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Background: BK polyomavirus (BKPyV) infection following kidney
transplantation results from over-suppression of cellular immunity. Currently,
there is no established, clinically applicable immunological assay that
comprehensively monitors cellular immune responses against BKPyV,
incorporating both cytokine production and T cell activation markers. Our
study aimed to comprehensively assess both cytokine production and surface
activation markers to differentiate kidney transplant recipients (KTR) with

low-level (<3,000 copies/mL) BKPyV viremia from those without viremia.

Methods: Thirty-six participants were enrolled, comprising KTR with (BK)
and without BKPyV viremia (nBK), alongside healthy controls (HC). Peripheral
blood mononuclear cells (PBMC) were stimulated using BKPyV viral capsid
protein-1 (VP1) or large-T-antigen (LTA), with and without CD28/CD49d co-
stimulatory antibodies. Outcomes included expression of IL-2, IFN-y, TNF-
a, CD25, CD134, CD137, and CD154. Candidate markers were evaluated by
calculating the area under the receiver operating characteristic curve (AUROC)
for diagnosing BKPyV viremia.

Results: VP1- or LTA-stimulated CD4% and CD8" T cells showed optimal
discriminatory power between BK and nBK groups when co-stimulated
with CD28/CD49d. VP1-stimulated CD4% cells differed significantly between
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groups in IL-2, TNF-a, CD25, and CD137, while CD8™ cells differed significantly
in IFN-y and CD25. LTA-stimulated CD4% cells showed significant differences
in TNF-a and CD25, and CD8* cells differed significantly in IFN-y and CD25.
LTA-stimulated CD4+TCD25% and CD8*FIFN-yT cells provided significant AUROC
values (0.823, 95%Cl 0.657-0.989, p = 0.030; and 0.833, 95%CI| 0.678-0.989,
p = 0.028, respectively) at a cutoff of > 0.2% positive cells.

Conclusion: LTA-stimulated CD4TCD25" and CD8'IFN-y™ T cells differentiated
KTR with and without low-level BKPyV viremia, representing promising markers

for early clinical diagnostics and future studies.
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Highlights

e Although several studies have demonstrated an association
between BK polyomavirus (BKPyV)-specific cellular immune
responses and BKPyV infection in kidney transplant recipients
(KTR), no immunological assays are currently established for
routine clinical use.

e This study comprehensively assessed BKPyV-specific cellular
immune responses by stimulating cells with viral capsid
protein-1 (VP1) and large T antigen (LTA), both with
and without CD28/CD49d co-stimulatory antibodies, and
evaluated cytokines (IL-2, IFN-y, TNF-a) as well as surface
markers of activated T cells (CD25, CD134, CD137, and
CD154) for their association with BKPyV viremia in KTR.
Only KTR with low-level (< 3,000 copies/mL) BKPyV viremia
were included to focus on the early clinical course of BKPyV
infection and to identify potential early immune markers.

e KTR with BKPyV viremia (BK group) exhibited significantly
lower percentages of positive cells for multiple markers
compared to healthy non-transplant controls (HC). Notably,
only LTA, in combination with CD28/CD49d co-stimulation,
demonstrated sufficient discriminatory power to differentiate
between BK and non-viremic (nBK) KTR groups in both
CD4% and CD8™ T cells.

e A cutoff value of > 0.2% positive cells (after background
subtraction with a negative unstimulated control) for
LTA-stimulated CD4+tCD25" and CDSTIEN-y™ T cells
demonstrated potential for application in future clinical
studies and could serve as a cost-effective diagnostic tool.

Introduction

BK polyomavirus (BKPyV) is a significant complication
following kidney transplantation. Approximately 30% of kidney
transplant recipients (KTR) develop BKPyV viruria, 10-15%
develop BKPyV viremia, and 3-5% eventually progress to
BK polyomavirus-associated nephropathy (BKPyVAN), which
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markedly reduces kidney allograft survival (1-4). KTR with
BKPyVAN experience an allograft loss rate of 10-50%, depending
on the pathological severity (5, 6). Current evidence and
recommendations indicate that the only effective treatment for
BKPyVAN is the reduction of immunosuppression (7, 8). However,
the success of this strategy in achieving viral clearance varies
widely across studies, ranging from 20 to 80% (9). Consequently,
preventing the development of BKPyV viremia or BKPyVAN is the
optimal goal in managing BKPyV infection.

Several risk factors for BKPyV viremia and BKPyVAN have
been established, including mismatches between donor and
recipient BKPyV serostatus and genotypes, older age and male
gender in recipients, low recipient neutralizing antibody levels, and
certain human leukocyte antigen (HLA) types (7). Importantly,
the intensity of immunosuppressive therapy significantly impacts
cellular immunity against BKPyV (10-12). BKPyV-specific cellular
immunity is crucial for controlling viral replication and promoting
viral clearance via T-cell responses (12). Previous studies have
shown that KTR with active BKPyV infection exhibit lower
BKPyV-specific T-cell responses compared to those who never
develop BKPyV infection or who have cleared the virus (10,
13-17). However, these studies have primarily utilized flow
cytometry or enzyme-linked immunospot (ELISPOT) assays that
focus solely on cytokine responses, without assessing other
aspects such as the markers of activated T-cells (18-23). This
limitation hampers a comprehensive understanding of BKPyV-
specific cellular immunity. Additionally, the protocols used in each
study varied. Some studies utilized only the BKPyV antigen (viral
capsid protein 1 [VP1] and/or large T antigen [LTA]), while others
added costimulatory antibodies (CD28 and/or CD49d) to enhance
the cellular immune response (14-17, 24-27). This variability limits
the interpretation and clinical implications of these tests.

