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Background: Non-Valvular Atrial fibrillation (NVAF) and atrial flutter are
significant contributors to left atrial appendage thrombus (LAAT) formation.
This study explores the potential of machine learning (ML) models integrating
transthoracic echocardiography (TTE) and clinical data for non-invasive LAAT
detection and risk assessment.

Methods: A total of 698 patients with NVAF was recruited from Luoyang
Central Hospital between January 2021 and May 2024, including 558 patients
for retrospective analysis and 140 for prospective validation. Based on
transesophageal echocardiography (TEE) results, patients were categorized
into three groups: non-thrombotic, blood stasis, and thrombotic. Four ML
algorithms—Random Forest, Logistic Regression (LR), Support Vector Machine,
and XGBoost—were developed using TTE and clinical data to predict LAAT.
Results: Univariate analysis identified significant predictors of LAAT, including
permanent AF, heart failure, BNP, uric acid, D-dimer, mitral regurgitation, LVEF,
LVED, LAD, CHA,DS,-VASc score, and LAA velocity (p < 0.05). The combined
TTE data model outperformed independent TTE-based models but was
slightly less accurate than the TEE model. Among ML algorithms, the LR model
demonstrated the best performance, achieving an area under the curve (AUC)
of 80.9% in the test set and 78.7% in prospective validation for the thrombotic
state group. For the thrombotic group, the LR model achieved an AUC of 80.0%,
closely approaching the TEE model's 84.0%.

Conclusion: The LR model provides a reliable non-invasive approach for LAAT
screening in high-risk AF patients by integrating TTE features with clinical data,
potentially reducing reliance on TEE.

KEYWORDS

non-valvular atrial fibrillation, transthoracic echocardiography, left atrial appendage
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1 Introduction

Non-valvular Atrial fibrillation (NVAF) and atrial flutter are
significant contributors to the formation of left atrial appendage
thrombus (LAAT), leading to an increased risk of thromboembolic
events. It has been established that LAAT is often identified as a source
of thrombus formation in patients who have recently experienced
strokes, highlighting the critical need for effective detection methods
(1-3). Despite the complexity of stroke mechanisms, LAAT is
frequently implicated in thromboembolic complications, particularly
in patients undergoing cardioversion (4, 5).

The restoration of sinus rhythm is associated with a heightened
risk of thromboembolic events, as embolization of pre-existing
thrombi in the atrium is a plausible cause of such incidents (6).
Consequently, current guidelines contraindicate the performance of
cardioversion and catheter ablation in the presence of LAAT (7, 8).
Although oral anticoagulation (OAC) reduces the risk of LAAT
formation, it does not eliminate this risk entirely, necessitating
(9-11).
echocardiography (TEE) is recognized as the gold standard for LAT

alternative  detection  methods Transesophageal
detection, demonstrating high sensitivity and specificity (12, 13).
However, its associated discomfort, complexity, and costs pose
significant challenges for routine clinical application, leading to an
unmet clinical need for a more accessible and practical risk assessment
method for LAAT (14-16).

Transthoracic echocardiography (TTE) presents a less invasive
and more cost-effective alternative to TEE, allowing for rapid
assessment. Several studies have identified TTE features that correlate
with the presence of LAAT; however, there has been a lack of research
integrating clinical and TTE data to create a personalized risk
assessment model (17, 18). In response to these limitations, A novel
prediction model for LAAT detection has been developed in this
study, integrating TTE measurements with clinical data. Machine
learning algorithms, including Support Vector Machine (SVM),
Random Forest (RF), XGBoost (XGB), and Logistic Regression (LR),
were harnessed to construct and validate the model. The model’s
criteria for thrombus prediction were based on left atrial appendage
(LAA) emptying velocity and LAA filling velocity, with TEE as the
reference standard. This approach aims to improve the accuracy and
practicality of LAAT risk assessment by comparing the performance
of the machine learning-based model to traditional methods.

This study aims to establish a reliable and non-invasive predictive
tool for LAAT risk by leveraging machine learning algorithms on
readily available clinical and TTE data, thereby potentially reducing
the reliance on invasive TEE procedures and enhancing patient
management strategies.

2 Methods
2.1 Study population

This study included patients from Luoyang Central Hospital
between January 2021 and December 2023. The inclusion criteria
were: 1. patients with an initial diagnosis of AF upon discharge, 2.
patients who underwent TEE for assessment of left atrial appendage
(LAA) parameters, and TTE for cardiac measurements, and 3. atrial
fibrillation duration >48 h. The exclusion criteria were: 1. patients
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with moderate or severe mitral stenosis with AF, and 2. patients with
AF after mechanical valve replacement (e.g., aortic or mitral
valve replacement).

