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Objective: Anoikis, a recently identified type of programmed cell death 
analogous to apoptosis, has been implicated in the pathogenesis of Sjögren’s 
syndrome (SS). Although accumulating evidence indicates its involvement in 
modulating immune responses and contributing to SS progression, the precise 
role of anoikis in SS remains inadequately understood. This study aimed to 
explore anoikis-related genes (ARGs) and their molecular mechanisms in SS 
using public databases.
Methods: SS datasets (GSE23117, GSE84844 and GSE12795) were retrieved 
from the GEO database. In total, 924 ARGs were extracted from the GeneCards 
and Harmonizome databases, followed by differential expression gene (DEGs) 
analysis and weighted gene co-expression network analysis (WGCNA). Machine 
learning algorithms were utilized to screen candidate biomarkers, and their 
diagnostic effectiveness was assessed using receiver operating characteristic 
(ROC) curve analysis. Concurrently, a mouse model of SS was established and 
validated through in vivo experiments. Immune cell infiltration in SS tissues was 
evaluated using CIBERSORT, and correlations between characteristic genes and 
immune cell profiles were analyzed. Potential drug candidates targeting these 
genes were identified using the DGIdb database. Subsequently, an lncRNA-
miRNA-mRNA network associated with these genes was constructed, and 
preliminary experimental validation was conducted.
Results: A total of 35 differentially expressed anoikis-related genes (DEARGs) 
were identified. GO and KEGG enrichment analyses demonstrated that 
DEARGs were primarily associated with inflammation, viral infections, and the 
necroptosis signaling pathway. Machine learning analysis pinpointed 14 feature 
genes, among seven were associated with cancer (NAT1, BIRC3, EZH2, MAD2L1, 
ATP2A3, HMGA1, and BST2). Given the unclear roles of SKI and PRDX4 in SS, the 
study focused specifically on five relevant genes, MAPK3, IL15, S100A9, IFI27, 
and CXCL10, which were validated by in vivo experiments. Immune cell analysis 
revealed increased proportions of B cells, T cells, macrophages, and other 
immune cells in SS tissues. Furthermore, ceRNA and drug-gene interaction 
networks were established, underscoring the regulatory significance of five key 
miRNAs (miR-30b-5p, miR-148a-3p, miR-130a, miR-483-5p, and miR-486-
3p) in SS. In addition, eight candidate drugs were identified with potential for 
modulating SS pathogenesis.
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Conclusion: This study substantiates the significant involvement of anoikis in SS 
and suggests that MAPK3, IL15, S100A9, IFI27, and CXCL10 may serve as critical 
biomarkers in the inflammatory progression of SS. These genes likely mediate 
their effects by influencing immune cell infiltration, participating in immune 
regulation, and modulating inflammatory responses. Our findings offer new 
insights into drug selection and immunotherapeutic strategies for SS.
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1 Introduction

Sjögren’s Syndrome (SS) is an autoimmune disorder characterized 
by immune cell infiltration of the lacrimal and salivary glands (1), 
resulting in reduced tear and saliva secretion. Clinically, SS primarily 
manifests as oral and ocular dryness, frequently accompanied by joint 
pain and fatigue. With a prevalence ranging from 0.29 to 0.77%, it is 
among the most common rheumatic immune diseases. Importantly, 
SS patients have a markedly elevated risk, 30–40 times higher than 
that of the general population, of developing malignant lymphoma, 
severely affecting both life expectancy and quality of life (2). A 
hallmark of SS is focal lymphocytic sialadenitis within the salivary 
glands, which are both the primary target organs and central to 
disease pathogenesis. Glandular stromal cells, including endothelial, 
epithelial, and fibroblast populations, play a crucial role in shaping the 
glandular immune microenvironment (3). However, the mechanisms 
underlying glandular injury in SS remain incompletely elucidated, 
though they clearly involve multiple functional impairments and 
aberrant apoptosis of glandular cells.

Anoikis, a caspase-dependent form of cell death similar to 
apoptosis but distinct in being triggered by cell detachment from 
the extracellular matrix (ECM) (4). Anoikis occurs through the 
disruption of integrin-mediated adhesion. This process prevents 
abnormal cell growth or attachment to inappropriate substrates (5). 
Anoikis participates in diverse physiological functions, including 
gland morphogenesis and the maintenance of normal epithelial 
tissue architecture and homeostasis (6). Its dysregulation has been 
implicated in tumor cell transformation and metastasis. Emerging 
evidence suggests that anoikis also plays a key role in modulating 
immune responses and may contribute to the pathogenesis of 
SS. Notably, SS-affected glands display ECM degradation, impaired 
epithelial regeneration, and progressive inflammation (7). In SS, 
epithelial cells of exocrine glands (e.g., salivary and lacrimal glands) 
exhibit reduced adhesion to the ECM due to altered ECM 
components and abnormal expression of integrins and other matrix 
receptors, leading to detachment from their normal 
microenvironment. Simultaneously, aberrant immune activation 
(e.g., T and B cells) along with oxidative and endoplasmic reticulum 
stress further disrupts epithelial cell-matrix connections or impairs 
survival signaling pathways, collectively triggering anoikis. In this 
process, epithelial cell apoptosis not only directly causes glandular 
dysfunction but also induces the release of autoantigens such as 
TRIM21 and La/SSB via lysosomal-associated membrane protein 3 
(LAMP3), thereby exacerbating autoimmunity. This creates a 
vicious cycle between the inflammatory microenvironment and 
anoikis, further aggravating disease severity. Compared with other 
forms of programmed cell death, anoikis occurs more readily in SS 

due to the combined effects of epithelial cell-matrix dysregulation 
and immune system disturbances (8). However, the role of anoikis 
in SS pathogenesis remains poorly explored. On this basis, 
we  hypothesize a strong association between anoikis and the 
development of SS.

The immune mechanisms underlying SS remain largely unknown. 
Identifying novel characteristic genes may provide potential targets 
and insights into SS etiology. In this study, we  present the first 
comprehensive analysis of the intrinsic relationship between SS and 
anoikis. We perform functional enrichment analysis of differentially 
expressed genes (DEGs) and anoikis-related genes (ARGs) in SS, 
employ machine learning algorithms to identify key characteristic 
genes, and examine the relationships between these genes, immune 
cell infiltration, and regulatory networks. Our findings aim to provide 
a theoretical foundation and new perspectives for developing 
treatment strategies for SS.