This study aimed to compare BKPyV-specific T-cell responses
using traditional cytokine analyses—including interleukin-2 (IL-2),
interferon-y (IFN-y), and tumor necrosis factor-a (TNF-o)—with
markers of activated T-cells, including CD25, CD134, CD137, and
CD154 (18-23). These comparisons were conducted among three
groups: KTR with active low-level BKPyV infection (defined as
BKPyV viremia < 3,000 copies/mL at the time of first diagnosis
and sample collection), KTR without BKPyV infection, and
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non-transplant healthy controls. The objective was to identify the
most effective combination of immune markers for distinguishing
KTRs with BKPyV infection, thereby enhancing post-transplant
surveillance strategies in the early clinical course of infection.

Materials and methods

Study population and overview

This study was conducted at King Chulalongkorn Memorial
Hospital, a tertiary transplant center in Bangkok, Thailand. KTR
aged 18 years or older were included. The screening protocol
for BKPyV involved monthly plasma tests until 9 months post-
transplantation, followed by testing every 3 months until 2 years, in
accordance with international guidelines on BKPyV management
(7). KTR who developed allograft dysfunction were also evaluated
for BKPyV viremia. At our center, the management of BKPyV
viremia consists of reducing the mycophenolic acid (MPA) dosage
by 50% and lowering the tacrolimus pre-dose concentration (Cp) to
4-6 ng/mL when plasma BKPyV levels reach 10,000 copies/mL or
1,000 copies/mL on at least two occasions, 2 weeks apart. If, after
4 weeks of these interventions, BKPyV levels do not decrease by 0.5
logip copies/mL, MPA is switched to everolimus with a target C
of 4-8 ng/mL, and tacrolimus Cy is further reduced to 2-4 ng/mL.
The prednisolone dosage is maintained at a maximum of 5 mg/day
during detectable BKPyV viremia.

In KTR with BKPyV viremia, whole blood was drawn into
heparinized tubes upon detection of plasma BKPyV, and the sample
collected on the day of this first viremia diagnosis was used for
cell isolation. All participants provided informed consent for blood
collection. Simultaneously, sex-, age-, and time after transplant-
matched KTR without BKPyV viremia were enrolled in the non-
BKPyV viremia group. Since the study focused on identifying
potential immunological markers for the early detection of BKPyV
infection or reactivation, only KTR with low-level BKPyV viremia
(<3,000 copies/mL) at the time of initial diagnosis were included
in the BKPyV group. All samples were collected at this initial
time point. The definition of presumptive BKPyVAN is BKPyV
viremia > 10,000 copies/mL (7). Our study aimed to detect
infection earlier, before nephropathy develops. Accordingly, we
defined low-level BKPyV viremia as < 3,000 copies/mL, based
on the premise that earlier identification of altered immune
regulation would provide greater clinical benefit for KTRs. This
cutoff was chosen to avoid being too late (i.e., > 10,000 copies/mL)
and not so early (i.e, < 1,000 copies/mL) that its significance
remains controversial.

Only KTR receiving maintenance immunosuppression with
tacrolimus (immediate-release Prograf®, target Cy 5-10 ng/mL),
MPA [equivalent to mycophenolate mofetil (MMF) at 1,000-
2,000 mg/day], and prednisolone were eligible for inclusion in both
the BKPyV viremia (BK) and non-BKPyV viremia (nBK) groups.
Only uncomplicated BKPyV viremia cases (no desensitization
protocol, no rejection, no history of other infections) were
included. For the nBK group, we selected clinically stable KTRs
without any post-transplant complications (i.e., good postoperative
graft function and stable follow-up). Additionally, healthy controls
(HC) with no medical comorbidities and not taking any

Frontiers in Medicine

10.3389/fmed.2025.1662833

medications were included as a biological reference group. Whole
blood samples from the nBK and HC groups were collected and
processed for cell isolation.

PBMC s isolation

Peripheral blood mononuclear cells (PBMCs) were isolated
from whole blood collected in heparinized tubes. The blood
was layered onto Lymphoprep™ (STEMCELL Technologies,
Serumwerk Bernburg AG, Germany) in a 1:1 ratio and centrifuged
at 1,900 rpm for 30 min at room temperature without applying
deceleration force. The PBMC layer was then collected and washed
with RPMI 1,640 medium (Thermo Scientific, MA, United States)
supplemented with 10% human serum (Sigma-Aldrich, MA,
United States) and 1% penicillin-streptomycin (Thermo Scientific,
MA, United States), followed by centrifugation at 1,500 rpm
for 5 min at 4°C. Contaminating red blood cells (RBCs) were
removed using ammonium chloride lysis buffer and centrifugation
at 1,500 rpm for 5 min at 4°C. PBMCs were then frozen in a
medium containing 10% dimethyl sulfoxide and stored in liquid
nitrogen. Prior to use, cells were slowly thawed and centrifuged
at 1,500 rpm for 5 min at 4°C, and then counted using a
hemacytometer with trypan blue (Gibco, Thermo Scientific) to
determine cell viability.

