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Background: Osteoporotic vertebral compression fractures (OVCFs) pose 
a significant health burden in older adult populations, with postoperative re-
fracture (re.fra) complicating recovery. Existing models (e.g., FRAX, QFracture) 
inadequately address comorbidities and modifiable lifestyle factors. This 
study aimed to develop and validate a novel nomogram integrating these 
underrecognized yet critical predictors for personalized risk stratification.
Methods: A retrospective cohort of 560 older adult OVCF patients undergoing 
percutaneous vertebroplasty (PVP) was analyzed. Patients were randomly divided 
into training (70%, n = 392) and testing (30%, n = 168) cohorts. Univariable and 
backward stepwise multivariable logistic regression identified independent re.fra 
predictors. A nomogram was developed and internally validated using area under 
the curve (AUC), calibration curves (slopes, intercepts), Brier scores, and decision 
curve analysis (DCA) to assess discrimination, calibration, and clinical utility.
Results: Independent predictors included tumor history [adjusted odds ratio 
(aOR) = 12.29, 95% CI: 2.50–60.35], scoliosis (aOR = 6.46, 95% CI: 2.97–14.03), 
mental disorders (aOR = 5.91, 95% CI: 2.73–12.82), alcohol use ≥10 years 
(aOR = 3.69, 95% CI: 1.90–7.17), and chronic kidney disease (aOR = 3.12, 95% 
CI: 1.61–6.06). Hypertension exhibited a paradoxical protective association 
(aOR = 0.50, 95% CI: 0.27–0.93). The nomogram demonstrated strong 
discrimination [AUC:0.886 (training), 0.827 (testing)], excellent calibration 
in training (slope = 1.000, Brier = 0.118) with slight deviation in testing 
(slope = 0.697, Brier = 0.162), and superior net benefit over treat-all/none 
strategies across thresholds (DCA).
Conclusion: This validated nomogram integrates often-overlooked 
comorbidities and lifestyle factors to predict post-PVP re.fra risk, providing a 
practical tool for personalized management and highlighting the need for 
multidisciplinary care in high-risk subgroups such as those with scoliosis, mental 
disorders, or prolonged alcohol use. The intriguing protective association of 
hypertension, however, requires cautious interpretation and further investigation 
before clinical application.
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Introduction

OVCFs pose a significant global health burden, especially in 
the older adult, with prevalence rising in tandem with aging 
populations. As the most common manifestation of osteoporotic 
fractures, OVCFs often lead to debilitating pain, spinal deformity, 
and increased mortality, profoundly impairing quality of life and 
imposing significant socioeconomic costs (1). PVP is a widely 
used minimally invasive intervention for OVCFs that do not 
respond to conservative treatment, providing rapid pain relief 
and vertebral stabilization (2). However, postoperative re.fra—
occurring in up to 52% of older adult patients—remain a critical 
complication (3), necessitating repeat interventions and 
exacerbating morbidity.

Existing studies have identified demographic, and treatment-
related risk factors for OVCF re.fra, including advanced age, low bone 
mineral density (BMD), cement leakage et al. (4, 5). However, the 
influence of age-related comorbidities and modifiable lifestyle factors 
on OVCF re.fra risk remains poorly understood. Chronic conditions 
such as diabetes mellitus (DM), CKD, mental disorders, and lifestyle 
factors like prolonged alcohol use are prevalent in older adult 
populations and may synergistically exacerbate skeletal fragility (6–8). 
Notably, prior predictive models often overlook these multifactorial 
interactions, relying instead on limited variables without robust 
validation, thereby hindering clinical utility.

This study aimed to develop and validate a nomogram that 
integrates both traditional and novel risk factors—including 
comorbidities and lifestyle variables—to predict re.fra risk in older 
adult OVCF patients following PVP. Using a large retrospective 
cohort, we identified key predictors and constructed a clinically 
actionable tool for personalized risk stratification. Our model 
emphasizes a holistic view of bone health in the older adult, with 
implications for international clinical practice and 
resource allocation.

Methods

Study design and cohort selection

This retrospective cohort study enrolled 560 patients 
diagnosed with OVCF who underwent PVP between August 1, 
2015 and December 31, 2024 at a tertiary medical center. The 
study cohort comprised 560 patients who underwent surgical 
intervention for OVCF. Patients were divided into a training set 
(n = 392, 70%) and a testing set (n = 168, 30%) using a random 
sampling method to ensure balanced distribution of baseline 
characteristics. Inclusion criteria were: (1) age ≥50 years, (2) 
confirmed diagnosis of OVCF based on radiographic evidence, 
and (3) availability of complete clinical and follow-up data. 
Exclusion criteria included: (1) pathological fractures due to 
malignancy, (2) previous spinal surgery, and (3) incomplete 
medical records. This study was ethically approved by the 
institutional review committee of Jining Medical College 
(Approval No. 2024-08-C024). The studies were conducted in 
accordance with the local legislation and institutional 
requirements. The participants provided their written informed 
consent to participate in this study.

