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Background: Non-Valvular Atrial fibrillation (NVAF) and atrial flutter are 
significant contributors to left atrial appendage thrombus (LAAT) formation. 
This study explores the potential of machine learning (ML) models integrating 
transthoracic echocardiography (TTE) and clinical data for non-invasive LAAT 
detection and risk assessment.
Methods: A total of 698 patients with NVAF was recruited from Luoyang 
Central Hospital between January 2021 and May 2024, including 558 patients 
for retrospective analysis and 140 for prospective validation. Based on 
transesophageal echocardiography (TEE) results, patients were categorized 
into three groups: non-thrombotic, blood stasis, and thrombotic. Four ML 
algorithms—Random Forest, Logistic Regression (LR), Support Vector Machine, 
and XGBoost—were developed using TTE and clinical data to predict LAAT.
Results: Univariate analysis identified significant predictors of LAAT, including 
permanent AF, heart failure, BNP, uric acid, D-dimer, mitral regurgitation, LVEF, 
LVED, LAD, CHA₂DS₂-VASc score, and LAA velocity (p < 0.05). The combined 
TTE data model outperformed independent TTE-based models but was 
slightly less accurate than the TEE model. Among ML algorithms, the LR model 
demonstrated the best performance, achieving an area under the curve (AUC) 
of 80.9% in the test set and 78.7% in prospective validation for the thrombotic 
state group. For the thrombotic group, the LR model achieved an AUC of 80.0%, 
closely approaching the TEE model’s 84.0%.
Conclusion: The LR model provides a reliable non-invasive approach for LAAT 
screening in high-risk AF patients by integrating TTE features with clinical data, 
potentially reducing reliance on TEE.
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1 Introduction

Non-valvular Atrial fibrillation (NVAF) and atrial flutter are 
significant contributors to the formation of left atrial appendage 
thrombus (LAAT), leading to an increased risk of thromboembolic 
events. It has been established that LAAT is often identified as a source 
of thrombus formation in patients who have recently experienced 
strokes, highlighting the critical need for effective detection methods 
(1–3). Despite the complexity of stroke mechanisms, LAAT is 
frequently implicated in thromboembolic complications, particularly 
in patients undergoing cardioversion (4, 5).

The restoration of sinus rhythm is associated with a heightened 
risk of thromboembolic events, as embolization of pre-existing 
thrombi in the atrium is a plausible cause of such incidents (6). 
Consequently, current guidelines contraindicate the performance of 
cardioversion and catheter ablation in the presence of LAAT (7, 8). 
Although oral anticoagulation (OAC) reduces the risk of LAAT 
formation, it does not eliminate this risk entirely, necessitating 
alternative detection methods (9–11). Transesophageal 
echocardiography (TEE) is recognized as the gold standard for LAT 
detection, demonstrating high sensitivity and specificity (12, 13). 
However, its associated discomfort, complexity, and costs pose 
significant challenges for routine clinical application, leading to an 
unmet clinical need for a more accessible and practical risk assessment 
method for LAAT (14–16).

Transthoracic echocardiography (TTE) presents a less invasive 
and more cost-effective alternative to TEE, allowing for rapid 
assessment. Several studies have identified TTE features that correlate 
with the presence of LAAT; however, there has been a lack of research 
integrating clinical and TTE data to create a personalized risk 
assessment model (17, 18). In response to these limitations, A novel 
prediction model for LAAT detection has been developed in this 
study, integrating TTE measurements with clinical data. Machine 
learning algorithms, including Support Vector Machine (SVM), 
Random Forest (RF), XGBoost (XGB), and Logistic Regression (LR), 
were harnessed to construct and validate the model. The model’s 
criteria for thrombus prediction were based on left atrial appendage 
(LAA) emptying velocity and LAA filling velocity, with TEE as the 
reference standard. This approach aims to improve the accuracy and 
practicality of LAAT risk assessment by comparing the performance 
of the machine learning-based model to traditional methods.

This study aims to establish a reliable and non-invasive predictive 
tool for LAAT risk by leveraging machine learning algorithms on 
readily available clinical and TTE data, thereby potentially reducing 
the reliance on invasive TEE procedures and enhancing patient 
management strategies.

2 Methods

2.1 Study population

This study included patients from Luoyang Central Hospital 
between January 2021 and December 2023. The inclusion criteria 
were: 1. patients with an initial diagnosis of AF upon discharge, 2. 
patients who underwent TEE for assessment of left atrial appendage 
(LAA) parameters, and TTE for cardiac measurements, and 3. atrial 
fibrillation duration ≥48 h. The exclusion criteria were: 1. patients 

with moderate or severe mitral stenosis with AF, and 2. patients with 
AF after mechanical valve replacement (e.g., aortic or mitral 
valve replacement).

Both retrospective and prospective analyses were conducted 
based on the most recent hospitalization records. Data on LAAT and 
cardiac measurements from TTE were collected. Any patient data that 
did not meet the inclusion criteria were excluded from the analysis. A 
total of 698 patients were enrolled in the study, of which 558 were 
included in the retrospective analysis, and 140 were used for 
prospective validation of the best-performing machine learning 
models (Figure 1). Patients were divided into three groups based on 
TEE results: no thrombus group (first), thrombus state group (second), 
and thrombus group (third).

Ethical approval for the study (Approval No. LWLL-2024-11-05-
02) was obtained from the Ethics Committee of Luoyang Central 
Hospital, affiliated with Zhengzhou University, prior to the 
commencement of the study. Written informed consent was obtained 
from all patients.

2.2 Data collection

Clinical baseline data were collected from patients, including but 
not limited to age, sex, weight, and medical history. All 
echocardiographic examinations were conducted by experienced 
ultrasound physicians in accordance with the guidelines established 
by the American Society of Echocardiography (ASE). Imaging data 
from both TTE and TEE were recorded, including parameters such as 
left atrial size, left ventricular size, left ventricular ejection fraction 
(LVEF), degree of mitral regurgitation, LAA emptying velocity, and 
LAA filling velocity.