PBMCs stimulation

PBMCs were cultured in a 96-well plate at a density of
5 x 10° cells per well in 200 wL of RPMI 1,640 medium
supplemented with 1X GlutaMAX, 10% human serum, and
1% penicillin/streptomycin. BKPyV antigen concentrations were
optimized in pilot titrations (0.1, 0.5, 1, 2 pg/mL); only 1 pg/mL
produced responses above background and 2 pg/mL did not
improve signal, so this 1 pug/mL dose was used in all assays.
The cells were subjected to eight different conditions to ensure
unbiased stimulation results, including the negative control
(unstimulated PBMCs), a positive control with phorbol myristate
acetate (PMA) and ionomycin, stimulation with 1 pg/mL BKPyV
LTA (PepTivator, Miltenyi Biotec, Bergisch Gladbach, Germany),
stimulation with 1 pwg/mL BKPyV VP1 (PepTivator, Miltenyi
Biotec, Bergisch Gladbach, Germany), a combination of 0.5 pg/mL
LTA and 0.5 pg/mL VP, LTA combined with stimulatory
antibodies against 1 pg/mL CD28 (eBioscience, CA, United States)
and 1 pg/mL CD49d (eBioscience, CA, United States), VP1
combined with anti-CD28 and anti-CD49d, and a combination of
LTA, VPI, anti-CD28, and anti-CD49d. The cells were incubated
for 24 h in a humidified atmosphere with 5% CO, at 37°C, and
4 h prior to the endpoint, a protein transport inhibitor cocktail
(eBioscience, CA, United States) was added to the cell cultures.

Staining for intracellular cytokines and
surface markers of activated T-cells

After the incubation period, PBMCs were transferred to a 96-
well V-bottom plate, washed twice with cold phosphate-buffered
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saline (PBS), and centrifuged at 1,500 rpm for 5 min at 4°C.
The cells were then resuspended in FACS staining buffer (PBS
containing 0.5% bovine serum albumin) and incubated with
antibodies targeting CD3-APC (clone OKT3, BioLegend, CA,
United States), CD4-Alexa Fluor 700 (clone RPA-T4, BioLegend,
CA, United States), CD8a-FITC (clone RPA-T8, BioLegend, CA,
United States), CD25-PerCP/Cyanine5.5 (clone BC96, BioLegend,
CA, United States), CD134-Brilliant Violet 421 (clone Ber-ACT35,
BioLegend, CA, United States), CD137-Brilliant Violet 605 (clone
4B4-1, BioLegend, CA, United States), and CD154-APC/Cy7 (clone
24-31, BioLegend, CA, United States) for 30 min in the dark.
Following surface marker staining, the cells were washed with
FACS staining buffer and fixed with fixation buffer (BioLegend,
CA, United States) for 15 min in the dark. Next, the cells were
washed twice with 1X intracellular staining permeabilization wash
buffer (BioLegend, CA, United States) at 1,500 rpm for 10 min
at 4°C, and then stained with antibodies against IFN-y-PE (clone
B27, BioLegend, CA, United States), IL-2-PE/Cy7 (clone MQI1-
17H12, BioLegend, CA, United States), and TNF-a-Brilliant Violet
510 (clone MAb11, BioLegend, CA, United States) for 30 min in
the dark. Data were captured using the BD FACSLyric'™ flow
cytometry system (BD Bioscience, NJ, United States).

Flow cytometry analysis

PBMCs from all conditions for each participant were analyzed
using Kaluza Analysis Software version 2.2 (Beckman Coulter,
CA, United States). The negative control (PBMCs without any
stimulation or BKPyV antigens) was used to establish the gating
strategy, as illustrated in Supplementary Figure 1A. Percentages
of positive cells—after background subtraction using the negative
control—were extracted for IFN-y, IL-2, TNF-a, CD25, CD134,
CD137, and CD154 from CD3" T cells, CD4" T helper cells,
and CD8™ cytotoxic T cells. These analyses were conducted to
determine the overall T cell response (CD3™) and its subsets (CD4™
and CDS8%), emphasizing their potential practical application.
Boolean gating was used to analyze combinations of markers.
Given the limited number of available channels on flow cytometer,
live/dead staining (eBioscience, CA, United States) was performed
prior to antibody staining and fixation/permeabilization using
a separate aliquot from the same stimulation (Supplementary
Figure 1B). Only samples with > 90% viability were advanced
to downstream staining. The raw, unsubtracted data for each
surface marker and intracellular cytokine are presented in
Supplementary Figures 2A-1.

