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Background: Acute kidney injury (AKI) is a prevalent and serious complication
among sepsis patients, closely associated with high mortality rates and
substantial disease burden. Early prediction of AKI is vital for prompt and
effective intervention and improved prognosis. This research seeks to construct
and assess forecasting frameworks that leverage advanced machine learning
algorithms to anticipate AKI progression in high-risk sepsis patients.

Methods: This study utilized the MIMIC-IV database, a large, publicly available
critical care dataset containing comprehensive, de-identified electronic health
records of over 70,000 ICU admissions at Beth Israel Deaconess Medical Center,
to extract sepsis patient data for model training and test. Following feature
selection, various machine learning algorithms were employed, including
Decision Tree (DT), Efficient Neural Network (ENet), k-Nearest Neighbor (KNN),
Light Gradient Boosting Machine (LightGBM), Multi-Layer Perceptron (MLP),
Multinomial Mixture Model (Multinom), Random Forest (RF), and eXtreme
Gradient Boosting (XGBoost). A five-fold cross-test strategy was implemented
to minimize bias and assess model performance. SHapley Additive exPlanations
(SHAP) was used to interpret the results.

Results: A total of 6,866 critically ill sepsis patients were analyzed, of whom
5,896 developed AKI during hospitalization The RF model demonstrated superior
performance, attaining an average AUC score of 0.89 on the ROC curve. SHAP
analysis provided detailed insights into feature importance, including urine
output, BMI, SOFA score, and maximum blood urea nitrogen, enhancing the
clinical applicability of the model.

Conclusion: The machine learning models developed in this study effectively
predicted the stages of AKl in severely ill sepsis patients, with the Random Forest
model demonstrating optimal performance. SHAP analysis offered crucial
insights into the risk factors, facilitating timely and personalized interventions
within a clinical setting. Additional multi-center research is essential to confirm
the validity of these findings and to ultimately improve patient outcomes and
quality of life.
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Introduction

Acute kidney injury associated with sepsis (SA-AKI) frequently
occurs as a complication among severely ill patients. SA-AKI
frequently occurs as a complication among severely ill patients (1-3).
Patients with SA-AKI face substantially higher mortality rates than
those without AKI or those whose AKI stems from other causes (3, 4).
Although numerous therapeutic strategies have been explored, no
effective clinical treatment is currently available, making early
identification crucial for successful intervention (5, 6). In 2023, the
28th Acute Disease Quality Initiative (ADQI) workgroup similarly
emphasized the urgent need for early identification of sepsis patients
at risk of developing AKI or progressing to severe and/or persistent
AKI, which is critical for timely initiation of supportive interventions,
including hemodynamic optimization, fluid management, avoidance
of nephrotoxic drugs, and renal replacement therapy when indicated
(7). In recent years, with the advancement of machine learning (ML)
models, large amounts of clinical data have been efficiently utilized,
leading to numerous studies on early prediction of SA-AKI and
demonstrating high diagnostic performance in related applications
such as cancer and sepsis prediction (8-14). Current research mainly
focuses on binary classification to predict whether AKI occurs, which
presents an apparent limitation: it does not accurately classify the data
for effective clinical diagnosis and treatment, nor can it differentiate
the severity of AKI across individuals. Therefore, developing an ML
model capable of multi-class prediction for SA-AKI Kidney Disease:
Improving Global Outcomes (KDIGO) stages is crucial for better
management of SA-AKI patients, as the KDIGO classification provides
internationally recognized criteria for defining and staging acute
kidney injury based on serum creatinine levels and urine output.

By applying the Shapley Additive exPlanations (SHAP) method,
the opaque nature typical of ML models has been partially reduced.
SHAP serves as a widely-used technique in machine learning to
unravel the intricate relationships between features and predictive
results. SHAP provides personalized insights by explaining the role of
specific features in shaping model predictions, which helps clinicians
understand the changing importance of features across different
severities of the disease, providing more specific targets for early
individualized intervention (15).