2.3 Machine learning model development 
and prospective validation

Due to the extensive feature set and limited sample size, a feature 
selection technique was utilized to identify an optimal subset of 
features from the initial set. The process began with applying min-max 
normalization to all features in the training data. Subsequently, to 
remove irrelevant and redundant features, a two-sample t-test was 
conducted to identify features exhibiting significant differences 
(p < 0.05) between the MSA-P and IPD groups. For nodal graph 
metrics, False Discovery Rate (FDR) correction was implemented, 
while for FC matrices, Network-Based Statistic (NBS) correction was 
applied. Following this, a random forest (RF) classifier with 10-fold 
cross-validation was employed to identify a subset of the most 
informative features from the high-dimensional feature space. To 
prevent data leakage during the feature selection process, each fold of 
the 10-fold cross-validation was independently partitioned. Min-max 
normalization and feature selection using Random Forest were strictly 
applied within each training subset. The RF algorithm assigned a rank 
to each feature based on its importance in each iteration, and the 
top 10 features with the highest importance scores were chosen. These 
selections were recorded as indices or names of the chosen features. A 
tally was kept of how often each feature was selected, and the top 10 
features that were selected most frequently were retained. Lastly, 
Spearman’s rank correlation coefficient was employed to assess the 
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relationships among the remaining connectome features. If the 
absolute value of the correlation coefficient was at least 0.7 and the p 
value was less than 0.05, the feature with the lower importance 
was eliminated.

Following the feature selection process, we employed supervised 
machine learning techniques to develop a classification model. For 
this research, the dataset included in this study has very few missing 
data (less than 5%), and estimates were made using the median of 
continuous variables and the mode of categorical variables. 
We conducted model training using Random Forest (RF), Logistic 
Regression (LR), Support Vector Machine (SVM), and eXtreme 
Gradient Boosting (XGBoost) on the subjects within the training 
dataset. The optimal hyperparameters for these models were 
determined through a grid search approach. The retrospective dataset 
was partitioned into a training set (80%) and test set (20%) using 
stratified random sampling. Hyperparameter tuning was conducted 

through a nested cross-validation process exclusively on the training 
set, employing a grid search strategy to prevent overfitting. The 
models were trained on critical features encompassing demographic 
information, clinical records, NVAF subtypes, structural and 
functional measurements of the left atrial diameter (LAD) and left 
atrial appendage (LAA), laboratory data, and treatment variables. 
We then plotted the Receiver Operating Characteristic (ROC) curves 
for these models. Performance metrics such as the Area Under the 
Curve (AUC), precision, recall, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) were computed to assess 
the efficacy of each model on both the training and validation datasets 
Figure 2.

For internal prospective validation, the final model was 
independently evaluated using a prospective validation cohort 
(n = 140).we employed 140 patients collected from our center between 
January 2024 and May 2024. This cohort was used to assess the clinical 

FIGURE 1

Flowchart of inclusion and exclusion criteria for non valvular atrial fibrillation patients in this study.
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relevance and applicability of the optimal machine learning models, 
confirming their effectiveness in a clinical setting.

2.4 Statistical analysis

Statistical analyses were conducted utilizing IBM SPSS Statistics 
for Windows, Version 25.0 (IBM Corp.). The Shapiro–Wilk test 
assessed the normality of the data distribution. When data followed a 
normal distribution, parametric tests were applied; otherwise, 
non-parametric tests were employed. Categorical variable differences 
were evaluated using the chi-squared test, while continuous variable 
differences were assessed with either the independent t-test or the 
Mann–Whitney U test, depending on the data distribution. A 
univariate analysis was performed to determine factors correlated 
with left atrial appendage thrombosis (LAT).

To evaluate the diagnostic performance of transthoracic 
echocardiography (TTE) features, receiver operating characteristic 
(ROC) curves were generated, and the area under the curve (AUC) 
was calculated. Multivariable logistic regression analysis was 
performed to identify independent predictors of LAAT, adjusting for 
potential confounders identified in univariate analysis. Statistical 
significance was set at a two-tailed p-value of <0.05.

3 Results

3.1 Univariate analysis of clinical data

In the comparative analysis of clinical data between first Group 
(non-thrombus) and Group second and third (thrombus status group) 
Table 1, univariate analysis identified significant associations with the 
following variables: permanent atrial fibrillation (AF), heart failure, 
B-type natriuretic peptide (BNP), uric acid, and D-dimer, Mitral 
regurgitation, LVEF, LVED, LAD, CHA2DS2-VASc score, Left atrial 
appendage filling velocity, Left atrial appendage emptying rate with all 
showing statistical significance (p < 0.05). Similarly, in the comparison 
between Group first and Group second (thrombus group) Table 1, the 
variables of permanent AF, heart failure, history of stroke, BNP, uric 

acid, and D-dimer, Mitral regurgitation, LVEF, LVED, LAD, 
CHA2DS2-VASc score, Left atrial appendage filling velocity, Left atrial 
appendage emptying rate also demonstrated statistical significance 
(p < 0.05). These findings are consistent with previous research on the 
risk factors associated with LAAT.

3.2 Diagnostic value of transthoracic 
echocardiography

To evaluate the diagnostic value of TTE features in predicting 
LAAT, we compared the diagnostic performance of a model utilizing 
combined TTE data with a model based on TEE data. In the 
non-thrombus vs. thrombus status group, the combined TTE 
diagnostic model demonstrated significantly higher sensitivity 
(65.7%), specificity (73.0%), and accuracy (71.7%) compared to the 
model using TTE alone. However, when compared to the combined 
TEE model, which exhibited sensitivity (80.3%), specificity (72.2%), 
and accuracy (73.4%), the comprehensive TTE model showed lower 
sensitivity, Table 2.

In the non-thrombus and thrombus groups, the combined TTE 
diagnostic model again revealed significantly higher sensitivity 
(50.0%), specificity (84.2%), and accuracy (80.5%) compared to the 
model using TTE alone. Conversely, the sensitivity (82.9%), specificity 
(72.4%), and accuracy (73.3%) of the combined TEE model were 
notably higher, indicating that the comprehensive TTE model has 
lower sensitivity in this context, Table 3.

