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predicting tumor regression
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Purpose: We investigated a predictive framework that integrates MRI-derived
radiomic characteristics with clinical indicators to assess how breast tumors
respond to neoadjuvant chemotherapy.

Methods: A retrospective review was conducted on 301 patients with
pathologically confirmed breast cancer. From their baseline MRI scans, 1,196
radiomic features were extracted. Feature reduction was carried out through
ANOVA followed by LASSO regression to select the most relevant variables. Eight
machine learning algorithms, including Random Forest and XGBoost, were used
to develop predictive models incorporating both radiomic and clinical data.
Patients were randomly divided into a training set (n = 240) and a validation set
(n = 61). Model performance was assessed using the area under the ROC curve
(AUC), sensitivity, specificity, and accuracy.

Results: In performance evaluation, the Random Forest approach yielded area
under the curve values of 0.82 for training and 0.75 for validation, reflecting
consistent predictive strength. A nomogram constructed using the selected
features achieved an AUC of 0.75 in the validation cohort, with a sensitivity of
0.64 and a specificity of 0.88.

Conclusion: The integration of imaging biomarkers and clinical profiles enables
reliable prediction of tumor response post-NAC, supporting more informed and
tailored treatment strategies.
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1 Introduction

Breast cancer remains one of the most prevalent malignancies across the globe and
contributes substantially to cancer-related deaths among women (1). Neoadjuvant
chemotherapy (NAC) is frequently employed in cases of locally advanced breast cancer to
reduce tumor size and enhance the feasibility of breast-conserving surgery (BCS) (2, 3).
However, responses to NAC vary greatly among patients because of tumor heterogeneity.
Tumor shrinkage patterns after NAC are prognostically relevant and increasingly used to guide
individualized treatment (4).

Differences in regression patterns after NAC strongly influence surgical decision-making
(5). Tumor regression is commonly categorized as either concentric regression (CR) or
non-concentric regression (NCR). A typical feature of CR is a consistent, inward pattern of
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shrinkage, often leaving behind a solitary residual lesion or achieving
full pathological resolution. Such regression allows clearer tumor
boundary identification, improving surgical outcomes. Research
involving MDCT has shown BCS success rates reaching up to 94% (6).
In contrast, NCR is often associated with irregular tumor shrinkage,
fragmented residual foci, or a mesh-like appearance, complicating the
evaluation of residual disease extent (6). The RCB system standardizes
evaluation of tumor burden after NAC; an RCB-III score reflects heavy
residual disease and greater recurrence risk (7, 8). Emerging evidence
suggests that the immune context of the tumor microenvironment can
affect the trajectory of tumor regression. Notably, an increased
presence of tumor-infiltrating lymphocytes (TILs) has been linked to
enhanced responsiveness to neoadjuvant chemotherapy (9). Thus,
precise evaluation of regression patterns using imaging modalities is
critical for guiding personalized treatment strategies.

MRI has become integral to breast cancer evaluation, as it captures
high-resolution insights into tumor vascular structures and functional
characteristics (10). Compared to traditional imaging methods, MRI
offers enhanced sensitivity in detecting non-mass enhancement,
delineating tumor edges, and monitoring morphological changes
during therapy, making it valuable for pre-surgical evaluation (11).
Nevertheless, MRT’s accuracy in identifying residual lesions post-NAC
is sometimes compromised by misinterpretations—both false
positives and negatives—which may hinder optimal surgical planning
(12). This limitation partly stems from MRT’s reduced sensitivity to
post-treatment histological changes like necrosis and fibrosis (13). In
cases of NCR, irregular tumor cell dispersion and complex stromal
architecture may mask enhancement signals, thereby raising the
likelihood of diagnostic errors (14). Moreover, NCR-type tumors often
exhibit poorly defined boundaries and trigger immune reactions that
minimally impact perfusion, limiting the effectiveness of quantitative
MRI metrics (15). Integrating radiomics features with clinical data
presents a potential approach to bridge diagnostic limitations and
refine MRI-based classification of regression types.

Radiomics refers to the process of extracting large-scale
quantitative data from routine medical images, enabling non-invasive
insights into tumor biological characteristics such as spatial
heterogeneity and therapeutic response (16). Evidence from multiple
centers indicates that when radiomic features are integrated with
clinical indicators, they can support accurate prediction of recurrence-
free survival (RFS) and overall survival (OS) in individuals with breast
cancer (17). This research proposes a predictive model that integrates
radiomic attributes derived from MRI with clinicopathological factors
to classify tumor regression patterns following NAC, aiming to
identify dependable imaging indicators for informing personalized
treatment strategies.