Statistical analysis

Continuous data are presented as the mean and standard
deviation (SD) for normally distributed variables, and as the
median and interquartile range (IQR) for non-parametric data.
Comparisons between groups were performed using the t-test or
the Wilcoxon Rank Sum test, as appropriate. To evaluate the
cytokines and surface activation markers following BKPyV antigen
stimulation, p-values for differences between groups (BK vs. nBK
vs. HC) were calculated and displayed in heatmaps, with lighter
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colors indicating lower p-values. Candidate cytokines and surface
activation markers with potential clinical utility were then analyzed
using logistic regression for the diagnosis of BKPyV viremia, and
the area under the receiver operating characteristic curve (AUROC)
was calculated. Finally, the selected cytokines/markers were further
analyzed to determine potential cutoffs, sensitivity, and specificity
for clinical practice.

Ethical considerations

This study was approved by the Institutional Review
Board of the Faculty of Medicine, Chulalongkorn University,
Bangkok, Thailand, and was conducted in accordance with
international guidelines for human research protection, including
the Declaration of Helsinki, the Belmont Report, CIOMS
Guidelines, and the International Conference on Harmonization’s
Good Clinical Practice standards (IRB No. 0167/66). Data used in
the analyses were de-identified to ensure anonymity, guaranteeing
that no participants could be identified. Furthermore, the clinical
and research activities reported are consistent with the principles
outlined in the Declaration of Istanbul on Organ Trafficking and
Transplant Tourism.

Results

The characteristics of the KTR and control groups are presented
in Table 1. There were no significant differences between the KTR
with BKPyV viremia (BK group) and those without BKPyV viremia
(nBK group) in terms of age, sex, human leukocyte antigen (HLA)
mismatches, time after transplantation, or immunosuppressive
medications used at the time of blood collection. In the BK
group, the median BKPyV viral load at specimen collection—
corresponding to each patient’s first viremia—was 1,222 copies/mL
(IQR 338-1,720).

Comparison of cytokines and activation
markers between BK, nBK, and HC
groups

Candidate cytokines and surface markers of activated T cells
were first evaluated under various stimulation conditions. Figure 1
presents heatmaps of p-values for differences in the percentages
of cells positive for intracellular cytokines (IFN-y, IL-2, and TNF-
o) and surface activation markers (CD25, CD134, CD137, and
CD154) among CD3" T cells, CD4™" T helper cells, and CD8*
cytotoxic T cells. These comparisons were made between BK versus
nBK and HC, as well as between nBK and HC groups. The most
pronounced differences were observed when comparing the BK
and HC groups. Notably, for the clinically relevant comparison
between BK and nBK groups, VP1 and/or LTA co-stimulated with
CD28/CD49d yielded the highest discriminatory power across all T
cell subsets.

Figures 2-4 illustrate the actual percentages of positive cells
after stimulation with VP1, LTA, and the combination of VP1
and LTA, respectively. In these figures, cells were co-stimulated
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TABLE 1 Characteristics of kidney transplant recipients with low-level BKPyV viremia (BK; n = 12), without BKPyV viremia (nBK; n = 12), and healthy

control (HC; n = 12).

Variables BK nBK P-value BK vs. nBK* HC
Age, years (mean + SD) 47.1 £8.1 48.34+9.0 0.75 39.1+56
Male, n (%) 9 (75%) 9 (75%) 1.00 9 (75%)
Dialysis vintage, years (mean & SD) 4.7 +2.7 53+24 0.59 -
HLA mismatch for A, B, DR 28+12 23+£17 0.43 -
Deceased donor, n (%) 4 (33%) 3(25%) 0.65 -
Basiliximab induction, n (%) 12 (100%) 12 (100%) 1.00 -
Time at sample collection, months after transplantation (median and IQR) 6(3-13) 6(5-9) 0.95 -
Tacrolimus Cp, ng/mL (mean & SD) 6.5+t 1.4 64+15 0.65 -
Mycophenolate mofetil dose, mg/day (mean = SD) 1,125 £ 216 1,041 £138 0.34 -
Prednisolone dose, mg/day (mean + SD) 56+2.1 52+1.6 0.61 -
Serum BK viral load at sample collection (first onset BKPyV viremia), copies/mL 1,222 - - -
(median and IQR) (338-1,720)
Serum creatinine, mg/dL (mean + SD) 228 +1.13 1.55 4+ 0.54 0.07 -
*P-values were calculated using ¢-test, Wilcoxon Rank Sum test (for non-parametric data), and chi-square test. HLA, human leukocyte antigen.
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with CD28/CD49d because stimulation with BKPyV antigens alone
(either VP1 or LTA) did not provide sufficient discriminatory data
between the BK and nBK groups, as shown in Figure 1. Overall, the
percentage of positive cells was highest in the HC group, followed
by the nBK group, with the BK group exhibiting the lowest values.
However, not all comparisons reached statistical significance. In
VP1-stimulated cells, CD4™ T cells exhibited significant differences
between the BK and nBK groups for IL-2, TNF-a, CD25, and
CD137, whereas VP1-stimulated CD8%1 T cells showed significant
differences for IFN-y and CD25. Similarly, for LTA stimulation in
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the BK versus nBK comparison, CD4" T cells showed significant
differences for TNF-a and CD25, while CD8' T cells differed
significantly for IFN-y and CD25. T cells stimulated with the
combination of VP1 and LTA demonstrated a pattern similar to
that observed with the individual antigens. For potential clinical
implementation, isolated VP1 and LTA—each co-stimulated with
CD28/CD49d—were selected for further analysis via AUROC to
diagnose BKPyV viremia.