3.3 Performance of machine learning 
models

Machine learning methods, including Random Forest (RF), 
Support Vector Machine (SVM), Logistic Regression (LR), and 
eXtreme Gradient Boosting (XGBoost), were utilized to develop 
predictive models for LAAT by integrating echocardiographic and 
clinical data. In the non-thrombus vs. thrombus status group, the LR 
model demonstrated superior sensitivity and accuracy across both 
training and testing datasets (p < 0.05). In the training set, the LR 

FIGURE 2

Process diagram for predicting left atrial appendage thrombus using machine learning combined with clinical data and transthoracic ultrasound 
features.
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TABLE 1  Groups comparison of clinical and ultrasound features.

Characteristics Groups Thrombus state vs. 
Non-thrombotic

Thrombus vs. Non-
thrombotic

Thrombus 
state 

(n = 102)

Thrombus 
(n = 56)

Non-
thrombotic 

(n = 456)

x2/t p OR 
[95% 
CI]

x2/t p OR 
[95% 
CI]

Gender, Female (%) 47 (46.07) 23 (41.07) 206 (45.17) 0.00 0.956 1.04 (0.69, 

1.56)

0.340 0.560 0.85 (0.49, 

1.47)

Radiofrequency ablation, 

Yes (%)

9 (8.82) 3 (5.30) 26 (5.7) 0.84 0.342 1.60 (0.77, 

3.32)

0.011 0.916 0.94 (0.34, 

2.38)

Electrical cardioversion, 

Yes (%)

2 (1.96) 1 (1.78) 12 (2.63) 0.00 0.967 0.74 (0.18, 

2.98)

0.144 0.704 0.67 (0.09, 

5.01)

Medication, Yes (%) 24 (23.52) 13 (23.21) 128 (28.07) 0.67 0.414 0.79 (0.48, 

1.31)

0.589 0.443 0.78 (0.43, 

1.43)

Types of atrial 

fibrillation, paroxysmal 

(%)

49 (48.03) 28 (50.00) 132 (28.94) 12.43 <0.001 2.34 (1.44, 

3.80)

10.289 0.001 2.45 (1.51, 

3.98)

Hypertension, Yes (%) 57 (55.88) 36 (64.28) 233 (51.09) 0.55 0.456 1.21 (0.80, 

1.83)

3.42 0.064 1.72 (1.05, 

2.83)

Heart failure, Yes (%) 43 (42.15) 24 (42.85) 91 (19.95) 19.33 <0.001 2.92 (1.83, 

4.66)

14.937 <0.001 3.00 (1.76, 

5.12)

Diabetes, Yes (%) 16 (15.68) 10 (17.85) 69 (15.13) 0.00 0.991 1.04 (0.58, 

1.86)

0.284 0.594 1.22 (0.76, 

1.97)

Coronary heart disease, 

Yes (%)

48 (47.05) 30 (53.57) 201 (44.07) 0.19 0.662 1.13 (0.77, 

1.65)

1.815 0.178 1.46 (0.89, 

2.40)

Stroke, Yes (%) 25 (24.50) 16 (28.57) 78 (17.10) 2.43 0.119 1.57 (0.94, 

2.64)

4.375 0.036 1.89 (1.13, 

3.17)

Smoking, Yes (%) 16 (15.68) 11 (19.64) 103 (22.58) 2.08 0.149 0.64 (0.37, 

1.08)

0.250 0.617 0.84 (0.49, 

1.43)

Drinking, Yes (%) 9 (8.82) 4 (7.14) 22 (4.82) 1.65 0.198 1.91 (0.88, 

4.16)

0.556 0.456 1.52 (0.51, 

4.53)

Age, Year

66 (58, 71)

68.00 (58.50, 

72.00)

64 (56.25, 71) 1.423 0.155 1.66 (1.06, 

2.59)

1.551 0.121 2.04 (1.23, 

3.38)

Atrial fibrillation 

duration, (months) 12 (1.00, 51.00) 12.00 (1.25, 36.00)

12 (1.00, 48.00) 0.781 0.435 2.00 (1.00, 

3.99)

0.492 0.623 1.58 (0.94, 

2.66)

BMI (Kg/m2) 25.62 (24.31, 

26.67)

25.54 (23.77, 

26.30)

25.62 (24.15, 26.67) 0.400 0.689 1.82 (1.20, 

2.76)

0.351 0.726 0.56 (0.32, 

1.00)

BNP (pg/ml) 515.56 (107.06, 

1072.00)

603.68 (105.19, 

1198.00)

153.59 (54.25, 

716.44)

4.282 <0.001 2.56 (1.61, 

3.88)

3.336 <0.001 2.84 (1.68, 

4.80)

Blood uric acid (umol/L) 348.00 (295.50, 

432.50)

343.00 (278.50, 

448.25)

332.00 (267.50, 

390.00)

2.772 0.006 2.33 (1.49, 

3.65)

1.783 0.075 2.58 (1.56, 

4.25)

D-Dimer (mg/L) 300.00 (160.00, 

695.00)

300.00 (142.50, 

725.00)

190.00 (140.00, 

330.00)

3.485 <0.001 2.79 (1.78, 

4.36)

2.541 0.011 3.67 (2.14, 

6.28)

Prothrombin time (inr) 12.30 (11.20, 

15.05)

12.25 (11.20, 

15.28)

12.20 (11.10, 14.20) 1.130 0.259 2.20 (1.44, 

3.63)

1.131 0.258 2.77 (1.46, 

5.27)

Mitral regurgitation 

(cm2)

3.40 (1.80, 6.20) 3.35 (1.35, 6.38) 2.00 (1.00, 4.50) 3.344 <0.001 2.68 (1.67, 

4.25)

2.304 0.021 2.26 (1.34, 

3.80)

Interventricular septum 

thickness (mm)

