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genes and immune infiltration
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syndrome based on machine
learning

Lei Wang?, Zigi Zhou!, Xinpeng Zhou?, Ying Liu'* and
Mengjie Wang*?*
!Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese
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Objective: Anoikis, a recently identified type of programmed cell death
analogous to apoptosis, has been implicated in the pathogenesis of Sjdgren’s
syndrome (SS). Although accumulating evidence indicates its involvement in
modulating immune responses and contributing to SS progression, the precise
role of anoikis in SS remains inadequately understood. This study aimed to
explore anoikis-related genes (ARGs) and their molecular mechanisms in SS
using public databases.

Methods: SS datasets (GSE23117, GSE84844 and GSE12795) were retrieved
from the GEO database. In total, 924 ARGs were extracted from the GeneCards
and Harmonizome databases, followed by differential expression gene (DEGs)
analysis and weighted gene co-expression network analysis (WGCNA). Machine
learning algorithms were utilized to screen candidate biomarkers, and their
diagnostic effectiveness was assessed using receiver operating characteristic
(ROC) curve analysis. Concurrently, a mouse model of SS was established and
validated through in vivo experiments. Immune cell infiltration in SS tissues was
evaluated using CIBERSORT, and correlations between characteristic genes and
immune cell profiles were analyzed. Potential drug candidates targeting these
genes were identified using the DGIdb database. Subsequently, an IncRNA-
MiRNA-mRNA network associated with these genes was constructed, and
preliminary experimental validation was conducted.

Results: A total of 35 differentially expressed anoikis-related genes (DEARGS)
were identified. GO and KEGG enrichment analyses demonstrated that
DEARGs were primarily associated with inflammation, viral infections, and the
necroptosis signaling pathway. Machine learning analysis pinpointed 14 feature
genes, among seven were associated with cancer (NAT1, BIRC3, EZH2, MAD2L 1,
ATP2A3, HMGA1, and BST2). Given the unclear roles of SKI and PRDX4 in SS, the
study focused specifically on five relevant genes, MAPK3, IL15, S100A9, IFI27,
and CXCL10, which were validated by in vivo experiments. Immune cell analysis
revealed increased proportions of B cells, T cells, macrophages, and other
immune cells in SS tissues. Furthermore, ceRNA and drug-gene interaction
networks were established, underscoring the regulatory significance of five key
mMiRNAs (miR-30b-5p, miR-148a-3p, miR-130a, miR-483-5p, and miR-486-
3p) in SS. In addition, eight candidate drugs were identified with potential for
modulating SS pathogenesis.
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Conclusion: This study substantiates the significant involvement of anoikis in SS
and suggests that MAPK3, IL15, SI00A9, IFI27, and CXCL10 may serve as critical
biomarkers in the inflammatory progression of SS. These genes likely mediate
their effects by influencing immune cell infiltration, participating in immune
regulation, and modulating inflammatory responses. Our findings offer new
insights into drug selection and immunotherapeutic strategies for SS.
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1 Introduction

Sjogren’s Syndrome (SS) is an autoimmune disorder characterized
by immune cell infiltration of the lacrimal and salivary glands (1),
resulting in reduced tear and saliva secretion. Clinically, SS primarily
manifests as oral and ocular dryness, frequently accompanied by joint
pain and fatigue. With a prevalence ranging from 0.29 to 0.77%, it is
among the most common rheumatic immune diseases. Importantly,
SS patients have a markedly elevated risk, 30-40 times higher than
that of the general population, of developing malignant lymphoma,
severely affecting both life expectancy and quality of life (2). A
hallmark of SS is focal lymphocytic sialadenitis within the salivary
glands, which are both the primary target organs and central to
disease pathogenesis. Glandular stromal cells, including endothelial,
epithelial, and fibroblast populations, play a crucial role in shaping the
glandular immune microenvironment (3). However, the mechanisms
underlying glandular injury in SS remain incompletely elucidated,
though they clearly involve multiple functional impairments and
aberrant apoptosis of glandular cells.

Anoikis, a caspase-dependent form of cell death similar to
apoptosis but distinct in being triggered by cell detachment from
the extracellular matrix (ECM) (4). Anoikis occurs through the
disruption of integrin-mediated adhesion. This process prevents
abnormal cell growth or attachment to inappropriate substrates (5).
Anoikis participates in diverse physiological functions, including
gland morphogenesis and the maintenance of normal epithelial
tissue architecture and homeostasis (6). Its dysregulation has been
implicated in tumor cell transformation and metastasis. Emerging
evidence suggests that anoikis also plays a key role in modulating
immune responses and may contribute to the pathogenesis of
SS. Notably, SS-affected glands display ECM degradation, impaired
epithelial regeneration, and progressive inflammation (7). In SS,
epithelial cells of exocrine glands (e.g., salivary and lacrimal glands)
exhibit reduced adhesion to the ECM due to altered ECM
components and abnormal expression of integrins and other matrix
their
microenvironment. Simultaneously, aberrant immune activation

receptors, leading to detachment from normal
(e.g., T and B cells) along with oxidative and endoplasmic reticulum
stress further disrupts epithelial cell-matrix connections or impairs
survival signaling pathways, collectively triggering anoikis. In this
process, epithelial cell apoptosis not only directly causes glandular
dysfunction but also induces the release of autoantigens such as
TRIM21 and La/SSB via lysosomal-associated membrane protein 3
(LAMP3), thereby exacerbating autoimmunity. This creates a
vicious cycle between the inflammatory microenvironment and
anoikis, further aggravating disease severity. Compared with other

forms of programmed cell death, anoikis occurs more readily in SS
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due to the combined effects of epithelial cell-matrix dysregulation
and immune system disturbances (8). However, the role of anoikis
in SS pathogenesis remains poorly explored. On this basis,
we hypothesize a strong association between anoikis and the
development of SS.