To assess robustness, we conducted a sensitivity analysis
using the stimulation index (SI), defined as the percentage of

05 frontiersin.org
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The percentage of positive cells—defined by the expression of intracellular cytokines and surface markers—was measured following stimulation with
VP1 antigen and CD28/CD49d antibodies in CD3 + T cells, CD4 + helper T cells, and CD8 + cytotoxic T cells. Comparisons between groups were
performed using the Wilcoxon Rank Sum test. *p-value <0.05.
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FIGURE 3

The percentage of positive cells—defined by the expression of intracellular cytokines and surface markers—was measured following stimulation with
LTA antigen and CD28/CD49d antibodies in CD3 + T cells, CD4 + helper T cells, and CD8 + cytotoxic T cells. Comparisons between groups were
performed using the Wilcoxon Rank Sum test. *p-value <0.05.
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The percentage of positive cells—defined by the expression of intracellular cytokines and surface markers—was measured following stimulation with
combined VP1 and LTA antigen and CD28/CD49d antibodies in CD3 + T cells, CD4 + helper T cells, and CD8 + cytotoxic T cells. Comparisons
between groups were performed using the Wilcoxon Rank Sum test. *p-value <0.05.
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positive cells in the stimulated condition divided by that in the
matched unstimulated condition. Supplementary Figure 3 presents
a heatmap of p-values for differences in SI across the BK, nBK, and
HC groups, showing a pattern of differences comparable to that
obtained with the subtraction method.

AUROC and candidate markers for
clinical utility

Table 2 displays the AUROC values for intracellular cytokine
and surface activation marker expression in CD4" and CD8" T
cells. Significant AUROC values were observed for LTA-stimulated
CD4tCD25% T cells (0.823, 95%CI 0.657-0.989, p = 0.030),
VP1-stimulated CD8TIFN-y* T cells (0.816, 95%CI 0.648-0.984,
p =0.045), and LTA-stimulated CD8 T IFN-y™ T cells (0.833, 95%CI
0.678-0.989, p = 0.028). Given that LTA stimulation provided good
discrimination between the BK and nBK groups in both CD4" and
CD8* T cells, LTA-stimulated CD4"CD25% and CD8VIFN-y*+ T
cells were chosen as candidate markers to further assess sensitivity,
specificity, and an optimal cutoff.

Supplementary Table 1 reports the AUROC values from the
SI-based analyses. Under VPI stimulation, CD41tCD25% and
CD8TIFN-y™ T cells demonstrated statistically significant
discrimination. Under LTA  stimulation, CD4TCD25,
CD8*CD25%, and CDS8TIFN-y*t T cells were significant.
These findings are consistent with the subtraction-based analyses
and support prioritizing LTA-stimulated CD4TCD25" and
CDSHIFN-y™ T cells for subsequent analyses.

Sensitivity, specificity, and AUROC of
LTA/CD28/CD49d-stimulated
CD4+CD25% and CD8*IFN-y* T cells

A cutoff of > 0.2% positive cells (after background subtraction)
for LTA/CD28/CD49d-stimulated CD41tCD25" and CD8"IFN-
YT T cells demonstrated the best sensitivity and specificity. Using
this cutoff, 79.2% of KTR in the nBK group were correctly classified
as having positive cell percentages > 0.2%, while 80.0% of KTR
in the BK group were correctly classified as having positive cell
percentages < 0.2% (Table 3). Notably, none of the KTR with
BKPyV viremia exhibited a positive cell percentage > 0.2% for
both markers. Figure 5 depicts the AUROC for both stimulated
cell populations, with no significant difference between them (p
=0.926).

In the SI-based sensitivity analysis, a cutoff for the stimulated-
to-unstimulated ratio > 1.2 for both LTA/CD28/CD49d-stimulated
CD47CD25% and CDS8'IFN-y*t T cells yielded the optimal
combination of sensitivity and specificity, as well as the
highest percentage correctly classified for BKPyV viremia
(Supplementary Table 2).

Discussion

This study is the first to comprehensively analyze the
BKPyV-specific cellular immune response in KTR with and
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without BKPyV viremia, using healthy controls as a reference.
We evaluated both the cytokine responses and surface antigen
markers of activated T cells. Notably, stimulation with BKPyV
LTA in combination with CD28/CD49d co-stimulatory antibodies
emerged as a promising approach for clinical application, eliciting
robust responses in both CD4" and CD8' T cells. Among
the biomarkers examined, CD4"CD25" and CDSVIFN-y™ T
cells demonstrated sufficient discriminatory power to differentiate
KTR with BKPyV viremia from those without. A cutoff value
of > 0.2% positive cells (after background subtraction) yielded
the highest rates of correct classification for both groups. By
including only KTRs with low-level BKPyV viremia (<3,000
copies/mL) in the BK group, the observed differences in these
biomarkers could serve as potential screening tools for the early
detection of BKPyV reactivation—possibly even before the onset
of detectable viremia—and could help guide timely adjustments to
immunosuppressive therapy. However, this hypothesis is needed to
be tested in the future cohort.