2 Materials and methods
2.1 Patient population

A retrospective review was conducted on clinical and imaging
records of 301 breast cancer patients who received treatment at the
Affiliated Hospital of Qingdao University between September 2022
and September 2024. Inclusion and exclusion were determined based
on standardized enrollment criteria. Individuals were eligible if they
satisfied all of the following: (a) breast cancer confirmed by
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histopathology through core needle biopsy; (b) baseline breast MRI
performed in-house prior to therapy; (c) complete clinical and
pathological baseline records; and (d) definitive surgery following a
standard NAC protocol. Participants were excluded if they had: (a) no
MRI or low-quality imaging; (b) surgery conducted at other
institutions without available postoperative pathology reports; or (c)
other malignancies diagnosed concurrently during the study period.

The enrolled cases were randomly split into a training group
(n = 240; CR: 182; NCR: 58) and a validation group (1 = 61; CR: 45;
NCR: 16) based on a 7:3 allocation ratio. All NAC regimens followed
NCCN guidelines and were tailored through multidisciplinary team
(MDT) evaluations. Treatment typically lasted 8 weeks (IQR:
6-8 weeks). Institutional ethics approval was granted by the Affiliated
Hospital of Qingdao University (Approval No.: QYFY WZLL 27741).
Due to the retrospective nature of this study, the requirement for
informed consent was waived.

2.2 Tumor regression pattern classification

Post-treatment tumor regression subtypes were determined by
histopathological analysis, in alignment with assessment frameworks
established by the NCCN and Miller-Payne (MP) grading systems.
Excised tissue was preserved in 10% neutral-buffered formalin, and
independently reviewed by two certified pathologists under blinded
conditions. Any disagreement in evaluation was adjudicated by a
senior expert through consensus.

Based on the distribution and quantity of residual lesions post-
NAC, patients were classified into CR or NCR categories. CR typically
presents as a single, localized regression focus or as pathological
complete response (pCR), defined by the absence of invasive tumor in
both the breast and axillary lymph nodes. Residual ductal carcinoma
in situ (DCIS) was not considered exclusionary. In contrast, NCR
encompassed scenarios such as multifocal residual tumors, irregular
regression patterns, central regression with peripheral nodules, and
cases exhibiting either disease stability or progression.

For subsequent radiomics modeling, additional pathological
features were extracted, including the maximal diameter of residual
lesions (according to American Joint Committee on Cancer (AJCC)
8th edition), regression margin characteristics, and dynamic variations
in ER, PR, and HER2 status.

2.3 MRI acquisition

Bilateral breast magnetic resonance imaging was carried out for
each patient prior to NAC, using clinical-grade scanners operating at
either 1.5 Tesla or 3.0 Tesla. Scans were performed with the patient in
the prone position, utilizing a dedicated multi-channel breast coil to
enhance spatial resolution and suppress motion artifacts. The imaging
protocol included high-resolution T1- and T2-weighted sequences to
provide detailed anatomical visualization of breast tissue. For contrast-
enhanced imaging, dynamic scans were obtained using a
fat-suppressed volumetric interpolated breath-hold examination
(VIBE) technique, applied across multiple phases.

Delayed post-contrast sequences were also acquired to assess
lesion morphology and contrast enhancement kinetics. Imaging
parameters were standardized in accordance with international breast
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MRI protocols to support reproducibility and ensure data
comparability for radiomic feature extraction.

2.4 Radiomic feature extraction and model
construction

Tumor boundaries were manually delineated on baseline
T1-weighted MRI scans, chosen for their superior contrast in
outlining lesions. Delineation was independently carried out by two
senior radiologists using ITK-SNAP software. Any disagreements
were reviewed collaboratively to reach consensus, with inter-observer
agreement exceeding a Kappa value of 0.75.

Each segmented region yielded a broad spectrum of radiomic
features, such as geometric descriptors, grayscale statistics, and
texture-based metrics. Derived variables were generated via
mathematical transformations of the original set. Redundant features
were filtered out using Pearson correlation matrices, followed by the
LASSO method to retain high-value predictors.

