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predicting tumor regression 
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chemotherapy in breast cancer
Lan Wang 1, Qi Wang 1, Jun Zhang 2, Meng Zhang 1, Tianhui Guo 1, 
Wen Gao 1, Biyuan Zhang * and Haiji Wang 1*
1 Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China, 
2 Department of Oncology, Jinan Third People's Hospital, Jinan, China

Purpose: We investigated a predictive framework that integrates MRI-derived 
radiomic characteristics with clinical indicators to assess how breast tumors 
respond to neoadjuvant chemotherapy.
Methods: A retrospective review was conducted on 301 patients with 
pathologically confirmed breast cancer. From their baseline MRI scans, 1,196 
radiomic features were extracted. Feature reduction was carried out through 
ANOVA followed by LASSO regression to select the most relevant variables. Eight 
machine learning algorithms, including Random Forest and XGBoost, were used 
to develop predictive models incorporating both radiomic and clinical data. 
Patients were randomly divided into a training set (n = 240) and a validation set 
(n = 61). Model performance was assessed using the area under the ROC curve 
(AUC), sensitivity, specificity, and accuracy.
Results: In performance evaluation, the Random Forest approach yielded area 
under the curve values of 0.82 for training and 0.75 for validation, reflecting 
consistent predictive strength. A nomogram constructed using the selected 
features achieved an AUC of 0.75 in the validation cohort, with a sensitivity of 
0.64 and a specificity of 0.88.
Conclusion: The integration of imaging biomarkers and clinical profiles enables 
reliable prediction of tumor response post-NAC, supporting more informed and 
tailored treatment strategies.
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1 Introduction

Breast cancer remains one of the most prevalent malignancies across the globe and 
contributes substantially to cancer-related deaths among women (1). Neoadjuvant 
chemotherapy (NAC) is frequently employed in cases of locally advanced breast cancer to 
reduce tumor size and enhance the feasibility of breast-conserving surgery (BCS) (2, 3). 
However, responses to NAC vary greatly among patients because of tumor heterogeneity. 
Tumor shrinkage patterns after NAC are prognostically relevant and increasingly used to guide 
individualized treatment (4).

Differences in regression patterns after NAC strongly influence surgical decision-making 
(5). Tumor regression is commonly categorized as either concentric regression (CR) or 
non-concentric regression (NCR). A typical feature of CR is a consistent, inward pattern of 
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shrinkage, often leaving behind a solitary residual lesion or achieving 
full pathological resolution. Such regression allows clearer tumor 
boundary identification, improving surgical outcomes. Research 
involving MDCT has shown BCS success rates reaching up to 94% (6). 
In contrast, NCR is often associated with irregular tumor shrinkage, 
fragmented residual foci, or a mesh-like appearance, complicating the 
evaluation of residual disease extent (6). The RCB system standardizes 
evaluation of tumor burden after NAC; an RCB-III score reflects heavy 
residual disease and greater recurrence risk (7, 8). Emerging evidence 
suggests that the immune context of the tumor microenvironment can 
affect the trajectory of tumor regression. Notably, an increased 
presence of tumor-infiltrating lymphocytes (TILs) has been linked to 
enhanced responsiveness to neoadjuvant chemotherapy (9). Thus, 
precise evaluation of regression patterns using imaging modalities is 
critical for guiding personalized treatment strategies.

MRI has become integral to breast cancer evaluation, as it captures 
high-resolution insights into tumor vascular structures and functional 
characteristics (10). Compared to traditional imaging methods, MRI 
offers enhanced sensitivity in detecting non-mass enhancement, 
delineating tumor edges, and monitoring morphological changes 
during therapy, making it valuable for pre-surgical evaluation (11). 
Nevertheless, MRI’s accuracy in identifying residual lesions post-NAC 
is sometimes compromised by misinterpretations—both false 
positives and negatives—which may hinder optimal surgical planning 
(12). This limitation partly stems from MRI’s reduced sensitivity to 
post-treatment histological changes like necrosis and fibrosis (13). In 
cases of NCR, irregular tumor cell dispersion and complex stromal 
architecture may mask enhancement signals, thereby raising the 
likelihood of diagnostic errors (14). Moreover, NCR-type tumors often 
exhibit poorly defined boundaries and trigger immune reactions that 
minimally impact perfusion, limiting the effectiveness of quantitative 
MRI metrics (15). Integrating radiomics features with clinical data 
presents a potential approach to bridge diagnostic limitations and 
refine MRI-based classification of regression types.