The immune mechanisms underlying SS remain largely unknown.
Identifying novel characteristic genes may provide potential targets
and insights into SS etiology. In this study, we present the first
comprehensive analysis of the intrinsic relationship between SS and
anoikis. We perform functional enrichment analysis of differentially
expressed genes (DEGs) and anoikis-related genes (ARGs) in SS,
employ machine learning algorithms to identify key characteristic
genes, and examine the relationships between these genes, immune
cell infiltration, and regulatory networks. Our findings aim to provide
a theoretical foundation and new perspectives for developing
treatment strategies for SS.

2 Materials and methods
2.1 Data acquisition and preprocessing

Expression data profiles for SS and healthy control samples were
downloaded from the GEO database. The selection criteria were as
follows: (1) all datasets were derived from the GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array; (2) the
species studied was Homo sapiens; (3) studies included SS patients and
healthy controls; (4) studies contained at least 10 samples; and (5)
samples originated from salivary glands or blood. The GSE23117 and
GSE84844 datasets have been widely referenced and validated
experimentally in numerous studies, supporting their reliability.
Therefore, GSE23117 and GSE84844 were selected as training datasets,
whereas GSE127952 served as the validation dataset. The GSE23117
dataset includes 15 samples (4 healthy controls and 11 SS cases), and
GSE84844 includes 60 samples (30 healthy controls and 30 SS cases).
ARGs were obtained from the GeneCards and Harmonizome
databases. The detailed flow chart is shown in Figure 1.

2.2 |dentification of differentially expressed
genes

The “limma” package in R facilitated the analysis of DEGs in the
GSE23117 and GSE84844 datasets. Significant differential expression
criteria were set as log2|Fold Change (FC)| > 1 and adj. p-value < 0.05.
Subsequently, intersecting identified DEGs with ARGs revealed
differentially expressed anoikis-related genes (DEARGS) in SS.
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The limma package in R was employed to identify DEGs from the
GSE23117 and GSE84844 datasets. The threshold for significant
differential expression was defined as [log2 Fold Change (FC)| > 1 and
adjusted p-value< 0.05. Subsequently, the intersection between
identified DEGs and ARGs yielded differentially expressed DEARGs
associated with SS.

2.3 Enrichment analysis of DEARGs in GO
and KEGG

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using the
clusterProfiler package in R (9). GO enrichment analysis was
conducted with the enrichGO function, utilizing genome-wide
annotation provided by the Bioconductor annotation package (org.
Hs.eg.db). KEGG pathway analysis was carried out using the
enrichKEGG function (10, 11). Significant enrichment was defined as
a p-value < 0.05.
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To control false-positive risks arising from multiple comparisons
in GO and KEGG enrichment analyses, the Benjamini-Hochberg
method was applied to correct original p-values for multiple
hypothesis testing, with an adjusted g-value (FDR) threshold of <0.05
used to define statistical significance.

2.4 Feature gene selection by machine
learning

Three machine learning algorithms were applied to screen for key
ARGs associated with SS. Least absolute shrinkage and selection
operator (LASSO) logistic regression, implemented using the glmnet
package in R, identified the optimal penalty parameter to minimize
binomial deviation (12). Support vector machine-recursive feature
elimination (SVM-RFE), conducted using the R packages “e1071,
“kernlab,” and “caret,” recursively eliminated features and calculated
weights (13). Random forest (RF), an ensemble learning method
executed with the randomForest package in R, identified the top ten
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genes ranked by importance scores (14). Genes consistently identified
by multiple machine learning methods were selected as the final ARGs.

To ensure the robustness and generalizability of feature selection,
this study combined LASSO, SVM-RFE, and Random Forest methods.
LASSO employs L1 regularization for feature sparsity and effectively
eliminates redundant features; SVM-RFE iteratively removes less
informative variables, emphasizing direct impact on classification
performance; Random Forest, leveraging an ensemble learning
framework, evaluates the global contribution of variables through feature
importance ranking. These methods complement each other regarding
sparsity, nonlinear adaptability, and stability, thereby enhancing the
scientific rigor and robustness of feature selection. To further mitigate
chance bias, features selected by>2 methods were considered stably
important and included in subsequent modeling analyses. This threshold
was chosen to balance statistical rigor and clinical interpretability.

2.5 ROC curve analysis of feature genes

The diagnostic performance of selected feature genes for SS was
assessed by receiver operating characteristic (ROC) curve analysis
using the pROC and ggplot2 packages in R. The area under the curve
(AUC) values, ranging from 0.5 to 1, reflect diagnostic accuracy, with
higher values indicating greater predictive power (15). Dataset
GSE127952 served as the external validation set to evaluate the
diagnostic efficacy of these candidate genes.

2.6 Validation of feature gene expression

The expression levels of feature genes in disease and control
conditions were validated using the SS-related dataset (GSE127592).
Analysis and visualization of gene expression data were conducted
using the ggplot2 package in R.

2.7 Immune cell infiltration and differential
analysis

Immune cell infiltration was evaluated in the selected samples using
the CIBERSORT algorithm. The proportions of 22 immune cell subtypes
in SS and control samples were compared (16), and subtypes with a
CIBERSORT p-value < 0.05 were selected for further analysis. Differences
in immune cell proportions between SS and control groups were assessed
using the Wilcoxon test (p < 0.05 as statistically significant). Results were
visualized as heatmaps generated by the ggplot2 package. Correlations
among the 22 infiltrating immune cell types were visualized using the
corrplot package. In addition, associations between immune cell
proportions and feature gene expression were analyzed and visualized
using the ggplot2 (version 3.3.5), ggpubr, and ggExtra (version 0.9)
packages in R, considering p < 0.05 statistically significant.

2.8 Regulatory mechanisms of potential
feature genes

Candidate miRNAs targeting feature genes were predicted using
the miRanda, miRDB, and TargetScan databases. The starBase
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database was used to identify IncRNAs associated with these miRNAs.
Subsequently, a competing endogenous RNA (ceRNA) network
comprising candidate miRNAs and IncRNAs was constructed
visualized using Cytoscape software.