Data collection and variables

Baseline demographic and clinical variables were extracted from 
electronic health records, including age, sex, occupation, insurance 
status, comorbidities [hypertension, DM, chronic obstructive 
pulmonary disease, CKD, mental disorders, scoliosis (defined by a 
Cobb angle ≥10° on standardized spinal radiographs, as confirmed 
by orthopedic surgeons or radiologists), and tumor history (defined 
as a history of benign tumors or previously treated and currently 
non-metastatic malignant tumors; patients with active malignancy 
or metastatic spinal disease were excluded as per exclusion criteria)], 
and lifestyle factors [alcohol use ≥10 years (defined as a history of 
regular alcohol consumption sustained for more than 10 years, based 
on retrospective electronic health record review; documented 
occasional or social drinking without sustained habit was excluded)]. 
Missing values were addressed using predictive mean matching, a 
multiple imputation method preserving data distribution integrity 
(9). OVCF re.fra was defined as a new vertebral fracture occurring 
within 24 months after PVP, confirmed by two independent 
radiologists. The follow-up period for all included patients ranged 
from 24 to 36 months. Variables were standardized using predefined 
criteria [e.g., hypertension: systolic/diastolic blood pressure 
≥140/90 mmHg (10)].

Statistical analysis

Baseline characteristics and group comparison
Continuous variables were reported as mean ± standard deviation 

and compared using Student’s t-test if normally distributed; otherwise, 
the Mann–Whitney U test was used. Normality was assessed using the 
Shapiro–Wilk test. Categorical variables (e.g., comorbidities) were 
expressed as frequencies (%) and analyzed via Pearson’s chi-square or 
Fisher’s exact test. A p-value >0.05 indicated no significant imbalance 
between training and testing sets, except for prespecified variables 
(DM, mental disorders), which were retained for adjustment in 
subsequent analyses.

Risk factor identification
Univariable logistic regression was performed to assess 

associations between candidate variables and OVCF re.fra. Variables 
with p < 0.10  in univariable analysis were included in a backward 
stepwise multivariable logistic regression model. aOR with 95% 
confidence intervals (CI) were computed.

Nomogram development
A nomogram was constructed based on the final multivariable 

model, with points assigned to each predictor proportional to its 
regression coefficient. Total points were converted to predicted OVCF 
re.fra probabilities using a linear predictor scale. The nomogram’s 
discriminative ability was visualized by mapping point ranges to 
probability thresholds (1–97%).

Model performance evaluation
Model discrimination was assessed via AUC. Calibration was 

evaluated using calibration curves, the Hosmer–Lemeshow test, and 
Brier scores (lower values indicate better accuracy). DCA quantified 
clinical utility by comparing net benefits across threshold probabilities 
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(11). Since DCA can display the false- and the true-positive fractions 
as functions of the risk threshold, it compensates for deficiency of 
receiver operating characteristic (ROC) curves (12).

Validation strategy
Internal validation was conducted by evaluating model 

performance in the testing set. Overfitting was assessed by 
comparing training and testing AUCs, with a ΔAUC <0.10 deemed 
acceptable. All analyses were performed using R 4.3.0 (packages: 
rms, pROC, rmda), with two-tailed p < 0.05 considered 
statistically significant.

Results

Baseline characteristics of the cohort

The study cohort comprised 560 patients with OVCF, divided into 
a training set (n = 392, 70%) and a testing set (n = 168, 30%). Baseline 
characteristics were well-balanced between the two sets, with no 
significant differences in most demographic and clinical variables (all 
p > 0.05, Table 1). The mean age of the cohort was 69.91 ± 6.77 years, 
with a slightly higher proportion of females (54.5%) compared to 
males (45.5%). The majority of the patients were retirees (73.0%) and 
had health insurance coverage (94.8%). Key comorbidities included 
hypertension (62.1%), DM (42.3%), chronic obstructive pulmonary 
disease (54.8%), and CKD (29.5%). Notably, the prevalence of OVCF 
re.fra was consistent across the training (31.6%) and testing sets 
(38.1%, p = 0.166), ensuring comparable risk profiles for model 
development and validation. However, significant imbalances were 
observed in DM and mental disorders, with higher prevalence in the 
validation set (DM: 49.4% vs. 39.3%, p = 0.033; mental disorders: 
29.8% vs. 21.2%, p = 0.038). These findings suggest that the training 
and validation sets were generally well-balanced for most baseline 
characteristics, though the observed disparities in DM and mental 
disorders warrant consideration in subsequent analyses to mitigate 
potential confounding effects.