Radiomic feature extraction and selection were implemented
through PyRadiomics (v3.0.1). The refined features were fed into
supervised classifiers developed using the scikit-learn library.
Performance was evaluated on an independent dataset. Four
machine learning methods—logistic regression (LR), support vector
machine (SVM), random forest (RF), and extreme gradient boosting
(XGBoost)—were tested for distinguishing CR and NCR patterns.

2.5 Clinical prediction model

A clinical classification framework was devised to distinguish
between different tumor regression profiles after neoadjuvant
chemotherapy. Input features were collected prior to treatment and
included age, menopausal state, hormone receptor (ER/PR) expression,
Ki-67 index, HER2 amplification (confirmed by FISH), clinical tumor
size (cT), nodal involvement (cN), and pathological response indicators.

The Miller-Payne (MP) grading method was employed to evaluate
histologic changes in cellularity by comparing tumor tissues before
and after NAC. This five-grade scale accounts for a continuum of
responses, from minimal residual disease to complete clearance of
invasive malignancy. In the training dataset, univariate testing
identified significant predictors, and those with p-values below 0.1
were retained. The final subset of predictors included four variables:
age, ER status, PR status, and cN stage.

Predictive models were generated using four machine learning
techniques: logistic regression (LR), support vector machine (SVM),
random forest (RF), and extreme gradient boosting (XGBoost). A
stratified 10-fold cross-validation was performed to evaluate model
performance. The dataset was randomly divided into 10 folds,
ensuring similar CR and NCR case ratios in each. In every iteration,
nine folds were used for training and one for validation, and the
process was repeated 10 times. The average performance across folds
was reported as the final result.

Model performance was assessed using accuracy, sensitivity,
specificity, and AUC. Hyperparameters were optimized by grid search
during cross-validation. The Random Forest and XGBoost models
were tuned accordingly, and the model with the highest mean AUC
was selected for nomogram development.
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2.6 Nomogram construction

To enhance individualized clinical decision-making, a hybrid
prediction model was developed by integrating radiomic signatures
from pre-treatment MRI with key baseline clinical parameters. A
nomogram was constructed based on this combined model to
visualize patient-specific probabilities of tumor regression types. To
confirm the model’s robustness, its performance was independently
validated using an external patient dataset.

2.7 Statistical analysis

Statistical analyses were conducted using Python (version 3.7) and
R software (version 4.3.0). Continuous variables were analyzed with
two-sample t-tests, while categorical data were compared using
chi-square statistics. Feature filtering involved two stages: univariate
t-tests (p < 0.05) for initial selection, followed by removal of highly
correlated variables using Pearson correlation thresholds (r > 0.9),
keeping one representative per correlation group.

LASSO regularization, performed via the “glmnet” package in R,
was applied to finalize variable selection and assist model construction.
Predictive capability was quantified using AUC values derived from
ROC curves. Additional indicators such as sensitivity, specificity, and
accuracy were employed to evaluate overall classification quality. A
two-sided p-value < 0.05 was set to indicate statistical significance.

3 Results
3.1 Patient characteristics

The participant screening workflow is depicted in Figure 1, and a
summary of the main clinical variables for both training and
validation sets is provided in Table 1. A total of 240 individuals
comprised the training dataset, and 61 patients were allocated to the
testing group. Based on post-NAC tumor regression profiles, all cases
were categorized into either the CR or NCR subtypes.

Among training set participants, the mean age for the CR
subgroup was 52.52 + 9.38 years, slightly exceeding the NCR group
average of 49.55 + 10.12 years; however, this age difference was not
statistically significant (p = 0.086). No significant intergroup difference
was observed in Ki-67 expression levels (38.77 +21.22 vs.
35.95+17.28, p=0.514), HER2 status as determined by FISH
(p = 0.406), or clinical stage classification (p = 0.116).

A similar pattern was evident within the test set, where baseline
metrics also showed no significant distinction between CR and NCR
groups (all p > 0.05). The homogeneity of clinical characteristics
between the two datasets provided a reliable base for subsequent
radiomic model development.

3.2 Development and validation of
clinicopathological signature
3.2.1 Model comparison

In the training set, univariate analysis revealed several factors that
may be associated with tumor regression patterns following NAC in
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Initial dataset (n=614)

Excluded due to absence of
baseline MRI prior to NAC (n=302)
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FIGURE 1
Flowchart of patient inclusion in the study.

TABLE 1 Comparison of clinical characteristics between the training and validation cohorts.

