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Background: Acute kidney injury (AKI) is a prevalent and serious complication 
among sepsis patients, closely associated with high mortality rates and 
substantial disease burden. Early prediction of AKI is vital for prompt and 
effective intervention and improved prognosis. This research seeks to construct 
and assess forecasting frameworks that leverage advanced machine learning 
algorithms to anticipate AKI progression in high-risk sepsis patients.
Methods: This study utilized the MIMIC-IV database, a large, publicly available 
critical care dataset containing comprehensive, de-identified electronic health 
records of over 70,000 ICU admissions at Beth Israel Deaconess Medical Center, 
to extract sepsis patient data for model training and test. Following feature 
selection, various machine learning algorithms were employed, including 
Decision Tree (DT), Efficient Neural Network (ENet), k-Nearest Neighbor (KNN), 
Light Gradient Boosting Machine (LightGBM), Multi-Layer Perceptron (MLP), 
Multinomial Mixture Model (Multinom), Random Forest (RF), and eXtreme 
Gradient Boosting (XGBoost). A five-fold cross-test strategy was implemented 
to minimize bias and assess model performance. SHapley Additive exPlanations 
(SHAP) was used to interpret the results.
Results: A total of 6,866 critically ill sepsis patients were analyzed, of whom 
5,896 developed AKI during hospitalization The RF model demonstrated superior 
performance, attaining an average AUC score of 0.89 on the ROC curve. SHAP 
analysis provided detailed insights into feature importance, including urine 
output, BMI, SOFA score, and maximum blood urea nitrogen, enhancing the 
clinical applicability of the model.
Conclusion: The machine learning models developed in this study effectively 
predicted the stages of AKI in severely ill sepsis patients, with the Random Forest 
model demonstrating optimal performance. SHAP analysis offered crucial 
insights into the risk factors, facilitating timely and personalized interventions 
within a clinical setting. Additional multi-center research is essential to confirm 
the validity of these findings and to ultimately improve patient outcomes and 
quality of life.
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Introduction

Acute kidney injury associated with sepsis (SA-AKI) frequently 
occurs as a complication among severely ill patients. SA-AKI 
frequently occurs as a complication among severely ill patients (1–3). 
Patients with SA-AKI face substantially higher mortality rates than 
those without AKI or those whose AKI stems from other causes (3, 4). 
Although numerous therapeutic strategies have been explored, no 
effective clinical treatment is currently available, making early 
identification crucial for successful intervention (5, 6). In 2023, the 
28th Acute Disease Quality Initiative (ADQI) workgroup similarly 
emphasized the urgent need for early identification of sepsis patients 
at risk of developing AKI or progressing to severe and/or persistent 
AKI, which is critical for timely initiation of supportive interventions, 
including hemodynamic optimization, fluid management, avoidance 
of nephrotoxic drugs, and renal replacement therapy when indicated 
(7). In recent years, with the advancement of machine learning (ML) 
models, large amounts of clinical data have been efficiently utilized, 
leading to numerous studies on early prediction of SA-AKI and 
demonstrating high diagnostic performance in related applications 
such as cancer and sepsis prediction (8–14). Current research mainly 
focuses on binary classification to predict whether AKI occurs, which 
presents an apparent limitation: it does not accurately classify the data 
for effective clinical diagnosis and treatment, nor can it differentiate 
the severity of AKI across individuals. Therefore, developing an ML 
model capable of multi-class prediction for SA-AKI Kidney Disease: 
Improving Global Outcomes (KDIGO) stages is crucial for better 
management of SA-AKI patients, as the KDIGO classification provides 
internationally recognized criteria for defining and staging acute 
kidney injury based on serum creatinine levels and urine output.

By applying the Shapley Additive exPlanations (SHAP) method, 
the opaque nature typical of ML models has been partially reduced. 
SHAP serves as a widely-used technique in machine learning to 
unravel the intricate relationships between features and predictive 
results. SHAP provides personalized insights by explaining the role of 
specific features in shaping model predictions, which helps clinicians 
understand the changing importance of features across different 
severities of the disease, providing more specific targets for early 
individualized intervention (15).

Therefore, this study aims to develop machine learning models for 
AKI in sepsis patients, with the dual purpose of identifying key risk 
factors that may enable personalized clinical intervention and 
achieving two specific objectives: first, to develop an ML model that 
best predicts the stages of SA-AKI in sepsis patients; second, to employ 
SHAP in interpreting the mode, visualize the risk factors, and explain 
the outcomes.