Independent risk factors for postoperative 
OVCF re.fra

Univariable and multivariable logistic regression analyses were 
performed to identify factors associated with OVCF re.fra. In 
univariable analysis, significant predictors included alcohol use for 
≥10 years (OR = 2.02, 95% CI: 1.30–3.15, p = 0.002), hypertension 
(OR = 0.41, 95% CI: 0.26–0.63, p < 0.001), mental disorders 
(OR = 7.92, 95% CI: 4.63–13.55, p < 0.001), scoliosis (OR = 15.28, 
95% CI: 8.30–28.15, p < 0.001), CKD (OR = 6.05, 95% CI: 3.76–9.74, 
p < 0.001), and tumor history (OR = 3.15, 95% CI: 0.98–10.12, 
p = 0.054). After adjustment in the multivariable model, alcohol use 
for ≥10 years (aOR = 3.69, 95% CI: 1.90–7.17, p < 0.001), mental 
disorders (aOR = 5.91, 95% CI: 2.73–12.82, p < 0.001), scoliosis 
(aOR = 6.46, 95% CI: 2.97–14.03, p < 0.001), CKD (aOR = 3.12, 95% 
CI: 1.61–6.06, p < 0.001), and tumor history (aOR = 12.29, 95% CI: 
2.50–60.35, p = 0.002) remained independently associated with OVCF 
re.fra. Hypertension retained significance but with reduced effect size 
(aOR = 0.50, 95% CI: 0.27–0.93, p = 0.028) (Table 2).

TABLE 1  Baseline characteristics of the study population in the training 
and testing sets.

Clinical 
variables

Overall Testing 
set

Training 
set

p

N = 560 N = 168 N = 392

Sex (%)

 � Male 255 (45.5) 77 (45.8) 178 (45.4) >0.999

 � Female 305 (54.5) 91 (54.2) 214 (54.6)

Age (mean ± SD) 69.91 ± 6.77 69.96 ± 6.79 69.89 ± 6.77 0.909

Career (%)

 � Farmer 151 (27.0) 45 (26.8) 106 (27.0) >0.999

 � Retire 409 (73.0) 123 (73.2) 286 (73.0)

Smoking_gte_10a (%)

 � No 361 (64.5) 109 (64.9) 252 (64.3) 0.969

 � Yes 199 (35.5) 59 (35.1) 140 (35.7)

Alcohol_gte_10a (%)

 � No 376 (67.1) 112 (66.7) 264 (67.3) 0.953

 � Yes 184 (32.9) 56 (33.3) 128 (32.7)

Health insurance (%)

 � No 29 (5.2) 9 (5.4) 20 (5.1) >0.999

 � Yes 531 (94.8) 159 (94.6) 372 (94.9)

OP_lte_1 (%)

 � No 292 (52.1) 82 (48.8) 210 (53.6) 0.346

 � Yes 268 (47.9) 86 (51.2) 182 (46.4)

Hyp (%)

 � No 212 (37.9) 55 (32.7) 157 (40.1) 0.124

 � Yes 348 (62.1) 113 (67.3) 235 (59.9)

DM (%)

 � No 323 (57.7) 85 (50.6) 238 (60.7) 0.033

 � Yes 237 (42.3) 83 (49.4) 154 (39.3)

COPD (%)

 � No 253 (45.2) 77 (45.8) 176 (44.9) 0.911

 � Yes 307 (54.8) 91 (54.2) 216 (55.1)

ST (%)

 � No 318 (56.8) 91 (54.2) 227 (57.9) 0.468

 � Yes 242 (43.2) 77 (45.8) 165 (42.1)

P.ST (%)

 � No 423 (75.5) 122 (72.6) 301 (76.8) 0.345

 � Yes 137 (24.5) 46 (27.4) 91 (23.2)

CHD (%)

 � No 316 (56.4) 90 (53.6) 226 (57.7) 0.424

 � Yes 244 (43.6) 78 (46.4) 166 (42.3)

PCI (%)

 � No 480 (85.7) 146 (86.9) 334 (85.2) 0.693

 � Yes 80 (14.3) 22 (13.1) 58 (14.8)

Trauma (%)

 � No 330 (58.9) 96 (57.1) 234 (59.7) 0.639

(Continued)
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Nomogram for OVCF re.fra risk prediction

Nomograms for predicting OVCF re.fra risk were constructed 
based on the multivariable logistic regression model (Figures 1A,B). 
Key predictors included alcohol use for ≥10 years, hypertension, 
mental disorders, tumor history, scoliosis, and CKD. Each variable 
was assigned a weighted point score proportional to its regression 
coefficient. The total points derived from individual predictors were 
mapped to a linear predictor scale and corresponding OVCF re.fra 
probability. For example, a total score of 310 points translated to a 
predicted probability of 0.899 (89.9%). The probability scale ranged 
from 0.01 (1%) at 100 points to 0.97 (97%) at 350 points, demonstrating 
the model’s discriminative capacity across a wide risk spectrum.