Radiomics refers to the process of extracting large-scale 
quantitative data from routine medical images, enabling non-invasive 
insights into tumor biological characteristics such as spatial 
heterogeneity and therapeutic response (16). Evidence from multiple 
centers indicates that when radiomic features are integrated with 
clinical indicators, they can support accurate prediction of recurrence-
free survival (RFS) and overall survival (OS) in individuals with breast 
cancer (17). This research proposes a predictive model that integrates 
radiomic attributes derived from MRI with clinicopathological factors 
to classify tumor regression patterns following NAC, aiming to 
identify dependable imaging indicators for informing personalized 
treatment strategies.

2 Materials and methods

2.1 Patient population

A retrospective review was conducted on clinical and imaging 
records of 301 breast cancer patients who received treatment at the 
Affiliated Hospital of Qingdao University between September 2022 
and September 2024. Inclusion and exclusion were determined based 
on standardized enrollment criteria. Individuals were eligible if they 
satisfied all of the following: (a) breast cancer confirmed by 

histopathology through core needle biopsy; (b) baseline breast MRI 
performed in-house prior to therapy; (c) complete clinical and 
pathological baseline records; and (d) definitive surgery following a 
standard NAC protocol. Participants were excluded if they had: (a) no 
MRI or low-quality imaging; (b) surgery conducted at other 
institutions without available postoperative pathology reports; or (c) 
other malignancies diagnosed concurrently during the study period.

The enrolled cases were randomly split into a training group 
(n = 240; CR: 182; NCR: 58) and a validation group (n = 61; CR: 45; 
NCR: 16) based on a 7:3 allocation ratio. All NAC regimens followed 
NCCN guidelines and were tailored through multidisciplinary team 
(MDT) evaluations. Treatment typically lasted 8 weeks (IQR: 
6–8 weeks). Institutional ethics approval was granted by the Affiliated 
Hospital of Qingdao University (Approval No.: QYFY WZLL 27741). 
Due to the retrospective nature of this study, the requirement for 
informed consent was waived.

2.2 Tumor regression pattern classification

Post-treatment tumor regression subtypes were determined by 
histopathological analysis, in alignment with assessment frameworks 
established by the NCCN and Miller–Payne (MP) grading systems. 
Excised tissue was preserved in 10% neutral-buffered formalin, and 
independently reviewed by two certified pathologists under blinded 
conditions. Any disagreement in evaluation was adjudicated by a 
senior expert through consensus.

Based on the distribution and quantity of residual lesions post-
NAC, patients were classified into CR or NCR categories. CR typically 
presents as a single, localized regression focus or as pathological 
complete response (pCR), defined by the absence of invasive tumor in 
both the breast and axillary lymph nodes. Residual ductal carcinoma 
in situ (DCIS) was not considered exclusionary. In contrast, NCR 
encompassed scenarios such as multifocal residual tumors, irregular 
regression patterns, central regression with peripheral nodules, and 
cases exhibiting either disease stability or progression.

For subsequent radiomics modeling, additional pathological 
features were extracted, including the maximal diameter of residual 
lesions (according to American Joint Committee on Cancer (AJCC) 
8th edition), regression margin characteristics, and dynamic variations 
in ER, PR, and HER2 status.

2.3 MRI acquisition

Bilateral breast magnetic resonance imaging was carried out for 
each patient prior to NAC, using clinical-grade scanners operating at 
either 1.5 Tesla or 3.0 Tesla. Scans were performed with the patient in 
the prone position, utilizing a dedicated multi-channel breast coil to 
enhance spatial resolution and suppress motion artifacts. The imaging 
protocol included high-resolution T1- and T2-weighted sequences to 
provide detailed anatomical visualization of breast tissue. For contrast-
enhanced imaging, dynamic scans were obtained using a 
fat-suppressed volumetric interpolated breath-hold examination 
(VIBE) technique, applied across multiple phases.

Delayed post-contrast sequences were also acquired to assess 
lesion morphology and contrast enhancement kinetics. Imaging 
parameters were standardized in accordance with international breast 

https://doi.org/10.3389/fmed.2025.1661448
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1661448

Frontiers in Medicine 03 frontiersin.org

MRI protocols to support reproducibility and ensure data 
comparability for radiomic feature extraction.

2.4 Radiomic feature extraction and model 
construction

Tumor boundaries were manually delineated on baseline 
T1-weighted MRI scans, chosen for their superior contrast in 
outlining lesions. Delineation was independently carried out by two 
senior radiologists using ITK-SNAP software. Any disagreements 
were reviewed collaboratively to reach consensus, with inter-observer 
agreement exceeding a Kappa value of 0.75.