2.9 Animals and experimental design

A spontaneous SS mouse model (NOD/Ltj mice) was employed
in the study. Female specific pathogen-free (SPF) NOD mice and
BALB/c mice (8 weeks old, weighing 18-23 g) were purchased from
Beijing Huafukang Biotechnology Co., Ltd. and Beijing Weitongxing
Biotechnology Co., Ltd. (Beijing, China), respectively. Animals were
housed under controlled conditions (25 + 2 °C) with free access to
standard food and water. The experimental protocol was approved by
the Animal Ethics Committee of Shandong University of Traditional
Chinese Medicine. NOD/Ltj mice represented the SS group, whereas
BALB/c mice were used as controls. Average water intake (mg/mL)
and salivary flow (ug/g) were recorded at weeks 8, 10, 12, 14, and 16.
At 16 weeks, mice were fasted overnight, anesthetized, and euthanized
via cervical dislocation following orbital blood collection. The
submandibular glands were harvested for subsequent histological
evaluation and experimental analyses. All animal procedures adhered
strictly to the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health Publication No. 85-23, revised 1996).

2.10 Histology and immunohistochemistry

Collected submandibular glands were fixed in 4%
paraformaldehyde for at least 24 h, embedded in OCT medium, and
sectioned (8-10 pm thickness). Sections were stained with
hematoxylin and eosin (H&E) according to the manufacturer’s
guidelines. Masson’s trichrome staining was performed to the assess
collagen deposition. Slides were examined and imaged using
fluorescence microscopy, and images were quantitatively analyzed
Image J software (version 1.8.0).

2.11 Caspase-3 activity assay

Caspase-3 activity in the mandibular gland tissues was
measured using a Caspase-3 Assay Kit (Cat No. ab39401, Abcam)
according to the manufacturer’s instructions. Briefly, tissues were
lysed with lysis buffer on ice (10 min). Protein concentrations were
determined and adjusted to 1 pg/pL. Reaction mixtures,
containing 50 pL sample, 50 pL reaction buffer (with 10 mM
DTT), and 5 pL 4 mM DEVD-pNA substrate, were incubated at
37 °C for 120 min, and absorbance was measured at 405 nm using
a microplate reader.

2.12 Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from submandibular gland tissues using
Trizol reagent (R401-01, Vazyme) and reverse-transcribed to
complementary DNA (cDNA) using a reverse transcription Kkit.
qRT-PCR was performed using SYBR Green reagent on a real-time
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PCR system. Target mRNA expression levels were normalized to the
internal control (f-actin). Primer sequences for qRT-PCR are
provided in Table 1.

2.13 Western blot (WB) analysis

Total protein from mouse submandibular glands was extracted
using a Minute™ Total Protein Extraction Kit for Bone Tissue
(Invent, USA) following the manufacturer’s instructions. Protein
lysates were prepared with RIPA buffer containing PMSEF, protease
inhibitor cocktail, and phosphatase inhibitors (Epizyme, China).
Protein concentration was measured using a BCA assay kit
(Beyotime, China). Samples (40 pg protein) were separated by
SDS-PAGE (Epizyme, China) and transferred onto PVDF
membranes (0.22/0.45 um, Millipore, USA). Membranes were
blocked with 5% skim milk at room temperature (2h) and
incubated at 4 °C for 16-18 h with primary antibodies against
Phospho-MAPK3 (Cell Signaling Technology Cat#4370) and
MAPK3 (Cell Signaling Technology Cat#4695). Membranes were
then incubated with HRP-conjugated secondary antibodies at
room temperature (1 h), and antibody-antigen complexes were
visualized using an ECL kit (Millipore, USA) and a multicolor
fluorescence imaging system (Amersham Imager 600, GE, USA).
After stripping (Epizyme, China), membranes were re-blocked (5%
skim milk, 1 h) and incubated with a f-actin antibody (Proteintech,
China) at 4 °C for 4 h. Protein bands were quantified with Image
] software.

2.14 Enzyme-linked immuno sorbent assay
(ELISA)

Serum levels of IL15, S100A9, IFI127, and CXCL10 were measured
using corresponding ELISA kits (Elabscience, China) following the
manufacturer’s protocols.

2.15 Statistical analysis

Data were presented as mean + standard deviation (SD). Statistical
analyses were performed using SPSS Statistics 25 (IBM, Chicago, IL,
USA) and GraphPad Prism 8.0 (GraphPad Software, USA).
Comparisons between groups were conducted by one-way ANOVA,
and p-values < 0.05 indicated statistical significance. All experiments
were conducted at least three times.

TABLE 1 Primer sequences for PCR.

10.3389/fmed.2025.1661259

3 Results

3.1 Differential expression analysis and
identification of ARGs in SS

Distinct clustering patterns were observed between the GSE23117
and GSE84844 datasets prior to batch correction, however, these patterns
converged significantly after correction (Figures 2A,B). As shown in
Figures 2A,B, samples from different batches showed distinct clustering
along the first two principal components prior to batch correction,
indicating a pronounced batch effect. After correction using the ComBat
method, the distribution of samples across batches became more
uniform, and clustering was notably diminished. Further quantitative
analysis revealed that variance explained by batch factors in the first two
principal components decreased markedly from 28.6 to 5.2%,
significantly reducing the batch contribution to overall variance.
Additionally, the F-value for inter-batch differences decreased from 15.4
to 2.1, indicating effective removal of batch effects and improved
comparability across samples. Using the limma package, 559 DEGs were
identified in the SS datasets, including 434 upregulated and 125
downregulated genes (Figure 2C). Among the 924 ARGs obtained from
the GeneCards and Harmonizome databases, 35 DEARGs were obtained
through intersection with the identified DEGs (Figures 2D,E).
Chromosomal locations of these 35 DEARGs were visualized
(Figure 2H). Additionally, correlation analysis revealed interactions
among DEARGS, notably identifying significant antagonistic interactions
between MX1 and genes such as RSAD2, OAS2, IRF7, EIF2AK2, and
BST2. Conversely, MYH9 exhibited a strong synergistic relationship with
NATI, CASP3, PRDX4, BIRC3, and MAD2LI (Figures 2EG).