11.00 (10.00, 

12.00)

11.10 (10.00, 

12.00)

10.00 (9.00, 11.00) 2.459 0.014 1.78 (1.05, 

2.97)

2.903 0.004 2.59 (1.55, 

4.31)

LVEF (%) 60.00 (50.75, 

65.00)

62.00 (51.25, 

65.75)

63.00 (59.00.67.00) 3.559 <0.001 2.32 (1.46, 

3.66)

2.246 0.025 2.21 (1.32, 

3.69)

(Continued)
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model achieved a sensitivity of 81.5%, specificity of 61.7%, accuracy 
of 65.3%, and area under the curve (AUC) of 78.5%. In the testing set, 
the model displayed a sensitivity of 60.0%, specificity of 89.1%, 
accuracy of 83.9%, and AUC of 80.9% (Table 4). Prospective validation 
using data from our center confirmed the stability and effectiveness of 
the LR model, yielding sensitivity of 82.4%, specificity of 61.6%, 
accuracy of 65.4%, and AUC of 78.7% (Table  4). The 10 most 
important features identified by the model included LAD, LVEF, 
Drinking History, D-dimer levels, type of atrial fibrillation, history of 
electrical cardioversion, radiofrequency ablation, left ventricular 
end-diastolic diameter (LVED), and degree of mitral regurgitation, 
Figure 3A.

In the non-thrombus vs. thrombus group, the LR model again 
exhibited the highest sensitivity and accuracy among the four machine 

learning methods (p < 0.05). The training set results showed a 
sensitivity of 68.0%, specificity of 70.2%, accuracy of 70.0%, and AUC 
of 73.2%. In the testing set, the model achieved sensitivity of 83.3%, 
specificity of 78.3%, accuracy of 78.8%, and AUC of 80.1% (Table 5). 
Prospective validation with our center’s data demonstrated robust 
performance, yielding sensitivity of 85.7%, specificity of 76.9%, 
accuracy of 77.9%, and AUC of 80.0% (Table  5). The 10 most 
important features for this model included LAD, D-dimer levels, heart 
failure status, type of atrial fibrillation, LVEF, history of hypertension, 
CHA2DS2-VASc score, BNP levels, history of previous stroke, and 
LVED, Figure 3B.

In the non-thrombus vs. thrombus status group, the LR model 
demonstrated a diagnostic sensitivity of 82.4%, specificity of 61.6%, 
accuracy of 65.4%, and an area under the curve (AUC) of 78.7%. 

TABLE 1  (Continued)

Characteristics Groups Thrombus state vs. 
Non-thrombotic

Thrombus vs. Non-
thrombotic

Thrombus 
state 

(n = 102)

Thrombus 
(n = 56)

Non-
thrombotic 

(n = 456)

x2/t p OR 
[95% 
CI]

x2/t p OR 
[95% 
CI]

LVED (mm) 48.00 (45.00, 

52.00)

48.00 (44.25, 

52.00)

47.00 (43.00, 50.00) 2.991 0.003 2.56 (1.65, 

3.95)

2.314 0.021 2.69 (1.51, 

4.63)

LAD (mm) 46.00 (42.00, 

53.00)

45.00 (41.00, 

52.75)

41.00 (37.00, 45.00) 7.655 <0.001 5.41 (3.56, 

8.05)

4.768 <0.001 3.82 (2.28, 

6.39)

CHA2DS2-VASc 3.00 (1.75, 4.25) 3.00 (2.00, 5.00) 2.00 (1.00, 4.00) 2.514 0.012 1.69 (1.09, 

2.66)

3.086 0.002 2.36 (1.39, 

3.99)

Left atrial appendage 

filling velocity (cm/s)

30.00 (20.00, 

42.00)

42.40 (22.40, 

48.23)

47.6 (36.80, 61.70) 6.619 <0.001 5.93 (3.69, 

9.54)

4.393 <0.001 9.33 (4.02, 

21.7)

Left atrial appendage 

emptying rate (cm/s)

20.00 (14.00, 

28.10)

30.00 (17.05, 

41.64)

40.00 (27.80, 55.00) 8.107 <0.001 13.10 

(6.41, 

26.75)

4.697 <0.001 12.35 

(4.93, 

30.88)

BMI, Body Mass Index; BNP, Brain Natriuretic Peptide; LVEF, Left Ventricular Ejection Fraction; LVED, Left ventricular end diastolic; LAD, Left atrial diameter.

TABLE 2  Diagnostic performance of the model in predicting the risk of thrombotic state.

Models SEN (%) SPE (%) ACC (%) NPV (%) PPV (%) AUC (%) 
[95% CI]

Cut of 
value

p value χ2 
test

MR (cm2) 70.6 51.1 54.7 88.6 24.4 0.61 (0.55, 

0.67)

2.1 0.052

EF (%) 42.2 72.6 67.0 84.9 25.6 0.61 (0.55, 

0.68)

58.5 0.005

LVED (mm) 36.2 81.7 72.2 85.1 30.8 0.59 (0.53, 

0.66)

50.5 0.003

LAD (mm) 66.6 73.0 71.8 90.7 35.6 0.74 (0.69, 

0.80)

44.5 <0.001

MR + EF + LVED+LAD 65.7 73.0 71.7 90.5 35.3 0.74 (0.68, 

0.79)

0.2 <0.01

LAA filling velocity (cm/s) 57.7 81.3 77.7 91.5 35.7 0.75 (0.68, 

0.81)

31.6 <0.001

LAA emptying velocity (cm/s) 86.6 67.4 70.3 96.5 32.4 0.81 (0.76, 

0.87)

30.2 <0.001

LAA filling + emptying 

velocity (cm/s)

80.3 72.2 73.4 95.3 34.1 0.80 (0.75, 

0.86)

0.2 <0.001

AUC area under the receiver operating characteristic curve, SEN sensitivity, SEP specifcity, ACC accuracy, NPV negative predictive value, PPV positive predictive value.
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When compared to the TEE combined prediction model, which had 
a sensitivity of 80.3%, specificity of 72.2%, accuracy of 73.4%, and 
AUC of 80.4%, the difference in AUC was not statistically significant. 
However, the LR model exhibited a higher sensitivity than the TEE 
model. This suggests that the LR model could be a useful alternative 
for detecting LAAT, particularly in scenarios where maximizing 
sensitivity is critical, such as in patients at high risk of 
thromboembolism, Figure 4A.

