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Background: Systemic inflammation has been linked to impaired bone 
remodeling and may contribute to the risk of osteoporotic fractures (OPFs). This 
study examined the relationship between baseline pan-immune-inflammation 
value (PIV) and bone turnover markers (BTMs) in patients hospitalized for the 
surgical treatment of OPFs.
Methods: In this retrospective cross-sectional study, 839 patients aged ≥50 years 
who were treated for osteoporotic fragility fractures between 2017 and 2024 
were analyzed. PIV was calculated as (neutrophils × platelets × monocytes)/
lymphocytes. BTMs included serum β-C-terminal telopeptide of type I collagen 
(β-CTX) and procollagen type I  N-terminal propeptide (P1NP). Associations 
between log₂-transformed PIV and BTMs were assessed using multivariable 
generalized estimating equations (GEEs), adjusting for demographic, clinical, 
and biochemical factors. Smoothing spline models and threshold effect analyses 
were used to explore potential non-linear relationships. Subgroup analyses were 
conducted to examine effect modification.
Results: The mean age of participants was 69.4 ± 10.9 years, with 70.9% being 
female. Mean β-CTX and P1NP levels were 0.54 ± 0.29 ng/mL and 58.1 ± 35.3 ng/
mL, respectively, and the mean log₂PIV was 8.24 ± 1.28. Higher PIV levels were 
independently associated with lower BTMs. Specifically, each doubling of PIV 
was associated with a 4.46 ng/mL reduction in P1NP and a 0.05 ng/mL reduction 
in β-CTX (both p < 0.001). An inverted J-shaped association was observed, with 
the relationship plateauing at log₂PIV levels between approximately 8.3 and 10.3. 
The inverse association was more pronounced in individuals with hypertension 
or impaired renal function.
Conclusion: Elevated PIV is independently and non-linearly associated with 
suppressed bone turnover, underscoring the role of systemic inflammation in 
the pathophysiology and management of osteoporosis.
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1 Introduction

Osteoporosis is a systemic skeletal disorder characterized by 
reduced bone mass and deterioration of bone microarchitecture, 
leading to an increased risk of fractures (1). It affects 100 of millions 
worldwide, with incidence rates escalating due to an aging population 
and the associated healthcare burden (2, 3). Although hormonal and 
nutritional factors are well-recognized contributors, chronic 
inflammation has emerged as a key player in osteoporosis pathogenesis 
(4). Insights from osteoimmunology reveal that immune cells and 
pro-inflammatory cytokines such as tumor necrosis factor (TNF) and 
interleukin-6 (IL-6) can influence the activity of osteoclasts and 
osteoblasts (5, 6), particularly in postmenopausal women, where 
estrogen deficiency promotes pro-inflammatory responses (7). TNF-α 
and IL-6 disrupt skeletal remodeling by promoting RANKL-mediated 
bone resorption and suppressing osteoblast activity, thereby 
contributing to bone fragility in chronic inflammation (8). Elevated 
levels of inflammatory markers have been associated with decreased 
bone mineral density (BMD), increased fracture risk, and a greater 
overall burden of osteoporosis, especially in the context of chronic 
inflammatory conditions (9–12).

Inflammatory indices derived from routine blood counts have 
gained prominence as potential markers of osteoporosis risk. The 
pan-immune-inflammation value (PIV), calculated as (neutrophils × 
platelets × monocytes)/lymphocytes, captures the dynamic interplay 
between innate immune activation and adaptive immune suppression 
(13, 14). Initially developed in the context of oncology, elevated PIV 
has been linked to adverse outcomes in a range of inflammation-
associated conditions (13, 14). Thus, considering the critical role of 
these immune cells in regulating bone metabolism (4, 5, 15), PIV may 
serve as a relevant marker of inflammation-related skeletal remodeling.

Simpler inflammation-based indices such as the neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and 
systemic immune-inflammation index (SII) have been linked to bone 
mineral density (BMD) and osteoporosis risk. Meta-analyses and 
cohort studies consistently show elevated levels of these markers in 
individuals with osteoporosis (16–18). Compared with these 
conventional markers (e.g., CRP, ESR, NLR, or PLR), PIV incorporates 
four distinct leukocyte subsets—neutrophils, monocytes, lymphocytes, 
and platelets—thereby offering a more integrated reflection of 
systemic immune-inflammatory activity. This comprehensive nature 
may capture the complexity of osteoimmune interactions more 
effectively and underscores the novelty of applying PIV in the context 
of bone remodeling (13, 19). In contrast, evidence on the association 
between PIV and bone health remains sparse and inconclusive. Two 
recent studies reported conflicting results regarding PIV levels in 
osteoporotic women, and neither studies investigated bone turnover 
markers (BTMs) (20, 21).

BTMs, such as β-C-terminal telopeptide of type I collagen (β-
CTX) and procollagen type I N-terminal propeptide (P1NP), are 
widely utilized to assess skeletal remodeling activity, estimate 
fracture risk, and monitor therapeutic response (3, 22). β-CTX 
reflects bone resorption via type I  collagen degradation by 

osteoclasts, while P1NP indicates bone formation through collagen 
synthesis by osteoblasts. Their simultaneous suppression suggests a 
low-turnover state with uncoupled remodeling, which weakens bone 
strength and elevates fracture risk (23). Chronic inflammation may 
suppress bone turnover through cytokine-mediated pathways, 
resulting in uncoupled remodeling and increased skeletal fragility (4, 
5, 24, 25). We therefore hypothesized that elevated PIV is associated 
with lower BTM levels in patients with osteoporotic fractures, 
indicative of a low-turnover, inflammation-driven (“inflamm-
aging”) osteoporosis phenotype. “Inflamm-aging” denotes chronic, 
low-grade inflammation associated with aging that disrupts bone 
homeostasis by enhancing catabolic signaling and suppressing 
anabolic activity, contributing to osteoporosis and other degenerative 
diseases (26).

To date, no study has directly examined the relationship between 
PIV and BTMs in patients with osteoporotic fractures. This study 
aimed to investigate this association in a Chinese cohort, assess 
potential nonlinear patterns and subgroup variations, and evaluate the 
clinical utility of PIV as a biomarker for inflammation-related changes 
in bone metabolism.