Each segmented region yielded a broad spectrum of radiomic 
features, such as geometric descriptors, grayscale statistics, and 
texture-based metrics. Derived variables were generated via 
mathematical transformations of the original set. Redundant features 
were filtered out using Pearson correlation matrices, followed by the 
LASSO method to retain high-value predictors.

Radiomic feature extraction and selection were implemented 
through PyRadiomics (v3.0.1). The refined features were fed into 
supervised classifiers developed using the scikit-learn library. 
Performance was evaluated on an independent dataset. Four 
machine learning methods—logistic regression (LR), support vector 
machine (SVM), random forest (RF), and extreme gradient boosting 
(XGBoost)—were tested for distinguishing CR and NCR patterns.

2.5 Clinical prediction model

A clinical classification framework was devised to distinguish 
between different tumor regression profiles after neoadjuvant 
chemotherapy. Input features were collected prior to treatment and 
included age, menopausal state, hormone receptor (ER/PR) expression, 
Ki-67 index, HER2 amplification (confirmed by FISH), clinical tumor 
size (cT), nodal involvement (cN), and pathological response indicators.

The Miller–Payne (MP) grading method was employed to evaluate 
histologic changes in cellularity by comparing tumor tissues before 
and after NAC. This five-grade scale accounts for a continuum of 
responses, from minimal residual disease to complete clearance of 
invasive malignancy. In the training dataset, univariate testing 
identified significant predictors, and those with p-values below 0.1 
were retained. The final subset of predictors included four variables: 
age, ER status, PR status, and cN stage.

Predictive models were generated using four machine learning 
techniques: logistic regression (LR), support vector machine (SVM), 
random forest (RF), and extreme gradient boosting (XGBoost). A 
stratified 10-fold cross-validation was performed to evaluate model 
performance. The dataset was randomly divided into 10 folds, 
ensuring similar CR and NCR case ratios in each. In every iteration, 
nine folds were used for training and one for validation, and the 
process was repeated 10 times. The average performance across folds 
was reported as the final result.

Model performance was assessed using accuracy, sensitivity, 
specificity, and AUC. Hyperparameters were optimized by grid search 
during cross-validation. The Random Forest and XGBoost models 
were tuned accordingly, and the model with the highest mean AUC 
was selected for nomogram development.

2.6 Nomogram construction

To enhance individualized clinical decision-making, a hybrid 
prediction model was developed by integrating radiomic signatures 
from pre-treatment MRI with key baseline clinical parameters. A 
nomogram was constructed based on this combined model to 
visualize patient-specific probabilities of tumor regression types. To 
confirm the model’s robustness, its performance was independently 
validated using an external patient dataset.

2.7 Statistical analysis

Statistical analyses were conducted using Python (version 3.7) and 
R software (version 4.3.0). Continuous variables were analyzed with 
two-sample t-tests, while categorical data were compared using 
chi-square statistics. Feature filtering involved two stages: univariate 
t-tests (p < 0.05) for initial selection, followed by removal of highly 
correlated variables using Pearson correlation thresholds (r > 0.9), 
keeping one representative per correlation group.

LASSO regularization, performed via the “glmnet” package in R, 
was applied to finalize variable selection and assist model construction. 
Predictive capability was quantified using AUC values derived from 
ROC curves. Additional indicators such as sensitivity, specificity, and 
accuracy were employed to evaluate overall classification quality. A 
two-sided p-value < 0.05 was set to indicate statistical significance.

3 Results

3.1 Patient characteristics

The participant screening workflow is depicted in Figure 1, and a 
summary of the main clinical variables for both training and 
validation sets is provided in Table  1. A total of 240 individuals 
comprised the training dataset, and 61 patients were allocated to the 
testing group. Based on post-NAC tumor regression profiles, all cases 
were categorized into either the CR or NCR subtypes.

Among training set participants, the mean age for the CR 
subgroup was 52.52 ± 9.38 years, slightly exceeding the NCR group 
average of 49.55 ± 10.12 years; however, this age difference was not 
statistically significant (p = 0.086). No significant intergroup difference 
was observed in Ki-67 expression levels (38.77 ± 21.22 vs. 
35.95 ± 17.28, p = 0.514), HER2 status as determined by FISH 
(p = 0.406), or clinical stage classification (p = 0.116).

A similar pattern was evident within the test set, where baseline 
metrics also showed no significant distinction between CR and NCR 
groups (all p > 0.05). The homogeneity of clinical characteristics 
between the two datasets provided a reliable base for subsequent 
radiomic model development.