Both retrospective and prospective analyses were conducted
based on the most recent hospitalization records. Data on LAAT and
cardiac measurements from TTE were collected. Any patient data that
did not meet the inclusion criteria were excluded from the analysis. A
total of 698 patients were enrolled in the study, of which 558 were
included in the retrospective analysis, and 140 were used for
prospective validation of the best-performing machine learning
models (Figure 1). Patients were divided into three groups based on
TEE results: no thrombus group (first), thrombus state group (second),
and thrombus group (third).

Ethical approval for the study (Approval No. LWLL-2024-11-05-
02) was obtained from the Ethics Committee of Luoyang Central
Hospital, affiliated with Zhengzhou University, prior to the
commencement of the study. Written informed consent was obtained
from all patients.

2.2 Data collection

Clinical baseline data were collected from patients, including but
not limited to age, sex, weight, and medical history. All
echocardiographic examinations were conducted by experienced
ultrasound physicians in accordance with the guidelines established
by the American Society of Echocardiography (ASE). Imaging data
from both TTE and TEE were recorded, including parameters such as
left atrial size, left ventricular size, left ventricular ejection fraction
(LVEEF), degree of mitral regurgitation, LAA emptying velocity, and
LAA filling velocity.

2.3 Machine learning model development
and prospective validation

Due to the extensive feature set and limited sample size, a feature
selection technique was utilized to identify an optimal subset of
features from the initial set. The process began with applying min-max
normalization to all features in the training data. Subsequently, to
remove irrelevant and redundant features, a two-sample ¢-test was
conducted to identify features exhibiting significant differences
(p < 0.05) between the MSA-P and IPD groups. For nodal graph
metrics, False Discovery Rate (FDR) correction was implemented,
while for FC matrices, Network-Based Statistic (NBS) correction was
applied. Following this, a random forest (RF) classifier with 10-fold
cross-validation was employed to identify a subset of the most
informative features from the high-dimensional feature space. To
prevent data leakage during the feature selection process, each fold of
the 10-fold cross-validation was independently partitioned. Min-max
normalization and feature selection using Random Forest were strictly
applied within each training subset. The RF algorithm assigned a rank
to each feature based on its importance in each iteration, and the
top 10 features with the highest importance scores were chosen. These
selections were recorded as indices or names of the chosen features. A
tally was kept of how often each feature was selected, and the top 10
features that were selected most frequently were retained. Lastly,
Spearman’s rank correlation coefficient was employed to assess the
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examinations upon admission

Initial patients & Inclusion criteria
Step 1:All patients underwent transthoracic and transesophageal ultrasound

Step 2: All patients are non valvular atrial fibrillation patients

l

Our center retrospectively recruited 576 patients from
January 2021 to December 2023

l

Exclude 8 patients due to incomplete ultrasound data and 10 patients due to
incomplete clinical data.
558 patient' clinical and ultrasound data were used to construct a machine
learning model for predicting left atrial appendage thrombosis.

Constructing a predictive model for left atrial appendage thrombosis using four
machine learning classifiers: random forest, support vector machine, logistic
regression, and XGBOOST

A 4

391 patients' clinical data and ultrasound
data were used as training sets

167 patients' clinical data and ultrasound
data were used as the test set

Select the best machine learning model for predicting left atrial
appendage thrombosis

Our center prospectively recruited 140 patients with non valvular fibrillation
between January 2024 and May 2024 to validate the diagnostic sensitivity and
specificity of the best predictive left atrial appendage thrombus model

FIGURE 1

Flowchart of inclusion and exclusion criteria for non valvular atrial fibrillation patients in this study.

relationships among the remaining connectome features. If the
absolute value of the correlation coefficient was at least 0.7 and the p
value was less than 0.05, the feature with the lower importance
was eliminated.

Following the feature selection process, we employed supervised
machine learning techniques to develop a classification model. For
this research, the dataset included in this study has very few missing
data (less than 5%), and estimates were made using the median of
continuous variables and the mode of categorical variables.
We conducted model training using Random Forest (RF), Logistic
Regression (LR), Support Vector Machine (SVM), and eXtreme
Gradient Boosting (XGBoost) on the subjects within the training
dataset. The optimal hyperparameters for these models were
determined through a grid search approach. The retrospective dataset
was partitioned into a training set (80%) and test set (20%) using
stratified random sampling. Hyperparameter tuning was conducted
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through a nested cross-validation process exclusively on the training
set, employing a grid search strategy to prevent overfitting. The
models were trained on critical features encompassing demographic
information, clinical records, NVAF subtypes, structural and
functional measurements of the left atrial diameter (LAD) and left
atrial appendage (LAA), laboratory data, and treatment variables.
We then plotted the Receiver Operating Characteristic (ROC) curves
for these models. Performance metrics such as the Area Under the
Curve (AUC), precision, recall, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were computed to assess
the efficacy of each model on both the training and validation datasets
Figure 2.