Therefore, this study aims to develop machine learning models for
AKI in sepsis patients, with the dual purpose of identifying key risk
factors that may enable personalized clinical intervention and
achieving two specific objectives: first, to develop an ML model that
best predicts the stages of SA-AKI in sepsis patients; second, to employ
SHAP in interpreting the mode, visualize the risk factors, and explain
the outcomes.

Methods
Data source

This study retrospectively analyzed data from the MIMIC-IV
database (version 2.2), encompassing records from over 50,000 ICU
admissions collected between 2008 and 2019 at Boston’s Beth Israel
Deaconess Medical Center (16). The MIMIC-IV database is a large,
publicly available critical care dataset that is continuously updated and
widely used for clinical and machine learning research. It provides
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comprehensive and high-resolution clinical information, including
patient demographics, vital signs, laboratory results, medications,
procedures, and diagnostic codes from the International Classification
of Diseases, Ninth and Tenth Revisions (ICD-9 and ICD-10). All data
are fully de-identified in compliance with the Health Insurance
Portability and Accountability Act (HIPAA), and therefore informed
consent was not required.

Participants

Patients with sepsis were identified in the MIMIC-IV database
according to the Sepsis-3 criteria, which define sepsis as life-
threatening organ dysfunction caused by a dysregulated host response
to infection. Organ dysfunction was assessed using the Sequential
Organ Failure Assessment (SOFA) score, with a >2-point increase
from baseline indicating clinically significant organ dysfunction.
Patients with non-first admissions, non-first ICU stays, age <18 or
>85 years, and ICU stay less than 48 h were excluded. The data were
then matched with the highest KDIGO stage during the ICU stay (0,
1,2, 3), and patients were categorized into four groups: sepsis without
AKI, sepsis with AKI stage 1, 2, and 3. The KDIGO stage served as the
outcome for the prediction model. The dataset was randomly split into
a training set (70%) and a hold-out test set (30%) to evaluate the final
model performance. No separate internal validation set was created
because hyperparameter tuning and cross-validation were conducted
within the training set only. The screening process is shown in
Figure 1.

Data extraction

Data extraction was performed using Navicat Premium software
(version 12.0.11) and Structured Query Language (SQL). The
extracted information included demographics (e.g., gender, age),
comorbidities (e.g., diabetes, hypertension, pneumonia, hepatitis,
heart failure), vital signs within 24h of ICU admission (e.g.,
minimum/maximum systolic and diastolic blood pressure, respiratory
rate, temperature, heart rate, SpO2), and laboratory indicators within
24h of ICU admission (e.g., minimum/maximum hemoglobin,
platelets, white blood cell count, anion gap, bicarbonate, blood urea
chloride,
international

nitrogen, creatinine, glucose, sodium, potassium,

normalized ratio, prothrombin time, partial
thromboplastin time, SOFA score, urine output).

BMI values that were clearly implausible, resulting from data
entry errors or inconsistent height and weight units, were excluded
from the analysis. To reduce data bias, populations with missing values
exceeding 10% were excluded, while missing values below 10% were

imputed using the KNN method.

Model development and evaluation

The dataset was imbalanced, which could affect model training
and performance. Compared to binary classification tasks, multi-class
imbalance problems are more complex and require more attention
(17). Because the distribution of AKI stages was highly imbalanced
(class 0: 1,292; class 1: 1,395; class 2: 3,587; class 3: 2,573), we applied
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Sepsis records in the MIMIC-IV database defined by
sepsis3.0(n=32971)

Exclusion criteria:
e Non-first admission, ICU admission, and
ICU stay less than 48 hours (n=9386)

e Aged<I8 years old or>85 years old(n=2851)
e Weight/height wrong records (10396)

Sepsis patients(n=9806)

e Missing value>10%(532)

AKI database (KDIGO-defined) in MIMIC-TIV

A A 4

Y

Sepsis without AKI (n=1373) Sepsis with AKI Stage 1(n=1586)

Sepsis with AKI Stage 2(n=4055) Sepsis with AKI Stage 3(n=2792)

FIGURE 1

applied.