Characteristic Development set Validation set
ALL NCR CR NCR CR
(n = 240) (n = 58) (n =182) (n = 16) (n = 45)
Age (years) (Mean = std) 51.80 + 9.62 49.55 +10.12 52.52 +9.38 0.09 51.20 + 8.73 51.88 +9.70 50.96 + 8.46 0.72
ER (Mean = std) 48.31 + 39.50 63.91 + 34.60 43.34 +39.75 0.00 46.72 £ 39.64 51.88 + 38.85 44.89 +40.19 0.49
PR (Mean = std) 33.81 +36.75 39.76 +34.97 | 31.92+37.19 0.06 30.85+36.06 = 38.44+39.32 | 28.16+34.90 0.74
Ki67 (Mean + std) 38.09+2034 | 3595+17.28 | 3877 +21.22 0.51 38.98+2258 | 33.62+21.67 = 40.89 +22.82 0.32
Molecular Phenotype (Mean + std) 343+1.26 3274127 3.48+1.26 0.37 3.33+1.40 319+ 152 339+ 137 0.61
Menopausal status 0.67 0.71
Postmenopausal 112 (46.67) 29 (50.00) 83 (45.60) 30 (49.18) 9 (56.25) 21 (46.67)
Positive 128 (53.33) 29 (50.00) 99 (54.40) 31(50.82) 7 (43.75) 24 (53.33)
FISH 0.41 0.35
Negative 144 (60.00) 38 (65.52) 106 (58.24) 34 (55.74) 11 (68.75) 23 (51.11)
Positive 96 (40.00) 20 (34.48) 76 (41.76) 27 (44.26) 5(31.25) 22 (48.89)
Clinical T stage 0.12 0.19
Clinical N stage 0.09 0.34
0 43 (17.92) 7 (12.07) 36 (19.78) 8(13.11) null 8 (17.78)
1 162 (67.50) 37 (63.79) 125 (68.68) 42 (68.85) 13 (81.25) 29 (64.44)
2 17 (7.08) 7 (12.07) 10 (5.49) 4(6.56) 1(6.25) 3 (6.67)
3 18 (7.50) 7 (12.07) 11 (6.04) 7 (11.48) 2 (12.50) 5(11.11)
breast cancer patients. These factors included age, clinical N stage, and Among all models tested, Random Forest demonstrated the

the expression levels of ER and PR. Machine learning models were  highest performance on the training set, achieving an accuracy of
then trained using these clinicopathological variables. 92.5% and an exceptional AUC of 0.99. This model exhibited excellent
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sensitivity (90.1%) and specificity (100%), making it highly effective
in identifying true positives and true negatives. However, on the test
set, its performance decreased, with an accuracy of 57.4% and an AUC
of 0.57. The sensitivity of 60% and PPV of 77.1% suggest that while
the model was highly accurate in training, its ability to generalize to
unseen data was limited.

3.2.2 Performance metrics

Models such as LightGBM, LR, k-nearest neighbors (KNN), SVM,
and multilayer perceptron (MLP) exhibited more mixed results.
LightGBM, for example, achieved an accuracy of 39.3% on the test set,
with a very low sensitivity (17.8%) and high specificity (100%), but its
overall predictive capability was limited. MLP and LR also faced
similar challenges in terms of generalizability, with performance drops
in test data, especially in terms of sensitivity and specificity. The ROC
curves of the RF model are presented (Figures 2A,B), with additional
comparative metrics summarized (Table 2).

3.3 Construction and validation of radiomic
model

3.3.1 Feature selection

Figure 3 shows the process of constructing machine learning
models with radiomic features, clinicopathological data, and
nomograms. MRI images of 301 patients were manually segmented
layer by layer, followed by feature extraction. A total of 1,196 features
were extracted from pre-treatment images. Through one-way analysis
of variance, 498 significant features were selected, and the Pearson
correlation coefficient was calculated. Features with a correlation
higher than 0.9 were reduced by keeping only one. Finally, 84 features
were further selected using lasso regression, which identified 8
features that were most relevant to predicting the tumor regression
patterns (Figure 4).