For internal prospective validation, the final model was
independently evaluated using a prospective validation cohort
(n = 140).we employed 140 patients collected from our center between
January 2024 and May 2024. This cohort was used to assess the clinical
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features.

Process diagram for predicting left atrial appendage thrombus using machine learning combined with clinical data and transthoracic ultrasound

Model construction Model evaluation visualization

I.vSpwiI'lri()'
— J . ROC curve H
RF XGBoost 1 ' '

relevance and applicability of the optimal machine learning models,
confirming their effectiveness in a clinical setting.

2.4 Statistical analysis

Statistical analyses were conducted utilizing IBM SPSS Statistics
for Windows, Version 25.0 (IBM Corp.). The Shapiro-Wilk test
assessed the normality of the data distribution. When data followed a
normal distribution, parametric tests were applied; otherwise,
non-parametric tests were employed. Categorical variable differences
were evaluated using the chi-squared test, while continuous variable
differences were assessed with either the independent ¢-test or the
Mann-Whitney U test, depending on the data distribution. A
univariate analysis was performed to determine factors correlated
with left atrial appendage thrombosis (LAT).

To evaluate the diagnostic performance of transthoracic
echocardiography (TTE) features, receiver operating characteristic
(ROC) curves were generated, and the area under the curve (AUC)
was calculated. Multivariable logistic regression analysis was
performed to identify independent predictors of LAAT, adjusting for
potential confounders identified in univariate analysis. Statistical
significance was set at a two-tailed p-value of <0.05.

3 Results
3.1 Univariate analysis of clinical data

In the comparative analysis of clinical data between first Group
(non-thrombus) and Group second and third (thrombus status group)
Table 1, univariate analysis identified significant associations with the
following variables: permanent atrial fibrillation (AF), heart failure,
B-type natriuretic peptide (BNP), uric acid, and D-dimer, Mitral
regurgitation, LVEE, LVED, LAD, CHA2DS2-VASc score, Left atrial
appendage filling velocity, Left atrial appendage emptying rate with all
showing statistical significance (p < 0.05). Similarly, in the comparison
between Group first and Group second (thrombus group) Table 1, the
variables of permanent AF, heart failure, history of stroke, BNP, uric
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acid, and D-dimer, Mitral regurgitation, LVEE, LVED, LAD,
CHA2DS2-VASc score, Left atrial appendage filling velocity, Left atrial
appendage emptying rate also demonstrated statistical significance
(p < 0.05). These findings are consistent with previous research on the
risk factors associated with LAAT.

3.2 Diagnostic value of transthoracic
echocardiography

To evaluate the diagnostic value of TTE features in predicting
LAAT, we compared the diagnostic performance of a model utilizing
combined TTE data with a model based on TEE data. In the
non-thrombus vs. thrombus status group, the combined TTE
diagnostic model demonstrated significantly higher sensitivity
(65.7%), specificity (73.0%), and accuracy (71.7%) compared to the
model using TTE alone. However, when compared to the combined
TEE model, which exhibited sensitivity (80.3%), specificity (72.2%),
and accuracy (73.4%), the comprehensive TTE model showed lower
sensitivity, Table 2.

In the non-thrombus and thrombus groups, the combined TTE
diagnostic model again revealed significantly higher sensitivity
(50.0%), specificity (84.2%), and accuracy (80.5%) compared to the
model using TTE alone. Conversely, the sensitivity (82.9%), specificity
(72.4%), and accuracy (73.3%) of the combined TEE model were
notably higher, indicating that the comprehensive TTE model has
lower sensitivity in this context, Table 3.

3.3 Performance of machine learning
models

Machine learning methods, including Random Forest (RF),
Support Vector Machine (SVM), Logistic Regression (LR), and
eXtreme Gradient Boosting (XGBoost), were utilized to develop
predictive models for LAAT by integrating echocardiographic and
clinical data. In the non-thrombus vs. thrombus status group, the LR
model demonstrated superior sensitivity and accuracy across both
training and testing datasets (p < 0.05). In the training set, the LR
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TABLE 1 Groups comparison of clinical and ultrasound features.