2 Materials and methods

2.1 Research participants and design

We conducted a retrospective cross-sectional analysis of electronic 
medical records from patients with osteoporotic fractures (OPFs) 
admitted to Kunshan Hospital, a tertiary Grade A facility in Jiangsu 
Province, between January 2017 and March 2024. The inclusion 
criteria were as follows: age ≥50 years; diagnosis of primary 
osteoporosis based on clinical or densitometric evidence; and the 
presence of an osteoporotic fragility fracture. Specifically, the study 
included patients with hip fractures (femoral neck, intertrochanteric, 
and subtrochanteric fractures), vertebral compression fractures 
(thoracic or lumbar), proximal humerus fractures, and distal radius 
(wrist) fractures, which represent the most common clinical types of 
osteoporotic fractures. Osteoporosis was defined as either (1) the 
occurrence of a low-trauma fracture with a bone mineral density 
(BMD) T-score ≤ − 2.5 at the spine or hip or (2) a BMD T-score of 
≤ − 2.5 in the absence of secondary causes of bone loss, even without 
a documented fracture (20). The exclusion criteria included the 
presence of secondary bone metabolism disorders (e.g., 
hyperthyroidism, hyperparathyroidism, and chronic glucocorticoid 
use), malignancy, active rheumatic disease, severe psychiatric 
conditions, age <50 years, long-term osteoporosis treatment (e.g., 
bisphosphonates or parathyroid hormone analogs), or missing/outlier 
data for PIV or BTMs. Of the 4,782 fracture cases initially screened, 
839 patients met all inclusion and exclusion criteria and were included 
in the final analysis. The patient selection process is outlined in 
Figure 1. As a hospital-based study in China, the findings offer region-
specific insights, as differences in nutrition, inflammation, and 
healthcare access may affect osteoporosis risk and biomarker 
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expression. This underscores the value of localized data for guiding 
diagnosis and treatment.

2.2 Exposure and outcome variables

Preoperative complete blood counts were obtained using the 
Sysmex XN-10 automated hematology analyzer (Sysmex Corp., Kobe, 
Japan), which provided neutrophil, lymphocyte, monocyte, and 
platelet counts (18, 27). The pan-immune-inflammation value (PIV) 
was calculated as (neutrophils × platelets × monocytes)/lymphocytes, 
following established methods (13, 14). Due to its right-skewed 
distribution, PIV was log₂-transformed (log₂PIV) prior to analysis and 
used as the primary exposure variable (20). Outcome variables were 
P1NP and β-CTX, assessed via electrochemiluminescence 
immunoassay (ECLIA) on a Roche Cobas 8,000 system. All tests were 
performed by certified technicians using standardized protocols.

2.3 Covariates

Covariates included age, sex, body mass index (BMI), smoking 
status, alcohol consumption, and the Charlson Comorbidity Index 
(CCI). Medical histories of hypertension and diabetes mellitus were 
also documented. Laboratory assessments encompassed serum 
calcium, uric acid (UA), blood urea nitrogen (BUN), creatinine (Cr), 
and liver enzymes alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST). ALT and AST levels were measured using 
enzymatic colorimetry; BUN and Cr were determined via enzymatic 
methods using the Beckman AU5800 analyzer; and UA was assessed 
using the uricase–peroxidase method. BMI was calculated as weight 
in kilograms divided by height in meters squared (kg/m2). Smoking 
was defined as current or former use within the past 12 months, while 
alcohol consumption was defined as drinking at least once per week 
in the past year. All laboratory tests were conducted on fasting venous 

blood samples collected within 8 h prior to surgery and processed by 
certified laboratory personnel according to standard operating 
procedures (SOPs).

2.4 Statistical analyses

Continuous variables with approximately normal distributions 
were summarized as means ± standard deviation (SD), while skewed 
continuous variables were reported as medians with interquartile 
ranges (Q1 and Q3). Categorical variables were expressed as counts 
and percentages. For between-group comparisons, Student’s t-test was 
used for normally distributed continuous variables, the Mann–
Whitney U-test for non-normally distributed variables and Pearson’s 
chi-square test or Fisher’s exact test for categorical variables, as 
appropriate. To examine trends across varying levels of systemic 
inflammation, baseline characteristics were stratified by quartiles of 
log₂-transformed PIV (log₂PIV). Univariate comparisons across these 
quartiles were conducted using a one-way ANOVA for normally 
distributed variables and the Kruskal–Wallis test for non-normally 
distributed variables.

Univariate linear regression analyses were initially conducted to 
examine the associations between each bone turnover marker (β-CTX 
and P1NP, as dependent variables) and individual covariates, 
including age, sex, BMI, lifestyle factors, comorbidities, serum 
calcium, UA, BUN, Cr, ALT, AST, and others. Covariates with a 
p-value of ≤0.10 in the univariate analysis, or those that altered the 
estimated association between PIV and BTMs by ≥10%, were 
considered for inclusion in the multivariable regression models (24). 
Multicollinearity among covariates was assessed using variance 
inflation factors (VIFs), with a VIF of <5 considered acceptable, and 
no significant collinearity was observed, including for liver enzymes 
(ALT and AST) and other laboratory parameters.

Generalized estimating equations (GEEs) with an identity link 
function were used to evaluate the independent associations between 

FIGURE 1

Flowchart of the study population selection process.
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log₂-transformed PIV (log₂PIV) and each bone turnover marker. 
Three sequential models were developed: Model 1 assessed the 
unadjusted (univariate) association; Model 2 was adjusted for key 
demographic and clinical variables, including age, sex, BMI, smoking 
status, alcohol use, Charlson Comorbidity Index (CCI), hypertension, 
and diabetes; Model 3 was fully adjusted, incorporating laboratory 
parameters, serum calcium, UA, BUN, Cr, ALT, and AST into Model 
2. These additional covariates in Model 3 accounted for nutritional 
and metabolic factors potentially affecting both systemic inflammation 
and bone turnover. Results are presented as beta coefficients (β) with 
95% confidence intervals (CIs) and a p-values for the association 
between log₂PIV and BTM levels. A negative β indicates lower BTMs 
with higher PIV.