Data screening was conducted according to the Sepsis 3.0 criteria and AKI-KDIGO staging definitions, with subsequent inclusion and exclusion criteria

the Synthetic Minority Oversampling Technique (SMOTE),
introduced by Chawla et al. (18) to the training set to balance class
sizes to approximately 4,055 samples per class before model training.
A five-fold cross-validation strategy was performed within the
training set to optimize hyperparameters and prevent overfitting. The
final model was trained on the training set and evaluated on the
independent test set, with performance assessed by average ROC-
AUC and calibration metrics.

Machine learning models

The dataset was input into seven machine learning algorithms:
Decision Tree (DT), Efficient Neural Network (ENet), K-Nearest
Neighbor (KNN), Light Gradient Boosting Machine (LightGBM),
Multi-Layer Perceptron (MLP), Multinomial Mixture Model
(Multinom), Random Forest Model (RF), and Extreme Gradient
Boosting (XGBoost).

Eight machine learning models were used to predict the stages of
AKI. Model evaluation metrics included Accuracy, Balanced Accuracy
(Bal Accuracy), Detection Prevalence, F Measure (F Meas), Jaccard
index (J index), Kappa (Kap), Matthews Correlation Coefficient
(MCC), Negative Predictive Value (NPV), Positive Predictive Value
(PPV), Precision, Recall, Area Under the Curve (AUC), Sensitivity
(Sens), and Specificity (Spec).

For all machine learning models, key hyperparameters were tuned
using grid search within reasonable ranges based on previous studies
(19) and recent evidence of its effectiveness in clinical prediction
contexts. Parameters were selected by 5-fold cross-validation within
the training set. Final parameters were as follows:

Decision Tree: max_depth =5

Efficient Neural Network: alpha = 1.0,11_ratio = 0.5, max_
iter = 1,000, random_state = 42

K-Nearest Neighbor: n_neighbors = 5
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Light Gradient Boosting Machine: n_estimators = 200, num_
leaves = 31, learning_rate = 0.1

Multi-Layer Perceptron: hidden_layer_sizes = (100, 50),
activation = ‘relu; solver = ‘adam; learning_rate_init = 0.001
Model: C=1.0,
solver = ‘Ibfgs, multi_class = ‘multinomial, max_iter = 1,000,

Multinomial ~Mixture penalty = 12}
random_state = 42
Random Forest
Model:n_estimators = 100,random_state = 42,h_jobs = —1
Extreme Gradient Boosting: n_estimators = 200, max_

depth = 6, learning_rate = 0.1

Results

Baseline characteristics and feature
selection

Following screening and data imputation, the training set
comprised a total of 6,866 patients, including 970 patients with sepsis
without AKI (14.12%), 1,102 patients with SA-AKI stage 1 (16.05%),
2,839 patients with SA-AKI stage 2 (41.35%), and 1,955 patients with
SA-AKI stage 3 (28.47%). Differences in characteristics among the
groups are shown in Table 1. Initially, univariable analysis was
conducted on these features, and those with statistical significance
were subsequently included in multivariable analysis. Features with
statistical significance in both univariable and multivariable analyses
were adopted for model training.

Model performance
The RF model demonstrated the highest performance, achieving

an average macro-AUC of 0.888 across all AKI stages during five-fold
cross-validation (Supplementary Figure 1). In the independent test
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TABLE 1 AKI stage 0: sepsis without AKI; hepatitis, diabetes, hypertension, pneumonia, heart failure: 0 indicates absence of the comorbidity, 1 indicates presence of the comorbidity.