Characteristics Groups Thrombus state vs. Thrombus vs. Non-
Non-thrombotic thrombotic
Thrombus Thrombus Non- X2/t p OR X2/t p OR
state (n = 56) thrombotic [95% [95%
(n=102) (n = 456) Cl] Cl]
Gender, Female (%) 47 (46.07) 23 (41.07) 206 (45.17) 0.00 0.956 1.04 (0.69, 0.340 0.560 0.85 (0.49,
1.56) 1.47)
Radiofrequency ablation, 9(8.82) 3(5.30) 26 (5.7) 0.84 0.342 1.60 (0.77, 0.011 0.916 0.94 (0.34,
Yes (%) 3.32) 2.38)
Electrical cardioversion, 2(1.96) 1(1.78) 12 (2.63) 0.00 0.967 0.74 (0.18, 0.144 0.704 0.67 (0.09,
Yes (%) 2.98) 5.01)
Medication, Yes (%) 24 (23.52) 13 (23.21) 128 (28.07) 0.67 0.414 0.79 (0.48, 0.589 0.443 0.78 (0.43,
1.31) 1.43)
Types of atrial 49 (48.03) 28 (50.00) 132 (28.94) 1243 <0.001 | 234(1.44, 10289 0.001 2.45 (1.51,
fibrillation, paroxysmal 3.80) 3.98)
(%)
Hypertension, Yes (%) 57 (55.88) 36 (64.28) 233 (51.09) 0.55 0.456 1.21 (0.80, 3.42 0.064 1.72 (1.05,
1.83) 2.83)
Heart failure, Yes (%) 43 (42.15) 24 (42.85) 91 (19.95) 19.33 <0.001 | 292(1.83, 14937 <0.001 | 3.00(1.76,
4.66) 5.12)
Diabetes, Yes (%) 16 (15.68) 10 (17.85) 69 (15.13) 0.00 0.991 1.04 (0.58, 0.284 0.594 1.22 (0.76,
1.86) 1.97)
Coronary heart disease, 48 (47.05) 30 (53.57) 201 (44.07) 0.19 0.662 1.13 (0.77, 1.815 0.178 1.46 (0.89,
Yes (%) 1.65) 2.40)
Stroke, Yes (%) 25 (24.50) 16 (28.57) 78 (17.10) 2.43 0.119 1.57 (0.94, 4375 0.036 1.89 (1.13,
2.64) 3.17)
Smoking, Yes (%) 16 (15.68) 11 (19.64) 103 (22.58) 2.08 0.149 0.64 (0.37, 0.250 0.617 0.84 (0.49,
1.08) 1.43)
Drinking, Yes (%) 9(8.82) 4(7.14) 22 (4.82) 1.65 0.198 1.91 (0.88, 0.556 0.456 1.52 (0.51,
4.16) 4.53)
Age, Year 68.00 (58.50, 64 (56.25,71) 1.423 0.155 1.66 (1.06, 1.551 0.121 2.04 (1.23,
66 (58, 71) 72.00) 2.59) 3.38)
Atrial fibrillation 12 (1.00, 48.00) 0.781 0.435 2.00 (1.00, 0.492 0.623 1.58 (0.94,
duration, (months) 12 (1.00,51.00) | 12.00 (1.25, 36.00) 3.99) 2.66)
BMI (Kg/m?) 25.62 (24.31, 25.54 (23.77, 25.62 (24.15, 26.67) 0.400 0.689 1.82 (1.20, 0.351 0.726 0.56 (0.32,
26.67) 26.30) 2.76) 1.00)
BNP (pg/ml) 515.56 (107.06, 603.68 (105.19, 153.59 (54.25, 4282 <0.001 | 2.56(1.61, 3.336 <0.001 | 2.84(1.68,
1072.00) 1198.00) 716.44) 3.88) 4.80)
Blood uric acid (umol/L) 348.00 (295.50, 343.00 (278.50, 332.00 (267.50, 2.772 0.006 2.33 (1.49, 1.783 0.075 2.58 (1.56,
432.50) 448.25) 390.00) 3.65) 4.25)
D-Dimer (mg/L) 300.00 (160.00, 300.00 (142.50, 190.00 (140.00, 3.485 <0.001 | 279 (1.78, 2.541 0.011 3.67 (2.14,
695.00) 725.00) 330.00) 4.36) 6.28)