3.2 Development and validation of 
clinicopathological signature

3.2.1 Model comparison
In the training set, univariate analysis revealed several factors that 

may be associated with tumor regression patterns following NAC in 
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breast cancer patients. These factors included age, clinical N stage, and 
the expression levels of ER and PR. Machine learning models were 
then trained using these clinicopathological variables.

Among all models tested, Random Forest demonstrated the 
highest performance on the training set, achieving an accuracy of 
92.5% and an exceptional AUC of 0.99. This model exhibited excellent 

FIGURE 1

Flowchart of patient inclusion in the study.

TABLE 1  Comparison of clinical characteristics between the training and validation cohorts.

Characteristic Development set Validation set

ALL NCR CR p ALL NCR CR p

(n = 240) (n = 58) (n = 182) value (n = 61) (n = 16) (n = 45) value

Age (years) (Mean ± std) 51.80 ± 9.62 49.55 ± 10.12 52.52 ± 9.38 0.09 51.20 ± 8.73 51.88 ± 9.70 50.96 ± 8.46 0.72

ER (Mean ± std) 48.31 ± 39.50 63.91 ± 34.60 43.34 ± 39.75 0.00 46.72 ± 39.64 51.88 ± 38.85 44.89 ± 40.19 0.49

PR (Mean ± std) 33.81 ± 36.75 39.76 ± 34.97 31.92 ± 37.19 0.06 30.85 ± 36.06 38.44 ± 39.32 28.16 ± 34.90 0.74

Ki67 (Mean ± std) 38.09 ± 20.34 35.95 ± 17.28 38.77 ± 21.22 0.51 38.98 ± 22.58 33.62 ± 21.67 40.89 ± 22.82 0.32

Molecular Phenotype (Mean ± std) 3.43 ± 1.26 3.27 ± 1.27 3.48 ± 1.26 0.37 3.33 ± 1.40 3.19 ± 1.52 3.39 ± 1.37 0.61

 � Menopausal status 0.67 0.71

 � Postmenopausal 112 (46.67) 29 (50.00) 83 (45.60) 30 (49.18) 9 (56.25) 21 (46.67)

 � Positive 128 (53.33) 29 (50.00) 99 (54.40) 31 (50.82) 7 (43.75) 24 (53.33)

FISH 0.41 0.35

 � Negative 144 (60.00) 38 (65.52) 106 (58.24) 34 (55.74) 11 (68.75) 23 (51.11)

 � Positive 96 (40.00) 20 (34.48) 76 (41.76) 27 (44.26) 5 (31.25) 22 (48.89)

Clinical T stage 0.12 0.19

Clinical N stage 0.09 0.34

0 43 (17.92) 7 (12.07) 36 (19.78) 8 (13.11) null 8 (17.78)

1 162 (67.50) 37 (63.79) 125 (68.68) 42 (68.85) 13 (81.25) 29 (64.44)

2 17 (7.08) 7 (12.07) 10 (5.49) 4 (6.56) 1 (6.25) 3 (6.67)

3 18 (7.50) 7 (12.07) 11 (6.04) 7 (11.48) 2 (12.50) 5 (11.11)
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sensitivity (90.1%) and specificity (100%), making it highly effective 
in identifying true positives and true negatives. However, on the test 
set, its performance decreased, with an accuracy of 57.4% and an AUC 
of 0.57. The sensitivity of 60% and PPV of 77.1% suggest that while 
the model was highly accurate in training, its ability to generalize to 
unseen data was limited.

3.2.2 Performance metrics
Models such as LightGBM, LR, k-nearest neighbors (KNN), SVM, 

and multilayer perceptron (MLP) exhibited more mixed results. 
LightGBM, for example, achieved an accuracy of 39.3% on the test set, 
with a very low sensitivity (17.8%) and high specificity (100%), but its 
overall predictive capability was limited. MLP and LR also faced 
similar challenges in terms of generalizability, with performance drops 
in test data, especially in terms of sensitivity and specificity. The ROC 
curves of the RF model are presented (Figures 2A,B), with additional 
comparative metrics summarized (Table 2).

3.3 Construction and validation of radiomic 
model

3.3.1 Feature selection
Figure  3 shows the process of constructing machine learning 

models with radiomic features, clinicopathological data, and 
nomograms. MRI images of 301 patients were manually segmented 
layer by layer, followed by feature extraction. A total of 1,196 features 
were extracted from pre-treatment images. Through one-way analysis 
of variance, 498 significant features were selected, and the Pearson 
correlation coefficient was calculated. Features with a correlation 
higher than 0.9 were reduced by keeping only one. Finally, 84 features 
were further selected using lasso regression, which identified 8 
features that were most relevant to predicting the tumor regression 
patterns (Figure 4).