AKI stage Variable/Comorbidity 0 (N =970) 1(N=1,102) 2 (N =2,839) 3 (N =1,955) OR (univariable)  OR (multivariable)
Male 430 (44.3%) 364 (33%) 1,095 (38.6%) 772 (39.5%)
Gender 1.31 (1.14-1.50, p < 0.001) | 1.50 (1.28-1.77, p < 0.001)
Female 540 (55.7%) 738 (67%) 1,744 (61.4%) 1,183 (60.5%)
0 662 (68.2%) 732 (66.4%) 1,821 (64.1%) 1,120 (57.3%)
Diabetes 1.30 (1.13-1.50, p < 0.001)  0.89 (0.74-1.07, p = 0.202)
1 308 (31.8%) 370 (33.6%) 1,018 (35.9%) 835 (42.7%)
0 393 (40.5%) 488 (44.3%) 1,076 (37.9%) 1,145 (58.6%)
Hypertension 0.80 (0.70-0.92, p = 0.002)  1.15(0.96-1.38, p = 0.136)
1 577 (59.5%) 614 (55.7%) 1,763 (62.1%) 810 (41.4%)
0 660 (68%) 710 (64.4%) 1,848 (65.1%) 1,061 (54.3%)
Pneumonia 1.34 (1.16-1.55,p < 0.001) | 1.75 (1.46-2.09, p < 0.001)
1 310 (32%) 392 (35.6%) 991 (34.9%) 894 (45.7%)
0 750 (77.3%) 734 (66.6%) 1,900 (66.9%) 1,162 (59.4%)
Heart failure 1.89 (1.61-2.21,p < 0.001) | 1.58 (1.29-1.94, p < 0.001)
1 220 (22.7%) 368 (33.4%) 939 (33.1%) 793 (40.6%)
0 916 (94.4%) 1,069 (97%) 2,719 (95.8%) 1,788 (91.5%)
Hepatitis 0.97 (0.72-1.31, p = 0.859)
1 54 (5.6%) 33 (3%) 120 (4.2%) 167 (8.5%)
Age Mean = SD 61.7 +14.6 63.8+14.4 66.4+12.9 652+13.1 1.02 (1.01-1.02, p < 0.001) | 1.01 (1.00-1.02, p < 0.001)
BMI Mean + SD 27.0+59 282+6.1 30.2+6.9 31.6+8.0 1.08 (1.07-1.09, p < 0.001) | 1.10 (1.09-1.12, p < 0.001)
Hemoglobin_min Mean + SD 104+22 9.9+23 10.0 £2.2 9.6+2.3 0.90 (0.87-0.93, p <0.001)  0.92 (0.85-0.99, p = 0.028)
Hemoglobin_max Mean = SD 11921 117 2.1 11.8 2.0 11322 0.95 (0.92-0.98, p <0.001)  1.05 (0.97-1.13, p = 0.193)
Platelets_min Mean + SD 192.5 + 101.4 176.8 + 89.8 177.1 £ 94.3 169.1 +107.2 1.00 (1.00-1.00, p < 0.001) | 1.00 (1.00-1.00, p = 0.303)
Platelets_max Mean + SD 233.4+116.2 221.4+100.8 223.3+106.7 2187 +122.1 1.00 (1.00-1.00, p = 0.002) | 1.00 (1.00-1.00, p = 0.538)
Whbe_min Mean * SD 104+7.3 108+7.8 10.8 £5.7 113£75 1.02 (1.00-1.03,p = 0.014) | 0.99 (0.97-1.02, p = 0.625)
Whe_max Mean + SD 143+103 158 +10.7 158 +7.7 16.6 + 12.1 1.03 (1.02-1.04, p < 0.001) | 1.01 (0.99-1.03, p = 0.349)
Aniongap_min Mean + SD 124+3.1 123+33 122+3.1 145 + 4.4 1.05 (1.03-1.07, p < 0.001) | 1.05(1.01-1.09, p = 0.027)
Aniongap_max Mean + SD 158 + 4.4 156 +4.5 155 + 4.3 18.9 6.0 1.04 (1.02-1.05, p < 0.001) = 0.98 (0.95-1.01, p = 0.268)
Bicarbonate_min Mean + SD 22.0+45 21.8+4.0 21.8+42 19.7+54 0.96 (0.95-0.97, p < 0.001) 0.95 (0.91-0.99, p = 0.023)
Bicarbonate_max Mean = SD 247 4.0 246+3.7 24.6+3.9 23548 0.97 (0.96-0.99, p < 0.001)  1.06 (1.02-1.11, p = 0.005)
Bun_min Mean + SD 194177 22.0+18.8 20.7 + 14.6 34.0+24.8 1.02 (1.02-1.03, p < 0.001) | 1.02 (1.00-1.04, p = 0.051)
Bun_max Mean + SD 24.0 +21.4 2644222 247 +17.0 415+287 1.02 (1.01-1.02, p < 0.001) = 0.97 (0.96-0.99, p = 0.002)
Chloride_min Mean = SD 1019 +6.2 1026 6.2 102.8 5.9 100.7 +7.1 1.00 (0.99-1.01, p = 0.481)
Chloride_max Mean + SD 106.4 + 6.3 1072 +6.5 107.0 +5.9 1052 +7.0 1.00 (0.99-1.01, p = 0.837)
Creatinine_min Mean + SD 1.0+0.9 12412 1.0+0.7 20+19 1.62 (1.45-1.81, p < 0.001) | 0.98 (0.70-1.35, p = 0.882)
Creatinine_max Mean = SD 12£13 14%15 12+08 26+24 145 (1.34-1.58, p < 0.001) | 1.13(0.87-1.47, p = 0.341)

