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Background: Currently, there is no research on building osteosarcoma (OS)
prognostic models based on single-cell RNA sequencing (scRNA-seq) and
anoikis-related genes (ARGs).

Methods: Differential genes between osteoblasts cells and osteosarcoma cells
were identified using scRNA-seq, and ARGs were determined by Genecard
database. Lasso regression was employed to investigate hub genes and construct
the model based on TARGET. Kaplan-Meier survival analysis was applied to
compare the survival differences. ROC curves were used to evaluate the
predictive performance of the model. CIBERSORT and ESTIMATE algorithms
were conducted to calculate immune cell infiltration abundance. Finally,
gRT-PCR and immunohistochemistry experiments were conducted to validate
the results.

Results: A predictive model containing four modeling genes (MYC, BNIP3,
IGFBP5, and SPP1) was successfully constructed, with AUC values of 0.836, 0.837,
and 0.836 for 1-, 3-, and 5-year patient prognosis, respectively. Importantly,
the model also showed good predictive value in two validation set. The
infiltration of immune cells in different risk groups showed significant differences.
The modeling genes were associated with the expression of various immune
checkpoints and the response to immune therapy. gRT-PCR showed MYC,
BNIP3, IGFBP5, and SPP1 substantially exhibited a trend of high expression in
osteosarcoma cells. Immunohistochemistry suggested that in osteosarcoma
patients with poorer prognosis, the expression of these four hub genes was
significantly elevated.

Conclusions: We have developed an effective model for predicting
osteosarcoma prognosis and immune response, which may provide valuable
insights for osteosarcoma prognostic evaluation and immune therapy strategies.
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumor originating from mesenchymal
tissue and commonly affects children and adolescents, exhibiting a highly aggressive
nature. Despite improvements in therapeutic approaches for OS, the 5-year survival
rate remains at around 60% (1). In recent years, many researchers have focused on
constructing prognostic prediction models for OS based on clinical and pathological
features, biochemical tests, and molecular characteristics of tumor tissues (2). However,
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these models have certain limitations and are currently not
applicable for clinical practice. Therefore, there is still a need to
supplement and refine prognostic model.

Anoikis, a form of programmed cell death, refers to the process
where normal adherent cells will detach from the extracellular
matrix (ECM), fail to survive in a suspended state, and ultimately
undergo cell death due to the lack of anchorage support (3).
Under physiological conditions, anoikis will be activated after
losing attachment, which play a key role in maintaining normal
tissue structure. However, in certain pathological conditions, such
as cancer, anoikis can be inhibited by cells. In processes such
as tumor invasion and metastasis, tumor cells detach from the
primary site, invade and implant into secondary sites through the
lymphatic and circulatory systems, and then proliferate and grow,
making resistance to anoikis the initial step in tumor invasion and
metastasis (4). It has been found that most tumor cells possess
resistance to anoikis, releasing its crucial factor in promoting tumor
cell survival, invasion, and metastasis (5). Meanwhile, given the
increasing significance of immunotherapy as a major treatment
for cancer, the regulatory role of anoikis in immunity has drawn
attention in various types of tumors (6). However, the relationship
between anoikis and the immune microenvironment in OS, as well
as its impact on prognosis, remains relatively understudied.

In this study, we employed single-cell sequencing (scRNA-seq)
and bulk RNA sequencing (bulk RNA-seq) technologies to develop
a prognostic model for OS based on anoikis related genes (ARGs).
The model was validated using two external dataset. Additionally,
the prognostic value of the model genes was assessed through
PCR and immunohistochemistry experiments. On one hand, the
hub genes identified in this study not only promote the onset and
progression of OS but are also related to anoikis. This provides
targets for further investigation into the mechanisms of anoikis in
OS. On the other hand, the model demonstrates strong predictive
efficacy and robustness, laying a foundation for improving the
prognosis of OS patients.

Methods and materials

Flow chart

This study initially collected scRNA-seq data from OS and
normal bone tissues to identified osteoblasts. Differential analysis
of osteoblasts from both tissues revealed key genes potentially
involved in OS pathogenesis. These genes were then intersected
with ARGs, which are implicated in promoting OS through anoikis
mechanisms. Using both scRNA-seq and bulk sequencing data,
we constructed and validated a prognostic model. Finally, the
identified genes were validated through cell experiments and
immunohistochemistry. A flowchart of the process was shown in
Figure 1.