BKPyV infection is a major cause of kidney allograft
dysfunction and is associated with significantly reduced allograft
survival. A critical challenge in managing BKPyV infection after
transplantation is the absence of effective antiviral treatments, as
current strategies rely primarily on reducing immunosuppression.
Consequently, preventing BKPyV infection is of paramount
importance. Although previous studies have examined the cellular
immune response to BKPyV post-transplantation, none have
concurrently evaluated both intracellular cytokine production
and surface activation marker expression (10-17, 24-35). Thus,
a comprehensive assessment of the cellular immune response,
particularly comparing transplant recipients with and without
BKPyV infection, has not previously been undertaken. In an
effort to identify the most appropriate immunological assay
for BKPyV infection, we first explored the immune profiles
that most effectively distinguish KTR with low-level BKPyV
viremia from those without, laying the groundwork for a future
clinical screening tool.

Cytokines such as IFN-vy, IL-2, and TNF-a have been implicated
in the immune response to BKPyV infection in KTR (17, 36). IL-
2, one of the earliest cytokines identified, is primarily produced
by T cells and plays a central role in promoting T cell activation
and proliferation, as well as regulating immune responses through
its effects on regulatory T cells (37, 38). TNF-a acts as a frontline
cytokine during viral infections and is produced by various cell
types, notably macrophages and T cells (39-41). IFN-v is essential
for antiviral defense and for mediating the cytotoxic effects of
CD8T T cells, in addition to enhancing the function of other
inflammatory cells such as macrophages, dendritic cells, and
natural killer cells to prolong the antiviral state and strengthen
the overall immune response during active infection (42-45).
Collectively, these cytokines represent a crucial early immune
response against BKPyV infection. Our study demonstrated that
IFN-y-producing CD8T T cells provided effective differentiation
between KTR with and without BKPyV viremia, highlighting the
key role of CD8" T cells in targeting and eliminating virally
infected cells. However, cytokine analysis alone may not capture
the full complexity of cellular immune responses, as T cells can
be activated through multiple distinct pathways. This limitation
reduces the accuracy of cytokine-based assays, such as ELISPOT,
in assessing the overall immune response to BKPyV infection.
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TABLE 2 Area under the receiver operating characteristic curve (AUROC) values for intracellular cytokine and surface activation marker expression in
CD4 + and CD8 + T cells following stimulation with VP1 or LTA (both co-stimulated with CD28/CD49d), for the diagnosis of BKPyV viremia in kidney

transplant recipients compared to those without BKPyV viremia.

Cell | Stimulatedantigen | Cytokine/marker | AUROC | P-value
CD4 + T cells VP1 CD134 0.722 (0.497-0.947) 0.367
CD137 0.771 (0.591-0.950) 0.370
CD154 0.368 (0.166-0.570) 0.936
CD25 0.799 (0.602-0.996) 0.356
IFN-y 0.500 (0.300-0.700) 0.292
1L-2 0.733 (0.522-0.944) 0.111
TNF-a 0.771 (0.591-0.950) 0.193
LTA CD134 0.701 (0.469-0.934) 0.071
CD137 0.688 (0.461-0.914) 0.490
CD154 0.646 (0.421-0.870) 0.429
CD25 0.823 (0.657-0.989) 0.030
IFN-y 0.611 (0.393-0.829) 0.248
1L-2 0.701 (0.483-0.920) 0.163
TNF-a 0.747 (0.563-0.930) 0.226
CD8 + T cells VP1 CD134 0.646 (0.424-0.868) 0.164
CD137 0.611 (0.393-0.829) 0.119
CD154 0.514 (0.310-0.718) 0.644
CD25 0.260 (0.051-0.469) 0.619
IFN-y 0.816 (0.648-0.984) 0.045
1L-2 0.590 (0.381-0.799) 0.203
TNF-a 0.691 (0.481-0.901) 0.141
LTA CD134 0.611 (0.386-0.837) 0.161
CD137 0.618 (0.392-0.844) 0.114
CD154 0.601 (0.376-0.825) 0.491
CD25 0.792 (0.593-0.990) 0.947
IFN-y 0.833 (0.678-0.989) 0.028
IL-2 0.625 (0.401-0.849) 0.509
TNF-a 0.580 (0.342-0.818) 0.300

Bold numerical p-values were <0.05.

TABLE 3 Sensitivity and specificity of LTA/CD28/CD49d-stimulated CD4 + CD25 + and CD8 + IFN-y + T cells, using a cutoff of > 0.2% positive cells

(after background subtraction) to diagnose KTR without BKPyV viremia.

Marker

Sensitivity

(95%Cl) (95%Cl)

Correctly
classified

Positive predictive
value (95%Cl)

Negative predictive
value (95%Cl)

Specificity ‘

CD4 + CD25 + T cells 76.9 (46.2-95.0)% 81.8 (48.2-97.7)%

79.2% 83.3 (51.6-97.9)% 75.0 (42.8-94.5)%

CD8 + IEN-y + T cells 80.0 (44.4-97.5)% 71.4 (41.9-91.6)%

75.0% 66.7 (34.9-90.1)% 83.3(51.6-97.9)%

None of the KTR with BKPyV viremia exhibited a positive cell percentage > 0.2% for both markers.