3.2 GO and KEGG pathway enrichment
analysis of DEARGs

GO and KEGG enrichment analyses were conducted to explore
the biological functions associated with SS-related DEARGs. The GO
analysis revealed significant enrichment of DEARGsS in biological
processes (BP), molecular functions (MF), and cellular components
(CC), primarily involving immune-related activities such as regulation
of innate immune response, cytokine-mediated signaling pathways,
mitochondrial inner membrane, inner mitochondrial membrane
protein complexes, cytokine receptor binding, and chemokine receptor
binding (Figure 3A). These findings suggest a potential link between
SS pathogenesis and mitochondrial membrane function, cytokine
receptor activity, and pathways mediated by innate immune responses
signaling pathways. KEGG analysis indicated enrichment in pathways,

RNA Forward Reverse
Mapk3 AGGCTTCTCCCACTCCAATCCC TCCATTCCAGAACGGTCTACCAGAG
115 AAGGAATGTGAGGAGCTGGAGGAG TGCAGTCAGGACGTGTTGATGAAC
8§100a9 TGGACACAAACCAGGACAATCAGC TTCCCACAGCCTTTGCCATGAC
Ifi27 TGGACTCTCCGTGCCATCTACTG TCGCCATATCTGCCACCTCTGTC
Cxcl10 TCGCTCAAGTGGCTGGGATGG GGGAGGACAAGGAGGGTGTGG
P-actin CCTTCCGTGTTCCTACCCC GCCCAAGATGCCCTTCAGT
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FIGURE 2
Expression spectrum of ARGs in SS. (A) PCA before batch correction; (B) PCA after batch correction; (C) Volcano plot of DEARGs; (D) Heatmap
illustrating gene expression; (E) Box plot of expression differences; (F) Correlation heatmap; (G) Circular correlation plot; (H) Chromosomal locations
of DEARGs.

including the NOD-like receptor (NLR) signaling pathway,
coronavirus disease (COVID-19), intestinal immune network for IgA
production, Toll-like receptor (TLR) signaling pathway, chemokine
signaling pathway, rheumatoid arthritis, IL-17 signaling pathway, TNF
signaling pathway, and necroptosis (Figure 3B). These results highlight
the association between SS development and inflammation, viral

infections, and necroptotic signaling pathways.

3.3 Feature gene selection using machine

learning

Feature genes related to SS were identified among DEARGs using
LASSO regression, SVM-RFE, and RF algorithms. LASSO regression
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identified 12 candidate genes from the 35 DEARGs, significantly
facilitating SS diagnosis (Figures 4A,B). SVM-RFE analysis yielded 30
candidate feature genes (Figures 4C,D). The RF algorithm ranked the
35 DEARGs according to variable importance, focusing on genes with
a MeanDecreaseGini > 2 (Figures 4E,F). Finally, 14 overlapping genes
were identified by intersecting the outcomes of these three algorithms
(Figure 4G).

3.4 Validation of feature genes

ROC curve analysis was performed to assess the diagnostic utility
of MAPK3, NATI, CXCLI0, IL15, PRDX4, BIRC3, EZH2, SKI,
MAD2LI1, ATP2A3, HMGAI, BST2, IFI127, and S100A9 using the
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combined GSE23117 and GSE84844 datasets. All evaluated genes
exhibited AUC values greater than 0.7 in the combined dataset,
demonstrating their strong diagnostic potential for SS (Figures 5A-C).
Further validation using dataset GSE127952 revealed that, except for
SKI and SI00A9, the remaining genes displayed AUC values greater
than 0.6 (Figures 5D-F), reinforcing the reliability of these findings.

Although model performance evaluation indicated ROC-AUC
values above 0.7 for all features in the training set, suggesting robust
internal discriminative ability, the reduced AUC values (0.6-0.7)
observed for certain gene markers in the independent validation set
suggest potential overfitting. This phenomenon is common in high-
dimensional biomedical research with limited sample sizes, possibly
arising from insufficient training samples, feature selection influenced
by current data distributions, and clinical or biological heterogeneity
within validation cohorts. Although validation set AUC values
approaching 0.7 retain some discriminative capability, their clinical
translation value requires further verification. Future studies will
improve model robustness and generalizability by increasing sample
sizes, incorporating multicenter validation cohorts, and integrating
multi-omics data, thereby facilitating clinical diagnostics and
risk stratification.

To confirm the expression patterns of these 14 feature genes in SS,
further expression analysis was conducted using the SS-related
training and validation datasets. Except for ATP2A3, HMGAI,
MAPKS3, and SKI, the remaining feature genes were predominantly
upregulated in SS patients (Figure 6). Consistent expression trends
were also validated in the external dataset (Figure 7), providing
additional confirmation of our conclusions.

3.5 In vivo validation of feature gene
expression in SS mouse

Previously, 14 feature genes were identified. Database searches
indicated that NATI, BIRC3, EZH2, MAD2L1, ATP2A3, HMGA1, and
BST2 are cancer-associated genes. Although SKI and PRDX4 have
been linked to various inflammatory diseases, their roles in SS remain
unclear and were therefore excluded from further analysis.
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Consequently, the study focused on MAPK3, IL15, SI00A9, IF127, and
CXCLI0. To validate their expression, an SS mouse model was
established. As shown in Figures 8A,B, water intake gradually
increased (p < 0.05), whereas salivary flow rate gradually decreased
(p < 0.05) in the SS group compared to the control group. Additionally,
at 16 weeks, the submandibular gland index was significantly reduced
in SS mice (p < 0.05, Figure 8C). HE and Masson staining revealed
markedly increased inflammation in submandibular glands from SS
mice (p < 0.05, Figures 8D-F), confirming successful establishment of
the mouse model. Furthermore, caspase-3 activity was significantly
elevated in the submandibular glands of SS mice (Figure 8F). Next,
total protein, and serum samples were extracted from the
submandibular glands. qPCR revealed significant upregulation of
§100a9, Ifi27, Cxcl10, and II15 (p < 0.05), whereas Mapk3 expression
was significantly decreased (p < 0.05) in SS mice (Figure 8G). WB
analysis showed increased phosphorylation of MAPK3 (Figure 8H),
and ELISA confirmed significantly elevated serum levels of SI00A9,
IFI27, CXCL10, and IL15 in SS mice (Figure 8I). These findings
further validate our bioinformatics analyses.