2 Materials and methods

2.1 Data acquisition and preprocessing

Expression data profiles for SS and healthy control samples were 
downloaded from the GEO database. The selection criteria were as 
follows: (1) all datasets were derived from the GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array; (2) the 
species studied was Homo sapiens; (3) studies included SS patients and 
healthy controls; (4) studies contained at least 10 samples; and (5) 
samples originated from salivary glands or blood. The GSE23117 and 
GSE84844 datasets have been widely referenced and validated 
experimentally in numerous studies, supporting their reliability. 
Therefore, GSE23117 and GSE84844 were selected as training datasets, 
whereas GSE127952 served as the validation dataset. The GSE23117 
dataset includes 15 samples (4 healthy controls and 11 SS cases), and 
GSE84844 includes 60 samples (30 healthy controls and 30 SS cases). 
ARGs were obtained from the GeneCards and Harmonizome 
databases. The detailed flow chart is shown in Figure 1.

2.2 Identification of differentially expressed 
genes

The “limma” package in R facilitated the analysis of DEGs in the 
GSE23117 and GSE84844 datasets. Significant differential expression 
criteria were set as log2|Fold Change (FC)| ≥ 1 and adj. p-value < 0.05. 
Subsequently, intersecting identified DEGs with ARGs revealed 
differentially expressed anoikis-related genes (DEARGs) in SS.
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The limma package in R was employed to identify DEGs from the 
GSE23117 and GSE84844 datasets. The threshold for significant 
differential expression was defined as |log2 Fold Change (FC)| ≥ 1 and 
adjusted p-value< 0.05. Subsequently, the intersection between 
identified DEGs and ARGs yielded differentially expressed DEARGs 
associated with SS.

2.3 Enrichment analysis of DEARGs in GO 
and KEGG

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were performed using the 
clusterProfiler package in R (9). GO enrichment analysis was 
conducted with the enrichGO function, utilizing genome-wide 
annotation provided by the Bioconductor annotation package (org.
Hs.eg.db). KEGG pathway analysis was carried out using the 
enrichKEGG function (10, 11). Significant enrichment was defined as 
a p-value < 0.05.

To control false-positive risks arising from multiple comparisons 
in GO and KEGG enrichment analyses, the Benjamini–Hochberg 
method was applied to correct original p-values for multiple 
hypothesis testing, with an adjusted q-value (FDR) threshold of <0.05 
used to define statistical significance.

2.4 Feature gene selection by machine 
learning

Three machine learning algorithms were applied to screen for key 
ARGs associated with SS. Least absolute shrinkage and selection 
operator (LASSO) logistic regression, implemented using the glmnet 
package in R, identified the optimal penalty parameter to minimize 
binomial deviation (12). Support vector machine-recursive feature 
elimination (SVM-RFE), conducted using the R packages “e1071,” 
“kernlab,” and “caret,” recursively eliminated features and calculated 
weights (13). Random forest (RF), an ensemble learning method 
executed with the randomForest package in R, identified the top ten 

FIGURE 1

Detailed workflow of the study.
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genes ranked by importance scores (14). Genes consistently identified 
by multiple machine learning methods were selected as the final ARGs.

To ensure the robustness and generalizability of feature selection, 
this study combined LASSO, SVM-RFE, and Random Forest methods. 
LASSO employs L1 regularization for feature sparsity and effectively 
eliminates redundant features; SVM-RFE iteratively removes less 
informative variables, emphasizing direct impact on classification 
performance; Random Forest, leveraging an ensemble learning 
framework, evaluates the global contribution of variables through feature 
importance ranking. These methods complement each other regarding 
sparsity, nonlinear adaptability, and stability, thereby enhancing the 
scientific rigor and robustness of feature selection. To further mitigate 
chance bias, features selected by≥2 methods were considered stably 
important and included in subsequent modeling analyses. This threshold 
was chosen to balance statistical rigor and clinical interpretability.

2.5 ROC curve analysis of feature genes

The diagnostic performance of selected feature genes for SS was 
assessed by receiver operating characteristic (ROC) curve analysis 
using the pROC and ggplot2 packages in R. The area under the curve 
(AUC) values, ranging from 0.5 to 1, reflect diagnostic accuracy, with 
higher values indicating greater predictive power (15). Dataset 
GSE127952 served as the external validation set to evaluate the 
diagnostic efficacy of these candidate genes.

2.6 Validation of feature gene expression

The expression levels of feature genes in disease and control 
conditions were validated using the SS-related dataset (GSE127592). 
Analysis and visualization of gene expression data were conducted 
using the ggplot2 package in R.

2.7 Immune cell infiltration and differential 
analysis

Immune cell infiltration was evaluated in the selected samples using 
the CIBERSORT algorithm. The proportions of 22 immune cell subtypes 
in SS and control samples were compared (16), and subtypes with a 
CIBERSORT p-value < 0.05 were selected for further analysis. Differences 
in immune cell proportions between SS and control groups were assessed 
using the Wilcoxon test (p < 0.05 as statistically significant). Results were 
visualized as heatmaps generated by the ggplot2 package. Correlations 
among the 22 infiltrating immune cell types were visualized using the 
corrplot package. In addition, associations between immune cell 
proportions and feature gene expression were analyzed and visualized 
using the ggplot2 (version 3.3.5), ggpubr, and ggExtra (version 0.9) 
packages in R, considering p < 0.05 statistically significant.

2.8 Regulatory mechanisms of potential 
feature genes

Candidate miRNAs targeting feature genes were predicted using 
the miRanda, miRDB, and TargetScan databases. The starBase 

database was used to identify lncRNAs associated with these miRNAs. 
Subsequently, a competing endogenous RNA (ceRNA) network 
comprising candidate miRNAs and lncRNAs was constructed 
visualized using Cytoscape software.