Therefore, we also evaluated T-cell activation through surface
marker expression, specifically CD25, CD134, CD137, and CD154.

CD25, the IL-2 receptor expressed on effector and regulatory
T cells, serves as a marker of activation following antigen
stimulation (46). CD134 (OX40) is a co-stimulatory molecule
that sustains T cell responses, thereby preventing excessive viral
replication (47, 48). Previous studies have demonstrated that

antigen-specific CD4™ T cells co-expressing CD25 and CD134 can
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be detected at substantially higher levels compared to intracellular
cytokine assays, highlighting their potential diagnostic value
(20). Although our findings revealed significant differences in
CD257CD1347CD4" T cells between BK and HC groups, no
significant difference was observed between BK and nBK groups,
limiting the clinical utility of this co-expression marker for
distinguishing BKPyV infection in KTR. However, CD4TCD25" T

cells alone demonstrated adequate discriminatory power between
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FIGURE 5

Area under the receiver operating characteristic curve (AUROC), comparing LTA/CD28/CD49d-stimulated CD4 + CD25 + and CD8 + IFN-y + T cells.

BK and nBK groups, underscoring their potential as a diagnostic
marker. In our cohort, LTA-stimulated CD4TCD25T T cells were
significantly reduced in KTRs with early BKPyV viremia compared
with aviremic controls. Since tacrolimus inhibits IL-2 production,
we propose that this CD25 (IL-2 receptor a-chain) suppression
may be related to tacrolimus exposure, consistent with reports
linking tacrolimus use to increased BKPyV risk (49). Although
whole-blood tacrolimus troughs were comparable between groups
in this study (Table 1), whole-blood measurements largely reflect
drug bound to erythrocytes and plasma proteins (99%), whereas
only a small free/intracellular fraction is pharmacologically active
(approximately 1%) (50, 51). Intracellular tacrolimus is not
routinely measured because of technical constraints, yet evidence
suggests that intracellular levels correlate more closely with
both anti-rejection efficacy and toxicity than total whole-blood
concentrations (50, 51). Accordingly, a functional readout, such
as suppression of LTA-stimulated CD4TCD25% T cells, may
better capture net calcineurin-inhibition in vivo and, therefore,
relate more directly to BKPyV viremia. The MPA data available
in this study consisted only of prescribed dose; no MPA
concentration measurements were obtained. Future studies should
include precise therapeutic drug monitoring to evaluate how
immunosuppressive exposure influences BKPyV-specific cellular
immunity markers.

CD137, an inducible co-stimulatory molecule belonging to
the TNF receptor superfamily, enhances the antigen-specific
response of both CD4" and CD8T T cells (19, 52). CD154 (also
known as CD40L) is a marker of activated CD4" T helper cells,
playing a critical role in initiating humoral and effective cytotoxic
responses (18, 53). The detection of increased CD137tCD154™
T cells improves the sensitivity of assessing low-frequency T-cell
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responses and correlates with intracellular cytokine production
(23). In our analysis, both CD137 and CD154 expression showed
significant differences between BK and HC groups; however,
these differences were less pronounced when comparing the
BK and nBK groups.

VP1 is a viral capsid protein and serves as one of the
major structural proteins of the BKPyV, defining the four
primary VPI1 serotypes originally identified through neutralizing
antibodies (54). LTA, on the other hand, is a multifunctional
protein essential for viral replication and cell transformation,
playing a critical role in viral oncogenesis by inhibiting the
tumor suppressor protein p53 within the nucleus (55, 56).
While VP1 has been predominantly associated with the humoral
immune response, LTA 1is recognized as a key antigen for
cytotoxic T-cell responses (54). This notion is supported by
our study, which found that LTA more effectively elicited a
cellular immune response capable of differentiating between BK
and nBK groups in both CD4" and CD8" T cells. Further
investigation into these differences in cellular immune activation is
necessary, especially in larger populations, as previous studies have
demonstrated that both VP1 (and VP3) and LTA stimulate cellular
immune responses, although these studies primarily evaluated
cytokine production without including surface activation markers
(14, 29).

We analyzed multiple combinations of intracellular cytokines
and surface activation markers expressed by activated T cells. Our
findings revealed the most pronounced differences between the BK
and HC groups, consistent with the immunological expectation
that KTR with BKPyV infection exhibit a more suppressed
immune response compared to healthy individuals. However, when
comparing BK with non-viremic (nBK) recipients, fewer markers
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remained significantly different. Markers stimulated by either LTA
or VP1 in combination with CD28 and CD49d co-stimulatory
antibodies were selected for further analysis, given their practical
utility and cost-effectiveness for clinical diagnostic laboratories.
Notably, our results indicated that combining both antigens did
not provide additional discriminatory power compared to using
either antigen alone. The AUROC analyses demonstrated that
LTA-stimulated CD4TCD25% and CD8TIEN-yT T cells could
effectively differentiate between BK and nBK groups, whereas
VP1 stimulation was effective only for CD8TIFN-y™ T cells. To
illustrate the potential clinical utility of these findings, we proposed
a practical cutoff of > 0.2% positive cells (after background
subtraction using an unstimulated negative control). Although
we acknowledge that these results are based on the diagnosis of
BKPyV viremia rather than predicting BKPyV infection in KTR
who have not yet developed the condition, this study successfully
identified and selected potential biomarkers by contrasting BK and
nBK groups, using HC as a biological reference. Furthermore, we
provided detailed methodology and clearly defined costimulatory
molecules, which were not thoroughly addressed in previous
studies. Based on this information, these biomarkers will be further
evaluated as potential screening tools for the early detection of
BKPyV infection or reactivation in future study. For example,
KTR who exhibit a percentage of LTA-stimulated CD4"CD25%
and CD8TIFN-y™ T cells below a predefined cutoff during post-
transplant screening may be at increased risk of developing BKPyV
viremia or BKPyVAN. In such cases, early immunosuppression
reduction could be considered as a preventive strategy before the
onset of detectable viremia.