To investigate potential non-linear relationships between PIV and 
BTMs, we  utilized generalized additive models (GAMs) and 
smoothing spline plots (27). If a non-linear pattern was suggested, 
we performed a two-piece linear regression (threshold effect analysis) 
to identify a potential inflection point (knot) in the PIV-BTM 
relationship (24). Separate linear regressions were then fitted on either 
side of the identified inflection point, and the slopes were compared. 
A log-likelihood ratio test was used to assess whether the two-piece 
model provided a significantly better fit than a single linear model, 
indicating the presence of a threshold effect. To ensure the robustness 
of the identified cut-point, the threshold was further validated using 
bootstrap resampling with 1,000 iterations.

Stratified analyses were performed to examine whether the 
association between PIV and BTMs was consistent across clinically 
relevant subgroups. Factors were selected from baseline covariates 
based on biological plausibility and prior literature, including 
demographics (age, sex, and BMI), lifestyle (smoking and drinking), 
comorbidities (hypertension, diabetes, and CCI), and biochemical 
parameters (Ca, UA, UN, Cr, ALT, and AST). Age was stratified as ≤70 
vs. >70 years; BMI as <25, 25–29.9, and ≥30 kg/m2; and laboratory 
parameters using clinically relevant cutoff values (e.g., AST < 40 vs. 
≥40 U/L, UA < 420 vs. ≥420 μmol/L, Ca < 2.3 vs. ≥2.3 mmol/L). 
Associations were re-estimated within each subgroup using the fully 
adjusted Model 3, and interaction terms were tested in GEE models, 
with p for interaction <0.05 indicating significant effect modification.

All statistical analyses were conducted using R software (version 
4.0.5; R Foundation for Statistical Computing, Vienna, Austria) and 
EmpowerStats (X and Y Solutions, Boston, MA). A two-tailed p-value 
of <0.05 was considered statistically significant. Due to the exploratory 
nature of the subgroup analyses, interaction effects were interpreted 
with caution.

3 Results

3.1 Participants’ baseline characteristics

A total of 839 patients with osteoporotic fractures were included 
in the analysis (mean age: 69.42 ± 10.92 years; 70.9% female). The 
mean log₂PIV was 8.24 ± 1.28. Baseline characteristics stratified by 
PIV quartiles (Q1–Q4) are summarized in Table  1. Significant 
differences in several inflammation-related laboratory parameters 
were observed across quartiles. Serum UA levels increased steadily 
with higher PIV, from 262.3 ± 76.9 μmol/L in Q1 to 
302.9 ± 91.5 μmol/L in Q4 (p < 0.001). ALT and AST levels were also 

elevated in Q4 compared to lower quartiles (both p < 0.001), though 
still within normal limits. Notably, bone turnover markers declined 
with increasing PIV. Mean P1NP decreased from 68.06 ± 33.69 ng/mL 
in Q1 to 51.84 ± 44.84 ng/mL in Q4 (p < 0.001), and β-CTX dropped 
from 0.64 ± 0.31 ng/mL to 0.45 ± 0.28 ng/mL (p < 0.001). These 
trends suggest that higher systemic inflammation, as indicated by 
elevated PIV, is associated with suppressed bone formation 
and resorption.

3.2 Univariate analysis of factors associated 
with BTMs

In the univariate analysis (Table 2), several variables showed 
associations with bone turnover markers. Higher ALT and AST 
levels were modestly linked to lower P1NP concentrations (ALT: 
β = −0.00, 95% CI: −0.00 to −0.00, p = 0.003; AST: β = −0.00, 
p = 0.001 per 1 U/L increase). Increased UA was significantly 
associated with reduced P1NP (β = −0.00 ng/mL per μmol/L, 
p = 0.01) and showed a non-significant trend toward lower β-CTX 
(p = 0.13). In contrast, higher Cr was positively associated with 
both P1NP (p < 0.001) and β-CTX (p = 0.002). No other covariates 
were significantly associated with bone turnover markers in the 
univariate analysis.

3.3 Association between PIV and bone 
turnover markers

Multivariable regression models confirmed a significant 
independent association between higher PIV and lower levels of both 
bone formation and resorption markers (Table 3). In the unadjusted 
model (Model 1), log₂PIV was strongly and inversely associated with 
β-CTX (β = −0.05 ng/mL per 1-unit increase, 95% CI: −0.07 to −0.04, 
p < 0.001) and P1NP (β = −4.41 ng/mL, 95% CI: −6.26 to −2.57, 
p < 0.001). Each doubling of PIV (i.e., a 1-unit increase in log₂PIV) 
corresponded to an approximate reduction of 0.05 ng/mL in β-CTX 
and 4.4 ng/mL in P1NP. These associations remained consistent after 
adjusting for age, sex, BMI, smoking, alcohol use, and comorbidities 
in Model 2 and persisted after further adjusting for calcium, UA, renal 
function, and liver enzymes in Model 3. In the fully adjusted model, 
log₂PIV continued to show significant inverse associations with both 
β-CTX (β = −0.05, 95% CI: −0.06 to −0.03) and P1NP (β = −4.46, 
95% CI: −6.36 to −2.56), with both p < 0.001. These results highlight 
a strong and independent inverse relationship between systemic 
inflammation and bone turnover activity.

3.4 Spline smoothing plot and threshold 
analysis

Figure 2 displays the fully adjusted smooth curves depicting the 
relationship between log₂PIV and bone turnover markers using 
GAMs. Both β-CTX (Figures 2A,B) and P1NP (Figures 2C,D) showed 
significant non-linear, inverted J-shaped associations. The curves 
inflected at log₂PIV values of approximately 10.31 for β-CTX and 8.26 
for P1NP (Table 4), beyond which the associations plateaued. Below 
these thresholds, a 1-unit increase in log₂PIV was significantly 

https://doi.org/10.3389/fmed.2025.1660376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1660376

Frontiers in Medicine 05 frontiersin.org

associated with lower marker levels (β = −0.06 ng/mL for β-CTX, 
p < 0.001; β = −8.50 ng/mL for P1NP, p < 0.001), whereas above them 
the associations were no longer significant. The differences in slope 
before and after the threshold were statistically significant for both 
markers (p = 0.01), confirming the presence of threshold effects. 
Nearly 15% of patients had log₂PIV > 10.3, within which β-CTX 
values remained consistently low. In contrast, the threshold for P1NP 
(log₂PIV = 8.3, equivalent to raw PIV = 325) was close to the cohort 
median, suggesting that even moderate levels of systemic inflammation 

are linked to reduced bone formation. Bootstrap resampling 
confirmed the stability of the identified inflection points.