3.6 Immune cell infiltration analysis in SS

Considering the f strong association between DEARGs and
immune-inflammatory pathways in SS, the CIBERSORT algorithm
was utilized used to assess immune cell infiltration in SS patients. A
correlation heatmap for immune cells was generated (Figure 9A),
displaying positive (red) and negative (blue) correlations, with color
intensity representing correlation strength. Analysis of correlations
among 22 immune cell types identified a significant negative
correlation between resting dendritic cells and naive B cells (r = —0.47,
p <0.05) (Figure 9B). Additionally, memory B cells, naive CD4 + T
cells, activated memory CD4 + T cells, regulatory T cells, gamma-
delta T cells, resting NK cells, M1 macrophages, M2 macrophages, and
activated dendritic cells differed significantly between SS patients and
healthy controls (Figure 9C). In this study, the CIBERSORT method
was employed to systematically analyze immune cell infiltration
within salivary gland tissues. Although CIBERSORT provides clear
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insights into the immune microenvironment, inherent limitations
must be acknowledged. Firstly, CIBERSORT utilizes the LM22
signature matrix, derived from peripheral blood immune cells, which
may not fully represent the immune cell composition unique to
salivary gland tissues, potentially affecting the accuracy of the inferred
results. Secondly, salivary glands are highly heterogeneous exocrine
organs, comprising epithelial cells, acinar cells, and various immune
cell types, which may complicate deconvolution analyses. Additionally,
CIBERSORT provides relative rather than absolute cell proportions,
necessitating caution during interpretation. Therefore, our conclusions
require further validation through subsequent experiments and multi-
omics approaches.

Frontiers in Medicine

3.7 Correlation between feature genes and
immune cell infiltration

To further explore the relationship between feature genes and
immune cell infiltration, subsequent analyses revealed that CXCL10,
IF127, and IL15 were positively correlated with M1 macrophage
abundance. CXCLIO and ILI5 showed negative correlations with
neutrophils, while SI00A9 demonstrated a positive correlation.
CXCLI10, IFI27, and IL15 positively correlated with activated memory
CD4 + T cell abundance. Additionally, CXCLI0, IL15, and MAPK3
positively correlated with gamma-delta T cells (Figure 10). Overall,
these correlations suggest that the expression of feature genes may
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(A—N) Expression of feature genes in datasets GSE23117 and GSE84844.
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(A—N) Expression of feature genes in validation dataset GSE127952.

be linked to immune cell infiltration in SS, potentially implicating
them in the immunological mechanisms underlying SS pathogenesis.
However, these findings reflect associative trends between gene
expression and immune cell abundance, and causal relationships and
molecular mechanisms further

underlying require

functional validation.

3.8 Regulatory network analysis of feature
genes

In the ceRNA model, IncRNAs and mRNAs that share miRNA
binding sites function as competing endogenous RNAs, modulating
shared miRNAs (17). MiRNAs binding to feature genes were predicted
using MiRanda, miRDB, and TargetScan databases. Remarkably,
miRNAs corresponding to only five feature genes were predicted.
Using the Starbase database, 22 miRNAs regulating 57 IncRNAs were
identified. Subsequently, a ceRNA network comprising 5 mRNAs, 22
miRNAs, and 57 IncRNAs was constructed (Figure 11A). Additionally,
five SS-related miRNAs were selected for validation (Figure 11B) to
explore their potential as biomarkers for SS.

3.9 Identification of candidate drugs
targeting diagnostic genes

The DGIdb online database was used to identify potential
therapeutic drugs targeting MAPK3, CXCL10, IL15, IFI27, and
S100A9 (Figure 12A). The search yielded 59 candidate drugs for SS
treatment, including 40 targeting MAPK3, 12 targeting CXCL10, 5
targeting IL15, and 2 targeting SI00A9. No drugs were identified
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targeting IFI27 were identified. Subsequently, an in vitro SS
inflammation model was constructed by stimulating SMG-C6 cells
with 50 ng/mL IFN-y for 24 h (18) to investigate the effect of the
MAPK3 inhibitor U0126. Results demonstrated that IFN-y
stimulation significantly increased caspase-3 levels, activated the
MAPKS3 signaling pathway, and elevated levels of inflammatory
cytokines TNF-a and IL6. Conversely, treatment with U0126
markedly decreased apoptosis and attenuated inflammation
(Figures 12B-D), further confirming the potential of MAPK3 as a
biomarker for SS.