2.9 Animals and experimental design

A spontaneous SS mouse model (NOD/Ltj mice) was employed 
in the study. Female specific pathogen-free (SPF) NOD mice and 
BALB/c mice (8 weeks old, weighing 18–23 g) were purchased from 
Beijing Huafukang Biotechnology Co., Ltd. and Beijing Weitongxing 
Biotechnology Co., Ltd. (Beijing, China), respectively. Animals were 
housed under controlled conditions (25 ± 2 °C) with free access to 
standard food and water. The experimental protocol was approved by 
the Animal Ethics Committee of Shandong University of Traditional 
Chinese Medicine. NOD/Ltj mice represented the SS group, whereas 
BALB/c mice were used as controls. Average water intake (mg/mL) 
and salivary flow (μg/g) were recorded at weeks 8, 10, 12, 14, and 16. 
At 16 weeks, mice were fasted overnight, anesthetized, and euthanized 
via cervical dislocation following orbital blood collection. The 
submandibular glands were harvested for subsequent histological 
evaluation and experimental analyses. All animal procedures adhered 
strictly to the Guide for the Care and Use of Laboratory Animals 
(National Institutes of Health Publication No. 85–23, revised 1996).

2.10 Histology and immunohistochemistry

Collected submandibular glands were fixed in 4% 
paraformaldehyde for at least 24 h, embedded in OCT medium, and 
sectioned (8–10 μm thickness). Sections were stained with 
hematoxylin and eosin (H&E) according to the manufacturer’s 
guidelines. Masson’s trichrome staining was performed to the assess 
collagen deposition. Slides were examined and imaged using 
fluorescence microscopy, and images were quantitatively analyzed 
Image J software (version 1.8.0).

2.11 Caspase-3 activity assay

Caspase-3 activity in the mandibular gland tissues was 
measured using a Caspase-3 Assay Kit (Cat No. ab39401, Abcam) 
according to the manufacturer’s instructions. Briefly, tissues were 
lysed with lysis buffer on ice (10 min). Protein concentrations were 
determined and adjusted to 1 μg/μL. Reaction mixtures, 
containing 50 μL sample, 50 μL reaction buffer (with 10 mM 
DTT), and 5 μL 4 mM DEVD-pNA substrate, were incubated at 
37 °C for 120 min, and absorbance was measured at 405 nm using 
a microplate reader.

2.12 Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from submandibular gland tissues using 
Trizol reagent (R401-01, Vazyme) and reverse-transcribed to 
complementary DNA (cDNA) using a reverse transcription kit. 
qRT-PCR was performed using SYBR Green reagent on a real-time 
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PCR system. Target mRNA expression levels were normalized to the 
internal control (β-actin). Primer sequences for qRT-PCR are 
provided in Table 1.

2.13 Western blot (WB) analysis

Total protein from mouse submandibular glands was extracted 
using a Minute™ Total Protein Extraction Kit for Bone Tissue 
(Invent, USA) following the manufacturer’s instructions. Protein 
lysates were prepared with RIPA buffer containing PMSF, protease 
inhibitor cocktail, and phosphatase inhibitors (Epizyme, China). 
Protein concentration was measured using a BCA assay kit 
(Beyotime, China). Samples (40 μg protein) were separated by 
SDS-PAGE (Epizyme, China) and transferred onto PVDF 
membranes (0.22/0.45 μm, Millipore, USA). Membranes were 
blocked with 5% skim milk at room temperature (2 h) and 
incubated at 4 °C for 16–18 h with primary antibodies against 
Phospho-MAPK3 (Cell Signaling Technology Cat#4370) and 
MAPK3 (Cell Signaling Technology Cat#4695). Membranes were 
then incubated with HRP-conjugated secondary antibodies at 
room temperature (1 h), and antibody–antigen complexes were 
visualized using an ECL kit (Millipore, USA) and a multicolor 
fluorescence imaging system (Amersham Imager 600, GE, USA). 
After stripping (Epizyme, China), membranes were re-blocked (5% 
skim milk, 1 h) and incubated with a β-actin antibody (Proteintech, 
China) at 4 °C for 4 h. Protein bands were quantified with Image 
J software.

2.14 Enzyme-linked immuno sorbent assay 
(ELISA)

Serum levels of IL15, S100A9, IFI27, and CXCL10 were measured 
using corresponding ELISA kits (Elabscience, China) following the 
manufacturer’s protocols.

2.15 Statistical analysis

Data were presented as mean ± standard deviation (SD). Statistical 
analyses were performed using SPSS Statistics 25 (IBM, Chicago, IL, 
USA) and GraphPad Prism 8.0 (GraphPad Software, USA). 
Comparisons between groups were conducted by one-way ANOVA, 
and p-values < 0.05 indicated statistical significance. All experiments 
were conducted at least three times.

3 Results

3.1 Differential expression analysis and 
identification of ARGs in SS

Distinct clustering patterns were observed between the GSE23117 
and GSE84844 datasets prior to batch correction, however, these patterns 
converged significantly after correction (Figures 2A,B). As shown in 
Figures 2A,B, samples from different batches showed distinct clustering 
along the first two principal components prior to batch correction, 
indicating a pronounced batch effect. After correction using the ComBat 
method, the distribution of samples across batches became more 
uniform, and clustering was notably diminished. Further quantitative 
analysis revealed that variance explained by batch factors in the first two 
principal components decreased markedly from 28.6 to 5.2%, 
significantly reducing the batch contribution to overall variance. 
Additionally, the F-value for inter-batch differences decreased from 15.4 
to 2.1, indicating effective removal of batch effects and improved 
comparability across samples. Using the limma package, 559 DEGs were 
identified in the SS datasets, including 434 upregulated and 125 
downregulated genes (Figure 2C). Among the 924 ARGs obtained from 
the GeneCards and Harmonizome databases, 35 DEARGs were obtained 
through intersection with the identified DEGs (Figures  2D,E). 
Chromosomal locations of these 35 DEARGs were visualized 
(Figure  2H). Additionally, correlation analysis revealed interactions 
among DEARGs, notably identifying significant antagonistic interactions 
between MX1 and genes such as RSAD2, OAS2, IRF7, EIF2AK2, and 
BST2. Conversely, MYH9 exhibited a strong synergistic relationship with 
NAT1, CASP3, PRDX4, BIRC3, and MAD2L1 (Figures 2F,G).

3.2 GO and KEGG pathway enrichment 
analysis of DEARGs

GO and KEGG enrichment analyses were conducted to explore 
the biological functions associated with SS-related DEARGs. The GO 
analysis revealed significant enrichment of DEARGs in biological 
processes (BP), molecular functions (MF), and cellular components 
(CC), primarily involving immune-related activities such as regulation 
of innate immune response, cytokine-mediated signaling pathways, 
mitochondrial inner membrane, inner mitochondrial membrane 
protein complexes, cytokine receptor binding, and chemokine receptor 
binding (Figure 3A). These findings suggest a potential link between 
SS pathogenesis and mitochondrial membrane function, cytokine 
receptor activity, and pathways mediated by innate immune responses 
signaling pathways. KEGG analysis indicated enrichment in pathways, 

TABLE 1  Primer sequences for PCR.