Predictive performance of the model

The predictive performance of the model was evaluated using 
ROC curve analysis for both the training and testing datasets 
(Figures 2A,B). In the training set, the model demonstrated excellent 
discriminative ability, with an AUC of 0.886. This high AUC value 

indicates strong predictive accuracy in distinguishing between 
individuals with and without OVCF re.fra within the training cohort. 
The model’s performance was further validated in the testing set, 
where it achieved an AUC of 0.827. Although slightly lower than the 
training set, this AUC value still reflects good predictive performance, 
suggesting that the model generalizes well to the unknown data. The 
minimal reduction in performance (ΔAUC = 0.059) implies no 
substantial overfitting, underscoring the model’s stability and 
clinical applicability.

Calibration of the prediction model

The calibration of the prediction model was assessed using 
calibration curves for both the training and testing sets (Figures 3A,B). 
In the training set, the model demonstrated excellent calibration, with 
a calibration slope of 1.000 and an intercept of 0.000, indicating near-
perfect agreement between predicted and observed probabilities. The 
Brier score, a measure of overall model accuracy, was 0.118, further 
supporting the model’s strong predictive performance. In the testing 
set, the model maintained good calibration, though with a slight 
decrease in performance compared to the training set. The calibration 
slope was 0.697, and the intercept was 0.095, suggesting minor 
deviations from ideal calibration. The Brier score increased to 0.162, 
reflecting a modest reduction in accuracy. Despite this, the model 
retained strong discriminatory power and reasonable calibration in 
the independent validation cohort.

These patterns may reflect the testing set’s higher prevalence of 
diabetes (49.4% vs. 39.3%) and mental disorders (29.8% vs. 21.2%), 
which could amplify risk in high-risk subgroups. Importantly, despite 
these calibration deviations, the model maintains strong 
discriminative ability (AUC = 0.827) and clinical utility across all 
thresholds (DCA in Figure 4), suggesting limited practical impact on 
risk stratification.

Clinical utility of the prediction model

The clinical utility of the prediction model was evaluated using 
DCA across the training and testing sets (Figure 4). In the training set, 
the model demonstrated a consistently higher net benefit compared 
to the “treat all” and “treat none” strategies across most threshold 
probabilities, particularly in the range of 0.1 to 0.8. Similarly, in the 
testing set, the model maintained a higher net benefit over a wide 
range of thresholds, although the net benefit was slightly lower 
compared to the training set. The DCA highlights that the prediction 
model provides significant clinical value across a broad spectrum of 
risk thresholds, enabling clinicians to tailor interventions based on 
individualized risk assessments.

The model demonstrated strong discriminative ability in both 
cohorts, with an area under the curve (AUC) of 0.886 (95% CI: 0.850–
0.922) in the training cohort and 0.827 (95% CI: 0.762–0.893) in the 
validation cohort. Further evaluation through decision curve analysis, 
plotting net benefit for the training set (solid line), testing set (dashed 
line), and reference strategies (“All” and “None”), revealed superior 
clinical utility across the 0.1–1.0 risk threshold range. This confirms 
its potential for guiding clinical decisions within clinically relevant 
probability thresholds.

TABLE 1  (Continued)

Clinical 
variables

Overall Testing 
set

Training 
set

p

N = 560 N = 168 N = 392

 � Yes 230 (41.1) 72 (42.9) 158 (40.3)

Mental (%)

 � No 427 (76.2) 118 (70.2) 309 (78.8) 0.038

 � Yes 133 (23.8) 50 (29.8) 83 (21.2)

Ost (%)

 � No 332 (59.3) 105 (62.5) 227 (57.9) 0.358

 � Yes 228 (40.7) 63 (37.5) 165 (42.1)

Gout (%)

 � No 535 (95.5) 162 (96.4) 373 (95.2) 0.655

 � Yes 25 (4.5) 6 (3.6) 19 (4.8)

Tumor (%)

 � No 542 (96.8) 162 (96.4) 380 (96.9) 0.958

 � Yes 18 (3.2) 6 (3.6) 12 (3.1)

Scoliosis (%)

 � No 269 (48.0) 78 (46.4) 191 (48.7) 0.685

 � Yes 291 (52.0) 90 (53.6) 201 (51.3)

Operating (%)

 � No 531 (94.8) 155 (92.3) 376 (95.9) 0.114

 � Yes 29 (5.2) 13 (7.7) 16 (4.1)

CKD (%)

 � No 395 (70.5) 118 (70.2) 277 (70.7) >0.999

 � Yes 165 (29.5) 50 (29.8) 115 (29.3)

re.fra (%)

 � No 372 (66.4) 104 (61.9) 268 (68.4) 0.166

 � Yes 188 (33.6) 64 (38.1) 124 (31.6)
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TABLE 2  Univariate and multivariate logistic regression analysis of factors associated with risk factors for refracture.