Prothrombin time (inr) 12.30 (11.20, 12.25 (11.20, 12.20 (11.10, 14.20) 1.130 0.259 2.20 (1.44, 1.131 0.258 2.77 (1.46,
15.05) 15.28) 3.63) 5.27)
Mitral regurgitation 3.40 (1.80, 6.20) 3.35 (1.35, 6.38) 2.00 (1.00, 4.50) 3.344 <0.001 | 2.68(1.67, 2.304 0.021 226 (1.34,
(cm?) 4.25) 3.80)
Interventricular septum 11.00 (10.00, 11.10 (10.00, 10.00 (9.00, 11.00) 2.459 0.014 1.78 (1.05, 2.903 0.004 2.59 (1.55,
thickness (mm) 12.00) 12.00) 2.97) 4.31)
LVEF (%) 60.00 (50.75, 62.00 (51.25, 63.00 (59.00.67.00) 3.559 <0.001 | 2.32(1.46, 2.246 0.025 2.21(1.32,
65.00) 65.75) 3.66) 3.69)
(Continued)
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Characteristics Groups Thrombus state vs. Thrombus vs. Non-
Non-thrombotic thrombotic
Thrombus Thrombus Non- X2/t p OR X3/t p OR
state (n = 56) thrombotic [95% [95%
(n =102) (n = 456) Cll Cll
LVED (mm) 48.00 (45.00, 48.00 (44.25, 47.00 (43.00, 50.00) 2.991 0.003 2.56 (1.65, 2.314 0.021 2.69 (1.51,
52.00) 52.00) 3.95) 4.63)
LAD (mm) 46.00 (42.00, 45.00 (41.00, 41.00 (37.00, 45.00) 7.655 <0.001 5.41 (3.56, 4.768 <0.001 3.82(2.28,
53.00) 52.75) 8.05) 6.39)
CHA2DS2-VASc 3.00 (1.75, 4.25) 3.00 (2.00, 5.00) 2.00 (1.00, 4.00) 2.514 0.012 1.69 (1.09, = 3.086 0.002 2.36 (1.39,
2.66) 3.99)
Left atrial appendage 30.00 (20.00, 42.40 (22.40, 47.6 (36.80, 61.70) 6.619 <0.001 5.93(3.69, 4.393 <0.001 9.33 (4.02,
filling velocity (cm/s) 42.00) 48.23) 9.54) 21.7)
Left atrial appendage 20.00 (14.00, 30.00 (17.05, 40.00 (27.80, 55.00) 8.107 <0.001 13.10 4.697 <0.001 12.35
emptying rate (cm/s) 28.10) 41.64) (641, (4.93,
26.75) 30.88)
BMI, Body Mass Index; BNP, Brain Natriuretic Peptide; LVEF, Left Ventricular Ejection Fraction; LVED, Left ventricular end diastolic; LAD, Left atrial diameter.
TABLE 2 Diagnostic performance of the model in predicting the risk of thrombotic state.
Models SEN (%)  SPE(%) ACC (%) NPV (%) PPV (%) AUC (%) Cut of p value 2
[95% Cl] EIS test
MR (cm?) 70.6 511 54.7 88.6 244 0.61 (0.5, 2.1 0.052
0.67)
EF (%) 422 72.6 67.0 84.9 25.6 0.61 (0.55, 58.5 0.005
0.68)
LVED (mm) 36.2 81.7 722 85.1 30.8 0.59 (0.53, 50.5 0.003
0.66)
LAD (mm) 66.6 73.0 71.8 90.7 35.6 0.74 (0.69, 44.5 <0.001
0.80)
MR + EF + LVED+LAD 65.7 73.0 71.7 90.5 35.3 0.74 (0.68, 0.2 <0.01
0.79)
LAA filling velocity (cm/s) 57.7 81.3 77.7 91.5 35.7 0.75 (0.68, 31.6 <0.001
0.81)
LAA emptying velocity (cm/s) 86.6 67.4 70.3 96.5 324 0.81 (0.76, 30.2 <0.001
0.87)
LAA filling + emptying 80.3 722 73.4 95.3 34.1 0.80 (0.75, 0.2 <0.001
velocity (cm/s) 0.86)