Methods

Data source

This study retrospectively analyzed data from the MIMIC-IV 
database (version 2.2), encompassing records from over 50,000 ICU 
admissions collected between 2008 and 2019 at Boston’s Beth Israel 
Deaconess Medical Center (16). The MIMIC-IV database is a large, 
publicly available critical care dataset that is continuously updated and 
widely used for clinical and machine learning research. It provides 

comprehensive and high-resolution clinical information, including 
patient demographics, vital signs, laboratory results, medications, 
procedures, and diagnostic codes from the International Classification 
of Diseases, Ninth and Tenth Revisions (ICD-9 and ICD-10). All data 
are fully de-identified in compliance with the Health Insurance 
Portability and Accountability Act (HIPAA), and therefore informed 
consent was not required.

Participants

Patients with sepsis were identified in the MIMIC-IV database 
according to the Sepsis-3 criteria, which define sepsis as life-
threatening organ dysfunction caused by a dysregulated host response 
to infection. Organ dysfunction was assessed using the Sequential 
Organ Failure Assessment (SOFA) score, with a ≥2-point increase 
from baseline indicating clinically significant organ dysfunction. 
Patients with non-first admissions, non-first ICU stays, age <18 or 
>85 years, and ICU stay less than 48 h were excluded. The data were 
then matched with the highest KDIGO stage during the ICU stay (0, 
1, 2, 3), and patients were categorized into four groups: sepsis without 
AKI, sepsis with AKI stage 1, 2, and 3. The KDIGO stage served as the 
outcome for the prediction model. The dataset was randomly split into 
a training set (70%) and a hold-out test set (30%) to evaluate the final 
model performance. No separate internal validation set was created 
because hyperparameter tuning and cross-validation were conducted 
within the training set only. The screening process is shown in 
Figure 1.

Data extraction

Data extraction was performed using Navicat Premium software 
(version 12.0.11) and Structured Query Language (SQL). The 
extracted information included demographics (e.g., gender, age), 
comorbidities (e.g., diabetes, hypertension, pneumonia, hepatitis, 
heart failure), vital signs within 24 h of ICU admission (e.g., 
minimum/maximum systolic and diastolic blood pressure, respiratory 
rate, temperature, heart rate, SpO2), and laboratory indicators within 
24 h of ICU admission (e.g., minimum/maximum hemoglobin, 
platelets, white blood cell count, anion gap, bicarbonate, blood urea 
nitrogen, chloride, creatinine, glucose, sodium, potassium, 
international normalized ratio, prothrombin time, partial 
thromboplastin time, SOFA score, urine output).

BMI values that were clearly implausible, resulting from data 
entry errors or inconsistent height and weight units, were excluded 
from the analysis. To reduce data bias, populations with missing values 
exceeding 10% were excluded, while missing values below 10% were 
imputed using the KNN method.

Model development and evaluation

The dataset was imbalanced, which could affect model training 
and performance. Compared to binary classification tasks, multi-class 
imbalance problems are more complex and require more attention 
(17). Because the distribution of AKI stages was highly imbalanced 
(class 0: 1,292; class 1: 1,395; class 2: 3,587; class 3: 2,573), we applied 
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the Synthetic Minority Oversampling Technique (SMOTE), 
introduced by Chawla et al. (18) to the training set to balance class 
sizes to approximately 4,055 samples per class before model training. 
A five-fold cross-validation strategy was performed within the 
training set to optimize hyperparameters and prevent overfitting. The 
final model was trained on the training set and evaluated on the 
independent test set, with performance assessed by average ROC–
AUC and calibration metrics.

Machine learning models

The dataset was input into seven machine learning algorithms: 
Decision Tree (DT), Efficient Neural Network (ENet), K-Nearest 
Neighbor (KNN), Light Gradient Boosting Machine (LightGBM), 
Multi-Layer Perceptron (MLP), Multinomial Mixture Model 
(Multinom), Random Forest Model (RF), and Extreme Gradient 
Boosting (XGBoost).

Eight machine learning models were used to predict the stages of 
AKI. Model evaluation metrics included Accuracy, Balanced Accuracy 
(Bal Accuracy), Detection Prevalence, F Measure (F Meas), Jaccard 
index (J index), Kappa (Kap), Matthews Correlation Coefficient 
(MCC), Negative Predictive Value (NPV), Positive Predictive Value 
(PPV), Precision, Recall, Area Under the Curve (AUC), Sensitivity 
(Sens), and Specificity (Spec).