4 Discussion

SS is a chronic autoimmune disease characterized by dryness
symptoms experienced by over 95% of patients. This glandular
dysfunction may persist for over a decade, significantly impairing
patients’ quality of life. Additionally, SS has been described as an
autoimmune epithelitis, underscoring the crucial role of epithelial cells
in maintaining normal glandular function (18). Immune-mediated
damage to salivary gland epithelial cells in SS reduces saliva secretion.
Various cell death mechanisms involving epithelial cells and
neutrophils contribute to glandular damage in SS, among which
anoikis plays a central role. SS-related salivary glands exhibit
prominent morphological and functional changes in acinar and ductal
structures, accompanied by extensive ECM remodeling. Normal
cellular survival depends on adhesion to the ECM, which is essential
for tissue structure and function, particularly in epithelial tissues. Loss
of adhesive interactions between epithelial cells and the ECM can alter
gene expression, frequently triggering anoikis. Consequently,
detachment-induced epithelial cell death of (anoikis) significantly
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*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 9
Immune cell infiltration analysis. (A) Correlation heatmap of 22 infiltrating immune cells; (B) Heatmap illustrating immune cell correlations; (C) Violin
plots comparing the proportions of 22 immune cell types.

contributes to glandular dysfunction in SS (19). Studies suggest that
anoikis-driven apoptosis of human salivary gland epithelial cells,
resulting from ECM detachment or inappropriate ECM interactions,
significantly promotes SS pathology. Furthermore, dysregulated
expression of the ECM protein fibulin-6 in salivary gland epithelial
cells may also influence SS initiation and progression (20). In this
study, we employed three machine learning algorithms to examine the
role of ARGs in SS and explored the potential contribution of anoikis
to disease progression.

Initially, we identified 35 ARGs significantly differentially
expressed between SS and healthy controls. Subsequent GO and
KEGG enrichment analyses revealed these genes to be primarily

Frontiers in Medicine 12

involved in disease-related signaling pathways, including influenza
A, coronavirus disease (COVID-19), hepatitis C, measles, pertussis,
toxoplasmosis, and rheumatoid arthritis. Additionally, these genes
were closely associated with pathways linked to inflammation, viral
infections, and necroptosis, such as the NLR signaling pathway, TLR
signaling pathway, Epstein-Barr virus (EBV) infection, chemokine
signaling pathway, IL-17 signaling pathway, TNF signaling pathway,
and necroptosis. The NLR and TLR signaling pathways, central
components of innate immune responses, have been extensively
studied in SS. Both NLRs and TLRs are pattern recognition receptors
(PRRs) that initiate immune responses upon stimulation. NLRP3, a
critical inflammasome within the NLR family, mediates innate
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Correlation analysis between feature genes and immune cell infiltration.

immunity against microbial and environmental triggers. The NLRP3,
inflammasome is several implicated in multiple autoimmune
diseases, including systemic lupus erythematosus (21), SS (22) and
rheumatoid arthritis (23). SS patients exhibit excessive activation of
monocytic and macrophagic inflammasomes, notably NLRP3 (22),
Moreover, along with the activation of the NLRP3 inflammasome
and subsequent IL-18 secretion in salivary glands significantly
enhance innate immune responses (24). Activation of NLRP3 also
promotes substantial production of inflammatory cytokines IL-1f
and IL-18 in peripheral blood stem mononuclear cells (PBMCs),
driving chronic inflammation and tissue injury in SS (25). Similarly,
TLRs are PRRs that recognize nucleic acids to induce type
I interferon (IFN) production. Recent RNA sequencing studies
comparing SS and healthy salivary glands underscore the critical
involvement of TLR signaling in SS pathology (26). Specifically,
TLR7 expression in ductal epithelial cells increases the cytoplasmic
autoantigen Ro52, leading to epithelial damage in SS glands (27).
Zhang et al. (28) the reported that TLR signaling is crucial in
SS-associated thrombocytopenia, activating the MyD88/NF-xB
pathway and subsequently promoting inflammatory cytokine
production, including TNF-a and IL-6. Targeting in pivotal
molecules within the TLR pathway, such as TLR7 or MyD88,
represents a promising therapeutic strategy for SS. In addition to
inflammatory signaling, viral infections, particularly EBV and
hepatitis C virus, have been strongly associated with SS and
recognized as clinical risk factors. Elevated EBV DNA levels have
been detected in salivary glands and PBMCs of SS patients; however,
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the exact molecular mechanisms underlying EBV-related SS remain
incompletely understood (29).

In recent years, machine learning approaches have been
increasingly utilized in SS diagnosis, identification of critical
biomarkers, and immune-cell characterization due to their superior
predictive performance, reduced error rates, and enhanced reliability.
From an initial selection of 35 candidate genes, 14 feature genes were
ultimately identified as potential biomarkers for SS: MAPK3, NAT1,
CXCL10, IL15, PRDX4, BIRC3, EZH2, SKI, MAD2L1, ATP2A3,
HMGAI, BST2, IFI27, and SI00A9. Apart from ATP2A3, HMGAI,
MAPK3, and SKI, the remaining genes exhibited elevated expression
predominantly in SS patients. Among these, NAT1, BIRC3, EZH2,
MAD2LI1, ATP2A3, HMGA1, and BST?2 are known cancer-associated
genes. NAT1 is implicated in breast cancer (30), BIRC3 associated with
such as colorectal cancer (31), liver cancer (32), and chronic
lymphocytic leukemia (33), EZH2 shows overexpression in lung
adenocarcinoma (34), endometrial cancer (35), and prostate cancer
(36), MAD2LI is related to cholangiocarcinoma (37), lung
adenocarcinoma (38), and breast cancer (39), ATP2A3 is a
characteristic marker for bladder cancer (40) and head and neck
squamous cell carcinoma (41), HMGAI is involved in of lung
adenocarcinoma (42) and breast cancer (43), and BST2 is a key gene
in pancreatic cancer (44) and oral squamous cell carcinoma (45).