Data sources

The single-cell RNA sequencing data included four femoral
head tissue samples from the GSE169396 dataset in Gene
Expression Omnibus (GEO), six OS tissue samples from the

GSE162454, and seven OS tissue samples from GSE152048. In the
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preliminary experiments, tumor tissues collected during surgery
were cut into approximately 1 mm? fragments and converted into
cell suspensions for further use. The data were sequenced in paired-
end mode, measuring 150 bases on both Read 1 and Read 2 ends.
The upstream analysis of the data was performed using Cell Ranger
software (version 4.0.0) following the official 10x Genomics
workflow. The single-cell data were aligned to the human genome
reference library GRCh38. Barcode.tsv files, gene.tsv files, and
matrix.mtx files were obtained through paired read length, feature
barcoding, clustering, and other secondary analyses.

Additionally, bulk sequencing data was included to build
the predictive model. A total of 85 OS samples from the
TARGET database were used as the experimental dataset for model
construction, and the dataset GSE21257 (53 OS patients) and
GSE16091 (34 OS patients) downloaded from the GEO was used
for model performance validation.

Identification of ARGs

A search with the keyword “anoikis” was conducted in the
genecards database (https://genealacart.genecards.org/), and genes
with a relevance score >0 were included in this study.

Identification of OS cell markers

In the working environment formed by the “Seurat” and
“harmony” packages, scRNA-seq data were used to screen for
OS cell markers. Criteria were set as (nFeature_ RNA >300,
nFeature_RNA <4,500, percent.mt <15) to rigorously filter cells
and identify OS cells. The data of filtered cells were normalized
using the “NormalizeData” function and transformed into Seurat
objects. The top 2,000 highly variable genes were subjected to
dimensionality reduction using the “RunPCA” function, and the
top 20 principal components (PCs) were determined by JackStraw
analysis. The “RunHarmony” function from the “harmony” R
package was used to remove batch effects. Subsequently, cell
clustering analysis was performed using the “FindNeighbors” and
“FindClusters” functions in the “Seurat” R package, and the
clustering results were visualized using the “RunUMAP” function
to generate Uniform Manifold Approximation and Projection
(UMAP) plots. The “FindAllMarkers” function of the “Seurat”
R package identified differentially expressed genes (DEGs) for
each cluster based on the criteria of adjusted P < 0.05 and
[log2(FC)| >0.25. The DEGs of the OS cell cluster were extracted
as cell markers.

Establishment of the prognostic model and
risk scoring related to anoikis genes

The overlap between the OS markers and the ARGs,
which is also called OS ARGs formed the research object.
The transcriptional profiles of ARGs were obtained from the
transcriptional dataset of 85 OS samples from the TARGET
database. Additionally, LASSO regression analysis, as one of
the machine learning algorithms, was used to select genes with
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FIGURE 1

A flowchart of the process outlining the analysis pipeline for osteosarcoma scRNA-seq.

prognostic significance. Therefore, the expression profiles of ARGs
were combined with clinical information, and the “cv.glmnet”
function of the “glmnet” R package was used for 10-fold cross-
validation to obtain nonzero coefficients for prognostic genes.
These prognostic genes constituted a prognostic model named
OAPM. The formula for OAPM was defined as follows: risk score =
Yexpgenei * Bi, where “expgene” and “B” represent the expression
level and risk coefficient of the model genes, respectively.

Validation of the prognostic model OAPM

The prognostic model was validated in multiple datasets
to demonstrate its excellent predictive performance. The
experimental dataset from the TARGET cohort and the validation
dataset GSE21257 and GSE16091 were divided into two groups
based on the median risk score. The “survivalROC” R package was
used to obtain time-dependent ROC curves, and the area under
the curve (AUC) values reflected the predictive ability of OAPM
for 1-, 3-, and 5-year overall survival of the patients. Kaplan-Meier
survival analysis was conducted using the “survminer” R package
to investigate the survival differences between the high-risk and
low-risk groups. Additionally, independent prognostic analysis
was performed to test the potential of OAPM as an independent
prognostic factor. Clinical forest plots were constructed by
combining OAPM with other clinical phenotypes to provide
preliminary prognostic predictions for patients at 1, 3, and 5 years.

Tumor immune landscape evaluation and
prediction of immunotherapy response

First, the relative abundance of 22 immune cell types in
the experimental dataset was estimated using the CIBERSORT
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algorithm. Subsequently, the “ESTIMATE” R package was used
to calculate the immune score, stromal score, and ESTIMATE
score for OS patients. Additionally, the expression differences of 47
classic immune checkpoint genes were calculated in patients from
different risk groups. Finally, based on the expression of the four
modeling genes, the patients were divided into two groups, and the
transcriptional data of 298 patients with urothelial carcinoma from
the IMvigor210 cohort, who received immune therapy, were used to
infer differences in immune therapy response between the groups.

