoperative factors.

Methods:  We retrospectively analyzed 654 patients who underwent
hepatectomy. Eligible patients were randomly divided into training and internal
validation cohorts in a 7:3 ratio. Key variables for nomogram construction
were determined through integrated Least Absolute Shrinkage and Selection
Operator (LASSO) and multivariate logistic regression analyses. The nomogram’s
performance was evaluated using receiver operating characteristic (ROC)
curves, calibration curves, and decision curve analysis.

Results: Among 228 eligible patients included in the study, 55 developed
PHLF. Seven independent predictors were identified and incorporated into the
nomogram: liver cirrhosis, total bilirubin (TBIL), prothrombin time (PT), Albumin-
Bilirubin (ALBI), fibrosis-4 index (FIB4), ascites, and intraoperative blood loss.
The nomogram demonstrated excellent predictive performance, with area under
the curve (AUC) of 0.880 in the training cohort and 0.879 in the validation
cohort. Calibration curve and decision curve analysis show that nomogram has
significant clinical application value in predicting PHLF probability.

Conclusion: We have developed and validated a novel PHLF risk prediction
model that integrates pre-operative and intraoperative parameters, along with
various liver function scoring systems, enabling more comprehensive and
accurate prediction of PHLF risk in HCC patients.

KEYWORDS

hepatocellular carcinoma (HCC), post-hepatectomy liver failure (PHLF), nomogram,
pre-operative, perioperative

Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the
liver, with a rising global incidence posing a significant public health challenge (1).
Notably, the prevalence of HCC exhibits marked geographic disparities, with high-
incidence regions such as Asia, Africa, and South America. These variations are closely
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associated with the high prevalence of hepatitis B virus (HBV)
infection in these regions (2, 3). Hepatectomy has long been
recognized as a first-line treatment for HCC, offering substantial
improvements in patient survival. Advances in surgical safety
and post-operative outcomes have further enabled HCC patients
to better combat this disease (4, 5). Particularly, the widespread
adoption of laparoscopic techniques and the continuous refinement
of surgical methods have solidified the role of curative hepatectomy
in HCC management (6, 7). However, many HCC patients
undergoing surgery often have pre-existing chronic conditions
and compromised overall health, which pre-dispose them to post-
operative complications such as bleeding, infection, bile leakage,
wound infection, and post-hepatectomy liver failure (PHLF).
PHLF is characterized as a clinical syndrome involving acute
liver dysfunction after hepatectomy, manifested by jaundice,
coagulopathy, and ascites (8). Its incidence varies significantly
due to patient-specific factors, surgical expertise, and differences
in perioperative management. The occurrence of PHLF severely
impacts surgical outcomes and patient quality of life. Therefore,
accurately identifying risk factors for PHLF is essential. Timely
and precise pre-operative and intraoperative assessment of liver
function and prediction of potential PHLF risks are crucial for its
prevention and reducing post-operative mortality.

Compared with other patients, HCC patients are particularly
prone to PHLE and this phenomenon is especially obvious in
HCC patients with underlying liver diseases, including hepatitis
B, hepatitis C, alcoholic cirrhosis, non-alcoholic fatty liver disease,
and autoimmune liver disease, etc. These patients have significantly
reduced liver function reserve due to long-term damage to the
liver parenchyma, insufficient remaining liver volume, or further
deterioration of liver tissue quality after hepatectomy, thus greatly
increasing the risk of PHLF (9, 10). It should be noted that
there are also a small proportion of HCC patients in clinical
practice whose liver parenchyma is normal, and the mechanism
and risk characteristics of PHLF in these patients may differ from
those of the former. Accurate assessment of pre-operative liver
function reserve is critical for predicting PHLF. Over the years,
several models, such as the Child-Pugh score, Model for End-Stage
Liver Disease (MELD), and Albumin-Bilirubin (ALBI) grade, have
been widely employed for pre-operative liver function evaluation.
Additionally, indices like the Aspartate Aminotransferase-to-
Platelet Ratio Index (APRI) and Fibrosis-4 (FIB-4) score have
demonstrated notable performance in assessing significant fibrosis
or cirrhosis (11-13). Although these models have been applied to
predict PHLF with some success, there remains significant room
for improvement in their predictive accuracy. To address this,
integrating existing predictive models with additional pre-operative
and intraoperative parameters for liver function assessment could
provide a more comprehensive approach to predicting PHLF in
HCC patients. Such models have significant clinical implications
and research value for enhancing prediction precision and guiding
perioperative management.