3.5 Subgroup analysis

We examined whether the inverse association between log₂PIV 
and bone turnover markers was consistent across patient subgroups 
(Table  5). Overall, the relationship remained robust across most 

TABLE 1  Characteristics of study participants by PIV quartile.

Characteristics Mean ± SD/N (%) P-value

Total (n = 839) Q1 (n = 210) Q2 (n = 209) Q3 (n = 210) Q4 (n = 210)

Log2PIV 8.24 ± 1.28 6.64 ± 0.58 7.83 ± 0.23 8.60 ± 0.23 9.88 ± 0.73 <0.001

Age, years 69.42 ± 10.92 70.06 ± 11.16 68.48 ± 11.03 69.20 ± 10.78 69.92 ± 10.72 0.43

UA, μmol/L 281.73 ± 89.76 262.28 ± 76.92 280.44 ± 91.62 281.24 ± 93.98 302.94 ± 91.48 <0.001

UN, mmol/L 6.23 ± 5.09 6.58 ± 9.44 5.96 ± 2.12 6.14 ± 2.10 6.26 ± 2.39 0.47

Cr, μmol/L 63.26 ± 24.50 61.48 ± 21.36 62.60 ± 19.64 63.96 ± 24.01 64.98 ± 31.36 0.40

ALT, U/L 22.60 ± 16.05 19.16 ± 10.88 23.28 ± 14.96 21.50 ± 11.84 26.45 ± 22.88 <0.001

AST, U/L 25.72 ± 15.58 22.67 ± 11.17 24.15 ± 9.32 24.40 ± 9.19 31.65 ± 25.09 <0.001

Ca, mmol/L 2.22 ± 0.12 2.22 ± 0.11 2.23 ± 0.12 2.23 ± 0.13 2.22 ± 0.12 0.69

P1NP, ng/mL 58.06 ± 35.25 68.06 ± 33.69 57.00 ± 27.08 55.35 ± 30.98 51.84 ± 44.84 <0.001

β-CTX, ng/mL 0.54 ± 0.29 0.64 ± 0.31 0.55 ± 0.27 0.52 ± 0.26 0.45 ± 0.28 <0.001

Sex, N (%) 0.45

  Female 595 (70.92%) 157 (74.76%) 142 (67.94%) 150 (71.43%) 146 (69.52%)

  Male 244 (29.08%) 53 (25.24%) 67 (32.06%) 60 (28.57%) 64 (30.48%)

CCI, N (%) 0.05

  0 739 (88.08%) 191 (90.95%) 177 (84.69%) 178 (84.76%) 193 (91.90%)

  1 79 (9.42%) 16 (7.62%) 25 (11.96%) 22 (10.48%) 16 (7.62%)

  ≥2 21 (2.50%) 3 (1.43%) 7 (3.35%) 10 (4.76%) 1 (0.48%)

BMI, N (%) 0.16

  <25 594 (70.80%) 141 (67.14%) 147 (70.33%) 155 (73.81%) 151 (71.90%)

  ≥25, <30 219 (26.10%) 58 (27.62%) 53 (25.36%) 53 (25.24%) 55 (26.19%)

  ≥30 26 (3.10%) 11 (5.24%) 9 (4.31%) 2 (0.95%) 4 (1.90%)

Smoke, N (%) 0.18

  No 803 (95.71%) 206 (98.10%) 196 (93.78%) 200 (95.24%) 201 (95.71%)

  Yes 36 (4.29%) 4 (1.90%) 13 (6.22%) 10 (4.76%) 9 (4.29%)

Drink, N (%) 0.20

  No 813 (96.90%) 208 (99.05%) 202 (96.65%) 201 (95.71%) 202 (96.19%)

  Yes 26 (3.10%) 2 (0.95%) 7 (3.35%) 9 (4.29%) 8 (3.81%)

Diabetes, N (%) 0.16

  No 802 (95.59%) 201 (95.71%) 199 (95.22%) 196 (93.33%) 206 (98.10%)

  Yes 37 (4.41%) 9 (4.29%) 10 (4.78%) 14 (6.67%) 4 (1.90%)

Hypertension, N (%) 0.73

  No 717 (85.46%) 177 (84.29%) 176 (84.21%) 180 (85.71%) 184 (87.62%)

  Yes 122 (14.54%) 33 (15.71%) 33 (15.79%) 30 (14.29%) 26 (12.38%)

PIV, pan-immune-inflammation value; SD, standard deviation; Q1, first quartile; Q2, second quartile; Q3, third quartile; Q4, fourth quartile; UA, uric acid; UN, urea nitrogen; Cr, creatinine; 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; Ca, calcium; P1NP, procollagen type I N-terminal propeptide; β-CTX, β-C-terminal telopeptide of type I collagen; CCI, 
Charlson Comorbidity Index; BMI, body mass index.
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subgroups. For example, in patients aged ≤70 years, higher PIV was 
significantly associated with lower β-CTX and P1NP levels (both 
p < 0.001), and similar associations were observed in those >70 years. 

No significant interactions were detected for age, sex, BMI, smoking, 
or diabetes (all P for interaction >0.1), indicating a generally consistent 
pattern. Nevertheless, hypertension significantly modified the 

TABLE 2  Univariate regression analysis for factors associated with P1NP and β-CTX.