Characteristics No (N = 268) Yes (N = 124) Univariable Multivariable

OR 95% CI p OR 95% CI p

Sex

 � Male 125 (46.6%) 53 (42.7%)

 � Female 143 (53.4%) 71 (57.3%) 1.17 0.76–1.80 0.471

Age (mean ± SD) 70.1 ± 6.5 69.5 ± 7.4 0.99 0.96–1.02 0.444

Career

 � Farmer 72 (26.9%) 34 (27.4%)

 � Retire 196 (73.1%) 90 (72.6%) 0.97 0.60–1.57 0.909

Smoking_gte_10a

 � No 174 (64.9%) 78 (62.9%)

 � Yes 94 (35.1%) 46 (37.1%) 1.09 0.70–1.70 0.698

Alcohol_gte_10a

 � No 194 (72.4%) 70 (56.5%)

 � Yes 74 (27.6%) 54 (43.5%) 2.02 1.30–3.15 0.002 3.69 1.90–7.17 0.001

Health insurance

 � No 12 (4.5%) 8 (6.5%)

 � Yes 256 (95.5%) 116 (93.5%) 0.68 0.27–1.71 0.411

OP_lte_1

 � No 176 (65.7%) 34 (27.4%)

 � Yes 92 (34.3%) 90 (72.6%) 5.06 3.17–8.09 0.001 1.06 0.48–2.34 0.881

Hyp

 � No 89 (33.2%) 68 (54.8%)

 � Yes 179 (66.8%) 56 (45.2%) 0.41 0.26–0.63 0.001 0.5 0.27–0.93 0.028

DM

 � No 200 (74.6%) 38 (30.6%)

 � Yes 68 (25.4%) 86 (69.4%) 6.66 4.16–10.66 0.001 1.53 0.74–3.16 0.252

COPD

 � No 110 (41%) 66 (53.2%)

 � Yes 158 (59%) 58 (46.8%) 0.61 0.40–0.94 0.025 0.61 0.33–1.10 0.101

ST

 � No 149 (55.6%) 78 (62.9%)

 � Yes 119 (44.4%) 46 (37.1%) 0.74 0.48–1.14 0.17

P.ST

 � No 224 (83.6%) 77 (62.1%)

 � Yes 44 (16.4%) 47 (37.9%) 3.11 1.91–5.05 0.001 1.02 0.48–2.14 0.965

CHD

 � No 189 (70.5%) 37 (29.8%)

 � Yes 79 (29.5%) 87 (70.2%) 5.63 3.53–8.96 0.001 1.47 0.71–3.02 0.297

PCI

 � No 232 (86.6%) 102 (82.3%)

 � Yes 36 (13.4%) 22 (17.7%) 1.39 0.78–2.48 0.265

Trauma

 � No 195 (72.8%) 39 (31.5%)

 � Yes 73 (27.2%) 85 (68.5%) 5.82 3.66–9.27 0.001 1.69 0.90–3.17 0.1

(Continued)
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TABLE 2  (Continued)

Characteristics No (N = 268) Yes (N = 124) Univariable Multivariable

OR 95% CI p OR 95% CI p

Mental

 � No 242 (90.3%) 67 (54%)

 � Yes 26 (9.7%) 57 (46%) 7.92 4.63–13.55 0.001 5.91 2.73–12.82 0.001

Ost

 � No 154 (57.5%) 73 (58.9%)

 � Yes 114 (42.5%) 51 (41.1%) 0.94 0.61–1.45 0.793

Gout

 � No 257 (95.9%) 116 (93.5%)

 � Yes 11 (4.1%) 8 (6.5%) 1.61 0.63–4.11 0.318

Tumor

 � No 263 (98.1%) 117 (94.4%)

 � Yes 5 (1.9%) 7 (5.6%) 3.15 0.98–10.12 0.054 12.29 2.50–60.35 0.002

Scoliosis

 � No 177 (66%) 14 (11.3%)

 � Yes 91 (34%) 110 (88.7%) 15.28 8.30–28.15 0.001 6.46 2.97–14.03 0.001

Operating

 � No 258 (96.3%) 118 (95.2%)

 � Yes 10 (3.7%) 6 (4.8%) 1.31 0.47–3.69 0.607

CKD

 � No 222 (82.8%) 55 (44.4%)

 � Yes 46 (17.2%) 69 (55.6%) 6.05 3.76–9.74 0.001 3.12 1.61–6.06 0.001

#For univariate logistic regression, the p-value threshold was set at p < 0.1 for variable inclusion, while for multivariate analysis, the threshold was p < 0.05. #The included variables were: 
Alcohol_gte_10a, Hyp, mental, tumor, scoliosis, and CKD.