RNA Forward Reverse

Mapk3 AGGCTTCTCCCACTCCAATCCC TCCATTCCAGAACGGTCTACCAGAG

Il15 AAGGAATGTGAGGAGCTGGAGGAG TGCAGTCAGGACGTGTTGATGAAC

S100a9 TGGACACAAACCAGGACAATCAGC TTCCCACAGCCTTTGCCATGAC

Ifi27 TGGACTCTCCGTGCCATCTACTG TCGCCATATCTGCCACCTCTGTC

Cxcl10 TCGCTCAAGTGGCTGGGATGG GGGAGGACAAGGAGGGTGTGG

β-actin CCTTCCGTGTTCCTACCCC GCCCAAGATGCCCTTCAGT
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including the NOD-like receptor (NLR) signaling pathway, 
coronavirus disease (COVID-19), intestinal immune network for IgA 
production, Toll-like receptor (TLR) signaling pathway, chemokine 
signaling pathway, rheumatoid arthritis, IL-17 signaling pathway, TNF 
signaling pathway, and necroptosis (Figure 3B). These results highlight 
the association between SS development and inflammation, viral 
infections, and necroptotic signaling pathways.

3.3 Feature gene selection using machine 
learning

Feature genes related to SS were identified among DEARGs using 
LASSO regression, SVM-RFE, and RF algorithms. LASSO regression 

identified 12 candidate genes from the 35 DEARGs, significantly 
facilitating SS diagnosis (Figures 4A,B). SVM-RFE analysis yielded 30 
candidate feature genes (Figures 4C,D). The RF algorithm ranked the 
35 DEARGs according to variable importance, focusing on genes with 
a MeanDecreaseGini > 2 (Figures 4E,F). Finally, 14 overlapping genes 
were identified by intersecting the outcomes of these three algorithms 
(Figure 4G).

3.4 Validation of feature genes

ROC curve analysis was performed to assess the diagnostic utility 
of MAPK3, NAT1, CXCL10, IL15, PRDX4, BIRC3, EZH2, SKI, 
MAD2L1, ATP2A3, HMGA1, BST2, IFI27, and S100A9 using the 

FIGURE 2

Expression spectrum of ARGs in SS. (A) PCA before batch correction; (B) PCA after batch correction; (C) Volcano plot of DEARGs; (D) Heatmap 
illustrating gene expression; (E) Box plot of expression differences; (F) Correlation heatmap; (G) Circular correlation plot; (H) Chromosomal locations 
of DEARGs.
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combined GSE23117 and GSE84844 datasets. All evaluated genes 
exhibited AUC values greater than 0.7  in the combined dataset, 
demonstrating their strong diagnostic potential for SS (Figures 5A–C). 
Further validation using dataset GSE127952 revealed that, except for 
SKI and S100A9, the remaining genes displayed AUC values greater 
than 0.6 (Figures 5D–F), reinforcing the reliability of these findings.

Although model performance evaluation indicated ROC-AUC 
values above 0.7 for all features in the training set, suggesting robust 
internal discriminative ability, the reduced AUC values (0.6–0.7) 
observed for certain gene markers in the independent validation set 
suggest potential overfitting. This phenomenon is common in high-
dimensional biomedical research with limited sample sizes, possibly 
arising from insufficient training samples, feature selection influenced 
by current data distributions, and clinical or biological heterogeneity 
within validation cohorts. Although validation set AUC values 
approaching 0.7 retain some discriminative capability, their clinical 
translation value requires further verification. Future studies will 
improve model robustness and generalizability by increasing sample 
sizes, incorporating multicenter validation cohorts, and integrating 
multi-omics data, thereby facilitating clinical diagnostics and 
risk stratification.

To confirm the expression patterns of these 14 feature genes in SS, 
further expression analysis was conducted using the SS-related 
training and validation datasets. Except for ATP2A3, HMGA1, 
MAPK3, and SKI, the remaining feature genes were predominantly 
upregulated in SS patients (Figure 6). Consistent expression trends 
were also validated in the external dataset (Figure  7), providing 
additional confirmation of our conclusions.

3.5 In vivo validation of feature gene 
expression in SS mouse

Previously, 14 feature genes were identified. Database searches 
indicated that NAT1, BIRC3, EZH2, MAD2L1, ATP2A3, HMGA1, and 
BST2 are cancer-associated genes. Although SKI and PRDX4 have 
been linked to various inflammatory diseases, their roles in SS remain 
unclear and were therefore excluded from further analysis. 

Consequently, the study focused on MAPK3, IL15, S100A9, IFI27, and 
CXCL10. To validate their expression, an SS mouse model was 
established. As shown in Figures  8A,B, water intake gradually 
increased (p < 0.05), whereas salivary flow rate gradually decreased 
(p < 0.05) in the SS group compared to the control group. Additionally, 
at 16 weeks, the submandibular gland index was significantly reduced 
in SS mice (p < 0.05, Figure 8C). HE and Masson staining revealed 
markedly increased inflammation in submandibular glands from SS 
mice (p < 0.05, Figures 8D–F), confirming successful establishment of 
the mouse model. Furthermore, caspase-3 activity was significantly 
elevated in the submandibular glands of SS mice (Figure 8F). Next, 
total protein, and serum samples were extracted from the 
submandibular glands. qPCR revealed significant upregulation of 
S100a9, Ifi27, Cxcl10, and Il15 (p < 0.05), whereas Mapk3 expression 
was significantly decreased (p < 0.05) in SS mice (Figure 8G). WB 
analysis showed increased phosphorylation of MAPK3 (Figure 8H), 
and ELISA confirmed significantly elevated serum levels of S100A9, 
IFI27, CXCL10, and IL15  in SS mice (Figure  8I). These findings 
further validate our bioinformatics analyses.