CNV analysis

For the copy number variation (CNV) analysis, the inferCNV
algorithm was employed to clarify the CNVs in osteoblasts. Using
the infercnv:run function of inferCNV (version 1.2.1), normal
osteoblasts were used as a reference for comparison to calculate
the changes in gene expression intensity across the chromosomes in
the OS cell genome. The parameters were set with denoise=TRUE,
analysis_mode="subcluster,” and a cutoff of 0.1.

Pseudotime analysis

For the pseudotime analysis in this study, the monocle2
package was utilized. Initially, the newCellDataSet function
was used to construct the analysis data for monocle, setting
the lowerDetectionLimit to 0.5. Principal component analysis
(PCA) was conducted using the plot_pc_variance_explained
function, followed by dimension reduction analysis with the
reduceDimension function and clustering analysis with the
clusterCells function. Subsequently, differential genes were selected
to define a cell’s progress, and reduceDimension was used to reduce
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TABLE 1 Primer sequence of the makers gene.

Gene Primer sequence

BNIP3-F CTTCAGCAATAATGGGAACGGG
BNIP3-R GGTATCTTGTGGTGTCTGCGAGC
SPP1-F CGAGGTGATAGTGTGGTTTATGG
SPP1-R GCACCATTCAACTCCTCGCTTTC
MYC-F GGAAAACCAGCCTCCCGC
MYC-R CACCGAGTCGTAGTCGAGGT
IGFBP5-F AAGAAGCTGACCCAGTCCAA
IGFBP5-R GAATCCTTTGCGGTCACAAT

data dimensionality employing the method “DDRTree.” Finally, the
orderCells function was used to order cells along the trajectory.

Cell culture and qRT-PCR experiments

The human osteoblast cell line hFOB1.19 was used as the
control cell line, while the OS cell lines 143B, SAOS2, HOS, and
U20S cells were used as the experimental cell lines. All cell lines
were purchased from Fuheng Cell Center (Shanghai Fuheng Cell
Center, China). The osteoblast cell line was cultured at 33.5 °C and
5% CO, concentration, while the OS cell lines were cultured at
37 °Cand 5% CO, concentration. When the cells grew to more than
90% confluency, the supernatant was removed by centrifugation,
and the cells were collected for RNA extraction. Total RNA was
extracted using the RNA fast 200 Kit (Feijie Biotechnology, China),
and cDNA synthesis was performed using the cDNA synthesis kit
(Takara, Japan). Subsequently, gene-specific primers were designed
and synthesized. The primer sequences are provided in Table 1.
The ¢cDNA and primers were mixed in a 10 pl reaction system,
with four replicates for each gene. PCR was performed with
10min at 95 °C, followed by 40 cycles of 10s at 95 °C and
1 min at 60 °C.

Immunohistochemical experiments

To investigate the influence of four model genes on prognosis
at the protein level, tumor tissues were collected from six patients
with favorable prognosis (survival exceeding 3 years) and six
patients with adverse prognosis (survival less than 2 years).
The tumor tissue in this immunohistochemical study has been
diagnosed as OS by pathologists. After fixation and embedding,
sections of 3-5um were prepared for immunohistochemical
analysis. Dewaxing, antigen retrieval, and hydration were
performed, followed by incubation with rabbit anti-BNIP
(1:1,000; Beyotime), rabbit anti-IGFBP5 (1:1,000; Beyotime),
rabbit anti-SPP1 (1:1,000, Proteintech), and rabbit anti-MYC
(1:1,000, Proteintech). After rinsing with PBS, goat anti-
mouse/rabbit IgG polymer labeled with enhanced enzyme
was added dropwise, and the tissue slices were incubated at 37 °C
for 20 min. The staining results were quantitatively analyzed
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using Image J software. The calculation formula for AOD is AOD
(%Area) = IOD/Area.

Results

Identification of OS differential genes
based on scRNA-seq data

The scRNA-seq data from 13 OS samples and four normal bone
tissue samples were integrated and quality-controlled (Figure 2A).
PCA was performed using the top 2,000 highly variable genes
(Figure 2B). After dimensionality reduction and clustering, a total
of 136,140 cells and eight cell subtypes were obtained (Figure 2C).
Cells from clusters 1, 4, and 14 predominantly originate from OS
tissues and highly express osteoblast markers genes (IBSP, COL1A1,
ALPL, and RUNX2). Therefore, 44,896 cells from three clusters
have been defined as OS cells (Figures 2D, E). The CNV results
indicated that osteoblasts derived from OS tissues exhibited more
pronounced copy number variations compared to osteoblasts from
normal bone tissues (Supplementary Figure S1). Thus, osteoblasts
from normal bone tissue were considered benign, while osteoblast
cells from OS tissue were considered malignant, representing OS
cells. Subsequently, we compared the gene expression between
benign osteoblast cells and OS cells, and a total of 2,277 differential
genes were identified (Figure 3A, right circle). These genes were
considered to be related to the occurrence, development, and
prognosis of OS.