FIGURE 1

Nomogram for predicting the risk of refracture. (A) The nomogram illustrates the contribution of each predictor (e.g., Alcohol_gte_10a, hypertension, 
mental health, tumor, scoliosis, and CKD) to the total points, which are then mapped to the linear predictor and the corresponding risk probability. The 
“No” and “Yes” options for each predictor indicate the absence or presence of the condition, respectively. Higher total points correlate with an 
increased risk of the outcome. (B) Individual nomogram displaying the detailed point allocation for each predictor, with asterisks denoting the statistical 
significance of variables (*p < 0.05, **p < 0.01, and ***p < 0.001). The bottom axis shows the total points, which are converted to the predicted 
probability of the refracture, with an example calculation (310 points ≈89.9% risk).
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Discussion

This study developed and validated a nomogram to predict 
postoperative re.fra risk in patients with OVCF undergoing surgical 

intervention. By analyzing a cohort of 560 patients, we  identified 
several independent risk factors, including alcohol use ≥10 years, 
mental disorders, scoliosis, CKD, and tumor history. The model 
demonstrated strong discriminative performance (AUC: 0.886  in 

FIGURE 2

ROC curves for model performance evaluation. (A) ROC curve of the training set with an AUC of 0.886. The x-axis represents the false positive rate 
(1-specificity), and the y-axis denotes the true positive rate (sensitivity). The diagonal dashed line indicates a reference performance (AUC = 0.5). 
Numerical labels (0.00, 0.25, 0.50, 0.75, 1) correspond to key thresholds for specificity and sensitivity. (B) ROC curve of the independent testing set, 
showing an AUC of 0.827. The reduced AUC compared to the training set suggests the model’s generalizability. Threshold values (0.00, 0.25, 0.50, 0.75, 
1) align with standard ROC interpretation.

FIGURE 3

Calibration plots and performance metrics for model validation. (A) Calibration plot of the training set, comparing actual versus predicted probabilities. 
Key metrics include Somers’ Dxy (0.772), C-index (ROC = 0.886), R2 (0.544), and Brier score (0.118). The logistic calibration curve (solid line) and 
nonparametric ideal line (dashed) demonstrate model fit. Slope (1.000) and intercept (0.000) indicate minimal calibration drift. Additional metrics 
(Emax = 0.062, E90 = 0.045, Eavg = 0.022) reflect small calibration errors. (B) Moderate agreement between predicted and observed OVCF re.fra 
probabilities, with a calibration slope of 0.697 (ideal = 1.000), Brier score of 0.162, and integrated calibration index (Eavg = 0.048), reflecting an average 
4.8% deviation between predictions and outcomes. While the model retained clinical utility (Brier <0.2), significant slope deviation (0.697 vs. 1.0) and 
intercept shift (0.095) indicated overfitting and systematic overestimation in high-risk subgroups (predicted probabilities >0.3), as evidenced by 
nonparametric calibration divergence and elevated errors (Emax = E90 = 0.108, Eavg = 0.048). The Spiegelhalter test (S: p = 0.007) and reduced 
discrimination metrics (Dxy = 0.654, C-index = 0.827, R2 = 0.350) further underscored the need for recalibration to improve accuracy in high-risk 
populations. These deviations primarily occur in two regions: (1) For predicted probabilities <0.3, the model shows slight overestimation of risk 
(observed events were ~10% lower than predicted), likely due to fewer low-risk cases in our cohort; (2) At higher predicted probabilities (0.7–0.9), 
we observe modest underestimation, where actual event rates exceeded predictions by ~8%.
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training, 0.827 in testing), good calibration, and significant clinical 
utility across a wide range of risk thresholds. These findings 
underscore the model’s potential to guide personalized postoperative 
management and preventive strategies in high-risk populations.

The rationality and robustness of Nomotus 
construction

Our nomogram was developed using established clinical 
prediction model methods, incorporating multivariable logistic 
regression to combine independent predictors into a user-friendly 
visual tool. This approach is supported by prior studies demonstrating 
the utility of nomograms in refracture risk prediction (13, 14). Our 
model incorporates six clinically significant predictors, including both 
modifiable (e.g., alcohol use) and non-modifiable (e.g., scoliosis) 
factors, aligning with previous research highlighting their roles in 
bone health and fracture risk (15). The inclusion of novel factors such 
as mental disorders and tumor history, alongside traditional variables 
like CKD and scoliosis, enhances the model’s specificity and predictive 
granularity, addressing a critical gap in existing tools that often 
overlook these factors. The nomogram’s robust performance is 
evidenced by high AUC values (0.886 in the training set and 0.827 in 
the testing set), acceptable calibration (Brier scores: 0.118–0.162), and 
minimal overfitting (ΔAUC = 0.059), which are comparable to or 
exceed those of widely used models like fracture risk assessment tool 
(16) and QFracture (17). These metrics underscore the model’s 
generalizability and clinical applicability, consistent with guidelines 
for transparent and reproducible predictive modeling (18). By 
translating complex statistical outputs into actionable risk 
probabilities, this nomogram provides a practical tool for tailored 
interventions in patients post-PVP.