(Continued)
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TABLE 1 (Continued)

AKI stage

Variable/Comorbidity

0 (N =970)

1(N=1102)

2 (N =2,839)

3 (N =1,955)

OR (univariable)

OR (multivariable)

Glucose_min Mean + SD 116.9 + 32.7 119.8 +37.3 123.2+£39.4 122.1 +46.2 1.00 (1.00-1.01, p < 0.001) 1.00 (1.00-1.01, p = 0.007)
Glucose_max Mean + SD 164.9 +102.7 165.2 +89.9 168.8 + 89.0 1932 +114.5 1.00 (1.00-1.00, p < 0.001) 1.00 (1.00-1.00, p = 0.828)
Sodium_min Mean + SD 136.8 +4.9 136.8 + 4.6 137.0 £ 4.8 136.2 +5.7 1.00 (0.98-1.01, p = 0.487)
Sodium_max Mean + SD 140.2 +5.0 1402 +4.8 140.1 £ 4.6 139.8 +5.5 0.99 (0.98-1.01, p = 0.316)
Potassium_min Mean + SD 3.8+05 39+0.6 39+0.5 4.0+0.7 1.55 (1.38-1.75, p < 0.001) 0.87 (0.73-1.05, p = 0.155)
Potassium_max Mean + SD 45+0.7 46+0.8 46+0.7 49+1.0 1.58 (1.43-1.75, p < 0.001) 1.22 (1.06-1.39, p = 0.004)
INR_min Mean + SD 13+04 1.3+0.7 1.3+04 1.5+0.7 1.68 (1.38-2.05, p < 0.001) 0.48 (0.20-1.14, p = 0.098)
INR_max Mean + SD 14+07 1.6+1.2 1.5+1.0 19+15 1.59 (1.39-1.83, p < 0.001) 1.28 (0.92-1.77, p = 0.139)
Pt_min Mean + SD 13.8+44 143+58 141+4.1 162+7.6 1.05 (1.03-1.08, p < 0.001) 1.07 (0.98-1.17, p = 0.119)
Pt_max Mean + SD 155+ 8.1 17.3+11.7 16.7 9.9 20.7 +£15.5 1.05 (1.03-1.06, p < 0.001) | 0.99 (0.96-1.02, p = 0.474)
Ptt_min Mean + SD 30.6 +11.3 30.6 £9.8 30.8 +11.0 33.1+11.6 1.01 (1.00-1.02, p = 0.013) 1.00 (0.99-1.00, p = 0.325)
Ptt_max Mean + SD 41.0 £27.9 43.1+27.1 44.9 +30.4 51.6 £35.4 1.01 (1.00-1.01, p < 0.001) 1.00 (1.00-1.01, p = 0.035)
Sofa Mean + SD 41+3.0 52+3.1 55+3.2 82+40 1.23 (1.20-1.26, p < 0.001) 1.15 (1.12-1.19, p < 0.001)
Urine output Mean + SD 2,535.9 +1,376.0 2,408.2 + 1,304.9 1,814.0 + 1,006.3 1,133.2 + 1,054.7 1.00 (1.00-1.00, p < 0.001) 1.00 (1.00-1.00, p < 0.001)
Heartrate_min Mean + SD 71.2+15.5 69.9 £ 14.0 70.3 £ 14.9 724 £16.8 1.00 (0.99-1.00, p = 0.673)
Heartrate_max Mean + SD 105.1 £20.5 104.0 £ 20.5 104.1 £19.9 108.1 £23.4 1.00 (1.00-1.00, p = 0.707)
Sbp_min Mean + SD 93.3+17.5 89.0 £ 15.4 88.6 £15.8 86.2+17.1 0.98 (0.98-0.98, p < 0.001) 1.00 (0.99-1.00, p = 0.277)
Sbp_max Mean + SD 148.9 +22.7 1479 +£22.5 149.0 £23.2 147.4+249 1.00 (1.00-1.00, p = 0.452)
Dbp_min Mean + SD 48.5+11.3 45.8+9.8 45.5+10.0 440+11.3 0.97 (0.96-0.98, p < 0.001) 1.00 (0.99-1.00, p = 0.338)
Dbp_max Mean + SD 89.0 +18.8 84.4+17.0 852+19.2 86.6 +20.6 0.99 (0.99-0.99, p < 0.001) 1.00 (0.99-1.00, p = 0.579)
Resprate_min Mean + SD 124+35 12.1+3.6 12.0£3.7 12.6 £4.2 0.99 (0.97-1.00, p = 0.154)
Resprate_max Mean + SD 28.1+6.3 27.8+6.2 28.1+6.7 29.1+6.6 1.01 (1.00-1.02, p = 0.218)
Temperature_min Mean + SD 36.4 0.6 36.2+0.9 36.2+0.8 36.2+0.9 0.69 (0.62-0.77, p < 0.001) 0.73 (0.65-0.83, p < 0.001)
Temperature_max Mean + SD 375£0.7 375+0.8 375+0.8 375£0.9 0.97 (0.89-1.05, p = 0.446)
Spo2_min Mean + SD 92.5+5.4 92.3+5.8 92.1+5.3 90.6 + 8.5 0.97 (0.96-0.99, p < 0.001) 1.00 (0.99-1.02, p = 0.933)
Spo2_max Mean + SD 99.6 £ 1.0 99.7£0.9 99.7£0.9 99.6 £ 1.0 1.07 (1.01-1.15, p = 0.029) 1.05 (0.97-1.14, p = 0.238)
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TABLE 2 Evaluation metrics values for the performance of eight machine learning models.