The strengths of this study include its comprehensive approach,
minimizing the bias associated with selecting only preferred
cytokines or surface activation markers. This unbiased analysis
provides a more complete perspective on the cellular immune
response compared to previously utilized BKPyV-specific ELISPOT
assays or flow cytometric analyses. Additionally, various antigen
stimulation methods were systematically evaluated to identify the
most cost-effective protocol suitable for implementation in clinical
diagnostic laboratories. Furthermore, we proposed practical cutoft
values to facilitate initial clinical use.

This study represents the first step in a staged program
to determine whether candidate cellular immune markers are
associated with the clinically relevant early BKPyV viremia. To
maximize biological contrast while minimizing confounding, the
analysis focused on KTRs with low-level BKPyV viremia, used as a
proxy for very early infection, and on controls who never developed
viremia. Within this framework, LTA-stimulated CD4TCD25" T
cells and CD8TIFN-y™ T cells differed significantly between KTRs
with early BKPyV viremia and those without, even in a limited
sample, they are strong candidates for evaluation in larger studies.
We hypothesize that they may decline before viremia becomes
detectable; accordingly, they will be prioritized for prospective
validation despite the modest size of this initial study.

The next phase will be a longitudinal cohort of KTRs sampled
at 3-, 6-, and 12-months post-transplant to assess whether
these markers decrease prior to the onset of BKPyV viremia,
including among currently aviremic recipients. Contingent on
validation, an interventional study will test whether biomarker-
guided immunosuppression adjustments can reduce subsequent
BKPyV replication and related complications. Factors associated
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with this cellular immunity suppression, including the different
induction and maintenance immunosuppression regimens, shall be
studied in a larger cohort study. A potential downside of reducing
immunosuppression on the basis of biomarkers is false-positive
results, which can lead to unwarranted tapering and thereby elevate
the risk of allograft rejection. The net clinical benefit of biomarker-
guided tapering should be tested in interventional trials with graft
survival and acute rejection as primary endpoints.

Our study, however, has several limitations. First, the sample
size was relatively small. While our findings require validation
in a larger population, the extensive and unbiased assessment
of multiple cytokines and activation markers across different
stimulation conditions likely identified the most robust markers.
Although a larger-scale study may uncover additional significant
markers, we believe the markers identified in this study will remain
relevant. Second, the cross-sectional design only demonstrates
an association between the identified markers and peak BKPyV
viremia; their predictive capabilities still require evaluation.
Future studies should investigate marker kinetics over time after
transplantation, their correlation with immunosuppressive drug
dosages or concentrations, and their responsiveness to adjustments
in immunosuppression for BKPyV management. The proposed
cutoff of > 0.2% positive cells remains to be confirmed. Although
technical variability in flow cytometry may affect these values,
we believe that the detailed methods provided here will enable
other transplant centers to replicate the experiment and validate
our findings. Finally, BKPyV genotype data were unavailable
in this mechanistic study. Donor-recipient genotype mismatch
may influence immune responses and should be evaluated in
future cohort studies, with parallel assessment of cellular and
humoral immunity.

Recent evidence suggests that the humoral immune response
also plays a significant role in controlling BKPyV infection post-
transplantation (57), warranting investigation alongside cellular
immunity to encompass all aspects of the immune response,
particularly regarding differences among BKPyV serotypes. Early
evidence indicates that humoral immunity to BKPyV, measured
as BKPyV-specific IgG, is not protective against viremia or
BKPyV-associated nephropathy; rather, IgG levels appear to reflect
infection intensity (58). However, a pre-transplant donor-recipient
IgG mismatch, characterized by high donor and low recipient
titers, predicts post-transplant viremia (59). More recent work
shows that low levels of pre-transplant donor BKPyV genotype-
specific neutralizing antibody in the recipient best predict BKPyV
viremia risk (60, 61). Because neutralizing-antibody assays are
technically complex, future studies should integrate these measures
with cellular immunity readouts to improve risk stratification.

Conclusion

In conclusion, the BKPyV-specific T-cell response has
been comprehensively characterized using various stimulation
methods. LTA stimulation combined with CD28/CD49d antibodies
demonstrated the highest discriminatory capability between kidney
transplant recipients with and without BKPyV viremia, specifically
through the measurement of CD4*CD25" and CD8TIFN-y* T
cells responses. A proposed cutoff of > 0.2% positive cells was
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associated with adequate sensitivity and specificity, supporting its
potential clinical utility.
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