Interpretation of key risk factors

This study identified a history of neoplasms as a critical risk factor 
for OVCF re.fra, demonstrating an exceptionally high aOR of 12.29 
(95% CI: 2.50–60.35, p = 0.002). Probably involves the following 

mechanisms: (1) direct tumor-mediated bone destruction through 
receptor activator of NF-κB ligand/osteoprotegerin axis dysregulation, 
increasing osteoclast activity and (2) treatment-induced skeletal 
damage, where Chemotherapy can be  affected on physiological 
function of movement system and the skeleton construction. Mineral 
status disorders and skeletal changes lead to secondary forms of 
osteopenia and osteoporosis which would increase the risk of fracture 
(19, 20). However, the limited subgroup sizes (n = 18 with tumors). 
Future studies should prioritize multicenter cohorts to expand tumor 
subgroup analyses, integrate longitudinal receptor activator of nuclear 
factor-kappa B ligand/osteoprotegerin monitoring with imaging, 
elucidate chemotherapy-induced osteotoxicity mechanisms, and test 
multimodal interventions (antiresorptives, tailored exercise, 
nutritional support) for fracture prevention in cancer survivors. 
Clinical protocols for post-PVP management must prioritize cancer 
survivors, implementing enhanced monitoring (biannual DXA with 
trabecular bone score) and early antiresorptive therapy [zoledronic 
acid reduced fracture risk by 10% in this subgroup (21)]. These 
findings underscore the need for oncology-orthopedics collaborative 
care models to address this high-risk population.

This study identified scoliosis as the most significant risk factor 
for OVCF re.fra except tumor history (aOR = 6.46, 95% CI: 2.97–
14.03, p < 0.001), exerting the profound impact through altered spinal 
biomechanics and uneven load distribution. The previous 
biomechanical studies emphasizing scoliosis as a critical important of 
vertebral stress redistribution (22). Scoliosis alters load distribution 
across adjacent vertebrae, increasing fracture susceptibility—a 
mechanism corroborated by Fang et al. (23), who reported scoliosis is 
an independent risk factor for re.fra after OVCF laminoplasty and a 
possible risk factor for re.fra after surgery. In osteoporotic patients, 
this mechanical instability is further exacerbated by reduced BMD, 
creating a synergistic risk environment (24, 25). The inclusion of 
scoliosis in our nomogram provides a critical tool for identifying high-
risk individuals, particularly those with severe degenerative scoliosis, 
who may benefit from targeted interventions. These interventions 
include bracing to redistribute spinal loads, physical therapy, and early 
osteoporosis prevention measures. Additionally, addressing 
malnutrition, which is common in the older adult and impairs bone 
healing, through adequate intake of protein, calcium, and vitamin D 
is crucial for bone health and fracture prevention (26).

Mental disorders merged as significant independent risk factors 
for OVCF re.fra, demonstrating a nearly six-fold increased risk 
(aOR = 5.91, 95% CI: 2.73–12.82, p < 0.001). This finding aligns with 
comprehensive meta-analyses indicating 51% higher fracture rates 
among psychiatric patients compared to the general population (27). 
Probably involves the following mechanisms: (1) pharmacological 
effects of psychotropic medications, particularly selective serotonin 
reuptake inhibitors, with longitudinal studies demonstrating 4–6% 
BMD reduction through anticholinergic-mediated osteoclast 
activation (28). (2) Behavioral consequences of mental illness, 
including poor adherence to anti-osteoporosis therapies and sedentary 
lifestyles, directly impair bone remodeling capacity (29). (3) 
Malnutrition and depression-induced endocrine alterations 
(depression is associated with decreased levels of gonadal hormones 
estrogen and testosterone, which are key regulators of bone formation) 
create a catabolic metabolic environment (28, 29). The high prevalence 
of mental disorders in our cohort (23.8%) underscores the critical 
need for integrated care models that simultaneously address 

FIGURE 4

DCA evaluating the clinical utility of the predictive model across 
different risk thresholds.
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psychiatric and bone health. Such models should incorporate routine 
bone density monitoring, fall prevention strategies, and medication 
reviews for patients receiving long-term psychotropic treatment. 
These findings emphasize the importance of multidisciplinary 
approaches in OVCF management to mitigate the substantial re.fra 
risk associated with mental health comorbidities.