For all machine learning models, key hyperparameters were tuned 
using grid search within reasonable ranges based on previous studies 
(19) and recent evidence of its effectiveness in clinical prediction 
contexts. Parameters were selected by 5-fold cross-validation within 
the training set. Final parameters were as follows:

Decision Tree: max_depth = 5
Efficient Neural Network: alpha = 1.0,l1_ratio = 0.5, max_

iter = 1,000, random_state = 42
K-Nearest Neighbor: n_neighbors = 5

Light Gradient Boosting Machine: n_estimators = 200, num_
leaves = 31, learning_rate = 0.1

Multi-Layer Perceptron: hidden_layer_sizes = (100, 50), 
activation = ‘relu’, solver = ‘adam’, learning_rate_init = 0.001

Multinomial Mixture Model: penalty = ‘l2’, C = 1.0, 
solver = ‘lbfgs’, multi_class = ‘multinomial’, max_iter = 1,000, 
random_state = 42

Random Forest 
Model:n_estimators = 100,random_state = 42,h_jobs = −1

Extreme Gradient Boosting: n_estimators = 200, max_
depth = 6, learning_rate = 0.1

Results

Baseline characteristics and feature 
selection

Following screening and data imputation, the training set 
comprised a total of 6,866 patients, including 970 patients with sepsis 
without AKI (14.12%), 1,102 patients with SA-AKI stage 1 (16.05%), 
2,839 patients with SA-AKI stage 2 (41.35%), and 1,955 patients with 
SA-AKI stage 3 (28.47%). Differences in characteristics among the 
groups are shown in Table  1. Initially, univariable analysis was 
conducted on these features, and those with statistical significance 
were subsequently included in multivariable analysis. Features with 
statistical significance in both univariable and multivariable analyses 
were adopted for model training.

Model performance

The RF model demonstrated the highest performance, achieving 
an average macro-AUC of 0.888 across all AKI stages during five-fold 
cross-validation (Supplementary Figure 1). In the independent test 

FIGURE 1

Data screening was conducted according to the Sepsis 3.0 criteria and AKI-KDIGO staging definitions, with subsequent inclusion and exclusion criteria 
applied.
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TABLE 1  AKI stage 0: sepsis without AKI; hepatitis, diabetes, hypertension, pneumonia, heart failure: 0 indicates absence of the comorbidity, 1 indicates presence of the comorbidity.

AKI stage Variable/Comorbidity 0 (N = 970) 1 (N = 1,102) 2 (N = 2,839) 3 (N = 1,955) OR (univariable) OR (multivariable)

Gender
Male 430 (44.3%) 364 (33%) 1,095 (38.6%) 772 (39.5%)

1.31 (1.14–1.50, p < 0.001) 1.50 (1.28–1.77, p < 0.001)
Female 540 (55.7%) 738 (67%) 1,744 (61.4%) 1,183 (60.5%)

Diabetes
0 662 (68.2%) 732 (66.4%) 1,821 (64.1%) 1,120 (57.3%)

1.30 (1.13–1.50, p < 0.001) 0.89 (0.74–1.07, p = 0.202)
1 308 (31.8%) 370 (33.6%) 1,018 (35.9%) 835 (42.7%)

Hypertension
0 393 (40.5%) 488 (44.3%) 1,076 (37.9%) 1,145 (58.6%)

0.80 (0.70–0.92, p = 0.002) 1.15 (0.96–1.38, p = 0.136)
1 577 (59.5%) 614 (55.7%) 1,763 (62.1%) 810 (41.4%)

Pneumonia
0 660 (68%) 710 (64.4%) 1,848 (65.1%) 1,061 (54.3%)

1.34 (1.16–1.55, p < 0.001) 1.75 (1.46–2.09, p < 0.001)
1 310 (32%) 392 (35.6%) 991 (34.9%) 894 (45.7%)

Heart failure
0 750 (77.3%) 734 (66.6%) 1,900 (66.9%) 1,162 (59.4%)

1.89 (1.61–2.21, p < 0.001) 1.58 (1.29–1.94, p < 0.001)
1 220 (22.7%) 368 (33.4%) 939 (33.1%) 793 (40.6%)

Hepatitis
0 916 (94.4%) 1,069 (97%) 2,719 (95.8%) 1,788 (91.5%)