In this study, clinical and pathological data were retrospectively
collected from HCC patients undergoing hepatectomy at Gansu
Provincial People’s Hospital. The study aimed to identify predictive
factors associated with PHLF and develop a that incorporates pre-
operative and intraoperative clinical and pathological factors to
predict PHLF risk in HCC patients. This approach aims to optimize
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pre-operative treatment strategies, reduce the incidence of PHLF,
and enhance the safety and efficacy of HCC treatment.

Materials and methods

This study analyzed data from HCC patients who underwent
partial hepatectomy at Gansu Provincial Hospital between 2020
and 2023. Initially, 645 patients who underwent hepatectomy
for hepatocellular carcinoma were screened; after screening
according to the inclusion and exclusion criteria, 228 patients
who underwent HCC resection were finally included. Patients
were divided into PHLF and non-PHLF groups based on post-
operative liver failure occurrence. This study was approved by
the Medical Ethics Committee of Gansu Provincial Hospital
(ID: 2024-817). We confirm that all methods and procedures
were performed in accordance with relevant guidelines and
regulations. Inclusion criteria were: (1) pathologically confirmed
HCC patients; (2) first-time liver cancer resection surgery; (3) pre-
operative assessment showing adequate cardiopulmonary function
for surgery. Exclusion criteria were: (1) patients who have
previously undergone liver resection, HCC-related interventions
(such as ablation, embolization, etc.) or targeted drug therapy;
(2) insufficient pre-operative laboratory or pathological data; (3)
patients with other malignancies, severe cardiovascular disease,
renal insufficiency, or severe encephalopathy; and (4) patients
requiring vascular reconstruction during hepatectomy. PHLF
was diagnosed according to the International Study Group
of Liver Surgery definition and diagnostic criteria. PHLF was
defined as abnormal serum bilirubin levels and International
Normalized Ratio (INR) on or after post-operative day 5.
Elevated INR and hyperbilirubinemia were defined according to
local laboratory normal threshold ranges. Based on laboratory
definitions, post-operative total bilirubin >34.2 mmol/L was
defined as hyperbilirubinemia, and INR >1.30 was defined as
elevated INR.

Multiple clinical parameters were collected through the
hospital’s  clinical record system during hospitalization,
including: age, gender, pre-operative BMI, smoking history,
drinking history, diabetes history, hepatitis B infection history,
cirrhosis history, pre-operative laboratory tests (including
complete blood count, liver function, renal function, and alpha-
fetoprotein), total bilirubin (TBIL), prothrombin time (PT), ALBI
score, FIB4 score, tumor size, tumor number, intraoperative
blood loss, and post-operative liver failure occurrence. FIB-4,
aspartate aminotransferase-to-neutrophil ratio (ANRI), aspartate
aminotransferase-to-lymphocyte  ratio (ALRI), platelet-to-
lymphocyte ratio (PLR), ALBI, and FIB-4 scores were calculated
(14). Univariate and multivariate logistic regression analyses were
performed on these clinical pathological indicators to screen for

independent risk factors affecting PHLF occurrence.

Ethical approval
This study was approved by the Medical Ethics Committee

of Gansu Provincial Hospital (ID: 2024-817). Written consent
was obtained from the study participants, All participants were
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provided informed consent during the study. The confidentiality of
the participants was assured by anonymizing personal identifiers in
the data. All methods and procedures in the study were performed
in accordance with the Declaration of Helsinki.

Statistical methods

Data analysis was performed using SPSS 23.0 statistical
software, with univariate and multivariate analyses conducted
at @ = 0.05 level. Chi-square tests were used for comparison
between groups for categorical variables. To maintain balance
between training and internal validation sets, R 3.3.2 software was
used to randomly divide the multicenter data in a 7:3 ratio. In
the training cohort, predictive factors for PHLF formation were
first screened through univariate analysis, then optimal predictive
variables were selected through the Least Absolute Shrinkage
and Selection Operator (LASSO) regression model. Based on
the selected variables, risk factors were determined through
multivariate Logistic regression analysis to establish the prediction
model. To comprehensively evaluate the model’s performance and
clinical application value, we constructed a nomogram model
and generated receiver operating characteristic (ROC) curves,
calibration curves, decision curve analysis (DCA), and clinical
impact curves (CIC). Calibration curves play a crucial role in
evaluating the accuracy of disease risk prediction models, precisely
measuring the consistency between predicted risks and actual
outcome events. Good calibration indicates reliable prediction
results, while poor calibration suggests the model may overestimate
or underestimate disease risk. Decision curve analysis (DCA)
primarily evaluates the model’s ability to support clinical decision-
making, demonstrating predictive outcomes for interventions or
treatment strategies at different decision thresholds. The clinical
impact curve (CIC) visually presents the proportion of benefits and
losses at different probability thresholds. Through these analytical
methods, this study aims to comprehensively and thoroughly
evaluate the constructed model’s performance and clinical utility
in predicting PHLE, providing robust decision support for clinical
practice. The specific research flow is detailed in Figure 1.