This study identified prolonged alcohol consumption as a 
significant modifiable risk factor for OVCF re.fra, with an aOR of 3.69 
(95% CI: 1.90–7.17, p < 0.001). Probably involves the following 
mechanisms: chronic alcohol consumption exerts direct toxic effects 
on osteoblasts, suppressing bone formation as evidenced by reduced 
serum osteocalcin levels and histomorphometric findings of decreased 
trabecular bone volume and osteoid synthesis (30). Concurrently, 
alcohol disrupts calcium-regulating hormones: acute intoxication 
induces transient hypoparathyroidism, leading to hypocalcemia and 
hypercalciuria, while chronic abuse is associated with impaired 
vitamin D metabolism, including reduced serum levels of 
25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. This results in 
diminished intestinal calcium absorption and compensatory 
secondary hyperparathyroidism, which fails to adequately stimulate 
bone remodeling due to alcohol-induced skeletal resistance to 
parathyroid hormone. Additionally, malnutrition (e.g., low dietary 
calcium and protein intake), magnesium deficiency, and liver 
dysfunction exacerbate these effects by further impairing vitamin D 
activation, calcium homeostasis, and osteoblast function (31). 
Collectively, these pathways culminate in a low bone turnover state 
characterized by reduced bone formation and accelerated skeletal 
fragility. The elevated aOR in our surgical cohort compared to 
population-based studies (OR = 1.5–2.0) likely reflects synergistic 
interactions with perioperative risk factors. These findings emphasize 
the critical need for structured alcohol cessation programs in 
post-PVP care, particularly for patients with >10-year consumption 
history. It is worth mentioning that data on variables such as alcohol 
consumption were retrospectively collected from medical records, 
which may lack precise quantitative details. Therefore, future 
prospective studies will benefit from standardized tools that more 
accurately quantify alcohol intake.

Previous research has established complex associations between 
hypertension and bone metabolism, with multiple studies 
demonstrating a positive correlation between hypertension and lumbar 
spine BMD, however the results are conflicting (32). Epidemiological 
evidence suggests hypertensive patients face increased osteoporosis 
risk, potentially due to a similar pathogenetic etiology between 
hypertension and osteoporosis (33). However, our study revealed a 
paradoxical protective association between hypertension and OVCF 
re.fra risk (aOR = 0.50, 95% CI: 0.27–0.93, p = 0.028), potentially 
mediated through antihypertensive pharmacotherapy. This apparent 
contradiction may be explained by specific therapeutic interventions: 
thiazide diuretics demonstrate bone-protective effects through 
enhanced calcium homeostasis, showing 6.03% higher lumbar spine 
BMD in users compared to non-users (34), while calcium channel 
blockers may directly stimulate osteoblast activity (35). Furthermore, 
a bone metabolic mechanisms study demonstrat that thiazide diuretics’ 
direct osteoanabolic effects through NCC expression in osteoblasts, 
enhancing differentiation via increased Runx2/osteopontin expression 
and mineralized nodule formation (36). Nevertheless, this protective 
association should be interpreted with caution, as it may also stem 

from unmeasured confounders such as nutritional factors or vitamin 
D status, which were not fully adjusted for in our analysis. The potential 
mediating role of specific antihypertensive agents—particularly the 
purported skeletal benefits of thiazide diuretics—remains a compelling 
yet unverified hypothesis. Future studies should incorporate 
prospectively collected medication data to evaluate class-specific effects 
and include longitudinal biomarkers to disentangle direct and 
pharmacologically mediated effects. Until then, despite this observed 
association, clinical practice should maintain standard osteoporosis 
management for all OVCF patients, regardless of hypertension status.

Limitations

This study has several limitations: (1) As a single-center, 
retrospective study with only internal validation, the generalizability 
of the nomogram may be limited by regional variations in patient 
demographics, clinical practices, and healthcare systems; (2) the 
small sample size in certain subgroups—particularly tumor history 
(n = 18)—may lead to statistical instability and overestimation of 
effects, and unmeasured confounders such as nutritional status, 
medication adherence, and vitamin D levels might further influence 
refracture risk; these findings thus require cautious interpretation; 
(3) The model was developed and validated in a specific Chinese 
population, and its performance may be  influenced by genetic, 
lifestyle, dietary, or medical system differences in other regions. 
Thus, external validation in diverse international cohorts is essential 
before broader application.

Conclusion

This study developed and validated a clinically practical 
nomogram for predicting re.fra risk in older adult OVCF patients 
undergoing PVP, integrating both traditional and novel risk factors 
such as umor history, scoliosis, mental disorders, prolonged alcohol 
use and CKD. The model demonstrated robust discriminative 
performance, excellent calibration, and significant clinical utility 
across diverse risk thresholds. These findings highlight the critical 
interplay between comorbidities, lifestyle factors, and bone health, 
providing a tailored tool for risk stratification and personalized 
postoperative management. Future multicenter studies should further 
validate these predictors and explore targeted interventions to mitigate 
re.fra in high-risk populations.
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