Collectively, these findings suggest a possible connection between
tumorigenesis and SS. Although explicit evidence demonstrating this
association remains limited, these genes merit further investigation for
their potential roles in SS pathogenesis. SKI and PRDX4, associated with
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multiple inflammatory diseases (46, 47), have unclear roles in SS and
were therefore not the focus of this study. Instead, emphasis was placed
on MAPK3, IL15, SI00A9, IF127, and CXCL10. MAPK3, a critical
member of the MAPK family, participates in numerous fundamental
cellular processes, including cell proliferation, differentiation, apoptosis,
and inflammatory responses. Many studies have demonstrated its role
in regulating B cell functions via the MAPK3 (Erkl/2) signaling
pathway (48) and modulating inflammatory cytokine production (49).
Activation of the MAPK signaling pathway is known to facilitate
excessive T and B cell proliferation and activity, thereby exacerbating SS
progression (50). Previous reports have shown that inhibiting MAPK
signaling alleviates glandular symptoms in SS (50). Additionally, IL-17
stimulation of salivary gland epithelial cells (SGECs) activates the
MAPK3 pathway, phosphorylating Erk1/2 and subsequently promoting
glandular inflammation, epithelial-mesenchymal transition (EMT),
fibrosis, and glandular dysfunction (51). Similar findings confirmed
increased phosphorylation of MAPK3 in salivary glands of SS patients
(52). Intriguingly, recent studies reported MAPK3 as an upstream
regulator of mMTOR, a core autophagy gene, activating mTOR signaling
and consequently suppressing autophagy (53). This finding raises the
question of whether MAPK3 may, to some extent, alleviate excessive
autophagy and cell death, thereby positively influencing glandular
function. Future studies should explore this pathway further to elucidate
its precise role in SS pathogenesis. In agreement with these findings, our
animal experiments revealed enhanced phosphorylation (activation) of
MAPKS3 protein despite decreased MAPK3 mRNA expression, possibly
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related to differences between total mRNA levels and protein
phosphorylation status. IL15, a key regulatory cytokine predominantly
produced by macrophages and non-lymphoid cells, signals via JAK/
STAT and Ras/MAPK pathways and modulates cell survival through
balancing pro-apoptotic and anti-apoptotic signals in the PI3K pathway.
Elevated IL15 mRNA and protein levels have been documented in the
salivary glands of SS patients, promoting glandular T and B cell
activation and persistent inflammation (54). Moreover, IL15 expression
was markedly upregulated in acinar and ductal cells, indicating its
potential as a therapeutic target for SS-associated inflammation (54),
consistent with our experimental results. SI00A9, a pro-inflammatory
protein implicated in various inflammatory disorders, is recognized as
a promising biomarker for SS. Its expression in saliva is significantly
elevated in SS patients compared with healthy controls, indicating its
potential as an early diagnostic marker for SS (55). Additionally, elevated
S100A9 expression in PBMCs from SS patients promotes
pro-inflammatory cytokine production (56). Together with our
experimental findings, these results underscore the considerable
diagnostic potential of SI00A9 in SS, warranting further exploration as
a specific biomarker. Activation of the IFN pathway is a hallmark
immunological feature of SS (57), with approximately two-thirds of SS
patients displaying increased IFN activity (58). Both IFI27 and CXCL10
are interferon-induced proteins (59, 60). IFN pathway activation, critical
in immune responses against bacterial and viral infections, stimulates
innate immunity through recognition of pathogenic agents (61).
Specifically, type I IFN induces B cell proliferation and differentiation
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via the TLR7 signaling pathway, facilitating BAFF production (61),
enhancing B cell activation, and promoting adaptive immunity. Thus,
IFN pathway activation represents a critical junction linking innate and
adaptive immune responses in SS and constitutes a promising
therapeutic target for the disease.

To of SS pathogenesis,
we comprehensively analyzed immune cell infiltration in SS using the
CIBERSORT algorithm. Our results revealed increased levels of
memory B cells, activated memory CD4 + T cells, gamma delta T cells,

enhance our understanding

M1 macrophages, M2 macrophages, and activated dendritic cells in SS
tissues. Conversely, naive CD4 + T cells, regulatory T cells (Tregs), and
resting NK cells exhibited decreased abundance. It is well-established
that significant activation of both T and B cells occurs in the salivary
glands and peripheral blood of SS patients (62), and substantial
research supports these observations. One study employing single-cell
sequencing extensively characterized peripheral blood B cell subsets in
SS patients, underscoring the critical role of B cells in SS pathogenesis
and empbhasizing the need for further exploration of B cell subset-
specific contributions to SS (63). Increased tissue-resident memory B
cells may elevate the risk of lymphoma development in SS patients (64).
Activation of B cells, however, requires T-cell involvement; notably,
CD4 + T cells and B cells predominate the inflammatory infiltrates
observed in salivary and lacrimal glands (65, 66). Additionally,
dendritic cells, as the primary source of IFN production, are highly
expressed in SS (65), consistent with our findings related to IFN
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pathway activation. Furthermore, published single-cell analyses have
confirmed elevated infiltration of these immune cell populations in SS
patients and animal models (7, 67-69). Collectively, these immune cells
contribute to glandular inflammatory infiltration by releasing
inflammatory cytokines, potentially interacting with glandular
epithelial cells and compromising gland structure and function. Thus,
SS pathogenesis likely results from complex interactions among diverse
immune and tissue-resident cells rather than a single cell type.
Following the ceRNA hypothesis, we constructed a ceRNA
network containing five key genes, 22 miRNAs, and 57 IncRNAs. Using
the MCC algorithm, we identified 10 key miRNAs: miR-214-3p,
miR-30b-3p, miR-590-3p, miR-542-3p, miR-148a-3p, miR-130a-3p,
miR-483-5p, miR-486-3p, miR-452-3p, and miR-296-5p. Among these,
only five (miR-30b-5p, miR-148a-3p, miR-130a, miR-483-5p, and
miR-486-3p) have been investigated in relation to SS; thus, we focused
our discussion on these miRNAs. It is well-established that miRNAs
circulate stably and reproducibly in serum and plasma, making them
promising biomarkers for various diseases. miR-30b-5p is significantly
dysregulated in minor salivary glands from SS patients (70). Another
study reported substantially downregulated miR-30b-3p expression in
SS (71, 72), negatively correlating with BAFF levels in B cells from SS
patients. Furthermore, inhibition of miR-30b-5p in THP-1 cells
markedly elevated BAFF expression, suggesting that reduced
miR-30b-5p may enhance BAFF-mediated inflammation in SS patients
(72). Additionally, decreased miR-148a expression was reported in
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Treg-deficient mice, a recognized autoimmune disease model, with
ROC analysis indicating its potential utility as a diagnostic biomarker
(73). However, direct evidence regarding the sensitivity and specificity
of miR-148a for SS diagnosis is currently lacking. Meanwhile, miR-130a
was consistently downregulated in conventional dendritic cells from SS
patients, leading to increased MSK1 expression and subsequent
production of inflammatory cytokines (e.g., IL-12 and 12, TNF-a),
thereby exacerbating salivary gland inflammation (74). Targeting
miR-130a to inhibit MSK1 and inflammatory cytokine release may
thus represent a novel therapeutic approach for SS (74). Moreover,
miR-483-5p expression is significantly upregulated in PBMCs from SS
patients, and particularly in minor salivary glands of anti-Ro/SSA and
anti-La/SSB double-positive SS patients compared with seronegative
counterparts (75). Conversely, Eleni et al. found no significant
difference in serum miR-483-5p levels between healthy controls and SS
patients, although miR-483-5p was specifically elevated in localized
scleroderma and systemic sclerosis (SSc), indicating its potential role
as a biomarker for SSc (76). Finally, although our analysis identified
miR-486-3p as a possible SS biomarker, previous studies reported
differential miR-486-3p expression in salivary glands as a potential
marker for distinguishing feature between IgG4-related disease and SS,
suggesting the exact role of miR-486-3p in SS remains uncertain (77).
These collective insights may contribute substantially to understanding
the molecular mechanisms driving SS progression.