AUC area under the receiver operating characteristic curve, SEN sensitivity, SEP specifcity, ACC accuracy, NPV negative predictive value, PPV positive predictive value.

model achieved a sensitivity of 81.5%, specificity of 61.7%, accuracy
of 65.3%, and area under the curve (AUC) of 78.5%. In the testing set,
the model displayed a sensitivity of 60.0%, specificity of 89.1%,
accuracy of 83.9%, and AUC of 80.9% (Table 4). Prospective validation
using data from our center confirmed the stability and effectiveness of
the LR model, yielding sensitivity of 82.4%, specificity of 61.6%,
accuracy of 65.4%, and AUC of 78.7% (Table 4). The 10 most
important features identified by the model included LAD, LVEF,
Drinking History, D-dimer levels, type of atrial fibrillation, history of
electrical cardioversion, radiofrequency ablation, left ventricular
end-diastolic diameter (LVED), and degree of mitral regurgitation,
Figure 3A.

In the non-thrombus vs. thrombus group, the LR model again
exhibited the highest sensitivity and accuracy among the four machine
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learning methods (p < 0.05). The training set results showed a
sensitivity of 68.0%, specificity of 70.2%, accuracy of 70.0%, and AUC
of 73.2%. In the testing set, the model achieved sensitivity of 83.3%,
specificity of 78.3%, accuracy of 78.8%, and AUC of 80.1% (Table 5).
Prospective validation with our center’s data demonstrated robust
performance, yielding sensitivity of 85.7%, specificity of 76.9%,
accuracy of 77.9%, and AUC of 80.0% (Table 5). The 10 most
important features for this model included LAD, D-dimer levels, heart
failure status, type of atrial fibrillation, LVEF, history of hypertension,
CHA2DS2-VASc score, BNP levels, history of previous stroke, and
LVED, Figure 3B.

In the non-thrombus vs. thrombus status group, the LR model
demonstrated a diagnostic sensitivity of 82.4%, specificity of 61.6%,
accuracy of 65.4%, and an area under the curve (AUC) of 78.7%.
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TABLE 3 Diagnostic performance of the model in predicting the risk of thrombotic.

Models SEN (%)  SPE(%) @ ACC (%) NPV(%) PPV (%)  AUC (%) Cut of p value ¥
[95% Cl] value test
MR (cm?) 714 51.2 53.4 93.6 153 0.60 (0.51, 2.1 <0.001
0.68)
EF (%) 41.1 76.0 722 913 17.4 0.59 (0.51, 585 <0.001
0.68)
LVED (mm) 375 81.7 76.9 91.4 20.1 0.59 (0.51, 50.5 <0.001
0.68)
LAD (mm) 58.9 73.0 714 93,5 21.1 0.70 (0.62, 445 <0.001
0.78)
MR + EF + LVED+LAD 50.0 84.2 80.5 93.2 28.0 0.74 (0.64, 0.1 <0.001
0.83)
LAA filling velocity (cm/s) 60.0 85.3 83.3 36.8 26.6 0.78 (0.70, 483 <0.001
0.86)
LAA emptying velocity (cm/s) 85.3 67.4 68.9 98.0 19.3 0.84 (0.77, 41.7 <0.001
0.91)
LAA filling + emptying 82.9 724 733 97.9 21.0 0.84 (0.77, 0.1 <0.001
velocity (cm/s) 0.91)

AUC area under the receiver operating characteristic curve, SEN sensitivity, SEP specifcity, ACC accuracy, NPV negative predictive value, PPV positive predictive value.

TABLE 4 Model performance based on different machine learning algorithms for thrombus state group vs. non-thrombotic group: training set and test
set; prospective validation performance of logistic regression models.

Model 558 retrospective modeling cases (first group = 456, second 140 prospective validated cases
group = 102) (first group = 107, second
group = 33)
Training set Test set Validation set
SEN SPE ACC AUC SEN SPE SEN SPE
(%) (VA] (%) (%) (%) (VA] (VA] (%)
[95% [95%
Cll Cll
Logistic 78.5 81.5 61.7 653 80.9 60.0 89.1 83.9 78.7(0.74, = 82.4(0.74, | 61.6(0.57, 65.4
regression 0.83) 0.89) 0.66)
Support 74.5 783 57.3 61.2 75.0 60.0 82.6 78.6
vector
machine
Random 100.0 100.0 100.0 100.0 71.3 50.0 93.5 85.7
forest
XGBOOST 97.0 90.2 92.4 94.0 74.8 80.0 71.7 732

First group: non-thrombotic group, second group: thrombus state group.

When compared to the TEE combined prediction model, which had
a sensitivity of 80.3%, specificity of 72.2%, accuracy of 73.4%, and
AUC of 80.4%, the difference in AUC was not statistically significant.
However, the LR model exhibited a higher sensitivity than the TEE
model. This suggests that the LR model could be a useful alternative
for detecting LAAT, particularly in scenarios where maximizing
sensitivity is critical, such as in patients at high risk of
thromboembolism, Figure 4A.