In the non-thrombus vs. thrombus group, the LR model showed 
an even higher diagnostic sensitivity of 85.7%, specificity of 76.9%, 
accuracy of 77.9%, and AUC of 80.0%. These values were compared 
with those from the TEE model, which had a sensitivity of 82.9%, 
specificity of 72.4%, accuracy of 73.3%, and AUC of 84.0%. The 

difference in AUC was statistically significant, indicating that the TEE 
model had better overall discriminatory power. However, the LR 
model’s higher sensitivity, specificity, and accuracy in this group 
highlights its potential as a robust non-invasive tool for diagnosing 
LAAT. The LR model’s ability to outperform TEE in terms of sensitivity, 
while maintaining competitive accuracy and AUC, reinforces its utility 
as a complementary diagnostic approach in clinical practice, Figure 4B.

4 Discussion

Non-valvular atrial fibrillation (NVAF) is one of the most 
common arrhythmias and is closely associated with the formation of 

TABLE 3  Diagnostic performance of the model in predicting the risk of thrombotic.

Models SEN (%) SPE (%) ACC (%) NPV (%) PPV (%) AUC (%) 
[95% CI]

Cut of 
value

p value χ2 
test

MR (cm2) 71.4 51.2 53.4 93.6 15.3 0.60 (0.51, 

0.68)

2.1 <0.001

EF (%) 41.1 76.0 72.2 91.3 17.4 0.59 (0.51, 

0.68)

58.5 <0.001

LVED (mm) 37.5 81.7 76.9 91.4 20.1 0.59 (0.51, 

0.68)

50.5 <0.001

LAD (mm) 58.9 73.0 71.4 93.5 21.1 0.70 (0.62, 

0.78)

44.5 <0.001

MR + EF + LVED+LAD 50.0 84.2 80.5 93.2 28.0 0.74 (0.64, 

0.83)

0.1 <0.001

LAA filling velocity (cm/s) 60.0 85.3 83.3 36.8 26.6 0.78 (0.70, 

0.86)

48.3 <0.001

LAA emptying velocity (cm/s) 85.3 67.4 68.9 98.0 19.3 0.84 (0.77, 

0.91)

41.7 <0.001

LAA filling + emptying 

velocity (cm/s)

82.9 72.4 73.3 97.9 21.0 0.84 (0.77, 

0.91)

0.1 <0.001

AUC area under the receiver operating characteristic curve, SEN sensitivity, SEP specifcity, ACC accuracy, NPV negative predictive value, PPV positive predictive value.

TABLE 4  Model performance based on different machine learning algorithms for thrombus state group vs. non-thrombotic group: training set and test 
set; prospective validation performance of logistic regression models.

Model 558 retrospective modeling cases (first group = 456, second 
group = 102)

140 prospective validated cases 
(first group = 107, second 

group = 33)

Training set Test set Validation set

AUC 
(%)

SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC 
(%)

SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC 
(%) 

[95% 
CI]

SEN 
(%) 

[95% 
CI]

SPE 
(%) 

[95% 
CI]

ACC 
(%)

Logistic 

regression

78.5 81.5 61.7 65.3 80.9 60.0 89.1 83.9 78.7 (0.74, 

0.83)

82.4 (0.74, 

0.89)

61.6 (0.57, 

0.66)

65.4

Support 

vector 

machine

74.5 78.3 57.3 61.2 75.0 60.0 82.6 78.6

Random 

forest

100.0 100.0 100.0 100.0 71.3 50.0 93.5 85.7

XGBOOST 97.0 90.2 92.4 94.0 74.8 80.0 71.7 73.2

First group: non-thrombotic group, second group: thrombus state group.
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LAA thrombosis. The incidence of LAA thrombosis is high in patients 
with atrial fibrillation, and it is often the primary source of stroke and 
other serious cardiovascular complications (19). The presence of LAA 
thrombosis is a critical factor in treatment decisions for AF patients, 
as its formation significantly increases the risk of embolic events, 
particularly in patients who are not on effective anticoagulation 
therapy (20). Therefore, early prediction and detection of LAA 
thrombosis are vital in preventing AF-related complications. While 
transesophageal TEE is the current gold standard for diagnosing LAA 
thrombosis, its invasiveness and technical requirements limit its 
widespread use in routine clinical screening. In contrast, TTE, a 
non-invasive and easy-to-use tool, holds great potential for routine 
screening in AF patients. However, the diagnostic accuracy of TTE 
alone is insufficient, and improving its predictive performance 
remains a challenge in clinical research. To address this issue, our 
study proposes an innovative approach that integrates machine 

learning with clinical data and TTE to non-invasively predict the risk 
of LAA thrombosis, aiming to provide a more convenient, accurate, 
and feasible screening tool for clinical practice.

The results of the univariate analysis revealed that several clinical 
and echocardiographic parameters showed significant statistical 
differences between the LAA thrombosis group, the thrombus status 
group, and the no-thrombus group, when compared to those without 
LAA thrombosis. These factors include atrial fibrillation type, heart 
failure, BNP, serum creatinine, D-dimer, mitral regurgitation, LVEF, 
LVED, LAD, CHA2DS2-VASc score, LAA emptying velocity, and 
LAA filling velocity. These findings are consistent with previous 
studies, further confirming the importance of these clinical and 
echocardiographic features in the formation of LAA thrombosis (21–
23). Particularly, BNP, D-dimer, and LAA functional parameters such 
as emptying and filling velocities are closely related to thrombosis 
formation and hemodynamic status (24). Additionally, the 

FIGURE 3

Summary chart of feature importance representative variables. The higher the variable value, the greater the contribution to predicting left atrial 
appendage thrombus status. (A) Non-thrombus vs. thrombus status group. (B) Non-thrombus vs. thrombus group.