Characteristics Statistics P1NP β-CTX

β (95% CI) P-value

Age, years 69.42 ± 10.92 −0.00 (−0.00, 0.00) 0.69 0.06 (−0.16, 0.28) 0.58

ALT, U/L 22.60 ± 16.05 −0.00 (−0.00, −0.00) 0.003 −0.06 (−0.21, 0.09) 0.42

AST, U/L 25.72 ± 15.58 −0.00 (−0.00, −0.00) 0.001 0.02 (−0.13, 0.17) 0.80

UN, mmol/L 6.23 ± 5.09 0.00 (−0.00, 0.01) 0.09 0.50 (0.04, 0.97) 0.03

UA, μmol/L 281.73 ± 89.76 −0.00 (−0.00, −0.00) 0.01 −0.02 (−0.05, 0.01) 0.13

Cr, μmol/L 63.26 ± 24.50 0.00 (0.00, 0.00) 0.0001 0.15 (0.06, 0.25) 0.002

Ca, mmol/L 2.22 ± 0.12 0.11 (−0.05, 0.27) 0.17 12.34 (−7.21, 31.89) 0.21

Sex, N (%)

 � Female 595 (70.92%) Reference Reference

 � Male 244 (29.08%) 0.03 (−0.01, 0.08) 0.14 1.83 (−3.43, 7.08) 0.50

CCI, N (%)

 � 0 739 (88.08%) Reference Reference

 � 1 79 (9.42%) −0.00 (−0.07, 0.07) 0.99 3.61 (−4.58, 11.79) 0.39

 � ≥2 21 (2.50%) −0.02 (−0.14, 0.11) 0.77 5.26 (−10.03, 20.56) 0.50

BMI, N (%)

 � <25 594 (70.80%) Reference Reference

 � > = 25, <30 219 (26.10%) −0.04 (−0.09, 0.00) 0.07 −0.54 (−6.00, 4.93) 0.85

 � > = 30 26 (3.10%) 0.04 (−0.08, 0.15) 0.52 3.20 (−10.66, 17.06) 0.65

Smoke, N (%)

 � No 803 (95.71%) Reference Reference

 � Yes 36 (4.29%) −0.00 (−0.10, 0.09) 0.92 −0.72 (−12.50, 11.06) 0.90

Drink, N (%)

 � No 813 (96.90%) Reference Reference

 � Yes 26 (3.10%) −0.04 (−0.15, 0.07) 0.47 −1.55 (−15.32, 12.22) 0.83

Diabetes, N (%)

 � No 802 (95.59%) Reference Reference

 � Yes 37 (4.41%) 0.03 (−0.07, 0.12) 0.59 5.51 (−6.11, 17.13) 0.35

Hypertension, N (%)

 � No 717 (85.46%) Reference Reference

 � Yes 122 (14.54%) 0.00 (−0.05, 0.06) 0.87 1.57 (−5.20, 8.34) 0.65

CI, confidence interval; UA, uric acid; UN, urea nitrogen; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Ca, calcium; P1NP, procollagen type I N-terminal 
propeptide; β-CTX, β-C-terminal telopeptide of type I collagen; CCI, Charlson comorbidity index; BMI, body mass index.

TABLE 3  Multivariable linear regression analyses of log₂PIV associated with β-CTX and P1NP levels.

β (95% CI) P-value Model 1a

β (95% CI) P-value
Model 2b

β (95% CI) P-value
Model 3c

β (95% CI) p-value

β-CTX −0.05 (−0.07, −0.04) < 0.001 −0.05 (−0.07, −0.04) < 0.001 −0.05 (−0.06, −0.03) < 0.001

P1NP −4.41 (−6.26, −2.57) < 0.001 −4.43 (−6.29, −2.57) < 0.001 −4.46 (−6.36, −2.56) < 0.001

aNo adjustment.
bAdjusted for age, sex, BMI, smoke, drink, CCI, diabetes, and hypertension.
cAdjusted for age, sex, BMI, smoke, drink, CCI, diabetes, hypertension, Ca, UA, UN; Cr, ALT, and AST.
PIV, pan-immune-inflammation value; CI, confidence interval; UA, uric acid; UN, urea nitrogen; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Ca, calcium; 
P1NP, procollagen type I N-terminal propeptide; β-CTX, β-C-terminal telopeptide of type I collagen; CCI, Charlson comorbidity index; BMI, body mass index.
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association (P for interaction = 0.03). Among hypertensive patients, 
the inverse relationship was stronger (β = −0.10 for β-CTX; β = −7.63 
for P1NP, both p < 0.001), potentially reflecting greater underlying 
vascular inflammation. Renal function also influenced the association. 
In individuals with normal UN (<7.5 mmol/L), PIV was significantly 
associated with lower marker levels (β = −0.06 for β-CTX; β = −5.77 
for P1NP, both p < 0.001), whereas no significant relationship was 
observed in those with elevated UN (P for interaction = 0.007). 
Similarly, the association remained significant in patients with 
Cr < 115 μmol/L but was absent in those with Cr ≥ 115 μmol/L (P for 
interaction = 0.01), potentially due to impaired marker metabolism in 
kidney dysfunction. These findings suggest that, while the inverse 
relationship between PIV and bone turnover is generally stable, it may 

be more pronounced in patients with hypertension and weakened in 
those with impaired renal function.

4 Discussion

In this study of 839 patients with osteoporotic fractures, we found 
that elevated PIV, a composite index derived from peripheral blood 
counts, was independently associated with lower serum levels of bone 
turnover markers (β-CTX and P1NP), even after adjusting for 
demographic, clinical, and biochemical variables. To our knowledge, 
this is the first study to demonstrate a direct link between PIV and 
bone remodeling activity in the context of osteoporosis. These results 

FIGURE 2

Smoothed curves showing the association between log2PIV and BTMs. (A,C) Each black point represents a single participant sample. (B,D) Solid red 
line represents the smooth curve fit between variables. Blue bands represent the 95% confidence interval from the fit. Age, sex, BMI, smoke, drink, CCI, 
diabetes, hypertension, Ca, UA, UN, Cr, ALT, and AST were adjusted. PIV, pan-immune-inflammation value; BTMs, bone turnover makers; UA, uric acid; 
UN, urea nitrogen; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Ca, calcium; P1NP, procollagen type I N-terminal 
propeptide; β-CTX, β-C-terminal telopeptide of type I collagen; CCI, Charlson Comorbidity Index; BMI, body mass index.
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support the hypothesis that chronic systemic inflammation, as 
indicated by higher PIV, may suppress bone turnover, aligning with 
the concept of “inflamm-aging” in skeletal health (5, 28). This 
suppressed remodeling state—characterized by reduced bone 
formation and resorption—may contribute to skeletal fragility and 
fracture risk (4, 22). Previous studies using simpler indices such as 
NLR, PLR, and SII have similarly suggested a relationship between 
inflammation and impaired bone turnover.