0.97 (0.72–1.31, p = 0.859)
1 54 (5.6%) 33 (3%) 120 (4.2%) 167 (8.5%)

Age Mean ± SD 61.7 ± 14.6 63.8 ± 14.4 66.4 ± 12.9 65.2 ± 13.1 1.02 (1.01–1.02, p < 0.001) 1.01 (1.00–1.02, p < 0.001)

BMI Mean ± SD 27.0 ± 5.9 28.2 ± 6.1 30.2 ± 6.9 31.6 ± 8.0 1.08 (1.07–1.09, p < 0.001) 1.10 (1.09–1.12, p < 0.001)

Hemoglobin_min Mean ± SD 10.4 ± 2.2 9.9 ± 2.3 10.0 ± 2.2 9.6 ± 2.3 0.90 (0.87–0.93, p < 0.001) 0.92 (0.85–0.99, p = 0.028)

Hemoglobin_max Mean ± SD 11.9 ± 2.1 11.7 ± 2.1 11.8 ± 2.0 11.3 ± 2.2 0.95 (0.92–0.98, p < 0.001) 1.05 (0.97–1.13, p = 0.193)

Platelets_min Mean ± SD 192.5 ± 101.4 176.8 ± 89.8 177.1 ± 94.3 169.1 ± 107.2 1.00 (1.00–1.00, p < 0.001) 1.00 (1.00–1.00, p = 0.303)

Platelets_max Mean ± SD 233.4 ± 116.2 221.4 ± 100.8 223.3 ± 106.7 218.7 ± 122.1 1.00 (1.00–1.00, p = 0.002) 1.00 (1.00–1.00, p = 0.538)

Wbc_min Mean ± SD 10.4 ± 7.3 10.8 ± 7.8 10.8 ± 5.7 11.3 ± 7.5 1.02 (1.00–1.03, p = 0.014) 0.99 (0.97–1.02, p = 0.625)

Wbc_max Mean ± SD 14.3 ± 10.3 15.8 ± 10.7 15.8 ± 7.7 16.6 ± 12.1 1.03 (1.02–1.04, p < 0.001) 1.01 (0.99–1.03, p = 0.349)

Aniongap_min Mean ± SD 12.4 ± 3.1 12.3 ± 3.3 12.2 ± 3.1 14.5 ± 4.4 1.05 (1.03–1.07, p < 0.001) 1.05 (1.01–1.09, p = 0.027)

Aniongap_max Mean ± SD 15.8 ± 4.4 15.6 ± 4.5 15.5 ± 4.3 18.9 ± 6.0 1.04 (1.02–1.05, p < 0.001) 0.98 (0.95–1.01, p = 0.268)

Bicarbonate_min Mean ± SD 22.0 ± 4.5 21.8 ± 4.0 21.8 ± 4.2 19.7 ± 5.4 0.96 (0.95–0.97, p < 0.001) 0.95 (0.91–0.99, p = 0.023)

Bicarbonate_max Mean ± SD 24.7 ± 4.0 24.6 ± 3.7 24.6 ± 3.9 23.5 ± 4.8 0.97 (0.96–0.99, p < 0.001) 1.06 (1.02–1.11, p = 0.005)

Bun_min Mean ± SD 19.4 ± 17.7 22.0 ± 18.8 20.7 ± 14.6 34.0 ± 24.8 1.02 (1.02–1.03, p < 0.001) 1.02 (1.00–1.04, p = 0.051)

Bun_max Mean ± SD 24.0 ± 21.4 26.4 ± 22.2 24.7 ± 17.0 41.5 ± 28.7 1.02 (1.01–1.02, p < 0.001) 0.97 (0.96–0.99, p = 0.002)

Chloride_min Mean ± SD 101.9 ± 6.2 102.6 ± 6.2 102.8 ± 5.9 100.7 ± 7.1 1.00 (0.99–1.01, p = 0.481)

Chloride_max Mean ± SD 106.4 ± 6.3 107.2 ± 6.5 107.0 ± 5.9 105.2 ± 7.0 1.00 (0.99–1.01, p = 0.837)

Creatinine_min Mean ± SD 1.0 ± 0.9 1.2 ± 1.2 1.0 ± 0.7 2.0 ± 1.9 1.62 (1.45–1.81, p < 0.001) 0.98 (0.70–1.35, p = 0.882)

Creatinine_max Mean ± SD 1.2 ± 1.3 1.4 ± 1.5 1.2 ± 0.8 2.6 ± 2.4 1.45 (1.34–1.58, p < 0.001) 1.13 (0.87–1.47, p = 0.341)