TABLE 5  Model performance based on different machine learning algorithms for thrombus state group vs. non-thrombotic group: training set and test 
set; prospective validation performance of logistic regression models.

Model 512 retrospective modeling cases (first group = 456, third 
group = 56)

121 prospective validated cases 
(first group = 107, third 

group = 14)

Training set Test set Validation set

AUC 
(%)

SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC 
(%)

SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC 
(%)

SEN 
(%) 

[95% 
CI]

SPE 
(%) 

[95% 
CI]

ACC 
(%)

Logistic 

regression

73.2 68.0 70.2 70.0 80.1 83.3 78.3 78.8 80.0 

(0.68, 

0.93)

85.7 (0.60, 

0.96)

77.8 (0.69, 

0.85)

78.7

Support 

vector 

machine

91.0 82.0 95.1 93.7 63.4 83.3 58.7 61.5

Random 

Forest

99.6 100 93.4 94.1 71.9 66.7 84.8 82.7

XGBOOST 98.6 94.0 94.6 94.6 65.6 50.0 95.7 90.7

First group: non-thrombotic group, third group: thrombus group.
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CHA2DS2-VASc score, a traditional risk assessment tool for stroke in 
AF patients (25), also demonstrated strong predictive ability in this 
study. The statistical significance of these variables suggests that LAA 
thrombosis is influenced not only by cardiac structural and functional 
abnormalities but also by various hemodynamic and coagulation 
factors, thus providing a solid theoretical foundation for the 
development of predictive models.

In this study, both single and combined models using TTE and TEE 
demonstrated their potential in predicting LAA thrombosis and 
thrombus status. When compared to the no-thrombus group, the 
combined TTE model (including mitral regurgitation, LVEF, LVED, and 
LAD) showed improvements in diagnostic sensitivity, specificity, and 
AUC in the thrombus status group (sensitivity 65.7%, specificity 73.0%, 
AUC 0.74). The combined TEE model, based on LAA emptying and 
filling velocities, showed even higher diagnostic performance in the 
thrombus status group (sensitivity 80.3%, specificity 72.2%, AUC 0.80). 
Moreover, compared to the thrombus group, the diagnostic sensitivity, 
specificity, and AUC of the combined TEE model also showed significant 
improvements (sensitivity 82.9%, specificity 72.4%, AUC 0.84). These 
results not only align with existing research but also reaffirm the gold 
standard status of TEE for diagnosing LAA thrombosis. However, it is 
important to note that while TEE has stronger diagnostic capability, its 
invasiveness and technical demands make TTE a more practical and 
convenient screening tool, especially for routine clinical use. Therefore, 
by comparing these two methods, our study highlights the 
complementary nature of different echocardiographic techniques in 
thrombosis prediction, laying the groundwork for more refined 
modeling approaches to enhance diagnostic efficacy.

The study further incorporated four machine learning models—
Logistic Regression, Support Vector Machine, Random Forest, and 
XGBoost—integrating clinical data and TTE features to develop a 
non-invasive predictive model for LAA thrombosis. Among these, the 
Logistic Regression model demonstrated superior performance, 
particularly in sensitivity and stability, compared to the other models. 
The LR model’s superior performance is likely due to its interpretability, 
lower complexity, and reduced susceptibility to overfitting compared 
to RF and XGBoost, particularly given our moderate sample size. Its 

higher sensitivity compared to TEE may result from integrating 
clinical data, compensating for echocardiographic limitations and 
enhancing diagnostic accuracy. In the thrombus group, the validation 
set achieved an AUC of 80.0%, with sensitivity at 85.7%, specificity at 
76.9%, while in the thrombus status group, the AUC was 78.7%, with 
sensitivity of 82.4% and specificity of 61.6%. More importantly, in 
prospective validation, the sensitivity for the thrombus group 
increased by 3% compared to the combined TEE model, while the 
sensitivity for the thrombus status group increased by 4%. These 
results confirm the clinical feasibility of the Logistic Regression model, 
particularly its potential for enhancing early screening sensitivity and 
reducing the risk of embolic events, demonstrating its advantage in 
high-risk patient screening. The results not only validate the 
effectiveness of this model in predicting LAA thrombosis but also 
highlight its robustness in adapting to varying clinical datasets. Most 
importantly, this model enables non-invasive, convenient early risk 
assessment for AF patients using routine TTE and clinical data, 
offering significant clinical value.

The superior performance of the Logistic Regression model 
underscores its critical role in screening high-risk AF patients, 
particularly in those unable to undergo TEE. By incorporating clinical 
risk scores (such as CHA2DS2-VASc), echocardiographic features 
(such as LAD and LVEF), and biochemical markers (such as D-dimer), 
this model precisely identifies patients at higher risk of thrombosis, 
providing reliable guidance for early intervention. Clinically, this 
model not only aids in efficiently screening high-risk patients but also 
assists physicians in making individualized treatment decisions, 
ultimately reducing the incidence of thrombotic complications in AF 
patients. Furthermore, key features identified by the model, such as 
LAD, D-dimer, heart failure, and AF type, further elucidate the 
multifactorial mechanisms of LAA thrombosis and provide important 
biomarkers and clinical parameters for future risk assessments. 
Overall, the Logistic Regression model not only improves the accuracy 
of LAA thrombosis screening but also offers a low-cost, high-
efficiency screening tool for primary care settings and resource-
limited regions, with broad clinical applicability and the potential to 
enhance the management of AF patients and reduce thrombotic events.

FIGURE 4

Receiver Operating Characteristic curve (ROC) of the model predicts the status and risk of left atrial appendage thrombosis. (A) Non-thrombus vs. 
thrombus status group. (B) Non-thrombus vs. thrombus group.
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4.1 Limitation

This study has some limitations. First, the limitations of potential 
feature selection bias, regional population bias from the single-center 
design, and the absence of advanced visualization methods (e.g., 
SHAP, LIME). Second, the model relies solely on TTE and clinical data 
and does not incorporate other imaging modalities or biomarkers, 
which may restrict the optimization potential of the model. Future 
studies should incorporate multicenter validation, dynamic follow-up 
data, and multimodal imaging to enhance the model’s robustness and 
clinical utility.