Our findings align with previous research on the relationship 
between inflammation and bone metabolism. For example, Zhou et al. 
reported that the systemic inflammatory response index (SIRI) was 
inversely associated with both β-CTX and P1NP in Chinese patients 
with osteoporotic fractures, showing effect sizes similar to those 
observed in our study (24). Similarly, Xu et  al. found negative 
correlations between NLR and MLR with BTMs, while PLR showed a 
modest positive relationship (27). This finding may be attributed to 
the fact that platelets release anabolic factors such as PDGF and 
TGF-β (15, 29), potentially explaining the differing effect of PLR. Since 
PIV incorporates neutrophils, monocytes, lymphocytes, and platelets, 
the pro-resorptive effects of neutrophils and monocytes, along with 
reduced lymphocyte counts, appear to outweigh any anabolic 
contribution from platelets, resulting in an overall inverse relationship 
between PIV and bone turnover. This is biologically plausible, as 
neutrophils and monocytes produce cytokines such as IL-1, IL-6, and 
TNF-α, which stimulate osteoclastogenesis (4, 30), while lymphopenia 
may reflect diminished osteoprotective T-cell activity (5, 31, 32). These 
myeloid cells also contribute to oxidative stress and matrix 
degradation, while lymphopenia may disrupt regulatory T-cell 
networks essential for osteoblast support, reinforcing a catabolic 
inflammatory state (33).

Notably, even high platelet counts did not offset the suppression 
of bone turnover observed at elevated PIV levels, as confirmed in our 
threshold effect analysis. Interestingly, we  identified a non-linear 
relationship between PIV and bone turnover markers. Beyond a 
log₂PIV range of approximately 8.3–10.3 (equivalent to PIV values of 
300–1,200), BTM levels plateaued at low values despite further 

increases in inflammation. This may help explain the findings of 
Demir et al. (21), who found no significant difference in PIV between 
osteoporotic and control women; if most participants had PIV levels 
beyond the threshold, bone turnover may have already been 
maximally suppressed. The threshold for β-CTX (log₂PIV = 10.3) 
aligns with the upper 10% of PIV values observed in general 
populations (14), indicating a potential “inflammatory saturation 
point” beyond which osteoclast activity becomes markedly inhibited. 
In contrast, the lower threshold for P1NP (log₂PIV = 8.3) suggests that 
bone formation is more sensitive to inflammation, showing earlier 
suppression than resorption. This pattern supports a model in which 
early inflammation leads to uncoupled bone resorption (34), while 
chronic inflammation causes global suppression (4, 22). Comparable 
turnover dynamics are seen in chronic inflammatory diseases such as 
rheumatoid arthritis, where advanced stages are characterized by 
global suppression of BTMs, even in the presence of localized bone 
erosions (12, 35).

Clinically, PIV may serve as a biomarker for identifying an 
“inflamed” osteoporotic phenotype—patients with impaired bone 
quality and higher fracture risk despite similar BMD. These individuals 
may respond poorly to anabolic treatments unless inflammation is 
addressed (6, 22, 30). Elevated neutrophils or monocytes with 
lymphopenia at admission may indicate high PIV and suppressed 
bone turnover, suggesting the need to consider anti-inflammatory or 
immunomodulatory approaches. Importantly, therapies targeting 
pro-inflammatory cytokines, such as TNF or IL-6 inhibitors, have 
demonstrated the potential for reducing inflammation-related bone 
loss (34, 36). Although observational, our findings raise a therapeutic 
possibility: lowering PIV via infection control, comorbidity 
management, or anti-inflammatory therapies may help restore bone 
turnover. These hypotheses merit validation in future interventional 
studies. In clinical settings, PIV may inform treatment selection—
patients with markedly high PIV could benefit from IL-6 or TNF 
blockers when standard therapies fail (37).

Subgroup analyses provided additional insight into these 
associations. The inverse relationship between PIV and bone 

TABLE 4  Threshold analyses examining the relationship between log2PIV and BTMs.

β (95% CI) P-value Model 3a

β-CTX
β (95% CI) P-value

P1NP
β (95% CI) P-value

Model Ab

One line slope −0.05 (−0.06, −0.03) < 0.001 −4.46 (−6.36, −2.56) < 0.001

Model Bc

log2PIV turning point (K) 10.31 8.26

 � <K −0.06 (−0.08, −0.04) < 0.001 −8.50 (−12.14, −4.85) < 0.001

 � >K 0.08 (−0.01, 0.17) 0.09 −0.60 (−4.12, 2.93) 0.74

Difference in slopes (Slope₂ – Slope₁) 7.90 (1.81, 13.99) 0.01 0.14 (0.04, 0.23) 0.01

 � LRTd 0.005 0.01

aAdjusted for age, sex, BMI, smoke, drink, CCI, diabetes, hypertension, Ca, UA, UN; Cr, ALT, and AST.
bLinear analysis, a p < 0.05 indicates a linear relationship.
cNon-linear analysis.
dp < 0.05 means Model B is significantly different from Model A, which indicates a non-linear relationship.
PIV, pan-immune-inflammation value; BTMs, bone turnover markers; UA, uric acid; CI, confidence interval; UN, urea nitrogen; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; Ca, calcium; P1NP, procollagen type I N-terminal propeptide; β-CTX, β-C-terminal telopeptide of type I collagen; CCI, Charlson comorbidity index; BMI, body mass index; 
LRT, likelihood ratio test.
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TABLE 5  Subgroup analyses examine the relationship between log2PIV and BTMs.