3.3.2 Model comparison
We evaluated the performance of various machine learning 

models in predicting tumor regression patterns following NAC in 
breast cancer patients. Among the models evaluated, XGBoost 
demonstrated the best performance on the training set, achieving an 
impressive accuracy of 87.5% and an AUC of 0.95, with a sensitivity 
of 86.3% and specificity of 91.4%. This model outperformed others in 
terms of both predictive accuracy and the ability to distinguish 
between responders and non-responders to neoadjuvant therapy. 
However, on the test set, its performance slightly decreased, with an 
accuracy of 57.4% and an AUC of 0.65. Despite this drop, it still 
maintained a relatively high PPV of 91.3%, indicating its effectiveness 
in predicting positive regression outcomes. Random Forest also 
showed strong performance, with an accuracy of 74.6% and an AUC 
of 0.82 on the training set. On the test set, it had an accuracy of 70.5%, 
with an AUC of 0.75, and a sensitivity of 68.9%. This model 
demonstrated a good balance between sensitivity and specificity, 
making it a robust choice for identifying tumor regression.

3.3.3 Performance metrics
Other models such as SVM, LightGBM, and MLP also provided 

reasonable performance, but none exceeded the performance of 
XGBoost or Random Forest in terms of AUC or accuracy. SVM, for 
example, achieved an AUC of 0.806 on the training set, but its test 
set performance was lower, with an accuracy of 55.7% and AUC of 
0.68. In conclusion, Random Forest provided a good balance of 
predictive accuracy and clinical applicability, especially on the test 
set. The ROC curves of the RF model are presented (Figures 5A,B), 
with additional comparative metrics summarized (Table  3). To 
provide a concise overview of the radiomics workflow, including 
feature selection and model evaluation, an additional summary table 
was compiled. The sequential feature screening steps and 
comparative performance of all applied machine learning algorithms 
are summarized in Table 4.

FIGURE 2

ROC curve analysis of the clinical model. (A) ROC curve of the clinical model in the training cohort, showing its discrimination between different 
outcome groups. (B) ROC curve in the validation cohort, confirming the model’s predictive accuracy and generalizability.
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3.4 Nomogram development and validation

3.4.1 Nomogram construction
To create a more reliable prediction tool for assessing tumor 

regression patterns following NAC in breast cancer patients, 
we developed a nomogram that integrates the top-performing machine 
learning models based on both clinicopathological and radiomic 
signatures (Figure 6). Notably, the Random Forest model emerged as 
the best performer for both clinical and radiomic feature-based 
signatures, making it the ideal choice for inclusion in the nomogram.

3.4.2 Nomogram validation
When evaluated on the training set, the nomogram achieved an 

impressive AUC of 0.99, with a sensitivity of 0.95 and specificity of 
0.96 (Figure 7A). The PPV on the training set was 0.85, demonstrating 
the model’s strong predictive capacity.

On the test set, the nomogram performed well, with an accuracy 
of 0.70 and an AUC of 0.75, as illustrated by the ROC curve 
(Figure 7B). It achieved a sensitivity of 0.64 and specificity of 0.88, 
indicating its ability to effectively identify both responders and 
non-responders to NAC. Furthermore, the PPV was 0.94, and the 
NPV was 0.46, reflecting the nomogram’s good predictive reliability 
for clinical decision-making. Decision Curve Analysis (DCA) 
demonstrated that the combined model provided greater net benefit 
than the radiomics and clinical models in both the training and 
validation cohorts (Figures 8A,B).

To further validate the nomogram, its discrimination and clinical 
utility were assessed in both cohorts. The ROC and decision curve 
analyses demonstrated consistent predictive performance and good 
agreement between predicted and observed outcomes. Compared 
with the Random Forest (AUC = 0.75) and XGBoost (AUC = 0.65) 
models, the nomogram showed superior discrimination and higher 
clinical usefulness, providing stronger support for preoperative 
decision-making.

Beyond the primary accuracy outcomes, 95% confidence intervals 
were also estimated for AUC values to reinforce the reliability of the 
statistical findings. Comparative results revealed that the nomogram 
achieved marginally greater consistency and predictive steadiness 
than either the Random Forest or XGBoost models across datasets. 
The comparative performance of the clinical, radiomic, and integrated 
models is summarized in Table 5, highlighting the improved predictive 
consistency achieved by combining imaging and clinical features.