Model KNN LightGBM MLP XGBoost RF DT ENet Multinom
Accuracy 0.661463 0.532497 0.521569 0.546837 0.683238 0.46138 0.494864 0.5
Kap 0.548617 0.296284 0.362093 0.395782 0.57765 0.281841 0.326486 0.333333
sens 0.661463 0.43296 0.521569 0.546837 0.683238 0.46138 0.494864 0.5
spec 0.887154 0.821365 0.840523 0.848946 0.894413 0.82046 0.831622 0.833333
PPV 0.651698 0.472942 0.520259 0.54676 0.678263 0.472806 0.481882 0.488936
NPV 0.889759 0.830155 0.841067 0.849359 0.896174 0.820703 0.834332 0.835678
MCC 0.551503 0.308416 0.36276 0.396415 0.579552 0.28468 0.328856 0.33538
J index 0.548617 0.254325 0.362093 0.395782 0.57765 0.281841 0.326486 0.333333
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FIGURE 2
ROC-AUC of eight machine learning models for the four AKI stages.
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Comparison of eight machine learning models based on a Line graph.
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set, the ROC-AUC values for each class were: sepsis without AKI,
0.934; SA-AKI stage 1, 0.903; SA-AKI stage 2, 0.784; and SA-AKI stage
3, 0.925 (Figure 2). The ROC-AUC values of the other models were
as follows: Multinomial Mixture Model (Multinom), 0.760; Efficient
Neural Network (ENet), 0.759; Decision Tree (DT, 0.710; XGBoost,
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0.804; Multi-Layer Perceptron (MLP), 0.782; LightGBM, 0.750; and
k-Nearest Neighbor (KNN), 0.833 (Table 2, Figure 3). Comparison
between training and test sets showed similar AUC distributions
(Supplementary Figure 2, Table 1), highlighting the validity of the RF
model. These results indicate that the RF model not only outperforms
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other algorithms but also maintains consistent discriminative ability
across all AKIT stages.