(Continued)
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TABLE 1  (Continued)

AKI stage Variable/Comorbidity 0 (N = 970) 1 (N = 1,102) 2 (N = 2,839) 3 (N = 1,955) OR (univariable) OR (multivariable)

Glucose_min Mean ± SD 116.9 ± 32.7 119.8 ± 37.3 123.2 ± 39.4 122.1 ± 46.2 1.00 (1.00–1.01, p < 0.001) 1.00 (1.00–1.01, p = 0.007)

Glucose_max Mean ± SD 164.9 ± 102.7 165.2 ± 89.9 168.8 ± 89.0 193.2 ± 114.5 1.00 (1.00–1.00, p < 0.001) 1.00 (1.00–1.00, p = 0.828)

Sodium_min Mean ± SD 136.8 ± 4.9 136.8 ± 4.6 137.0 ± 4.8 136.2 ± 5.7 1.00 (0.98–1.01, p = 0.487)

Sodium_max Mean ± SD 140.2 ± 5.0 140.2 ± 4.8 140.1 ± 4.6 139.8 ± 5.5 0.99 (0.98–1.01, p = 0.316)

Potassium_min Mean ± SD 3.8 ± 0.5 3.9 ± 0.6 3.9 ± 0.5 4.0 ± 0.7 1.55 (1.38–1.75, p < 0.001) 0.87 (0.73–1.05, p = 0.155)

Potassium_max Mean ± SD 4.5 ± 0.7 4.6 ± 0.8 4.6 ± 0.7 4.9 ± 1.0 1.58 (1.43–1.75, p < 0.001) 1.22 (1.06–1.39, p = 0.004)

INR_min Mean ± SD 1.3 ± 0.4 1.3 ± 0.7 1.3 ± 0.4 1.5 ± 0.7 1.68 (1.38–2.05, p < 0.001) 0.48 (0.20–1.14, p = 0.098)

INR_max Mean ± SD 1.4 ± 0.7 1.6 ± 1.2 1.5 ± 1.0 1.9 ± 1.5 1.59 (1.39–1.83, p < 0.001) 1.28 (0.92–1.77, p = 0.139)

Pt_min Mean ± SD 13.8 ± 4.4 14.3 ± 5.8 14.1 ± 4.1 16.2 ± 7.6 1.05 (1.03–1.08, p < 0.001) 1.07 (0.98–1.17, p = 0.119)

Pt_max Mean ± SD 15.5 ± 8.1 17.3 ± 11.7 16.7 ± 9.9 20.7 ± 15.5 1.05 (1.03–1.06, p < 0.001) 0.99 (0.96–1.02, p = 0.474)

Ptt_min Mean ± SD 30.6 ± 11.3 30.6 ± 9.8 30.8 ± 11.0 33.1 ± 11.6 1.01 (1.00–1.02, p = 0.013) 1.00 (0.99–1.00, p = 0.325)

Ptt_max Mean ± SD 41.0 ± 27.9 43.1 ± 27.1 44.9 ± 30.4 51.6 ± 35.4 1.01 (1.00–1.01, p < 0.001) 1.00 (1.00–1.01, p = 0.035)

Sofa Mean ± SD 4.1 ± 3.0 5.2 ± 3.1 5.5 ± 3.2 8.2 ± 4.0 1.23 (1.20–1.26, p < 0.001) 1.15 (1.12–1.19, p < 0.001)

Urine output Mean ± SD 2,535.9 ± 1,376.0 2,408.2 ± 1,304.9 1,814.0 ± 1,006.3 1,133.2 ± 1,054.7 1.00 (1.00–1.00, p < 0.001) 1.00 (1.00–1.00, p < 0.001)

Heartrate_min Mean ± SD 71.2 ± 15.5 69.9 ± 14.0 70.3 ± 14.9 72.4 ± 16.8 1.00 (0.99–1.00, p = 0.673)

Heartrate_max Mean ± SD 105.1 ± 20.5 104.0 ± 20.5 104.1 ± 19.9 108.1 ± 23.4 1.00 (1.00–1.00, p = 0.707)

Sbp_min Mean ± SD 93.3 ± 17.5 89.0 ± 15.4 88.6 ± 15.8 86.2 ± 17.1 0.98 (0.98–0.98, p < 0.001) 1.00 (0.99–1.00, p = 0.277)