3.6 Immune cell infiltration analysis in SS

Considering the f strong association between DEARGs and 
immune-inflammatory pathways in SS, the CIBERSORT algorithm 
was utilized used to assess immune cell infiltration in SS patients. A 
correlation heatmap for immune cells was generated (Figure 9A), 
displaying positive (red) and negative (blue) correlations, with color 
intensity representing correlation strength. Analysis of correlations 
among 22 immune cell types identified a significant negative 
correlation between resting dendritic cells and naïve B cells (r = −0.47, 
p < 0.05) (Figure 9B). Additionally, memory B cells, naïve CD4 + T 
cells, activated memory CD4 + T cells, regulatory T cells, gamma-
delta T cells, resting NK cells, M1 macrophages, M2 macrophages, and 
activated dendritic cells differed significantly between SS patients and 
healthy controls (Figure 9C). In this study, the CIBERSORT method 
was employed to systematically analyze immune cell infiltration 
within salivary gland tissues. Although CIBERSORT provides clear 

FIGURE 3

Enrichment analyses of DEARGs. (A) Top 10 enriched GO terms in BP, CC, and MF; (B) KEGG pathway enrichment analysis.
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insights into the immune microenvironment, inherent limitations 
must be  acknowledged. Firstly, CIBERSORT utilizes the LM22 
signature matrix, derived from peripheral blood immune cells, which 
may not fully represent the immune cell composition unique to 
salivary gland tissues, potentially affecting the accuracy of the inferred 
results. Secondly, salivary glands are highly heterogeneous exocrine 
organs, comprising epithelial cells, acinar cells, and various immune 
cell types, which may complicate deconvolution analyses. Additionally, 
CIBERSORT provides relative rather than absolute cell proportions, 
necessitating caution during interpretation. Therefore, our conclusions 
require further validation through subsequent experiments and multi-
omics approaches.

3.7 Correlation between feature genes and 
immune cell infiltration

To further explore the relationship between feature genes and 
immune cell infiltration, subsequent analyses revealed that CXCL10, 
IFI27, and IL15 were positively correlated with M1 macrophage 
abundance. CXCL10 and IL15 showed negative correlations with 
neutrophils, while S100A9 demonstrated a positive correlation. 
CXCL10, IFI27, and IL15 positively correlated with activated memory 
CD4 + T cell abundance. Additionally, CXCL10, IL15, and MAPK3 
positively correlated with gamma-delta T cells (Figure 10). Overall, 
these correlations suggest that the expression of feature genes may 

FIGURE 4

Feature gene selection for SS via machine learning algorithms. (A) LASSO regression plot; (B) Cross-validation for LASSO; (C,D) SVM-RFE feature 
selection plots; (E) Gene importance ranking using RF; (F) Relationship between RF trees and error rate; (G) Venn diagram of intersecting feature genes.
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FIGURE 5

Validation of feature genes. (A) ROC curves for diagnostic models in combined datasets (GSE23117 and GSE84844); (B,C) Individual ROC curves; 
(D) ROC curves for diagnostic models in GSE127952; (E,F) ROC curves in validation dataset.

FIGURE 6

(A–N) Expression of feature genes in datasets GSE23117 and GSE84844.
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be linked to immune cell infiltration in SS, potentially implicating 
them in the immunological mechanisms underlying SS pathogenesis. 
However, these findings reflect associative trends between gene 
expression and immune cell abundance, and causal relationships and 
underlying molecular mechanisms require further 
functional validation.

3.8 Regulatory network analysis of feature 
genes

In the ceRNA model, lncRNAs and mRNAs that share miRNA 
binding sites function as competing endogenous RNAs, modulating 
shared miRNAs (17). MiRNAs binding to feature genes were predicted 
using MiRanda, miRDB, and TargetScan databases. Remarkably, 
miRNAs corresponding to only five feature genes were predicted. 
Using the Starbase database, 22 miRNAs regulating 57 lncRNAs were 
identified. Subsequently, a ceRNA network comprising 5 mRNAs, 22 
miRNAs, and 57 lncRNAs was constructed (Figure 11A). Additionally, 
five SS-related miRNAs were selected for validation (Figure 11B) to 
explore their potential as biomarkers for SS.

3.9 Identification of candidate drugs 
targeting diagnostic genes

The DGIdb online database was used to identify potential 
therapeutic drugs targeting MAPK3, CXCL10, IL15, IFI27, and 
S100A9 (Figure 12A). The search yielded 59 candidate drugs for SS 
treatment, including 40 targeting MAPK3, 12 targeting CXCL10, 5 
targeting IL15, and 2 targeting S100A9. No drugs were identified 

targeting IFI27 were identified. Subsequently, an in  vitro SS 
inflammation model was constructed by stimulating SMG-C6 cells 
with 50 ng/mL IFN-γ for 24 h (18) to investigate the effect of the 
MAPK3 inhibitor U0126. Results demonstrated that IFN-γ 
stimulation significantly increased caspase-3 levels, activated the 
MAPK3 signaling pathway, and elevated levels of inflammatory 
cytokines TNF-α and IL6. Conversely, treatment with U0126 
markedly decreased apoptosis and attenuated inflammation 
(Figures 12B–D), further confirming the potential of MAPK3 as a 
biomarker for SS.

4 Discussion

SS is a chronic autoimmune disease characterized by dryness 
symptoms experienced by over 95% of patients. This glandular 
dysfunction may persist for over a decade, significantly impairing 
patients’ quality of life. Additionally, SS has been described as an 
autoimmune epithelitis, underscoring the crucial role of epithelial cells 
in maintaining normal glandular function (18). Immune-mediated 
damage to salivary gland epithelial cells in SS reduces saliva secretion. 
Various cell death mechanisms involving epithelial cells and 
neutrophils contribute to glandular damage in SS, among which 
anoikis plays a central role. SS-related salivary glands exhibit 
prominent morphological and functional changes in acinar and ductal 
structures, accompanied by extensive ECM remodeling. Normal 
cellular survival depends on adhesion to the ECM, which is essential 
for tissue structure and function, particularly in epithelial tissues. Loss 
of adhesive interactions between epithelial cells and the ECM can alter 
gene expression, frequently triggering anoikis. Consequently, 
detachment-induced epithelial cell death of (anoikis) significantly 

FIGURE 7

(A–N) Expression of feature genes in validation dataset GSE127952.
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FIGURE 8