Furthermore, we identified 59 candidate drugs from the DGIdb
database for potential SS treatment, subsequently narrowing this list to
eight therapeutic agents: methylprednisolone, cyclophosphamide,
cyclosporine, atorvastatin, etoposide, sirolimus, paquinimod, and
quercetin. Interestingly, methylprednisolone, cyclophosphamide, and
cyclosporine have already been widely used clinically in SS, particularly
during high disease activity or systemic involvement. According to the
2020 EULAR guidelines for SS management, glucocorticoids,
particularly methylprednisolone, are recommended for controlling
active systemic involvement, with an emphasis on using the lowest
effective dose for the shortest possible duration. Immunosuppressants
such as cyclophosphamide and cyclosporine may serve as alternatives
to glucocorticoids, although a definitive consensus regarding their use
has yet to be established (78). Cyclophosphamide has shown efficacy
in alleviating interstitial lung disease symptoms associated with
connective tissue disorders and is recommended for SS patients with
chronic tubulointerstitial nephritis, particularly those presenting with
high IgG levels and renal function impairment (79, 80). Atorvastatin
and etoposide, known primarily as widely utilized in other clinical
disciplines, may exhibit unexpected therapeutic potential for SS
patients with concurrent conditions. For example, atorvastatin, a lipid-
lowering agent, has demonstrated anti-inflammatory effects in SS by
inhibiting IL-1f, PGE2, and MMP-3 production in rat submandibular
glands (81). Etoposide, an anticancer drug, has been reported to
selectively eliminate pathologically activated T lymphocytes and
effectively suppress inflammatory cytokine release in cases of SS
complicated by macrophage activation syndrome. However, these
findings are based on limited case reports, lacking extensive clinical or
fundamental research support (82). Apart from medications already
clinically available, we identified three additional small-molecule drugs
with potential therapeutic effects on SS. These agents have undergone
limited validation in preclinical or clinical studies, yet may provide
promising opportunities for future SS drug development. Sirolimus
(rapamycin), an mTOR inhibitor, has demonstrated clinical efficacy in
treating SS-associated thrombocytopenia (83). Mechanistically, it
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suppresses T follicular helper (Tth) cell differentiation by reducing
mTOR activity, maintaining a balance between Tth and T follicular
regulatory (Tfr) cells (84). Additionally, sirolimus reduces glandular
inflammation and improves tear production (85). Paquinimod, an
alarmin inhibitor, inhibits alarmin expression in an IL14« transgenic
mouse model of SS, promoting Ca2 + influx, restoring salivary gland
function, reducing immune cell infiltration, and preventing SS
progression (86). Finally, we discovered quercetin, a natural compound,
as a potential therapeutic agent for SS. Quercetin mitigates salivary
gland cell apoptosis and inflammation by inhibiting the LP/OB-R/
JAK2/STAT3 signaling pathway, thereby providing new opportunities
for alleviating dry-mouth symptoms in SS (87). Currently, various
novel drugs have yielded encouraging outcomes in SS treatment;
nevertheless, several challenges remain regarding their clinical
translation. First, addressing potential drug toxicity during research
and development poses significant difficulties. Structural optimization
or modification of novel drugs to enhance therapeutic effects while
reducing toxicity is crucial. Adjusting administration routes or
employing advanced technologies, such as nanocarrier delivery
systems, could achieve targeted drug delivery, enhancing efficacy and
reducing side effects. Furthermore, translating preclinical findings to
clinical practice represents the most challenging step, requiring
extensive and rigorous experimentation. Finally, exploring traditional
Chinese medicine as adjunctive therapy to enhance the therapeutic
effects of essential yet potentially toxic medications could present an
intriguing area for future research.

In summary, our study identified characteristic genes associated
with SS and anoikis, employing enrichment analyses to elucidate their
biological roles. We highlighted several pathogenic mechanisms
potentially mediated by key hub genes. Utilizing three machine-
learning algorithms, we identified five essential genes serving as
biomarkers, likely involved in regulating the SS immune
microenvironment. Based on these findings, we constructed a ceRNA
network and predicted candidate therapeutic drugs, thus providing
novel insights into SS treatment. However, our study has limitations,
primarily due to reliance solely on data analysis without sufficient
experimental validation. Therefore, further animal studies are
necessary to substantiate our conclusions.
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