In the non-thrombus vs. thrombus group, the LR model showed
an even higher diagnostic sensitivity of 85.7%, specificity of 76.9%,
accuracy of 77.9%, and AUC of 80.0%. These values were compared
with those from the TEE model, which had a sensitivity of 82.9%,
specificity of 72.4%, accuracy of 73.3%, and AUC of 84.0%. The
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difference in AUC was statistically significant, indicating that the TEE
model had better overall discriminatory power. However, the LR
models higher sensitivity, specificity, and accuracy in this group
highlights its potential as a robust non-invasive tool for diagnosing
LAAT. The LR model’s ability to outperform TEE in terms of sensitivity,
while maintaining competitive accuracy and AUC, reinforces its utility
as a complementary diagnostic approach in clinical practice, Figure 4B.

4 Discussion

Non-valvular atrial fibrillation (NVAF) is one of the most
common arrhythmias and is closely associated with the formation of
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Summary chart of feature importance representative variables. The higher the variable value, the greater the contribution to predicting left atrial
appendage thrombus status. (A) Non-thrombus vs. thrombus status group. (B) Non-thrombus vs. thrombus group.
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TABLE 5 Model performance based on different machine learning algorithms for thrombus state group vs. non-thrombotic group: training set and test

set; prospective validation performance of logistic regression models.

512 retrospective modeling cases (first group = 456, third

121 prospective validated cases

group = 56) (first group = 107, third
group = 14)
Training set Test set Validation set
AUC SEN SPE ACC AUC SEN SPE ACC SEN SPE ACC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
[95% [95%
Cl] Cl]
Logistic 73.2 68.0 70.2 70.0 80.1 83.3 78.3 78.8 80.0 85.7 (0.60, = 77.8 (0.69, 78.7
regression (0.68, 0.96) 0.85)
0.93)
Support 91.0 82.0 95.1 93.7 63.4 83.3 58.7 61.5
vector
machine
Random 99.6 100 93.4 94.1 71.9 66.7 84.8 82.7
Forest
XGBOOST 98.6 94.0 94.6 94.6 65.6 50.0 95.7 90.7

First group: non-thrombotic group, third group: thrombus group.

LAA thrombosis. The incidence of LAA thrombosis is high in patients
with atrial fibrillation, and it is often the primary source of stroke and
other serious cardiovascular complications (19). The presence of LAA
thrombosis is a critical factor in treatment decisions for AF patients,
as its formation significantly increases the risk of embolic events,
particularly in patients who are not on effective anticoagulation
therapy (20). Therefore, early prediction and detection of LAA
thrombosis are vital in preventing AF-related complications. While
transesophageal TEE is the current gold standard for diagnosing LAA
thrombosis, its invasiveness and technical requirements limit its
widespread use in routine clinical screening. In contrast, TTE, a
non-invasive and easy-to-use tool, holds great potential for routine
screening in AF patients. However, the diagnostic accuracy of TTE
alone is insufficient, and improving its predictive performance
remains a challenge in clinical research. To address this issue, our
study proposes an innovative approach that integrates machine
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learning with clinical data and TTE to non-invasively predict the risk
of LAA thrombosis, aiming to provide a more convenient, accurate,
and feasible screening tool for clinical practice.

The results of the univariate analysis revealed that several clinical
and echocardiographic parameters showed significant statistical
differences between the LAA thrombosis group, the thrombus status
group, and the no-thrombus group, when compared to those without
LAA thrombosis. These factors include atrial fibrillation type, heart
failure, BNP, serum creatinine, D-dimer, mitral regurgitation, LVEF,
LVED, LAD, CHA2DS2-VASc score, LAA emptying velocity, and
LAA filling velocity. These findings are consistent with previous
studies, further confirming the importance of these clinical and
echocardiographic features in the formation of LAA thrombosis (21—
23). Particularly, BNP, D-dimer, and LAA functional parameters such
as emptying and filling velocities are closely related to thrombosis
formation and hemodynamic status (24). Additionally, the
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CHA2DS2-VASc score, a traditional risk assessment tool for stroke in
AF patients (25), also demonstrated strong predictive ability in this
study. The statistical significance of these variables suggests that LAA
thrombosis is influenced not only by cardiac structural and functional
abnormalities but also by various hemodynamic and coagulation
factors, thus providing a solid theoretical foundation for the
development of predictive models.