Subgroup N β-CTX
β (95% CI) P-value

P for interaction P1NP
β (95% CI) P-value

P for interaction

Age, years 0.62 0.22

 � >50, ≤70
460

−0.06 (−0.08, 

−0.04) < 0.001

−5.49 (−7.74, 

−3.25) < 0.001

 � >70
379

−0.05 (−0.07, 

−0.03) < 0.001
−3.18 (−6.21, −0.15) 0.04

Sex, N 0.84 0.22

 � Female
595

−0.05 (−0.07, 

−0.04) < 0.001

−5.12 (−7.02, 

−3.23) < 0.001

 � Male
244

−0.05 (−0.08, −0.02) 

0.002
−2.49 (−6.96, 1.99) 0.28

BMI, kg/m2 0.98 0.87

 � <25 594
−0.05 (−0.07, 

−0.03) < 0.001

−4.09 (−6.40, 

−1.78) < 0.001

 � ≥25, <30 219
−0.06 (−0.08, 

−0.03) < 0.001

−5.13 (−8.38, −1.88) 

0.002

 � ≥30 26 −0.05 (−0.14, 0.03) 0.22 −5.40 (−12.91, 2.12) 0.17

Smoke, N 0.87 0.54

 � No 803
−0.05 (−0.07, 

−0.04) < 0.001

−4.30 (−6.20, 

−2.40) < 0.001

 � Yes 36 −0.06 (−0.14, 0.03) 0.18
−7.35 (−14.47, −0.23) 

0.05

Drink, N 0.34 0.88

 � No 813
−0.05 (−0.07, 

−0.04) < 0.001

−4.43 (−6.31, 

−2.56) < 0.001

 � Yes 26 −0.00 (−0.13, 0.12) 0.96 −3.46 (−14.67, 7.75) 0.55

CCI, N 0.96 0.26

 � 0
739

−0.05 (−0.07, 

−0.04) < 0.001

−4.07 (−6.03, 

−2.11) < 0.001

 � 1
79 −0.05 (−0.09, 0.00) 0.06

−9.39 (−14.80, −3.98) 

0.001

 � ≥2 21 −0.07 (−0.18, 0.04) 0.26 2.08 (−16.62, 20.78) 0.83

Hypertension, N 0.03 0.20

 � No 717
−0.05 (−0.06, 

−0.03) < 0.001

−3.96 (−5.99, 

−1.94) < 0.001

 � Yes 122
−0.10 (−0.13, 

−0.06) < 0.001

−7.63 (−12.02, 

−3.24) < 0.001

Diabetes, N 0.73 0.16

 � No 802
−0.05 (−0.07, 

−0.04) < 0.001

−4.18 (−6.06, 

−2.30) < 0.001

 � Yes 37 −0.07 (−0.15, 0.02) 0.12
−12.48 (−22.02, −2.95) 

0.015

AST, U/L 0.88 0.69

 � <40 766
−0.05 (−0.07, 

−0.04) < 0.001

−4.30 (−6.34, 

−2.25) < 0.001

 � ≥40 73 −0.05 (−0.08, −0.01) 0.01 −5.41 (−9.32, −1.49) 0.01

ALT, U/L 0.86 0.69

(Continued)
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turnover markers was especially pronounced among patients with 
hypertension, aligning with previous research linking 
inflammation and endothelial dysfunction in hypertension to 
bone loss (24). In contrast, this association was weaker in 
individuals with impaired renal function (elevated UN or Cr), 
likely reflecting confounding from renal osteodystrophy and 
altered BTM metabolism (23). These findings suggest PIV may 
be  more reliable in patients with preserved kidney function. 
Fracture type may also affect the inflammation–bone turnover 
relationship: hip fractures often reflect acute inflammation, while 
vertebral fractures may represent chronic low-turnover states. 
Stratified analysis by fracture site may enhance the clinical utility 
of PIV. Although the P1NP association was weaker in men, 
possibly due to a smaller sample or sex differences, the consistent 
inverse β-CTX association across sexes supports a shared 
inflammatory pathway for impaired resorption (38). Weaker P1NP 
effects in men may relate to immune senescence, hormonal 
regulation, or reduced anabolic response (39).

Our findings add to growing evidence for using blood-based 
indices such as PIV to assess complex pathophysiology. Compared to 
simpler markers such as NLR or PLR, PIV offers broader prognostic 
value across diseases such as cardiovascular conditions, cancer, frailty, 
and autoimmune disorders (13, 40, 41). Related indices such as the 
pan-immune-inflammation index (PII) have also been associated with 
disease activity in rheumatoid arthritis (40) and with clinical outcomes 
in vasculitis (41). Extending PIV’s utility to osteoporosis suggests it 

captures systemic inflammation relevant to skeletal health. PIV also 
correlates with CRP and hypoalbuminemia—features of the CRP/
albumin ratio—previously linked to increased osteoporosis risk (29).

Building on these findings, patients with osteoporotic fractures and 
elevated PIV may benefit from a multidisciplinary strategy combining 
standard osteoporosis management with anti-inflammatory 
interventions. Potential interventions include dietary modifications (13), 
adequate intake of vitamin D and antioxidants (5), and proactive 
management of chronic infections. While certain anti-resorptive agents 
may exert anti-inflammatory effects (12), it remains unclear whether 
baseline PIV levels can predict treatment response. Anabolic therapies 
such as teriparatide may be less effective in high-PIV patients, as chronic 
inflammation disrupts key anabolic pathways (4, 42). Nevertheless, 
identifying patients with a low-turnover, inflammation-driven 
phenotype using PIV may help inform decisions about the duration and 
customization of anabolic treatment plans. Compared to bone-specific 
markers such as osteocalcin or the OPG/RANKL ratio, PIV captures 
broader immune-inflammatory activity, potentially better reflecting 
inflammation-related skeletal fragility (43).