Results

Clinical characteristics of patients

The study included 228 patients randomly divided into
training and internal validation sets in a 7:3 ratio (Figure 1).
Among them, 55 patients developed post-operative liver failure,
with 40 cases in the training set and 15 in the validation set
(Supplementary Table S1). Statistical analysis showed no significant
differences in factors between the training and validation sets
(P > 0.05). The patients’ baseline characteristics are shown in
Supplementary Table S2.

Identification of predictive factors

Given the numerous variables involved, in the training
set, we first used the LASSO regression algorithm to further
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screen 21 statistically significant predictive factors identified
through univariate analysis from Supplementary Table S1. Seven
candidate predictive factors were identified: liver cirrhosis, total
bilirubin (TBIL), prothrombin time (PT), albumin-bilirubin grade
(ALBI), fibrosis-4 index (FIB4), ascites, and intraoperative blood
loss, as detailed in Figures 2A, B. Subsequently, for these seven
characteristic predictive factors, we performed logistic multivariate

« >

regression analysis using the “rms” package in R program,
employing multivariate stepwise logistic regression to identify
independent predictive factors and construct the prediction model.
The analysis revealed that liver cirrhosis, TBIL, PT, ALBI,
FIB4, ascites, and intraoperative blood loss were all independent
predictors of PHLF in HCC patients. Detailed results of the

multivariate analysis are shown in Table 1.

Prediction model construction

By integrating these core clinical features, we constructed a
PHLF prediction model based on the above seven independent
predictors and developed a nomogram. The nomogram clearly
reveals the relative weight of each factor in PHLF risk occurrence.
According to the nomogram, intraoperative blood loss (>2,000 ml)
is the strongest predictor, followed by ALBI (>-2.39), ascites, PT
(>14s), TBIL (>34.2 pmol/L), presence of liver cirrhosis, and FIB4
score (>2.67; Figure 3A).

Prediction model performance evaluation

For this sample, in the training set, the nomogram’s area
under the curve (AUC) for predicting PHLF was 0.880 (95%
confidence interval: 0.819-0.941), while in the validation set, the
AUC remained high at 0.879 (95% confidence interval: 0.788-
0.969), further demonstrating the model’s strong discriminative
ability (Figures 3B, C).

Calibration curves of the prediction model

Additionally, calibration curves showed no differences between
predicted and actual probabilities of post-operative liver failure
occurrence in both the training set (Hosmer-Lemeshow P = 0.658)
and validation set (Hosmer-Lemeshow P = 0.823; Figures 4A, B).
The results show that the prediction model’s calibration curve
fits well with the standard curve, indicating good calibration of
the predictive model and good consistency between predicted and
actual values, demonstrating excellent model performance.

Clinical application

Furthermore, decision curve analysis (DCA) results indicate
that the nomogram can bring significant net benefits to patients
with post-operative liver failure (Figures4C, D). The x-axis
represents the threshold probability, and the y-axis represents net
benefit. The black horizontal line indicates no PHLF occurrence
in all patients, with net benefit of 0; the gray diagonal line
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1. Patients who have received surgical or targeted drug
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3. Patients who underwent vascular reconstruction during
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FIGURE 1
Flowchart of the research process.
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Validation set (n=68)

Receiver operating Characteristics (ROC)
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Decision Curve Analysis (DCA)

Clinical impact curve (CIC)

Validation

v

indicates PHLF occurrence in all patients. The DCA of this study
cohort (red solid line) indicates that using this nomogram to
predict PHLF is more beneficial for patient prognosis compared
to assuming all or no patients develop PHLF. The clinical impact
curve (CIC) analysis, shown in Figures 4E, I, was designed to assess
the clinical applicability of the risk prediction graph. The CIC
intuitively demonstrates that the nomogram has superior overall
net benefit and impacts patient outcomes across a wide range of
practical threshold probabilities, showing significant clinical utility
in predicting PHLF probability in patients.