Validation of feature gene expression through in vivo experiments. (A) Average water intake of mice from 8 to 16 weeks; (B) Salivary flow rate of 
mice from 8 to 16 weeks; (C) Submandibular gland index at week 16; (D) Representative images of HE and Masson staining in submandibular 
glands; (E) Quantitative analysis of HE and Masson staining; (F) Caspase-3 activity assay; (G) RT-qPCR analysis of Mapk3, Il15, S100a9, Ifl27, and 
Cxcl10 expression; (H) WB analysis of p-MAPK3 expression; (I) ELISA quantification of IL15, S100A9, IFI27, and CXCL10 levels in serum. nsp > 0.05, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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contributes to glandular dysfunction in SS (19). Studies suggest that 
anoikis-driven apoptosis of human salivary gland epithelial cells, 
resulting from ECM detachment or inappropriate ECM interactions, 
significantly promotes SS pathology. Furthermore, dysregulated 
expression of the ECM protein fibulin-6 in salivary gland epithelial 
cells may also influence SS initiation and progression (20). In this 
study, we employed three machine learning algorithms to examine the 
role of ARGs in SS and explored the potential contribution of anoikis 
to disease progression.

Initially, we  identified 35 ARGs significantly differentially 
expressed between SS and healthy controls. Subsequent GO and 
KEGG enrichment analyses revealed these genes to be primarily 

involved in disease-related signaling pathways, including influenza 
A, coronavirus disease (COVID-19), hepatitis C, measles, pertussis, 
toxoplasmosis, and rheumatoid arthritis. Additionally, these genes 
were closely associated with pathways linked to inflammation, viral 
infections, and necroptosis, such as the NLR signaling pathway, TLR 
signaling pathway, Epstein–Barr virus (EBV) infection, chemokine 
signaling pathway, IL-17 signaling pathway, TNF signaling pathway, 
and necroptosis. The NLR and TLR signaling pathways, central 
components of innate immune responses, have been extensively 
studied in SS. Both NLRs and TLRs are pattern recognition receptors 
(PRRs) that initiate immune responses upon stimulation. NLRP3, a 
critical inflammasome within the NLR family, mediates innate 

FIGURE 9

Immune cell infiltration analysis. (A) Correlation heatmap of 22 infiltrating immune cells; (B) Heatmap illustrating immune cell correlations; (C) Violin 
plots comparing the proportions of 22 immune cell types.
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immunity against microbial and environmental triggers. The NLRP3, 
inflammasome is several implicated in multiple autoimmune 
diseases, including systemic lupus erythematosus (21), SS (22) and 
rheumatoid arthritis (23). SS patients exhibit excessive activation of 
monocytic and macrophagic inflammasomes, notably NLRP3 (22), 
Moreover, along with the activation of the NLRP3 inflammasome 
and subsequent IL-18 secretion in salivary glands significantly 
enhance innate immune responses (24). Activation of NLRP3 also 
promotes substantial production of inflammatory cytokines IL-1β 
and IL-18 in peripheral blood stem mononuclear cells (PBMCs), 
driving chronic inflammation and tissue injury in SS (25). Similarly, 
TLRs are PRRs that recognize nucleic acids to induce type 
I  interferon (IFN) production. Recent RNA sequencing studies 
comparing SS and healthy salivary glands underscore the critical 
involvement of TLR signaling in SS pathology (26). Specifically, 
TLR7 expression in ductal epithelial cells increases the cytoplasmic 
autoantigen Ro52, leading to epithelial damage in SS glands (27). 
Zhang et  al. (28) the reported that TLR signaling is crucial in 
SS-associated thrombocytopenia, activating the MyD88/NF-κB 
pathway and subsequently promoting inflammatory cytokine 
production, including TNF-α and IL-6. Targeting in pivotal 
molecules within the TLR pathway, such as TLR7 or MyD88, 
represents a promising therapeutic strategy for SS. In addition to 
inflammatory signaling, viral infections, particularly EBV and 
hepatitis C virus, have been strongly associated with SS and 
recognized as clinical risk factors. Elevated EBV DNA levels have 
been detected in salivary glands and PBMCs of SS patients; however, 

the exact molecular mechanisms underlying EBV-related SS remain 
incompletely understood (29).

In recent years, machine learning approaches have been 
increasingly utilized in SS diagnosis, identification of critical 
biomarkers, and immune-cell characterization due to their superior 
predictive performance, reduced error rates, and enhanced reliability. 
From an initial selection of 35 candidate genes, 14 feature genes were 
ultimately identified as potential biomarkers for SS: MAPK3, NAT1, 
CXCL10, IL15, PRDX4, BIRC3, EZH2, SKI, MAD2L1, ATP2A3, 
HMGA1, BST2, IFI27, and S100A9. Apart from ATP2A3, HMGA1, 
MAPK3, and SKI, the remaining genes exhibited elevated expression 
predominantly in SS patients. Among these, NAT1, BIRC3, EZH2, 
MAD2L1, ATP2A3, HMGA1, and BST2 are known cancer-associated 
genes. NAT1 is implicated in breast cancer (30), BIRC3 associated with 
such as colorectal cancer (31), liver cancer (32), and chronic 
lymphocytic leukemia (33), EZH2 shows overexpression in lung 
adenocarcinoma (34), endometrial cancer (35), and prostate cancer 
(36), MAD2L1 is related to cholangiocarcinoma (37), lung 
adenocarcinoma (38), and breast cancer (39), ATP2A3 is a 
characteristic marker for bladder cancer (40) and head and neck 
squamous cell carcinoma (41), HMGA1 is involved in of lung 
adenocarcinoma (42) and breast cancer (43), and BST2 is a key gene 
in pancreatic cancer (44) and oral squamous cell carcinoma (45).