Several limitations should be  acknowledged. First, as a cross-
sectional study, causality cannot be established—elevated PIV may 
both contribute to and result from reduced bone turnover, or reflect 
shared factors such as frailty (22). However, the association persisted 
after adjusting for frailty indicators (e.g., albumin and BMI), 
suggesting a likely biological link. Second, as a single-center study 
conducted in a Chinese population, the applicability of these findings 

TABLE 5  (Continued)

Subgroup N β-CTX
β (95% CI) P-value

P for interaction P1NP
β (95% CI) P-value

P for interaction

 � <40 771
−0.05 (−0.07, 

−0.04) < 0.001

−4.29 (−6.27, 

−2.30) < 0.001

 � ≥40 68
−0.06 (−0.09, −0.02) 

0.003
−5.54 (−9.82, −1.26) 0.01

UN, mmol/L 0.007 0.005

 � <7.5 680
−0.06 (−0.08, 

−0.05) < 0.001

−5.77 (−7.48, 

−4.06) < 0.001

 � ≥7.5 159 −0.01 (−0.05, 0.03) 0.53 0.87 (−5.41, 7.16) 0.79

UA, μmol/L 0.36 0.58

 � <420 780
−0.05 (−0.07, 

−0.04) < 0.001

−4.53 (−6.42, 

−2.64) < 0.001

 � ≥420 59 −0.03 (−0.11, 0.06) 0.54 −2.33 (−10.82, 6.16) 0.59

Cr, μmol/L 0.16 0.01

 � <115 819
−0.05 (−0.06, 

−0.04) < 0.001

−3.90 (−5.71, 

−2.08) < 0.001

 � ≥115 20 −0.11 (−0.25, 0.02) 0.12 −17.51 (−36.04, 1.01) 0.08

Ca, mmol/L 0.08 0.29

 � <2.3 597 −0.04 (−0.06, 

−0.03) < 0.001

−3.78 (−6.13, −1.44) 

0.002

 � ≥2.3, <2.8 242 −0.07 (−0.10, 

−0.05) < 0.001

−5.98 (−8.73, 

−3.22) < 0.001

Adjusted for age, sex, BMI, smoke, drink, CCI, diabetes, hypertension, Ca, UA, UN; Cr, ALT, and AST. PIV, pan-immune-inflammation value; BTMs, bone turnover makers; UA, uric acid; CI, 
confidence interval; UN, urea nitrogen; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Ca, calcium; P1NP, procollagen type I N-terminal propeptide; β-CTX, 
β-C-terminal telopeptide of type I collagen; CCI, Charlson Comorbidity Index; BMI, body mass index. Bold values indicate p < 0.05 for interaction terms.
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to other populations may be  limited. However, our results are 
consistent with other cohorts (16, 27, 44). Third, although PIV was 
measured within 72 h of admission to reduce acute-phase 
confounding, fracture-related inflammation may still influence results. 
Notably, the consistent inverse association between PIV and BTMs 
despite this potential confounder suggests that chronic inflammation 
plays a more dominant role. Longitudinal studies are needed to clarify 
causality and assess temporal dynamics. Fourth, we did not measure 
cytokine levels or bone-related gene expression to directly validate the 
underlying mechanistic pathways. Previous studies have shown 
elevated levels of TNF-producing T cells and IL-17 in women with 
osteoporosis, both of which are associated with increased bone loss 
(32, 45). Although IL-17 data were unavailable, our findings support 
T-cell-mediated inflammation in turnover suppression. Future studies 
combining PIV with cytokine and transcriptomic profiling may define 
specific inflammatory signatures in osteoporosis. Finally, only β-CTX 
and P1NP were assessed. Other markers such as osteocalcin, bone 
ALP, or RANKL/OPG might provide further insight (5, 46). While 
we  adjusted for calcium, renal, and liver function, unmeasured 
confounders such as PTH and 25(OH) D could affect BTMs. However, 
given the exclusion of secondary hyperparathyroidism and common 
vitamin D use in our region, their impact is likely limited.

Despite limitations, this study has notable strengths. The large 
sample size enhances statistical power, enabling the analysis of 
non-linear trends. Rigorous methods (GEEs, GAMs, threshold 
modeling) and extensive confounder adjustment support the 
robustness of results. Consistency with prior cohorts (16, 18, 24) 
further enhances validity. By examining both β-CTX and P1NP, 
we  captured the suppression of both resorption and formation, 
offering a more integrated perspective than single-marker or 
BMD-only evaluations. Together, our findings suggest that 
osteoporotic fracture patients with elevated systemic inflammation—
reflected in high PIV—represent a low-turnover subgroup. These 
individuals may benefit from combined anti-inflammatory and 
anabolic approaches. Since tools such as Fracture Risk Assessment 
Tool (FRAX) do not account for systemic inflammation, incorporating 
markers such as PIV could improve risk stratification and personalized 
treatment in osteoporosis (38, 47).

In conclusion, this study demonstrated a strong inverse 
association between PIV and bone turnover markers in patients with 
osteoporotic fractures, highlighting the inhibitory role of chronic 
inflammation in bone remodeling. These results support the potential 
of PIV as a systemic inflammation biomarker for osteoporosis, 
consistent with its role in other chronic diseases (13, 14, 40). 
Collectively, our findings suggest that PIV could help define an 
“inflammatory phenotype” among osteoporotic patients—individuals 
who may experience higher fracture risk and distinct treatment 
responses despite comparable BMD. Recognizing this subgroup could 
support more personalized treatment strategies, such as incorporating 
anti-inflammatory or immunomodulatory interventions in addition 
to conventional osteoporosis therapy. Future longitudinal and 
interventional studies are warranted to validate whether PIV can serve 
as a reliable biomarker for patient stratification, predict therapeutic 
efficacy, and monitor response to emerging immunomodulatory 
treatments in osteoporosis. This perspective also aligns with the 
concept of “immunoporosis,” which refers to osteoporosis driven by 
immune dysregulation, emphasizing the central role of immune–bone 
interactions in skeletal fragility (4).

5 Conclusion

In patients with osteoporotic fractures, elevated PIV is 
significantly associated with reduced bone formation and resorption 
markers, suggesting a state of suppressed bone turnover. These 
findings point to a potential “inflammaging” phenotype of 
low-turnover osteoporosis, where chronic systemic inflammation 
contributes to skeletal fragility. As an easily obtainable biomarker from 
routine blood tests, PIV may aid in identifying individuals at higher 
risk who could benefit from adjunctive anti-inflammatory 
interventions alongside conventional osteoporosis treatment. 
Incorporating PIV into existing fracture risk assessment tools may 
also enhance predictive accuracy. Overall, PIV offers a promising link 
between immune function and bone health, reinforcing the 
importance of osteoimmunology in advancing precision medicine.
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