10.3389/fmed.2025.1661448

3.3.2 Model comparison

We evaluated the performance of various machine learning
models in predicting tumor regression patterns following NAC in
breast cancer patients. Among the models evaluated, XGBoost
demonstrated the best performance on the training set, achieving an
impressive accuracy of 87.5% and an AUC of 0.95, with a sensitivity
of 86.3% and specificity of 91.4%. This model outperformed others in
terms of both predictive accuracy and the ability to distinguish
between responders and non-responders to neoadjuvant therapy.
However, on the test set, its performance slightly decreased, with an
accuracy of 57.4% and an AUC of 0.65. Despite this drop, it still
maintained a relatively high PPV of 91.3%, indicating its effectiveness
in predicting positive regression outcomes. Random Forest also
showed strong performance, with an accuracy of 74.6% and an AUC
0f 0.82 on the training set. On the test set, it had an accuracy of 70.5%,
with an AUC of 0.75, and a sensitivity of 68.9%. This model
demonstrated a good balance between sensitivity and specificity,
making it a robust choice for identifying tumor regression.

3.3.3 Performance metrics

Other models such as SVM, LightGBM, and MLP also provided
reasonable performance, but none exceeded the performance of
XGBoost or Random Forest in terms of AUC or accuracy. SVM, for
example, achieved an AUC of 0.806 on the training set, but its test
set performance was lower, with an accuracy of 55.7% and AUC of
0.68. In conclusion, Random Forest provided a good balance of
predictive accuracy and clinical applicability, especially on the test
set. The ROC curves of the RF model are presented (Figures 5A,B),
with additional comparative metrics summarized (Table 3). To
provide a concise overview of the radiomics workflow, including
feature selection and model evaluation, an additional summary table
was compiled. The sequential feature screening steps and
comparative performance of all applied machine learning algorithms
are summarized in Table 4.

A training chort B test chort
1.0 1 1.0 4
/7
e
4
4
0.8 1 ’ 0.8 1
— ’ —
14 = ‘ 4
o , o
= 06 ‘ £ 06
2z .’ Z
s . S
k=] ’ =
‘® 0.4 ‘1 ‘@ 0.4
c ’ c
0] 4 0]
) // ()
0.2 4 — Clinic_RandomForest 0.2 1 Clinic_RandomForest
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FIGURE 2
ROC curve analysis of the clinical model. (A) ROC curve of the clinical model in the training cohort, showing its discrimination between different
outcome groups. (B) ROC curve in the validation cohort, confirming the model's predictive accuracy and generalizability.
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TABLE 2 Comparison of the clinical-pathological model performance based on AUC, accuracy, and other evaluation metrics.

Clinical model Accuracy AUC 95% ClI Sensitivity Specificity PPV NPV
Train 0.67 0.70 0.6272-0.7779 0.67 0.66 0.86 0.39
LR
test 0.57 0.54 0.3784-0.7063 0.56 0.63 0.81 0.33
Train 0.70 0.70 0.6201-0.7873 0.72 0.66 0.87 0.43
SVM
test 0.67 0.41 0.2236-0.5861 0.84 0.19 0.75 0.30
Train 0.51 0.81 0.7560-0.8634 0.35 1.00 1.00 0.33
KNN
test 0.71 0.55 0.3782-0.7134 0.87 0.25 0.77 0.40
Train 0.93 0.99 0.9862-0.9991 0.90 1.00 1.00 0.76
RandomForest
test 0.57 0.57 0.3957-0.7460 0.60 0.50 0.77 0.31
Train 0.24 1.00 0.9987-1.0000 0.00 1.00 0.00 0.24
ExtraTrees
test 0.71 0.54 0.3726-0.7136 0.89 0.19 0.76 0.38
Train 0.84 0.92 0.8762-0.9590 0.83 0.86 0.95 0.62
XGBoost
test 0.72 0.56 0.3937-0.7272 0.89 0.25 0.77 0.44
Train 0.67 0.80 0.7347-0.8639 0.61 0.85 0.93 0.41
LightGBM
test 0.39 0.56 0.3931-0.7235 0.18 1.00 1.00 0.30
Train 0.71 0.74 0.6651-0.8171 0.71 0.71 0.88 0.44
MLP
test 0.71 0.44 0.2631-0.6188 0.91 0.13 0.75 0.33

3.4 Nomogram development and validation

3.4.1 Nomogram construction

To create a more reliable prediction tool for assessing tumor
regression patterns following NAC in breast cancer patients,
we developed a nomogram that integrates the top-performing machine
learning models based on both clinicopathological and radiomic
signatures (Figure 6). Notably, the Random Forest model emerged as
the best performer for both clinical and radiomic feature-based
signatures, making it the ideal choice for inclusion in the nomogram.