Discussion
Hepatocellular carcinoma (HCC), as one of the most

common malignant tumors globally, shows significant variations
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in incidence and mortality rates influenced by factors such
as gender, age, and etiology. Although treatment options for
HCC are diverse, including radiotherapy, targeted therapy,
and chemotherapy, radical hepatectomy remains the preferred
treatment option for HCC patients (15-17). It is worth noting that
in certain clinical scenarios, liver transplantation, as a treatment
method with the dual value of radical tumor treatment and
liver function replacement, demonstrates superior oncological
efficacy and has become a more favored option for some
patients. However, it is noteworthy that some patients often have
concurrent chronic liver diseases pre-operatively, with cirrhosis
being particularly common, which significantly increases the
risk of post-hepatectomy liver failure (PHLF). Therefore, PHLF
prevention holds paramount importance in clinical practice. The
ability to accurately predict PHLF and implement appropriate
interventions, especially immediately before or after surgery,
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(A) The optimal parameter (1) selection in the LASSO model employed fivefold cross-validation using a minimum criteria approach. The optimal
values of % are represented by dotted vertical lines. (B) LASSO coefficient profiles of seven clinical features. The plot was created using a logarithmic
scale for the lambda values. A vertical line was added to indicate the lambda value selected through fivefold cross-validation.
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is crucial for treatment decision-making and improving post-
operative prognosis in hepatectomy patients. Current research
shows that various clinical comprehensive scoring systems have
certain value in PHLF prediction but also have limitations,
with most restricted to pre-operative prediction. Thus, exploring
more comprehensive and accurate pre-operative assessment
methods to improve the prediction accuracy of PHLF risk and
implement timely interventional treatment has become a key
measure for improving patients’ post-operative survival (12, 18).
In this study, we constructed an innovative PHLF prediction
model that organically integrates pre-operative and intraoperative
indicators along with various liver function clinical scoring systems.
Specifically, the included pre-operative predictors comprise liver
cirrhosis, total bilirubin (TBIL), prothrombin time (PT), and
ascites; the intraoperative predictor is intraoperative blood loss;
and clinical scoring systems include albumin-bilirubin grade
(ALBI) and fibrosis-4 index (FIB4). We hope that through this
comprehensive prediction model, clinicians will have a more
effective tool to prevent and address PHLF occurrence.

Previous studies have indicated that cirrhosis is an extremely
significant factor affecting post-operative complications (19-21). In
cirrhotic conditions, a large number of hepatocytes are replaced by
fibrous tissue, leading to a sharp reduction in normal hepatocyte
count. Hepatectomy surgery causes further damage to the liver,
making it difficult for remaining hepatocytes to handle the body’s
metabolic and detoxification functions. Additionally, liver blood
flow conditions change. The surgical process may affect liver blood
perfusion, and cirrhotic patients’ hepatic vascular systems are
already disordered. Surgery further reduces liver blood and oxygen
supply, and their liver regeneration rate is slower compared to non-
cirrhotic patients. Hepatocytes suffer damage due to insufficient
nutrition and oxygen supply, undoubtedly increasing the risk
of post-hepatectomy liver failure (PHLF). In our study, both
cirrhosis and FIB4 score were confirmed as independent risk factors
for PHLE with patients having higher FIB4 scores being more
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susceptible to PHLE, further indicating that PHLF risk increases
with the progression of liver fibrosis and cirrhosis. Prothrombin
time (PT) and total bilirubin (TBIL) were also incorporated
into the prediction model; as key indicators for assessing liver
functional reserve, they play crucial roles in predicting mortality
risk from PHLF. These two indicators reflect liver function from
different dimensions—prothrombin time levels reflect the liver’s
ability to synthesize coagulation factors, while total bilirubin
levels reflect the liver’s glucuronidation function and ability to
secrete bilirubin into bile ducts. After hepatectomy, the liver
must undertake the remaining arduous tasks of metabolism and
synthesis. When both indicators reach abnormal levels by post-
operative day 5, it suggests severe liver dysfunction, indicating that
remaining hepatocytes cannot effectively compensate, predicting
poor prognosis. Numerous clinical studies have confirmed (12, 22,
23) that prothrombin time and total bilirubin have high accuracy
and reliability in predicting adverse outcomes in PHLF patients,
helping doctors identify high-risk PHLF patients promptly for
more aggressive treatment measures and enhanced monitoring.
The ALBI score is a simple model based on pre-operative
serum albumin and bilirubin levels for assessing liver functional
reserve. This scoring method is simple to operate and highly
accessible, requiring only two objective indicators—total bilirubin
and albumin—for calculation, and these two observational
indicators are independent and unaffected by subjective factors.
Multiple studies have shown (21, 24-26) that compared to
Child-Pugh and MELD scores, the ALBI score more accurately
reflects liver functional reserve status and has greater advantages
in predicting PHLF occurrence and prognosis in liver cancer
patients. Additionally, Yi-Bo Tian et al. (11) found that the
combined ALBI-FIB4 score showed excellent performance in
predicting PHLE severe PHLE and post-operative mortality
in liver cancer hepatectomy patients, superior to currently
used liver function and fibrosis scoring systems. Through
multivariate regression analysis, our study identified both ALBI
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TABLE 1 Multivariable analysis in the training cohort.