Interpretability analysis

Features were ranked by SHAP values in descending order, which
helps analyze the occurrence of AKI and display the importance of
different predictive variables across groups. Figure 4 shows the top
eight important features, while Figure 5 presents the SHAP bee swarm
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plot for four groups Each patient’s feature is depicted as a dot, with
colors reflecting attribution values: red for higher values and blue for
lower values. Urine output, BMI, SOFA score, and maximum blood
urea nitrogen were the most important factors across groups. The
importance of different features varied among groups; for example,
the importance of SOFA score and minimum anion gap was positively
correlated with AKI stage severity.

The SHAP force plot (Figure 6) helps understand local
interpretability (i.e., individual patients) by showing how features
contribute to the prediction for a particular patient. The force plot
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on the prediction.

The force plot of the RF model visualizes the result for a randomly selected patient from the four groups. The base value represents the average
predicted outcome, with feature values and names listed at the bottom of the plot. Features are sorted from the center outward based on their impact

displays whether a feature promotes or inhibits the prediction
outcome and shows its relative strength, providing explicit guidance
for clinical diagnosis and treatment.

The SHAP dependence plot (Supplementary Figures 3-5) displays
the interaction effects between features, showing how two primary
features influence each other.

Discussion

This study involved screening data from the MIMIC-IV database
to examine multiple indicators of sepsis patients within the first 24 h
of ICU admission and their associations with the occurrence and
progression of AKI. Currently, dozens of studies on sepsis use this
database to construct ML models, making our use of the same data
reasonable and feasible (20-22).

We used univariable and multivariable analyses to identify 16
early clinical parameters for developing and validating the prediction
model. The results showed that the RF model exhibited better
discrimination and calibration capabilities than other ML algorithms.
Compared with traditional logistic regression or simple scoring
systems, our multi-class RF model integrates multiple routinely
collected clinical indicators and provides more accurate and granular
risk stratification, which enhances its potential for bedside application.
To investigate how these features influence RF algorithm decisions,
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we used SHAP to interpret predictions. The SHAP bee swarm plots
illustrated the importance of features across the different groups, while
the dependence plots demonstrated feature relationships and their
effect on model measurement. Additionally, SHAP force plots and
waterfall plots illustrated how the model locally explained the
relationship between feature and sepsis prediction.

SA-AKI is a sepsis complication with high mortality. Although
several novel biomarkers for detecting kidney injury and predicting
AKI development—such as NGAL, KIM-1, cystatin C, and IL-18—
have been discovered, they are still insufficiently sensitive for early
detection, which makes the exploration of early prediction of SA-AKI
irreplaceable (5). Our approach leverages only standard clinical and
laboratory data available within 24 h of ICU admission, avoiding the
need for costly or time-consuming biomarker testing, and thus
increasing its feasibility in routine critical care settings.

With the development of artificial intelligence, ML models have
become increasingly important tools in medical research. ML
automatically learns patterns and features from large datasets and
generates prediction and decision models to make predictions for new
data. Previous studies have predominantly used binary classification
to predict whether SA-AKI occurs, but the severity classification of
AKI is crucial for treatment and prognosis. Studies have shown that
the higher the AKI stage, the greater the likelihood of requiring renal
replacement therapy, and the higher the mortality rate (23). Therefore,
this study adopted a multi-class classification approach to predict AKI
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KDIGO stages, which aligns better with treatment guideline variations
for patients at different KDIGO stages and has greater clinical
application potential. By simultaneously predicting all KDIGO stages,
our model provides clinicians with a more refined tool for
individualized risk assessment and early intervention planning.