3.4.2 Nomogram validation

When evaluated on the training set, the nomogram achieved an
impressive AUC of 0.99, with a sensitivity of 0.95 and specificity of
0.96 (Figure 7A). The PPV on the training set was 0.85, demonstrating
the model’s strong predictive capacity.

On the test set, the nomogram performed well, with an accuracy
of 0.70 and an AUC of 0.75, as illustrated by the ROC curve
(Figure 7B). It achieved a sensitivity of 0.64 and specificity of 0.88,
indicating its ability to effectively identify both responders and
non-responders to NAC. Furthermore, the PPV was 0.94, and the
NPV was 0.46, reflecting the nomogram’s good predictive reliability
for clinical decision-making. Decision Curve Analysis (DCA)
demonstrated that the combined model provided greater net benefit
than the radiomics and clinical models in both the training and
validation cohorts (Figures 8A,B).

To further validate the nomogram, its discrimination and clinical
utility were assessed in both cohorts. The ROC and decision curve
analyses demonstrated consistent predictive performance and good
agreement between predicted and observed outcomes. Compared
with the Random Forest (AUC = 0.75) and XGBoost (AUC = 0.65)
models, the nomogram showed superior discrimination and higher
clinical usefulness, providing stronger support for preoperative
decision-making.
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Beyond the primary accuracy outcomes, 95% confidence intervals
were also estimated for AUC values to reinforce the reliability of the
statistical findings. Comparative results revealed that the nomogram
achieved marginally greater consistency and predictive steadiness
than either the Random Forest or XGBoost models across datasets.
The comparative performance of the clinical, radiomic, and integrated
models is summarized in Table 5, highlighting the improved predictive
consistency achieved by combining imaging and clinical features.

4 Discussion

In this work, we developed a nomogram that incorporates
radiomic parameters from pre-NAC T1-weighted MRI alongside
selected clinicopathological variables to classify tumor regression
patterns—namely, CR and NCR responses—in breast cancer. The
model yielded high classification efficacy, with AUC values of 0.99 and
0.75 in the training and external test sets, respectively, demonstrating
its reliability and adaptability to different patient populations. The
relatively large cohort size enhanced the statistical robustness and
strengthened the clinical generalizability of the findings. Feature
extraction was carried out using a rigorously controlled procedure,
which included expert-guided segmentation of baseline MRI scans,
followed by multi-step filtering with ANOVA, Pearson correlation,
and LASSO-based selection. This comprehensive pipeline ensured
methodological consistency and reproducibility. By fusing quantitative
imaging traits with pathological profiles, the resulting nomogram
supports anticipatory surgical planning and individualized
therapy selection.

Recognizing the spatial variability in tumor response after NAC,
we examined the predictive capacity of clinicopathological indicators in
breast cancer. Univariate statistical testing (p < 0.1) revealed estrogen
receptor (ER) positivity (p=0.002) and cN stage (p=0.093) as
significant correlates, aligning with the biological principles of the RCB
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FIGURE 3

Workflow of MRI-based radiomics model development. Flowchart illustrating the main steps of model development, including MRI acquisition, tumor
segmentation, radiomic feature extraction, feature selection, model construction, and validation

system (18). Notably, ER-positive cases were more frequently associated
with non-concentric regression (63.91+34.60%) compared to
ER-negative tumors (43.34 + 39.75%, p = 0.002), suggesting a potential
connection between hormonal activity and chemotherapy response
(19). To assess model efficacy, several supervised classification
algorithms were applied, including Random Forest and XGBoost. In the
training dataset, Random Forest achieved the highest accuracy
(AUC = 0.993, 95% CI: 0.986-0.999), outperforming logistic regression
(AUC = 0.70). However, in the independent test cohort, its predictive
power diminished (AUC = 0.57), reflecting the limitations of models
based exclusively on clinical variables. This evident gap between training
and validation performance indicates that the Random Forest model
may have partially overfitted the training data. Such behavior is
frequently observed when the number of predictors outweighs the
sample size, causing the model to learn cohort-specific variations rather
than generalizable patterns. Introducing stricter feature filtering, cross-
validation, and careful parameter tuning could improve the model’s
robustness and consistency when applied to independent datasets.
These results are consistent with Bitencourt et al. (20), who reported
improved diagnostic accuracy in HER2-positive patients using
integrated radiomic-clinical frameworks (AUC = 0.89), compared to
clinical-only approaches (AUC = 0.61). Moreover, the significance of cN
staging echoes conclusions from a multicenter investigation by Yu et al.,
which demonstrated the association between nodal involvement and
NAC response (21). While age (p = 0.086) and progesterone receptor
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(PR) status (p = 0.06) were not statistically significant, older patients
exhibited a higher incidence of CR (52.52 + 9.38 vs. 49.55 + 10.12 years),
potentially reflecting immunological differences with age that warrant
further research.