In this study, both single and combined models using TTE and TEE
demonstrated their potential in predicting LAA thrombosis and
thrombus status. When compared to the no-thrombus group, the
combined TTE model (including mitral regurgitation, LVEE LVED, and
LAD) showed improvements in diagnostic sensitivity, specificity, and
AUC in the thrombus status group (sensitivity 65.7%, specificity 73.0%,
AUC 0.74). The combined TEE model, based on LAA emptying and
filling velocities, showed even higher diagnostic performance in the
thrombus status group (sensitivity 80.3%, specificity 72.2%, AUC 0.80).
Moreover, compared to the thrombus group, the diagnostic sensitivity,
specificity, and AUC of the combined TEE model also showed significant
improvements (sensitivity 82.9%, specificity 72.4%, AUC 0.84). These
results not only align with existing research but also reaffirm the gold
standard status of TEE for diagnosing LAA thrombosis. However, it is
important to note that while TEE has stronger diagnostic capability, its
invasiveness and technical demands make TTE a more practical and
convenient screening tool, especially for routine clinical use. Therefore,
by comparing these two methods, our study highlights the
complementary nature of different echocardiographic techniques in
thrombosis prediction, laying the groundwork for more refined
modeling approaches to enhance diagnostic efficacy.

The study further incorporated four machine learning models—
Logistic Regression, Support Vector Machine, Random Forest, and
XGBoost—integrating clinical data and TTE features to develop a
non-invasive predictive model for LAA thrombosis. Among these, the
Logistic Regression model demonstrated superior performance,
particularly in sensitivity and stability, compared to the other models.
The LR model’s superior performance is likely due to its interpretability,
lower complexity, and reduced susceptibility to overfitting compared
to RF and XGBoost, particularly given our moderate sample size. Its
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higher sensitivity compared to TEE may result from integrating
clinical data, compensating for echocardiographic limitations and
enhancing diagnostic accuracy. In the thrombus group, the validation
set achieved an AUC of 80.0%, with sensitivity at 85.7%, specificity at
76.9%, while in the thrombus status group, the AUC was 78.7%, with
sensitivity of 82.4% and specificity of 61.6%. More importantly, in
prospective validation, the sensitivity for the thrombus group
increased by 3% compared to the combined TEE model, while the
sensitivity for the thrombus status group increased by 4%. These
results confirm the clinical feasibility of the Logistic Regression model,
particularly its potential for enhancing early screening sensitivity and
reducing the risk of embolic events, demonstrating its advantage in
high-risk patient screening. The results not only validate the
effectiveness of this model in predicting LAA thrombosis but also
highlight its robustness in adapting to varying clinical datasets. Most
importantly, this model enables non-invasive, convenient early risk
assessment for AF patients using routine TTE and clinical data,
offering significant clinical value.

The superior performance of the Logistic Regression model
underscores its critical role in screening high-risk AF patients,
particularly in those unable to undergo TEE. By incorporating clinical
risk scores (such as CHA2DS2-VASc), echocardiographic features
(such as LAD and LVEF), and biochemical markers (such as D-dimer),
this model precisely identifies patients at higher risk of thrombosis,
providing reliable guidance for early intervention. Clinically, this
model not only aids in efficiently screening high-risk patients but also
assists physicians in making individualized treatment decisions,
ultimately reducing the incidence of thrombotic complications in AF
patients. Furthermore, key features identified by the model, such as
LAD, D-dimer, heart failure, and AF type, further elucidate the
multifactorial mechanisms of LAA thrombosis and provide important
biomarkers and clinical parameters for future risk assessments.
Overall, the Logistic Regression model not only improves the accuracy
of LAA thrombosis screening but also offers a low-cost, high-
efficiency screening tool for primary care settings and resource-
limited regions, with broad clinical applicability and the potential to
enhance the management of AF patients and reduce thrombotic events.
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4.1 Limitation

This study has some limitations. First, the limitations of potential
feature selection bias, regional population bias from the single-center
design, and the absence of advanced visualization methods (e.g.,
SHAP, LIME). Second, the model relies solely on TTE and clinical data
and does not incorporate other imaging modalities or biomarkers,
which may restrict the optimization potential of the model. Future
studies should incorporate multicenter validation, dynamic follow-up
data, and multimodal imaging to enhance the model’s robustness and
clinical utility.

5 Conclusion

This study presents a novel, non-invasive LAA thrombosis
prediction model using machine learning, integrating clinical data
and TTE. The Logistic Regression model shows superior
diagnostic performance and prospective stability, particularly for
AF patients unable to undergo TEE. This model provides a
powerful tool for early intervention and personalized treatment,
reducing thrombotic complications. Future multi-center
validation and model optimization will further enhance its clinical

application value.
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