Construction of the prognostic model

A total of 912 genes related to anoikis were identified
using genecards, and the intersection of these genes with
the differential genes in OS cells resulted in 130 key genes
(Figure 3A). LASSO analysis based on the TARGET database
identified four key genes with the greatest impact on prognosis
(Figure 3B, Supplementary Figure S2). The final modeling formula
was: riskscore = (0.471 * MYC) + (0.538 * BNIP3) + (0.320 * SPP1)
+ (—0.834 * IGFBP5). Kaplan-Meier curves showed that patients
in the high-risk group had significantly lower survival rates than
those in the low-risk group (Figure 3C). The ROC curves indicated
that the model had good predictive ability for patient prognosis
at 1, 3, and 5 years, with area under the curve (AUC) values of
0.836, 0.837, and 0.836, respectively (Figure 3D). Additionally, in
the validation cohort GSE16091, the high-risk group is associated
with a poorer prognosis (Figure 3E), with predictive efficiencies
for 1, 3, and 5 years of 0.986, 0.804, and 0.743 (Figure 3F),
respectively. Similarly, in the validation cohort GSE21257, the high-
risk group continues to indicate a poorer prognosis, with very high
predictive efficiency (Figures 3G, H). These results demonstrate
that our established model can accurately predict the prognosis of
OS patients, and the model possesses strong robustness.

The relationship between the modeling genes and clinical
characteristics of patients was displayed in a heatmap (Figure 4A),
showing no significant correlation between the expression of
key genes and clinical characteristics, but a clear correlation
with the risk score. Furthermore, C-index showed that compared
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to other clinical characteristics, our model exhibited better

predictive performance (Figure 4B). Univariate and multivariate

regression analyses indicated that the risk factor could serve as
an independent prognostic factor (Figures 4C, D). Subsequently,
we combined other clinical features to construct a prognostic
forest plot, which showed improved prognostic prediction
at 1, 3, and 5 years compared to the risk score alone

(Figures 4E, F).
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FIGURE 6
Relationship between the risk model and immune cell infiltration. (A, B) Histogram and boxplot of immune cell infiltration. (C) Correlation analysis
between immune cell and modeling genes. *p < 0.05, **p < 0.01, ***p < 0.001.

while OS cells derived from OS tissues were positioned
at the differentiated end, aligning with the expected trend
(Figures 5A, B). The four key genes identified in our
model —-MYC, BNIP3, SPPI, IGFBP5—demonstrated
a trend of low expression at the beginning and high

and

expression at the end of pseudotime, suggesting their
likely involvement in the carcinogenic transition from
normal osteoblasts to OS (Figures 5C-F). This provided

a theoretical foundation for our model. Additionally, we
identified
along the pseudotime; these genes may participate in the

another 50 genes whose expression changes

pathogenesis of OS and warrant further research attention
(Figure 5G).

Frontiersin Medicine

09

Relationship between the risk model and
immune cell infiltration

The CIBERSORT algorithm results showed that the low-risk
group had higher abundance of plasma cells, while the high-risk
group had higher abundance of macrophages MO, indicating that
these cells may be involved in the immune regulation between
different risk groups (Figures 6A, B). Additionally, the modeling
hub genes were associated with many immune checkpoint genes,
suggesting their potential relevance to immune therapy in OS
(Figure 6C). The ESTIMATE algorithm revealed that the low-
risk group had higher immune infiltration levels (Figure 7A), and
the low-risk group exhibited more immune therapy checkpoint
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gene expressions (Figures 7B, C), indicating that the low-risk  immune therapy, further suggesting that our model may be
group may benefit more from immune therapy. Importantly, applicable to predicting clinical responses to immune therapy
BNIP3 and MYC were all associated with the response to  (Figures 7D-G).
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qRT-PCR and ICH results

The qRT-PCR results showed that compared to
normal osteoblast cells, MYC, BNIP3, IGFBP5, and
SPP1 substantially exhibited a trend of high expression