4 Discussion

In this work, we  developed a nomogram that incorporates 
radiomic parameters from pre-NAC T1-weighted MRI alongside 
selected clinicopathological variables to classify tumor regression 
patterns—namely, CR and NCR responses—in breast cancer. The 
model yielded high classification efficacy, with AUC values of 0.99 and 
0.75 in the training and external test sets, respectively, demonstrating 
its reliability and adaptability to different patient populations. The 
relatively large cohort size enhanced the statistical robustness and 
strengthened the clinical generalizability of the findings. Feature 
extraction was carried out using a rigorously controlled procedure, 
which included expert-guided segmentation of baseline MRI scans, 
followed by multi-step filtering with ANOVA, Pearson correlation, 
and LASSO-based selection. This comprehensive pipeline ensured 
methodological consistency and reproducibility. By fusing quantitative 
imaging traits with pathological profiles, the resulting nomogram 
supports anticipatory surgical planning and individualized 
therapy selection.

Recognizing the spatial variability in tumor response after NAC, 
we examined the predictive capacity of clinicopathological indicators in 
breast cancer. Univariate statistical testing (p < 0.1) revealed estrogen 
receptor (ER) positivity (p = 0.002) and cN stage (p = 0.093) as 
significant correlates, aligning with the biological principles of the RCB 

TABLE 2  Comparison of the clinical–pathological model performance based on AUC, accuracy, and other evaluation metrics.

Clinical model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

LR
Train 0.67 0.70 0.6272–0.7779 0.67 0.66 0.86 0.39

test 0.57 0.54 0.3784–0.7063 0.56 0.63 0.81 0.33

SVM
Train 0.70 0.70 0.6201–0.7873 0.72 0.66 0.87 0.43

test 0.67 0.41 0.2236–0.5861 0.84 0.19 0.75 0.30

KNN
Train 0.51 0.81 0.7560–0.8634 0.35 1.00 1.00 0.33

test 0.71 0.55 0.3782–0.7134 0.87 0.25 0.77 0.40

RandomForest
Train 0.93 0.99 0.9862–0.9991 0.90 1.00 1.00 0.76

test 0.57 0.57 0.3957–0.7460 0.60 0.50 0.77 0.31

ExtraTrees
Train 0.24 1.00 0.9987–1.0000 0.00 1.00 0.00 0.24

test 0.71 0.54 0.3726–0.7136 0.89 0.19 0.76 0.38

XGBoost
Train 0.84 0.92 0.8762–0.9590 0.83 0.86 0.95 0.62

test 0.72 0.56 0.3937–0.7272 0.89 0.25 0.77 0.44

LightGBM
Train 0.67 0.80 0.7347–0.8639 0.61 0.85 0.93 0.41

test 0.39 0.56 0.3931–0.7235 0.18 1.00 1.00 0.30

MLP
Train 0.71 0.74 0.6651–0.8171 0.71 0.71 0.88 0.44

test 0.71 0.44 0.2631–0.6188 0.91 0.13 0.75 0.33
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system (18). Notably, ER-positive cases were more frequently associated 
with non-concentric regression (63.91 ± 34.60%) compared to 
ER-negative tumors (43.34 ± 39.75%, p = 0.002), suggesting a potential 
connection between hormonal activity and chemotherapy response 
(19). To assess model efficacy, several supervised classification 
algorithms were applied, including Random Forest and XGBoost. In the 
training dataset, Random Forest achieved the highest accuracy 
(AUC = 0.993, 95% CI: 0.986–0.999), outperforming logistic regression 
(AUC = 0.70). However, in the independent test cohort, its predictive 
power diminished (AUC = 0.57), reflecting the limitations of models 
based exclusively on clinical variables. This evident gap between training 
and validation performance indicates that the Random Forest model 
may have partially overfitted the training data. Such behavior is 
frequently observed when the number of predictors outweighs the 
sample size, causing the model to learn cohort-specific variations rather 
than generalizable patterns. Introducing stricter feature filtering, cross-
validation, and careful parameter tuning could improve the model’s 
robustness and consistency when applied to independent datasets. 
These results are consistent with Bitencourt et al. (20), who reported 
improved diagnostic accuracy in HER2-positive patients using 
integrated radiomic-clinical frameworks (AUC = 0.89), compared to 
clinical-only approaches (AUC = 0.61). Moreover, the significance of cN 
staging echoes conclusions from a multicenter investigation by Yu et al., 
which demonstrated the association between nodal involvement and 
NAC response (21). While age (p = 0.086) and progesterone receptor 

(PR) status (p = 0.06) were not statistically significant, older patients 
exhibited a higher incidence of CR (52.52 ± 9.38 vs. 49.55 ± 10.12 years), 
potentially reflecting immunological differences with age that warrant 
further research.