Sbp_max Mean ± SD 148.9 ± 22.7 147.9 ± 22.5 149.0 ± 23.2 147.4 ± 24.9 1.00 (1.00–1.00, p = 0.452)

Dbp_min Mean ± SD 48.5 ± 11.3 45.8 ± 9.8 45.5 ± 10.0 44.0 ± 11.3 0.97 (0.96–0.98, p < 0.001) 1.00 (0.99–1.00, p = 0.338)

Dbp_max Mean ± SD 89.0 ± 18.8 84.4 ± 17.0 85.2 ± 19.2 86.6 ± 20.6 0.99 (0.99–0.99, p < 0.001) 1.00 (0.99–1.00, p = 0.579)

Resprate_min Mean ± SD 12.4 ± 3.5 12.1 ± 3.6 12.0 ± 3.7 12.6 ± 4.2 0.99 (0.97–1.00, p = 0.154)

Resprate_max Mean ± SD 28.1 ± 6.3 27.8 ± 6.2 28.1 ± 6.7 29.1 ± 6.6 1.01 (1.00–1.02, p = 0.218)

Temperature_min Mean ± SD 36.4 ± 0.6 36.2 ± 0.9 36.2 ± 0.8 36.2 ± 0.9 0.69 (0.62–0.77, p < 0.001) 0.73 (0.65–0.83, p < 0.001)

Temperature_max Mean ± SD 37.5 ± 0.7 37.5 ± 0.8 37.5 ± 0.8 37.5 ± 0.9 0.97 (0.89–1.05, p = 0.446)

Spo2_min Mean ± SD 92.5 ± 5.4 92.3 ± 5.8 92.1 ± 5.3 90.6 ± 8.5 0.97 (0.96–0.99, p < 0.001) 1.00 (0.99–1.02, p = 0.933)

Spo2_max Mean ± SD 99.6 ± 1.0 99.7 ± 0.9 99.7 ± 0.9 99.6 ± 1.0 1.07 (1.01–1.15, p = 0.029) 1.05 (0.97–1.14, p = 0.238)
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TABLE 2  Evaluation metrics values for the performance of eight machine learning models.

Model KNN LightGBM MLP XGBoost RF DT ENet Multinom

Accuracy 0.661463 0.532497 0.521569 0.546837 0.683238 0.46138 0.494864 0.5

Kap 0.548617 0.296284 0.362093 0.395782 0.57765 0.281841 0.326486 0.333333

sens 0.661463 0.43296 0.521569 0.546837 0.683238 0.46138 0.494864 0.5

spec 0.887154 0.821365 0.840523 0.848946 0.894413 0.82046 0.831622 0.833333

PPV 0.651698 0.472942 0.520259 0.54676 0.678263 0.472806 0.481882 0.488936

NPV 0.889759 0.830155 0.841067 0.849359 0.896174 0.820703 0.834332 0.835678

MCC 0.551503 0.308416 0.36276 0.396415 0.579552 0.28468 0.328856 0.33538

J index 0.548617 0.254325 0.362093 0.395782 0.57765 0.281841 0.326486 0.333333

Bal accuracy 0.774308 0.627162 0.681046 0.697891 0.788825 0.64092 0.663243 0.666667

Detection 

prevalence

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Precision 0.651698 0.472942 0.520259 0.54676 0.678263 0.472806 0.481882 0.488936

Recall 0.661463 0.43296 0.521569 0.546837 0.683238 0.46138 0.494864 0.5

F meas 0.651786 0.433932 0.519634 0.545571 0.677663 0.460908 0.483394 0.490186

ROC–AUC 0.832936 0.749651 0.782232 0.804209 0.888434 0.710227 0.758831 0.760082

FIGURE 2

ROC–AUC of eight machine learning models for the four AKI stages.
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set, the ROC–AUC values for each class were: sepsis without AKI, 
0.934; SA-AKI stage 1, 0.903; SA-AKI stage 2, 0.784; and SA-AKI stage 
3, 0.925 (Figure 2). The ROC–AUC values of the other models were 
as follows: Multinomial Mixture Model (Multinom), 0.760; Efficient 
Neural Network (ENet), 0.759; Decision Tree (DT), 0.710; XGBoost, 

0.804; Multi-Layer Perceptron (MLP), 0.782; LightGBM, 0.750; and 
k-Nearest Neighbor (KNN), 0.833 (Table 2, Figure 3). Comparison 
between training and test sets showed similar AUC distributions 
(Supplementary Figure 2, Table 1), highlighting the validity of the RF 
model. These results indicate that the RF model not only outperforms 

FIGURE 3

Comparison of eight machine learning models based on a Line graph.