(Figure 8A).  The results of the

suggested that in OS patients with poorer prognosis, the

immunohistochemistry

expression of these four hub genes was significantly elevated
(Figures 8B, C). These results further confirmed the key roles
of the four hub genes on the carcinogenic and prognosis
in OS.
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Discussion

OS is a highly malignant primary bone tumor with a poor
prognosis. Anoikis resistance, a form of programmed cell death,
is crucial for the survival of detached tumor cells from the
extracellular matrix. Resistance to anoikis has been identified as
a key factor in tumor progression in invasive tumor cells (7, 8),
yet there’s limited research on the relationship between OS and
anoikis. Additionally, previous prognostic models for OS cell death
were based on Bulk RNA sequencing, potentially neglecting the
tumor microenvironment’s impact on prognosis. In this study,
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we started with single-cell RNA data to identify and extract OS
cells. By combining specific markers of OS cells with anoikis,
we identified key genes. Subsequently, we modeled and predicted
immune infiltration using Bulk RNA sequencing data.

Our prognostic model comprises four key genes: MYC,
BNIP3, IGFBP5, and SPP1. The Bcl-2/adenovirus E1B 19 kDa
interacting protein 3 (BNIP3) gene encodes a mitochondrial
protein containing the BH3 domain, which functions in promoting
apoptosis and mitochondrial autophagy (9). Although BNIP3 is
often considered a protective gene that inhibits cancer growth,
studies have shown that inhibiting BNIP3 gene expression leads to
breast cancer progression. IGFBP5 is a secreted protein belonging
to the IGFBP (Insulin-like Growth Factor Binding Protein) family,
primarily regulating the specific binding between Insulin-like
Growth Factors (IGFs) and IGF receptors. IGFBP5 has been
demonstrated to be associated with the malignant progression of
many cancers. For instance, in glioblastoma, IGFBP5 can promote
tumor invasion through the ROR1/HER2-CREB signaling pathway
(10, 11). MYC is a transcription factor and a classic oncogene,
with mutations closely associated with the development of various
cancers. Myc can also prevent immune cells from effectively
attacking tumor cells, aiding in the tumor cell’s immune evasion
process (12). Phosphoprotein 1 (SPP1), also known as osteopontin,
is a multifunctional, secreted phosphorylated glycoprotein. At
the cellular level, SPP1 expression is limited to a few cell
types such as osteoblasts, fibroblasts, macrophages, dendritic cells,
lymphoid cells, and mononuclear cells of the immune system.
SPP1 is also expressed by cancer cells. Previous studies have
established correlations between elevated levels of circulating SPP1
or increased expression of SPP1 on tumor cells and poor prognosis
in many types of cancer. SPP1 plays a significant role in promoting
cancer cell growth and resistance to chemoradiotherapy by
inducing epithelial-mesenchymal transition, autophagy, aberrant
glucose metabolism, epigenetic changes, and reducing drug uptake
(13). Overall, our model genes are closely related to cancer,
suggesting their potential involvement in OS development.

The development of a prognostic model for OS has been
a key focus in OS treatment. Some studies have used scRNA-
seq to identify tumor-associated lymphocytes and construct
prognostic models based on these markers (14). Others have
utilized ARGs to build prognostic models for various tumors
(15). However, there have been limited studies on modeling OS
using a combination of scRNA-seq and ARGs. In our study,
we first incorporated scRNA-seq data from six OS samples
and four normal bone samples to identify osteoblasts. We then
calculated differentially expressed genes between the two groups
of osteoblasts. Subsequently, we intersected these DEGs with key
ARGs to identify crucial genes and construct a robust prognostic
prediction model. Our model integrates scRNA-seq data and
considers the tumor microenvironment, offering a potentially more
accurate and reliable approach for OS prognosis prediction.

The theory of the tumor microenvironment suggests that a
tumor is composed not only of tumor cells but also of immune
cells, endothelial cells, fibroblasts, and other components (16).
Among these, the tumor immune microenvironment plays a
critical role in tumor development and treatment (17). In recent
years, immunotherapy has achieved significant success in cancer
treatment, fundamentally changing the outcome of cancer therapy
(18). Unfortunately, the application of immunotherapy in OS
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remains limited. In our study, we utilized the expression levels
of model genes to classify patients from the TARGET database
into high and low groups, determining the degree of immune
cell infiltration between these groups. We also explored the
relationship between the four model genes and the response
to immunotherapy. This information may provide a basis and
guidance for immunotherapy strategies in OS treatment.

In conclusion, we have developed an effective model for
predicting OS prognosis and immune response. This model could
serve as a valuable reference for OS prognosis assessment and the
design of immunotherapy strategies.
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