To build a robust model for predicting tumor regression subtypes
following NAC, we employed a range of supervised learning methods,
including LR, SVM, RE and XGBoost. These algorithms were selected
due to their established performance in radiomics-based cancer
prediction tasks (18, 20, 21). To mitigate overfitting, a two-stage variable
reduction strategy was adopted: initial univariate analysis (p < 0.05) and
Pearson correlation filtering (r > 0.9) were used to eliminate redundant
features, followed by LASSO regression to retain the most predictive
variables. Out of 1,196 extracted radiomic features, 84 independent
parameters remained, from which the top 8 were incorporated into the
final classifier. Among the models tested, RF delivered the most
consistent predictive ability, with AUCs of 0.816 and 0.75 in the training
and validation sets, respectively. In contrast, although XGBoost
performed well in the training group (AUC = 0.95), it demonstrated
reduced generalization capacity in the validation data (AUC = 0.65),
suggesting overfitting—a recognized challenge in radiomics applications
involving high-dimensional inputs (20, 21). Likewise, the noticeable
reduction in XGBoost performance from training to validation cohorts
reinforces the need for stronger regularization and systematic
hyperparameter optimization. Implementing nested cross-validation,
adjusting learning rates, or constraining tree depth may further mitigate
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TABLE 3 Comparison of the radiomics model performance based on AUC, accuracy, and other evaluation metrics.

Radiomic model 95% Cl Sensitivity Specificity
Train 0.55 0.67 0.5954-0.7468 0.45 0.88 0.92 0.34
LR
test 0.72 0.75 0.6085-0.8887 0.69 0.81 0.91 0.48
Train 0.82 0.81 0.7282-0.8842 0.84 0.78 0.92 0.60
SVM
test 0.56 0.68 0.5235-0.8265 0.47 0.81 0.88 0.35
Train 0.53 0.79 0.7314-0.8430 0.39 1.00 1.00 0.34
KNN
test 0.57 0.61 0.4428-0.7711 0.58 0.56 0.79 0.32
Train 0.75 0.82 0.7550-0.8768 0.75 0.72 0.90 0.48
RandomForest
test 0.71 0.75 0.6111-0.8931 0.69 0.75 0.89 0.46
Train 0.62 0.72 0.6493-0.7987 0.57 0.76 0.88 0.36
ExtraTrees
test 0.56 0.65 0.4962-0.8121 0.47 0.81 0.88 0.35
Train 0.88 0.95 0.9285-0.9787 0.86 0.91 0.97 0.68
XGBoost
test 0.57 0.65 0.4999-0.8029 0.47 0.88 091 0.37
Train 0.80 0.87 0.8165-0.9150 0.82 0.74 0.91 0.57
LightGBM
test 0.69 0.69 0.5425-0.8325 0.67 0.75 0.88 0.44
Train 0.57 0.69 0.6126-0.7639 0.50 0.81 0.89 0.34
MLP
test 0.69 0.72 0.5729-0.8688 0.64 0.81 0.91 0.45

TABLE 4 Summary of the feature selection workflow and model performance.

Method/Model Purpose Number of AUC AUC
Features (Training) = (Validation)

Univariate analysis Identification of statistically significant features associated with tumor 1,196 — 498 - -
regression (p < 0.05).

Pearson correlation Removal of redundant variables (r > 0.9). 498 — 84 - -

LASSO regression Selection of the most predictive and non-collinear features. 8438 - -

Random Forest Model training using the selected features. 8 0.82 0.75

XGBoost Gradient boosting framework tested for predictive accuracy and 8 0.95 0.65
robustness.

SVM Comparative model testing using kernel-based classification. 8 0.81 0.68

LightGBM Evaluation of gradient boosting model to test feature robustness and 8 0.87 0.69
generalization.

MLP Assessment of multilayer perceptron neural network for nonlinear 8 0.69 0.72
pattern recognition.