5 Conclusion

This study presents a novel, non-invasive LAA thrombosis 
prediction model using machine learning, integrating clinical data 
and TTE. The Logistic Regression model shows superior 
diagnostic performance and prospective stability, particularly for 
AF patients unable to undergo TEE. This model provides a 
powerful tool for early intervention and personalized treatment, 
reducing thrombotic complications. Future multi-center 
validation and model optimization will further enhance its clinical 
application value.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics Committee 
of Luoyang Central Hospital. The studies were conducted in 
accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

PM: Methodology, Project administration, Software, 
Visualization, Writing  – original draft. HH: Data curation, 
Validation, Writing – review & editing. XL: Data curation, Writing – 
review & editing. DZ: Data curation, Investigation, Writing – review 
& editing. FH: Data curation, Writing  – review & editing. YL: 
Methodology, Software, Visualization, Writing – review & editing. 
HW: Supervision, Writing – review & editing, Funding acquisition, 
Methodology.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported by 
the Henan Science and Technology Research Funds (No. 212102310193), 
the National Natural Science Foundation of China (No. 81702768), and 
the Innovative Leading Talents of Science and Technology Project of the 
Health Commission of Henan Province (No. YXKC2021024), Medical 
key project of Luoyang City (2101032A, 2022014A).

Acknowledgments

The author thanks YL for his suggestions in the 
methodology section.

Conflict of interest

YL was employed by Yizhun Medical AI Co. Ltd.
The remaining authors declare that the research was conducted in 

the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The handling editor DZ declared a shared parent affiliation of 
Xi’an Jiaotong University with the author HH at the time of review.

Correction note

A correction has been made to this article. Details can be found 
at: 10.3389/fmed.2025.1718394.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
	1.	Merino JL, Lip GYH, Heidbuchel H, Cohen AA, de Caterina R, de Groot JR, et al. 

Determinants of left atrium thrombi in scheduled cardioversion: an ENSURE-AF study 
analysis. Europace. (2019) 21:1633–8. doi: 10.1093/europace/euz213

	2.	Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor 
for stroke: the Framingham study. Stroke. (1991) 22:983–8. doi: 10.1161/01.str.22.8.983

	3.	Turek Ł, Sadowski M, Kurzawski J, Janion M. Left atrial appendage Thrombus as a 
marker of disease severity in 500 patients with atrial fibrillation on Oral anticoagulation: 
a 13-year follow-up study. J Clin Med. (2024) 13:258. doi: 10.3390/jcm13175258

	4.	Hansen ML, Jepsen RM, Olesen JB, Ruwald MH, Karasoy D, Gislason GH, et al. 
Thromboembolic risk in 16 274 atrial fibrillation patients undergoing direct current 

https://doi.org/10.3389/fmed.2025.1661696
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.3389/fmed.2025.1718394
https://doi.org/10.1093/europace/euz213
https://doi.org/10.1161/01.str.22.8.983
https://doi.org/10.3390/jcm13175258


Mai et al.� 10.3389/fmed.2025.1661696

Frontiers in Medicine 11 frontiersin.org

cardioversion with and without oral anticoagulant therapy. Europace. (2014) 17:18–23. 
doi: 10.1093/europace/euu189

	5.	Brandes A, Crijns HJGM, Rienstra M, Kirchhof P, Grove EL, Pedersen KB, et al. 
Cardioversion of atrial fibrillation and atrial flutter revisited: current evidence and 
practical guidance for a common procedure. Europace. (2020) 22:1149–61. doi: 
10.1093/europace/euaa057

	6.	Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/
EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical 
ablation of atrial fibrillation: executive summary. Europace. (2018) 20:157–208. doi: 
10.1093/europace/eux275

	7.	Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 
2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed 
in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): 
the task force for the diagnosis and management of atrial fibrillation of the European 
Society of Cardiology (ESC) developed with the special contribution of the European 
heart rhythm association (EHRA) of the ESC. Eur Heart J. (2021) 42:373–498. doi: 
10.1093/eurheartj/ehaa612

	8.	Noubiap JJ, Agbaedeng TA, Ndoadoumgue AL, Nyaga UF, Kengne AP. Atrial 
thrombus detection on transoesophageal echocardiography in patients with atrial 
fibrillation undergoing cardioversion or catheter ablation: a pooled analysis of rates and 
predictors. J Cardiovasc Electrophysiol. (2021) 32:2179–88. doi: 10.1111/jce.15082

	9.	Melduni RM, Gersh BJ, Wysokinski WE, Ammash NM, Friedman PA, Hodge DO, 
et al. Real-time pathophysiologic correlates of left atrial appendage Thrombus in patients 
who underwent transesophageal-guided electrical cardioversion for atrial fibrillation. 
Am J Cardiol. (2018) 121:1540–7. doi: 10.1016/j.amjcard.2018.02.044

	10.	Gawalko M, Kaplon-Cieslicka A, Budnik M, Scislo P, Piatkowski R, Kochanowski 
J, et al. Left atrial thrombus in atrial fibrillation/flutter patients in relation to 
anticoagulation strategy: LATTEE registry. EP Europace. (2022) 24:euac053.287. doi: 
10.1093/europace/euac053.287

	11.	January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 
AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the 
Management of Patients with Atrial Fibrillation: a report of the American College of 
Cardiology/American Heart Association task force on clinical practice guidelines and 
the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. 
Circulation. (2019) 140:e125–51. doi: 10.1161/CIR.0000000000000665

	12.	Chen J, Dagres N, Hocini M, Fauchier L, Bongiorni MG, Defaye P, et al. Catheter 
ablation for atrial fibrillation: results from the first European snapshot survey on 
procedural routines for atrial fibrillation ablation (ESS-PRAFA) part II. Europace. (2015) 
17:1727–32. doi: 10.1093/europace/euv315