FIGURE 4

Top eight important features ranked by SHAP values: The X-axis represents the importance of the features, while the Y-axis shows the different 
features; Class 0, 1, 2, and 3 represent sepsis without AKI, and sepsis with AKI stages 1, 2, and 3, respectively.
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FIGURE 5

Bee swarm plot of the RF model: each point represents the data of a patient within the corresponding class. Red indicates relatively high values, and 
blue indicates relatively low values. The X-axis represents the magnitude of SHAP values, while the Y-axis shows features ranked by importance from 
top to bottom.

other algorithms but also maintains consistent discriminative ability 
across all AKI stages.

Interpretability analysis

Features were ranked by SHAP values in descending order, which 
helps analyze the occurrence of AKI and display the importance of 
different predictive variables across groups. Figure 4 shows the top 
eight important features, while Figure 5 presents the SHAP bee swarm 

plot for four groups Each patient’s feature is depicted as a dot, with 
colors reflecting attribution values: red for higher values and blue for 
lower values. Urine output, BMI, SOFA score, and maximum blood 
urea nitrogen were the most important factors across groups. The 
importance of different features varied among groups; for example, 
the importance of SOFA score and minimum anion gap was positively 
correlated with AKI stage severity.

The SHAP force plot (Figure  6) helps understand local 
interpretability (i.e., individual patients) by showing how features 
contribute to the prediction for a particular patient. The force plot 
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displays whether a feature promotes or inhibits the prediction 
outcome and shows its relative strength, providing explicit guidance 
for clinical diagnosis and treatment.

The SHAP dependence plot (Supplementary Figures 3–5) displays 
the interaction effects between features, showing how two primary 
features influence each other.

Discussion

This study involved screening data from the MIMIC-IV database 
to examine multiple indicators of sepsis patients within the first 24 h 
of ICU admission and their associations with the occurrence and 
progression of AKI. Currently, dozens of studies on sepsis use this 
database to construct ML models, making our use of the same data 
reasonable and feasible (20–22).

We used univariable and multivariable analyses to identify 16 
early clinical parameters for developing and validating the prediction 
model. The results showed that the RF model exhibited better 
discrimination and calibration capabilities than other ML algorithms. 
Compared with traditional logistic regression or simple scoring 
systems, our multi-class RF model integrates multiple routinely 
collected clinical indicators and provides more accurate and granular 
risk stratification, which enhances its potential for bedside application. 
To investigate how these features influence RF algorithm decisions, 

we used SHAP to interpret predictions. The SHAP bee swarm plots 
illustrated the importance of features across the different groups, while 
the dependence plots demonstrated feature relationships and their 
effect on model measurement. Additionally, SHAP force plots and 
waterfall plots illustrated how the model locally explained the 
relationship between feature and sepsis prediction.

SA-AKI is a sepsis complication with high mortality. Although 
several novel biomarkers for detecting kidney injury and predicting 
AKI development—such as NGAL, KIM-1, cystatin C, and IL-18—
have been discovered, they are still insufficiently sensitive for early 
detection, which makes the exploration of early prediction of SA-AKI 
irreplaceable (5). Our approach leverages only standard clinical and 
laboratory data available within 24 h of ICU admission, avoiding the 
need for costly or time-consuming biomarker testing, and thus 
increasing its feasibility in routine critical care settings.

With the development of artificial intelligence, ML models have 
become increasingly important tools in medical research. ML 
automatically learns patterns and features from large datasets and 
generates prediction and decision models to make predictions for new 
data. Previous studies have predominantly used binary classification 
to predict whether SA-AKI occurs, but the severity classification of 
AKI is crucial for treatment and prognosis. Studies have shown that 
the higher the AKI stage, the greater the likelihood of requiring renal 
replacement therapy, and the higher the mortality rate (23). Therefore, 
this study adopted a multi-class classification approach to predict AKI 

FIGURE 6

The force plot of the RF model visualizes the result for a randomly selected patient from the four groups. The base value represents the average 
predicted outcome, with feature values and names listed at the bottom of the plot. Features are sorted from the center outward based on their impact 
on the prediction.
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KDIGO stages, which aligns better with treatment guideline variations 
for patients at different KDIGO stages and has greater clinical 
application potential. By simultaneously predicting all KDIGO stages, 
our model provides clinicians with a more refined tool for 
individualized risk assessment and early intervention planning.