To build a robust model for predicting tumor regression subtypes 
following NAC, we employed a range of supervised learning methods, 
including LR, SVM, RF, and XGBoost. These algorithms were selected 
due to their established performance in radiomics-based cancer 
prediction tasks (18, 20, 21). To mitigate overfitting, a two-stage variable 
reduction strategy was adopted: initial univariate analysis (p < 0.05) and 
Pearson correlation filtering (r > 0.9) were used to eliminate redundant 
features, followed by LASSO regression to retain the most predictive 
variables. Out of 1,196 extracted radiomic features, 84 independent 
parameters remained, from which the top 8 were incorporated into the 
final classifier. Among the models tested, RF delivered the most 
consistent predictive ability, with AUCs of 0.816 and 0.75 in the training 
and validation sets, respectively. In contrast, although XGBoost 
performed well in the training group (AUC = 0.95), it demonstrated 
reduced generalization capacity in the validation data (AUC = 0.65), 
suggesting overfitting—a recognized challenge in radiomics applications 
involving high-dimensional inputs (20, 21). Likewise, the noticeable 
reduction in XGBoost performance from training to validation cohorts 
reinforces the need for stronger regularization and systematic 
hyperparameter optimization. Implementing nested cross-validation, 
adjusting learning rates, or constraining tree depth may further mitigate 

FIGURE 3

Workflow of MRI-based radiomics model development. Flowchart illustrating the main steps of model development, including MRI acquisition, tumor 
segmentation, radiomic feature extraction, feature selection, model construction, and validation.
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FIGURE 4

Feature selection process. (A) Distribution of the filtered features. (B) Proportion of features selected by each filtering method. (C,D) LASSO regression 
plots.

FIGURE 5

ROC curve analysis of the radiomics model. (A) ROC curve for the training dataset, demonstrating the predictive performance of the radiomics model. 
(B) ROC curve for the validation dataset, showing the model’s stability and reproducibility in an independent cohort.
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model variance and enhance predictive reliability across unseen data. 
These results underscore the need for larger datasets and algorithm 
refinement to enhance external validity and clinical applicability.

In this study, radiomic features were extracted from various 
domains, such as first-order statistical measures, texture descriptors 
like the gray-level co-occurrence matrix (GLCM), and morphological 
characteristics, including sphericity and surface area. Among these, 
“original-shape-Sphericity” and “wavelet-LLH-ngtdm-Busyness” 
exhibited the highest ability to distinguish between tumor regression 
patterns, emphasizing the relevance of tumor shape and internal 
heterogeneity in defining CR and NCR (13, 22, 23). This finding aligns 
with previous studies, such as those by Li et al., who highlighted the 
importance of morphological features in evaluating treatment response 

(14). In addition, Braman et al. demonstrated the value of texture-
based metrics in reflecting tumor microenvironment complexity (23). 
One of the strengths of our model is the integration of eight radiomic 
features—selected through LASSO regularization—with four key 
clinical variables (age, ER, PR, and cN stage). This composite model 
achieved an AUC of 0.75 in the validation cohort, with sensitivity and 
specificity values of 0.64 and 0.88, respectively. Importantly, the 
specificity of the combined model was significantly higher than the 
clinical-only model (0.88 vs. 0.50), which underscores its potential for 
guiding clinical decisions. When predicting centripetal regression, the 
model achieved a positive predictive value of 94%, demonstrating its 
practical value in preoperative planning, especially for decisions 
regarding breast conservation. These results are consistent with 

TABLE 3  Comparison of the radiomics model performance based on AUC, accuracy, and other evaluation metrics.