Variables B (O]
(95%Cl)

Intercept —4.388 0.012 <0.001
(0.003-0.050)

Liver cirrhosis

No

Yes 1.204 3.333 0.026
(1.155-9.620)

TBIL (wmol/L)

<342

>34.2 1.345 3.840 0.045
(1.028-14.342)

PT(s)

<14

>14 1.525 4.594 0.004
(1.641-12.863)

ALBI

<-2.39

>-2.39 2.288 9.857 0.035
(1.171-83.008)

FIB4

<2.67

>2.67 1.060 2.886 0.044
(1.030-8.083)

Ascites

No

Yes 1.714 5.550 0.003
(1.823-16.897)

Intraoperative 0.001 1.001 0.002

blood loss (ml) (1.001-1.002)

OR, odds ratio; CI, confidence interval; TBIL, total bilirubin; PT, prothrombin time; ALBI,
albumin bilirubin score; FIB-4, fibrosis index.

score and FIB-4 index as independent predictors of PHLEF.
This combination allows simultaneous observation of liver
function and fibrosis status, making it feasible to improve PHLF
prediction accuracy. Furthermore, ascites formation is closely
related to liver function, which is one reason for its inclusion in
the nomogram.

In liver disease research, accurate prediction of PHLF risk in
hepatocellular carcinoma (HCC) patients after surgery remains
a core clinical focus. Notably, our study found that massive
intraoperative blood loss significantly increases patients risk
of developing PHLF. When massive blood loss occurs during
surgery, effective circulating blood volume decreases immediately,
leading to insufficient liver perfusion. Normal liver function highly
depends on adequate blood supply to deliver oxygen and nutrients;
when perfusion is insufficient, hepatocytes become damaged due
to lack of oxygen and essential nutrients. Moreover, during
the process of restoring perfusion through blood transfusion
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and fluid replacement after intraoperative bleeding, ischemia-
reperfusion injury occurs, which can directly cause hepatocyte
damage or death. This mechanism plays a key role in the
pathophysiological process of post-operative liver failure (27).
Previous studies have clearly shown (20, 28) that intraoperative
blood loss >400 ml is a risk factor for PHLF development. Based
on in-depth analysis of intraoperative and pre-operative factors,
we constructed an innovative prediction model that not only
incorporates predictive indicators related to liver functional reserve
and liver fibrosis but also fully considers the key factor that
massive intraoperative blood loss increases patients’ post-operative
PHLF risk. A limitation of this study is the lack of complete
intraoperative blood transfusion records. Although estimated
intraoperative blood loss offers some reference, actual transfusion
status more objectively reflects circulatory state, bleeding severity,
and clinical interventions, thus representing a more valuable
clinical indicator.