Collectively, these findings suggest a possible connection between 
tumorigenesis and SS. Although explicit evidence demonstrating this 
association remains limited, these genes merit further investigation for 
their potential roles in SS pathogenesis. SKI and PRDX4, associated with 

FIGURE 10

Correlation analysis between feature genes and immune cell infiltration.
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multiple inflammatory diseases (46, 47), have unclear roles in SS and 
were therefore not the focus of this study. Instead, emphasis was placed 
on MAPK3, IL15, S100A9, IFI27, and CXCL10. MAPK3, a critical 
member of the MAPK family, participates in numerous fundamental 
cellular processes, including cell proliferation, differentiation, apoptosis, 
and inflammatory responses. Many studies have demonstrated its role 
in regulating B cell functions via the MAPK3 (Erk1/2) signaling 
pathway (48) and modulating inflammatory cytokine production (49). 
Activation of the MAPK signaling pathway is known to facilitate 
excessive T and B cell proliferation and activity, thereby exacerbating SS 
progression (50). Previous reports have shown that inhibiting MAPK 
signaling alleviates glandular symptoms in SS (50). Additionally, IL-17 
stimulation of salivary gland epithelial cells (SGECs) activates the 
MAPK3 pathway, phosphorylating Erk1/2 and subsequently promoting 
glandular inflammation, epithelial-mesenchymal transition (EMT), 
fibrosis, and glandular dysfunction (51). Similar findings confirmed 
increased phosphorylation of MAPK3 in salivary glands of SS patients 
(52). Intriguingly, recent studies reported MAPK3 as an upstream 
regulator of mTOR, a core autophagy gene, activating mTOR signaling 
and consequently suppressing autophagy (53). This finding raises the 
question of whether MAPK3 may, to some extent, alleviate excessive 
autophagy and cell death, thereby positively influencing glandular 
function. Future studies should explore this pathway further to elucidate 
its precise role in SS pathogenesis. In agreement with these findings, our 
animal experiments revealed enhanced phosphorylation (activation) of 
MAPK3 protein despite decreased MAPK3 mRNA expression, possibly 

related to differences between total mRNA levels and protein 
phosphorylation status. IL15, a key regulatory cytokine predominantly 
produced by macrophages and non-lymphoid cells, signals via JAK/
STAT and Ras/MAPK pathways and modulates cell survival through 
balancing pro-apoptotic and anti-apoptotic signals in the PI3K pathway. 
Elevated IL15 mRNA and protein levels have been documented in the 
salivary glands of SS patients, promoting glandular T and B cell 
activation and persistent inflammation (54). Moreover, IL15 expression 
was markedly upregulated in acinar and ductal cells, indicating its 
potential as a therapeutic target for SS-associated inflammation (54), 
consistent with our experimental results. S100A9, a pro-inflammatory 
protein implicated in various inflammatory disorders, is recognized as 
a promising biomarker for SS. Its expression in saliva is significantly 
elevated in SS patients compared with healthy controls, indicating its 
potential as an early diagnostic marker for SS (55). Additionally, elevated 
S100A9 expression in PBMCs from SS patients promotes 
pro-inflammatory cytokine production (56). Together with our 
experimental findings, these results underscore the considerable 
diagnostic potential of S100A9 in SS, warranting further exploration as 
a specific biomarker. Activation of the IFN pathway is a hallmark 
immunological feature of SS (57), with approximately two-thirds of SS 
patients displaying increased IFN activity (58). Both IFI27 and CXCL10 
are interferon-induced proteins (59, 60). IFN pathway activation, critical 
in immune responses against bacterial and viral infections, stimulates 
innate immunity through recognition of pathogenic agents (61). 
Specifically, type I IFN induces B cell proliferation and differentiation 

FIGURE 11

(A) Construction of the ceRNA network for feature genes. Green circles represent mRNAs, purple circles represent miRNAs, and brown circles 
represent lncRNAs. (B) RT-qPCR validation of miRNA expression. nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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via the TLR7 signaling pathway, facilitating BAFF production (61), 
enhancing B cell activation, and promoting adaptive immunity. Thus, 
IFN pathway activation represents a critical junction linking innate and 
adaptive immune responses in SS and constitutes a promising 
therapeutic target for the disease.

To enhance our understanding of SS pathogenesis, 
we comprehensively analyzed immune cell infiltration in SS using the 
CIBERSORT algorithm. Our results revealed increased levels of 
memory B cells, activated memory CD4 + T cells, gamma delta T cells, 
M1 macrophages, M2 macrophages, and activated dendritic cells in SS 
tissues. Conversely, naive CD4 + T cells, regulatory T cells (Tregs), and 
resting NK cells exhibited decreased abundance. It is well-established 
that significant activation of both T and B cells occurs in the salivary 
glands and peripheral blood of SS patients (62), and substantial 
research supports these observations. One study employing single-cell 
sequencing extensively characterized peripheral blood B cell subsets in 
SS patients, underscoring the critical role of B cells in SS pathogenesis 
and emphasizing the need for further exploration of B cell subset-
specific contributions to SS (63). Increased tissue-resident memory B 
cells may elevate the risk of lymphoma development in SS patients (64). 
Activation of B cells, however, requires T-cell involvement; notably, 
CD4 + T cells and B cells predominate the inflammatory infiltrates 
observed in salivary and lacrimal glands (65, 66). Additionally, 
dendritic cells, as the primary source of IFN production, are highly 
expressed in SS (65), consistent with our findings related to IFN 

pathway activation. Furthermore, published single-cell analyses have 
confirmed elevated infiltration of these immune cell populations in SS 
patients and animal models (7, 67–69). Collectively, these immune cells 
contribute to glandular inflammatory infiltration by releasing 
inflammatory cytokines, potentially interacting with glandular 
epithelial cells and compromising gland structure and function. Thus, 
SS pathogenesis likely results from complex interactions among diverse 
immune and tissue-resident cells rather than a single cell type.

Following the ceRNA hypothesis, we  constructed a ceRNA 
network containing five key genes, 22 miRNAs, and 57 lncRNAs. Using 
the MCC algorithm, we  identified 10 key miRNAs: miR-214-3p, 
miR-30b-3p, miR-590-3p, miR-542-3p, miR-148a-3p, miR-130a-3p, 
miR-483-5p, miR-486-3p, miR-452-3p, and miR-296-5p. Among these, 
only five (miR-30b-5p, miR-148a-3p, miR-130a, miR-483-5p, and 
miR-486-3p) have been investigated in relation to SS; thus, we focused 
our discussion on these miRNAs. It is well-established that miRNAs 
circulate stably and reproducibly in serum and plasma, making them 
promising biomarkers for various diseases. miR-30b-5p is significantly 
dysregulated in minor salivary glands from SS patients (70). Another 
study reported substantially downregulated miR-30b-3p expression in 
SS (71, 72), negatively correlating with BAFF levels in B cells from SS 
patients. Furthermore, inhibition of miR-30b-5p in THP-1 cells 
markedly elevated BAFF expression, suggesting that reduced 
miR-30b-5p may enhance BAFF-mediated inflammation in SS patients 
(72). Additionally, decreased miR-148a expression was reported in 