9 LR Baseline linear classifier used for model comparison and 8 0.70 0.54

interpretability.

model variance and enhance predictive reliability across unseen data.
These results underscore the need for larger datasets and algorithm
refinement to enhance external validity and clinical applicability.

In this study, radiomic features were extracted from various
domains, such as first-order statistical measures, texture descriptors
like the gray-level co-occurrence matrix (GLCM), and morphological
characteristics, including sphericity and surface area. Among these,
“original-shape-Sphericity” and “wavelet-LLH-ngtdm-Busyness”
exhibited the highest ability to distinguish between tumor regression
patterns, emphasizing the relevance of tumor shape and internal
heterogeneity in defining CR and NCR (13, 22, 23). This finding aligns
with previous studies, such as those by Li et al., who highlighted the
importance of morphological features in evaluating treatment response
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(14). In addition, Braman et al. demonstrated the value of texture-
based metrics in reflecting tumor microenvironment complexity (23).
One of the strengths of our model is the integration of eight radiomic
features—selected through LASSO regularization—with four key
clinical variables (age, ER, PR, and cN stage). This composite model
achieved an AUC of 0.75 in the validation cohort, with sensitivity and
specificity values of 0.64 and 0.88, respectively. Importantly, the
specificity of the combined model was significantly higher than the
clinical-only model (0.88 vs. 0.50), which underscores its potential for
guiding clinical decisions. When predicting centripetal regression, the
model achieved a positive predictive value of 94%, demonstrating its
practical value in preoperative planning, especially for decisions
regarding breast conservation. These results are consistent with
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findings from Yu et al. and Bitencourt et al., both of whom reported
improved predictive accuracy when combining radiomic and clinical
features (20, 21). Additionally, the correlation between ER-negative
status or advanced cN stage with non-concentric regression is in line
with previous studies that identified these factors as associated with
poorer chemotherapy responses (19, 24). The nomogram based on this
integrated model offers a straightforward and clinically relevant tool
for assessing individual patient risk, aiding in personalized
treatment planning.

To further ensure clinical translatability, the predictive framework
should be validated on larger, independent, and multi-institutional
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cohorts. Expanding the dataset and standardizing MRI acquisition
parameters will help reduce bias and confirm the model’s stability
under varying imaging conditions,
generalizability for real-world applications.

Although the combined model demonstrated favorable predictive
capability, enhancing statistical clarity and validating its performance
with external cohorts remain important. Incorporating calibration
assessment and interval estimation could improve interpretability. The
nomogram performed steadily compared with single-model
approaches, yet confirmation through multicenter data is required to
ensure broader applicability.

thereby improving its

10 frontiersin.org
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TABLE 5 Overview of predictive performance among the top-performing clinical, radiomic, and nomogram models.

Model type  Best algorithm AUC (Training) AUC (Validation) Accuracy Sensitivity Specificity

Clinical model Random Forest 0.99 0.57 0.57 0.60 0.50

Radiomic model Random Forest 0.82 0.75 0.71 0.69 0.75

Nomogram Random Forest + 0.99 0.75 0.70 0.64 0.88
Clinical features

This study has several limitations. Due to its retrospective
design at a single institution, there is a potential risk of selection
bias, which may affect the external applicability of the results. The
relatively small size of the validation cohort (n = 61) further limits
the statistical power and generalizability of the findings. To
validate and extend these observations, future research should
incorporate a multicenter, prospective design, such as the I-SPY2
framework, which will allow for more robust conclusions across
diverse patient populations (25). Additionally, incorporating
complementary imaging modalities like dynamic contrast-
enhanced MRI (DCE-MRI), apparent diffusion coefficient (ADC)
mapping, and T2-weighted imaging (T2WI) could improve the
model’s predictive power by offering a more comprehensive view
of tumor biology.

In conclusion, the MRI-based clinical-radiomic fusion model
developed in this study successfully stratified tumor regression
patterns in breast cancer patients undergoing NAC. By integrating
both imaging features and clinical data, the model provides a
practical decision-support tool for personalized treatment
planning, particularly for breast-conserving surgeries. Future
efforts should focus on validating the model in larger, more
diverse cohorts and exploring the integration of genomic or
molecular biomarkers to further enhance its clinical relevance and
translational potential.
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5 Conclusion

The integration of imaging biomarkers and clinical profiles
enables reliable prediction of tumor response post-NAC, supporting
more informed and tailored treatment strategies.
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