Specifically, this model integrates multiple independent
predictors from both intraoperative and pre-operative phases,
including ALBI score, FIB-4 index, ascites, cirrhosis, prothrombin
time, total bilirubin, and intraoperative blood loss. When
compared to established models such as Child-Pugh and MELD,
our model exhibits distinct advantages. The Child-Pugh score,
while widely used for assessing liver function, primarily focuses
on post-operative liver reserve with parameters like bilirubin,
albumin, and ascites, lacking consideration of intraoperative
factors such as blood loss that are critical for post-hepatectomy
liver failure (PHLF) in HCC patients. MELD, on the other hand,
is more oriented toward predicting short-term mortality in
patients with end-stage liver disease and does not specifically
target the unique pathophysiological changes and surgical risks
associated with HCC resection. In contrast, our model offers
more comprehensive consideration dimensions by incorporating
both pre-operative liver function indicators (ALBI score, FIB-4
index, cirrhosis), and intraoperative variables (blood loss). This
integration allows for a more targeted assessment of PHLF risk
in the context of HCC resection, providing higher reliability and
comprehensiveness in prediction. In terms of model performance
evaluation, comparison of area under the curve (AUC) values
revealed that our model demonstrates excellent discriminative
ability in accurately distinguishing patients likely to develop
post-operative PHLF from others. Additionally, calibration curve
and decision curve analysis results strongly confirm that the
nomogram based on this model shows excellent performance in
predicting PHLF risk, demonstrating good predictive effects. This
fully indicates that this model can provide extremely valuable
reference information for clinical risk monitoring and physician
decision-making processes. To effectively integrate the nomogram
into clinical practice, the following measures can be taken:
develop user-friendly digital tools or mobile applications that can
automatically calculate the PHLF risk by inputting parameters
and visualize the risk stratification, reducing human errors and
saving time; formulate standard checklists consistent with key
predictive indicators such as ALBI classification, FIB4 index,
ascites, liver cirrhosis and intraoperative blood loss, ensuring
the consistency of data collection for pre-operative assessment
and intraoperative records, and promoting teamwork. This
model has significant practical value in clinical settings, helping
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FIGURE 3

(A) Nomogram with FBI4, TBIL, ALBI, Liver Cirrhosis, Ascites, Intraoperative blood loss, and PT procedures predicts the PHLF. (B) The area under the
AUC for the discrimination of the model in the training set, AUC (95% ClI): 0. 880 (0.819-0.941); (C) the area under the AUC for the discrimination of
the model in the validation set, AUC (95% Cl): 0.879 (0.788-0.969).

doctors efficiently identify HCC patients with high post-operative However, limited by data availability, both model development
PHLF risk, and providing strong support for personalized care  and validation were completed internally. While this approach
and management. allowed us to fully optimize the model in a relatively controlled
Frontiersin Medicine 07
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Calibration curves of the predicted probabilities of post-operative PHLF in the training cohort (A) and the validation cohort (B), all P > 0.05 in the
Hosmer—Lemeshow test suggested an agreement between the predicted probabilities and observed outcomes; Decision curve analysis (DCA) for
post-operative PHLF nomogram. The black line represents the assumption that no patients develop PHLF, while the gray line assumes that all
patients develop PHLF. The blue line corresponds to the risk prediction model. This analysis was conducted in both the training set (C) and the
validation set (D); Clinical impact curve (CIC). The red curve (number of high-risk individuals) indicates the number of people who are classified as
positive (high risk) by the model at each threshold probability; the blue curve (number of high-risk individuals with outcome) is the number of true
positives at each threshold probability. CIC visually indicated that nomogram conferred high clinical net benefit and it confirmed the clinical value of
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FIGURE 4
the nomogram in PHLF. This analysis was conducted in both the training set (E) and the validation set (F).
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(29), it also somewhat limits the models

generalizability to other institutions. As is well-known, external

environment

validation can provide more rigorous assessment of model
robustness, and biases present in external validation datasets
might potentially mask true model performance discovered
through internal validation. Furthermore, since this study
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was conducted only among patients from a single medical
institution, completely eliminating selection and information
biases associated with single sampling remains challenging.
Therefore, conducting multicenter and prospective cohort
studies becomes particularly necessary for more in-depth

exploration of this model’s performance and application range.
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Moving forward, we plan to address this limitation through
multi-center studies validating our findings in diverse cohorts
to confirm the nomogram’s reliability, enhance its clinical
applicability, and support decision-making in preventing
and managing post-hepatectomy liver failure across broader
clinical settings.

In conclusion, thoroughly understanding risk factors for
PHLF in HCC patients before and during surgery is of great
significance for reasonable treatment plan selection and post-
operative prognosis. In this study, we successfully developed and
validated a nomogram model for predicting post-operative liver
failure, which showed significant effectiveness in predicting PHLF
occurrence in HCC patients undergoing hepatectomy. With this
model, clinicians can efficiently identify HCC patients at higher
risk for post-operative PHLE, thereby providing strong support for
implementing personalized patient care and management, helping

to improve clinical treatment effects and patient prognosis quality.
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