FIGURE 12

(A) Drug-gene interaction network. Red nodes represent upregulated genes, green nodes downregulated genes, and brown nodes indicate predicted 
drugs; (B) WB analysis of MAPK3; (C) Caspase-3 activity assay; (D) ELISA measurement of TNF-α and IL6 levels in cell supernatants. nsp > 0.05, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Treg-deficient mice, a recognized autoimmune disease model, with 
ROC analysis indicating its potential utility as a diagnostic biomarker 
(73). However, direct evidence regarding the sensitivity and specificity 
of miR-148a for SS diagnosis is currently lacking. Meanwhile, miR-130a 
was consistently downregulated in conventional dendritic cells from SS 
patients, leading to increased MSK1 expression and subsequent 
production of inflammatory cytokines (e.g., IL-12 and 12, TNF-α), 
thereby exacerbating salivary gland inflammation (74). Targeting 
miR-130a to inhibit MSK1 and inflammatory cytokine release may 
thus represent a novel therapeutic approach for SS (74). Moreover, 
miR-483-5p expression is significantly upregulated in PBMCs from SS 
patients, and particularly in minor salivary glands of anti-Ro/SSA and 
anti-La/SSB double-positive SS patients compared with seronegative 
counterparts (75). Conversely, Eleni et  al. found no significant 
difference in serum miR-483-5p levels between healthy controls and SS 
patients, although miR-483-5p was specifically elevated in localized 
scleroderma and systemic sclerosis (SSc), indicating its potential role 
as a biomarker for SSc (76). Finally, although our analysis identified 
miR-486-3p as a possible SS biomarker, previous studies reported 
differential miR-486-3p expression in salivary glands as a potential 
marker for distinguishing feature between IgG4-related disease and SS, 
suggesting the exact role of miR-486-3p in SS remains uncertain (77). 
These collective insights may contribute substantially to understanding 
the molecular mechanisms driving SS progression.

Furthermore, we identified 59 candidate drugs from the DGIdb 
database for potential SS treatment, subsequently narrowing this list to 
eight therapeutic agents: methylprednisolone, cyclophosphamide, 
cyclosporine, atorvastatin, etoposide, sirolimus, paquinimod, and 
quercetin. Interestingly, methylprednisolone, cyclophosphamide, and 
cyclosporine have already been widely used clinically in SS, particularly 
during high disease activity or systemic involvement. According to the 
2020 EULAR guidelines for SS management, glucocorticoids, 
particularly methylprednisolone, are recommended for controlling 
active systemic involvement, with an emphasis on using the lowest 
effective dose for the shortest possible duration. Immunosuppressants 
such as cyclophosphamide and cyclosporine may serve as alternatives 
to glucocorticoids, although a definitive consensus regarding their use 
has yet to be established (78). Cyclophosphamide has shown efficacy 
in alleviating interstitial lung disease symptoms associated with 
connective tissue disorders and is recommended for SS patients with 
chronic tubulointerstitial nephritis, particularly those presenting with 
high IgG levels and renal function impairment (79, 80). Atorvastatin 
and etoposide, known primarily as widely utilized in other clinical 
disciplines, may exhibit unexpected therapeutic potential for SS 
patients with concurrent conditions. For example, atorvastatin, a lipid-
lowering agent, has demonstrated anti-inflammatory effects in SS by 
inhibiting IL-1β, PGE2, and MMP-3 production in rat submandibular 
glands (81). Etoposide, an anticancer drug, has been reported to 
selectively eliminate pathologically activated T lymphocytes and 
effectively suppress inflammatory cytokine release in cases of SS 
complicated by macrophage activation syndrome. However, these 
findings are based on limited case reports, lacking extensive clinical or 
fundamental research support (82). Apart from medications already 
clinically available, we identified three additional small-molecule drugs 
with potential therapeutic effects on SS. These agents have undergone 
limited validation in preclinical or clinical studies, yet may provide 
promising opportunities for future SS drug development. Sirolimus 
(rapamycin), an mTOR inhibitor, has demonstrated clinical efficacy in 
treating SS-associated thrombocytopenia (83). Mechanistically, it 

suppresses T follicular helper (Tfh) cell differentiation by reducing 
mTOR activity, maintaining a balance between Tfh and T follicular 
regulatory (Tfr) cells (84). Additionally, sirolimus reduces glandular 
inflammation and improves tear production (85). Paquinimod, an 
alarmin inhibitor, inhibits alarmin expression in an IL14α transgenic 
mouse model of SS, promoting Ca2 + influx, restoring salivary gland 
function, reducing immune cell infiltration, and preventing SS 
progression (86). Finally, we discovered quercetin, a natural compound, 
as a potential therapeutic agent for SS. Quercetin mitigates salivary 
gland cell apoptosis and inflammation by inhibiting the LP/OB-R/
JAK2/STAT3 signaling pathway, thereby providing new opportunities 
for alleviating dry-mouth symptoms in SS (87). Currently, various 
novel drugs have yielded encouraging outcomes in SS treatment; 
nevertheless, several challenges remain regarding their clinical 
translation. First, addressing potential drug toxicity during research 
and development poses significant difficulties. Structural optimization 
or modification of novel drugs to enhance therapeutic effects while 
reducing toxicity is crucial. Adjusting administration routes or 
employing advanced technologies, such as nanocarrier delivery 
systems, could achieve targeted drug delivery, enhancing efficacy and 
reducing side effects. Furthermore, translating preclinical findings to 
clinical practice represents the most challenging step, requiring 
extensive and rigorous experimentation. Finally, exploring traditional 
Chinese medicine as adjunctive therapy to enhance the therapeutic 
effects of essential yet potentially toxic medications could present an 
intriguing area for future research.

In summary, our study identified characteristic genes associated 
with SS and anoikis, employing enrichment analyses to elucidate their 
biological roles. We  highlighted several pathogenic mechanisms 
potentially mediated by key hub genes. Utilizing three machine-
learning algorithms, we  identified five essential genes serving as 
biomarkers, likely involved in regulating the SS immune 
microenvironment. Based on these findings, we constructed a ceRNA 
network and predicted candidate therapeutic drugs, thus providing 
novel insights into SS treatment. However, our study has limitations, 
primarily due to reliance solely on data analysis without sufficient 
experimental validation. Therefore, further animal studies are 
necessary to substantiate our conclusions.
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