An important concern in ML is the black-box issue, where early 
studies lacked explanations of ML models—how input variables affect 
model results, and to what extent are often unknown. This is one of 
the major barriers to clinical application. This study used SHAP to 
visualize and interpret the multi-class results, allowing us to see how 
features impact each stage of the model. Another advantage of SHAP 
is comparing changes in feature importance across different AKI 
stages, which offers a deeper understanding of how feature importance 
changes with disease severity and helps guide targeted treatment. For 
example, for a patient predicted to have a high risk of stage 2–3 AKI, 
SHAP analysis identified low urine output, elevated BMI, high SOFA 
score, and increased maximum BUN as the top contributing factors. 
This explanation helps clinicians understand why the model predicts 
high risk and facilitates targeted interventions, such as closer 
monitoring of renal function or adjustment of fluid and medication 
management. This combination of multi-class modeling and 
interpretable AI not only improves predictive performance but also 
enhances clinical trust and facilitates translation into practice.

Recent studies indicate that a high BMI is associated with the early 
occurrence of SA-AKI and correlates with its severity, which was also 
confirmed by our model. Further, by introducing SHAP, the impact of 
high BMI on SA-AKI occurrence was quantified and visualized (24). 
Multivariate regression analyses have identified SOFA score as an 
independent risk factor for persistent severe SA-AKI, which is 
consistent with the predictions of our model (25). In addition, previous 
studies have determined 12 risk factors associated with early SA-AKI 
development, including age, BMI, and urine output—key features also 
captured by our model (26). Since SOFA score was introduced to 
define sepsis, numerous studies have either modified it or combined it 
with other biomarkers for prediction (27, 28). By integrating ML with 
large and complex datasets, our model demonstrated that SOFA score 
is one of the important influencing factors (Figure 5). SOFA score 
ranked second in importance in the KDIGO stage 3 model, while 
ranking lower in the other three models, suggesting that its accuracy 
in predicting patients with different severity levels should 
be considered when using the SOFA score, thus underscoring the 
importance of a multi-class model for predicting SA-AKI.

Nonetheless, this study has certain limitations. The MIMIC-IV 
database originates from a single U. S. center, which may limit 
generalizability to other regions or populations, and the use of 
imputation for missing data could introduce bias. Additionally, the 
model has not been externally validated, which may affect its robustness. 
We also only used the minimum and maximum values within the first 
24 h, potentially overlooking important temporal dynamics. Future 
work will focus on external validation in multi-center prospective 
cohorts across different regions and populations, exploration of novel 
biomarkers, incorporation of continuous time-series data (e.g., dynamic 
trends of creatinine and urine output) to capture temporal patterns of 
disease progression, and assessment of the model in real ICU settings. 
These improvements aim to enhance predictive accuracy, clinical 
applicability, and the robustness of our findings, while helping identify 
optimal time-points for stage-specific clinical interventions.

Conclusion

This research effectively established robust machine learning 
models for predicting stages of AKI in severely ill sepsis patients, with 
the RF model exhibiting optimal performance. Through the 
application of SHAP analysis, critical risk factors such as urine output, 
body mass index, SOFA score, and peak blood urea nitrogen were 
identified, highlighting the potential for personalized risk assessment. 
These results lay the groundwork for early interventions, supporting 
improved management and survival outcomes in sepsis patients.
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Glossary

AKI - Acute kidney injury

DT - Decision Tree

Enet - efficient Neural Network

KNN - K-Nearest Neighbor

LightGBM - Light Gradient Boosting Machine

MLP - Multi-Layer Perceptron

Multinom - Multinomial Mixture Model

RF - Random Forest

XGBoost - eXtreme Gradient Boosting

SA-AKI - Acute kidney injury associated with sepsis

ADQI - Acute Disease Quality Initiative

ML - machine learning

SHAP - Shapley Additive exPlanations

SQL - Structured Query Language

SOFA - Sequential Organ Failure Assessment

SMOTE - Synthetic Minority Oversampling Technique

Bal Accuracy - Balanced Accuracy

F Meas - F Measure

J index - Jaccard index

Kap - Kappa

MCC - Matthews Correlation Coefficient

NPV - Negative Predictive Value

PPV - Positive Predictive Value

AUC - Area Under the Curve

Sens - Sensitivity

Spec - Specificity
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