Radiomic model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

LR
Train 0.55 0.67 0.5954–0.7468 0.45 0.88 0.92 0.34

test 0.72 0.75 0.6085–0.8887 0.69 0.81 0.91 0.48

SVM
Train 0.82 0.81 0.7282–0.8842 0.84 0.78 0.92 0.60

test 0.56 0.68 0.5235–0.8265 0.47 0.81 0.88 0.35

KNN
Train 0.53 0.79 0.7314–0.8430 0.39 1.00 1.00 0.34

test 0.57 0.61 0.4428–0.7711 0.58 0.56 0.79 0.32

RandomForest
Train 0.75 0.82 0.7550–0.8768 0.75 0.72 0.90 0.48

test 0.71 0.75 0.6111–0.8931 0.69 0.75 0.89 0.46

ExtraTrees
Train 0.62 0.72 0.6493–0.7987 0.57 0.76 0.88 0.36

test 0.56 0.65 0.4962–0.8121 0.47 0.81 0.88 0.35

XGBoost
Train 0.88 0.95 0.9285–0.9787 0.86 0.91 0.97 0.68

test 0.57 0.65 0.4999–0.8029 0.47 0.88 0.91 0.37

LightGBM
Train 0.80 0.87 0.8165–0.9150 0.82 0.74 0.91 0.57

test 0.69 0.69 0.5425–0.8325 0.67 0.75 0.88 0.44

MLP
Train 0.57 0.69 0.6126–0.7639 0.50 0.81 0.89 0.34

test 0.69 0.72 0.5729–0.8688 0.64 0.81 0.91 0.45

TABLE 4  Summary of the feature selection workflow and model performance.

Step Method/Model Purpose Number of 
Features

AUC 
(Training)

AUC 
(Validation)

1 Univariate analysis Identification of statistically significant features associated with tumor 

regression (p < 0.05).

1,196 → 498 - -

2 Pearson correlation Removal of redundant variables (r > 0.9). 498 → 84 - -

3 LASSO regression Selection of the most predictive and non-collinear features. 84 → 8 - -

4 Random Forest Model training using the selected features. 8 0.82 0.75

5 XGBoost Gradient boosting framework tested for predictive accuracy and 

robustness.

8 0.95 0.65

6 SVM Comparative model testing using kernel-based classification. 8 0.81 0.68

7 LightGBM Evaluation of gradient boosting model to test feature robustness and 

generalization.

8 0.87 0.69

8 MLP Assessment of multilayer perceptron neural network for nonlinear 

pattern recognition.

8 0.69 0.72

9 LR Baseline linear classifier used for model comparison and 

interpretability.

8 0.70 0.54
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findings from Yu et al. and Bitencourt et al., both of whom reported 
improved predictive accuracy when combining radiomic and clinical 
features (20, 21). Additionally, the correlation between ER-negative 
status or advanced cN stage with non-concentric regression is in line 
with previous studies that identified these factors as associated with 
poorer chemotherapy responses (19, 24). The nomogram based on this 
integrated model offers a straightforward and clinically relevant tool 
for assessing individual patient risk, aiding in personalized 
treatment planning.

To further ensure clinical translatability, the predictive framework 
should be validated on larger, independent, and multi-institutional 

cohorts. Expanding the dataset and standardizing MRI acquisition 
parameters will help reduce bias and confirm the model’s stability 
under varying imaging conditions, thereby improving its 
generalizability for real-world applications.

Although the combined model demonstrated favorable predictive 
capability, enhancing statistical clarity and validating its performance 
with external cohorts remain important. Incorporating calibration 
assessment and interval estimation could improve interpretability. The 
nomogram performed steadily compared with single-model 
approaches, yet confirmation through multicenter data is required to 
ensure broader applicability.

FIGURE 7

ROC curve analysis of the nomogram. (A) Training cohort. (B) Validation cohort.

FIGURE 6

Nomogram for predicting tumor regression patterns after neoadjuvant chemotherapy (NAC).
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This study has several limitations. Due to its retrospective 
design at a single institution, there is a potential risk of selection 
bias, which may affect the external applicability of the results. The 
relatively small size of the validation cohort (n = 61) further limits 
the statistical power and generalizability of the findings. To 
validate and extend these observations, future research should 
incorporate a multicenter, prospective design, such as the I-SPY2 
framework, which will allow for more robust conclusions across 
diverse patient populations (25). Additionally, incorporating 
complementary imaging modalities like dynamic contrast-
enhanced MRI (DCE-MRI), apparent diffusion coefficient (ADC) 
mapping, and T2-weighted imaging (T2WI) could improve the 
model’s predictive power by offering a more comprehensive view 
of tumor biology.

In conclusion, the MRI-based clinical–radiomic fusion model 
developed in this study successfully stratified tumor regression 
patterns in breast cancer patients undergoing NAC. By integrating 
both imaging features and clinical data, the model provides a 
practical decision-support tool for personalized treatment 
planning, particularly for breast-conserving surgeries. Future 
efforts should focus on validating the model in larger, more 
diverse cohorts and exploring the integration of genomic or 
molecular biomarkers to further enhance its clinical relevance and 
translational potential.

5 Conclusion

The integration of imaging biomarkers and clinical profiles 
enables reliable prediction of tumor response post-NAC, supporting 
more informed and tailored treatment strategies.
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