An important concern in ML is the black-box issue, where early
studies lacked explanations of ML models—how input variables affect
model results, and to what extent are often unknown. This is one of
the major barriers to clinical application. This study used SHAP to
visualize and interpret the multi-class results, allowing us to see how
features impact each stage of the model. Another advantage of SHAP
is comparing changes in feature importance across different AKI
stages, which offers a deeper understanding of how feature importance
changes with disease severity and helps guide targeted treatment. For
example, for a patient predicted to have a high risk of stage 2-3 AKI,
SHAP analysis identified low urine output, elevated BMI, high SOFA
score, and increased maximum BUN as the top contributing factors.
This explanation helps clinicians understand why the model predicts
high risk and facilitates targeted interventions, such as closer
monitoring of renal function or adjustment of fluid and medication
management. This combination of multi-class modeling and
interpretable AI not only improves predictive performance but also
enhances clinical trust and facilitates translation into practice.

Recent studies indicate that a high BMI is associated with the early
occurrence of SA-AKI and correlates with its severity, which was also
confirmed by our model. Further, by introducing SHAP, the impact of
high BMI on SA-AKI occurrence was quantified and visualized (24).
Multivariate regression analyses have identified SOFA score as an
independent risk factor for persistent severe SA-AKI, which is
consistent with the predictions of our model (25). In addition, previous
studies have determined 12 risk factors associated with early SA-AKI
development, including age, BMI, and urine output—key features also
captured by our model (26). Since SOFA score was introduced to
define sepsis, numerous studies have either modified it or combined it
with other biomarkers for prediction (27, 28). By integrating ML with
large and complex datasets, our model demonstrated that SOFA score
is one of the important influencing factors (Figure 5). SOFA score
ranked second in importance in the KDIGO stage 3 model, while
ranking lower in the other three models, suggesting that its accuracy
in predicting patients with different severity levels should
be considered when using the SOFA score, thus underscoring the
importance of a multi-class model for predicting SA-AKI.

Nonetheless, this study has certain limitations. The MIMIC-IV
database originates from a single U. S. center, which may limit
generalizability to other regions or populations, and the use of
imputation for missing data could introduce bias. Additionally, the
model has not been externally validated, which may affect its robustness.
We also only used the minimum and maximum values within the first
24 h, potentially overlooking important temporal dynamics. Future
work will focus on external validation in multi-center prospective
cohorts across different regions and populations, exploration of novel
biomarkers, incorporation of continuous time-series data (e.g., dynamic
trends of creatinine and urine output) to capture temporal patterns of
disease progression, and assessment of the model in real ICU settings.
These improvements aim to enhance predictive accuracy, clinical
applicability, and the robustness of our findings, while helping identify
optimal time-points for stage-specific clinical interventions.
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Conclusion

This research effectively established robust machine learning
models for predicting stages of AKI in severely ill sepsis patients, with
the RF model exhibiting optimal performance. Through the
application of SHAP analysis, critical risk factors such as urine output,
body mass index, SOFA score, and peak blood urea nitrogen were
identified, highlighting the potential for personalized risk assessment.
These results lay the groundwork for early interventions, supporting
improved management and survival outcomes in sepsis patients.
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Glossary

AKI - Acute kidney injury

DT - Decision Tree

Enet - efficient Neural Network

KNN - K-Nearest Neighbor

LightGBM - Light Gradient Boosting Machine
MLP - Multi-Layer Perceptron

Multinom - Multinomial Mixture Model

RF - Random Forest

XGBoost - eXtreme Gradient Boosting

SA-AKI - Acute kidney injury associated with sepsis

ADQI - Acute Disease Quality Initiative
ML - machine learning

SHAP - Shapley Additive exPlanations

Frontiers in Medicine

12

10.3389/fmed.2025.1667488

SQL - Structured Query Language

SOFA - Sequential Organ Failure Assessment
SMOTE - Synthetic Minority Oversampling Technique
Bal Accuracy - Balanced Accuracy

F Meas - F Measure

J index - Jaccard index

Kap - Kappa

MCC - Matthews Correlation Coefficient
NPV - Negative Predictive Value

PPV - Positive Predictive Value

AUC - Area Under the Curve

Sens - Sensitivity

Spec - Specificity
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