	13.	Patel KM, Desai RG, Trivedi K, Neuburger PJ, Krishnan S, Potestio CP. 
Complications of transesophageal echocardiography: a review of injuries, risk factors, 
and management. J Cardiothorac Vasc Anesth. (2022) 36:3292–302. doi: 
10.1053/j.jvca.2022.02.015

	14.	Gula LJ, Massel D, Redfearn DP, Krahn AD, Yee R, Klein GJ, et al. Impact of 
routine transoesophageal echocardiography on safety, outcomes, and cost of pulmonary 
vein ablation: inferences drawn from a decision analysis model. Europace. (2010) 
12:1550–7. doi: 10.1093/europace/euq306

	15.	Pathan F, Hecht H, Narula J, Marwick TH. Roles of transesophageal 
echocardiography and cardiac computed tomography for evaluation of left atrial 
Thrombus and associated pathology: a review and critical analysis. JACC Cardiovasc 
Imaging. (2018) 11:616–27. doi: 10.1016/j.jcmg.2017.12.019

	16.	Yu S, Zhang H, Li H. Cardiac computed tomography versus transesophageal 
echocardiography for the detection of left atrial appendage Thrombus: a systemic review 
and Meta-analysis. J Am Heart Assoc. (2021) 10:e022505. doi: 10.1161/JAHA.121.022505

	17.	Wheeler R, Masani ND. The role of echocardiography in the management of atrial 
fibrillation. Eur J Echocardiogr. (2011) 12:i33–8. doi: 10.1093/ejechocard/jer124

	18.	Zeng D, Zhang X, Chang S, Zhong Y, Cai Y, Huang T, et al. A nomogram for 
predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial 
fibrillation patients using hemodynamic parameters from transthoracic 
echocardiography. Front Cardiovasc Med. (2024) 11:11 1337853. doi: 
10.3389/fcvm.2024.1337853

	19.	Song Z, Xu K, Hu X, Jiang W, Wu S, Qin M, et al. A study of cardiogenic stroke 
risk in non-valvular atrial fibrillation patients. Front Cardiovasc Med. (2020) 7:604795. 
doi: 10.3389/fcvm.2020.604795

	20.	Shiraki H, Tanaka H, Yamauchi Y, Yoshigai Y, Yamashita K, Tanaka Y, et al. 
Characteristics of non-valvular atrial fibrillation with left atrial appendage thrombus 
who are undergoing appropriate oral anticoagulation therapy. Int J Cardiovasc Imaging. 
(2022) 38:941–51. doi: 10.1007/s10554-021-02403-z

	21.	Shi S, Zhao Q, Liu T, Zhang S, Liang J, Tang Y, et al. Left atrial thrombus in patients 
with non-valvular atrial fibrillation: a cross-sectional study in China. Front Cardiovasc 
Med. (2022) 9:827101. doi: 10.3389/fcvm.2022.827101

	22.	Wang X, Xu X, Wang W, Huang H, Liu F, Wan C, et al. Risk factors associated with 
left atrial appendage thrombosis in patients with non-valvular atrial fibrillation by 
transesophageal echocardiography. Int J Cardiovasc Imaging. (2023) 39:1263–73. doi: 
10.1007/s10554-023-02841-x

	23.	Du H, Bi K, Xu L, et al. Analysis of risk factors for thrombosis of the left atrium/
left atrial appendage in patients with non-valvular atrial fibrillation. Cardiovasc J Afr. 
(2021) 32:116–22. doi: 10.5830/CVJA-2019-071

	24.	Zhong J, Xing LM. Predictive value of echocardiography combined with CT 
angiography for left atrial appendage thrombosis in patients with non-valvular atrial 
fibrillation. Eur Rev Med Pharmacol Sci. (2023) 27:10213–20. doi: 
10.26355/eurrev_202311_34296

	25.	Kaplan RM, Koehler J, Ziegler PD, Sarkar S, Zweibel S, Passman RS. Stroke risk as 
a function of atrial fibrillation duration and CHA2DS2-VASc score. Circulation. (2019) 
140:1639–46. doi: 10.1161/CIRCULATIONAHA.119.041303

https://doi.org/10.3389/fmed.2025.1661696
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1093/europace/euu189
https://doi.org/10.1093/europace/euaa057
https://doi.org/10.1093/europace/eux275
https://doi.org/10.1093/eurheartj/ehaa612
https://doi.org/10.1111/jce.15082
https://doi.org/10.1016/j.amjcard.2018.02.044
https://doi.org/10.1093/europace/euac053.287
https://doi.org/10.1161/CIR.0000000000000665
https://doi.org/10.1093/europace/euv315
https://doi.org/10.1053/j.jvca.2022.02.015
https://doi.org/10.1093/europace/euq306
https://doi.org/10.1016/j.jcmg.2017.12.019
https://doi.org/10.1161/JAHA.121.022505
https://doi.org/10.1093/ejechocard/jer124
https://doi.org/10.3389/fcvm.2024.1337853
https://doi.org/10.3389/fcvm.2020.604795
https://doi.org/10.1007/s10554-021-02403-z
https://doi.org/10.3389/fcvm.2022.827101
https://doi.org/10.1007/s10554-023-02841-x
https://doi.org/10.5830/CVJA-2019-071
https://doi.org/10.26355/eurrev_202311_34296
https://doi.org/10.1161/CIRCULATIONAHA.119.041303

	A new integrated machine learning model: application to improve the accuracy of predicting left atrial appendage thrombus in patients with non-valvular atrial fibrillation
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Data collection
	2.3 Machine learning model development and prospective validation
	2.4 Statistical analysis

	3 Results
	3.1 Univariate analysis of clinical data
	3.2 Diagnostic value of transthoracic echocardiography
	3.3 Performance of machine learning models

	4 Discussion
	4.1 Limitation

	5 Conclusion

	References

