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Objective: This study is designed to develop predictive models for cardiovascular
events (CVE) and all-cause mortality in maintenance hemodialysis (MHD) patients
using machine learning (ML) algorithms. Furthermore, we aim to compare
the performance of these ML-based models with that of traditional Cox
regression models.

Methods: We conducted a retrospective study that included 275 patients
who underwent MHD treatment from January 1, 2020, to January 1, 2022.
We collected comprehensive data on their demographic characteristics,
comorbidities, medication history, and baseline laboratory values, and followed
up with them throughout the study period. To develop predictive models for CVE
and all-cause mortality, we employed several ML algorithms, including Logistic
Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Decision
Tree (DT), Extreme Gradient Boosting (XGBoost), and Naive Bayes Model (NBM).
Finally, we compared the predictive accuracy of the ML models with that of Cox
regression models by evaluating their respective AUC values.

Results: During a median follow-up period of 50.0 months, 119 patients
experienced CVE and 75 patients died. The XGBoost model emerged as
the most accurate predictor of CVE. The AUC values for predicting CVE at
1, 2, 3, and 4 years were 0.650, 0.702, 0.742, and 0.755 respectively. The
accuracy, F1 score, recall, and precision were 0.731, 0.694, 0.706, and 0.683.
Key predictors identified included a history of cardiovascular disease, total iron-
binding capacity, body mass index, red blood cell count, mean corpuscular
hemoglobin, and serum magnesium levels. For predicting all-cause mortality,
the RF model demonstrated the highest performance. The AUC values for
predicting all-cause mortality at 1, 2, 3, and 4 years were 0.903, 0.931, 0.882,
and 0.862 respectively; the accuracy, F1 score, recall, and precision were 0.796,
0.517, 0.400, and 0.732. Significant predictors included dialysis vintage, post-
dialysis f2-microglobulin levels, B-Carboxy-Terminal Peptide of Type | Collagen,
total bilirubin, lymphocyte count, lactate dehydrogenase, mean corpuscular
hemoglobin concentration, and the use of roxadustat. Across all endpoints, the
ML models demonstrated better discrimination than Cox regression models.
Conclusions: Overall, ML models provided a more reliable prognostic
assessment than Cox regression models for predicting CVE and all-cause
mortality in MHD patients over the observation period.
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Introduction

Cardiovascular disease (CVD) is the predominant cause of
morbidity and mortality among patients undergoing maintenance
hemodialysis (MHD), contributing to a substantial proportion
of adverse outcomes in this high-risk population (1-3). The
pathogenesis of CVD in this context is multifaceted, involving
a complex interplay of both traditional and non-traditional
risk factors (4-6). Chronic kidney disease (CKD) patients are
at high risk and burden of CVD and cardiovascular death,
which increases in a continuous fashion with worsening renal
function (7-9). Traditional cardiovascular risk factors, including
hypertension, dyslipidemia diabetes mellitus and advanced age,
have an important role in the progression of CVD in patients who
have a decreased glomerular filtration rate, in particular in those
with mild-to-moderate CKD patients (1, 10-12). Unfortunately,
many patients miss the optimal window for intervention, often
leading to delayed treatment initiation.

However, traditional CVD risk stratification tools, such as the
Framingham Risk Score, Systematic Coronary Risk Evaluation, and
Atherosclerotic Cardiovascular Disease Risk Estimator, often fall
short in accurately predicting CVD risk among MHD patients (13).
This limitation is partly due to the fact that these models primarily
incorporate traditional cardiovascular and cerebrovascular risk
factors, while largely neglecting the unique contributions of
chronic kidney disease (CKD) and the dialysis process itself. As
a result, they may significantly underestimate the true CVD risk
in this population. The Cox proportional hazards model has
long been the standard for survival analysis and risk prediction
in clinical research. However, it is not without limitations (13).
It assumes a linear relationship between covariates and risk, as
well as independence among covariates. Moreover, it struggles to
effectively screen and integrate large volumes of high-dimensional
data. Given these challenges, there is an urgent need for a clinical
prognostic assessment tool that offers highly reliable predictive
capability specifically tailored for MHD patients.

In recent years, the rapid advancement of artificial intelligence
(AI) technology has ushered in a new era of possibilities within
the medical field (14-16). Machine learning (ML), a key subset
of Al, has emerged as a powerful tool that automates decision-
making processes by learning from data through the development
and training of sophisticated algorithms (17-20). Over the
past few years, ML has been increasingly utilized to construct
clinical prediction models, demonstrating remarkable potential in
enhancing diagnostic and prognostic accuracy. In many clinical
scenarios, these models have outperformed traditional statistical
methods, highlighting their superior ability to capture complex
relationships within data (21-23).

Most patients with end-stage renal disease (ESRD) undergo
MHD therapy, typically three times per week. This frequent
treatment schedule generates a wealth of clinical data, including
hospitalization records, medication use, adverse events, and
laboratory test results. Motivated by recent advancements, this
study aims to develop predictive models for cardiovascular events
(CVE) and all-cause mortality in MHD patients using ML
algorithms. These models will be compared with traditional Cox
regression models, with the goal of providing a more accurate tool
for risk stratification in this high-risk population.
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Materials and methods

Study population

This study enrolled patients who had MHD treatment for at
least 3 months and were aged 18 years or older at the hemodialysis
unit of the Affiliated Hospital of Southwest Medical University
between January 1, 2020, and January 1, 2022. The exclusion criteria
encompassed the following conditions: a history of peritoneal
dialysis or renal transplantation; underlying malignancy; severe
infection; severe hepatic insufficiency; or active tuberculosis.
Additional exclusions included multiple myeloma, bone tumors,
and other disorders affecting calcium and phosphorus metabolism
in vivo; parathyroidectomy; and an active phase of autoimmune
disease requiring high-dose glucocorticoids or immunosuppressive
therapy. This study was approved by the Ethics Committee of the
Affiliated Hospital of Southwest Medical University (Approval No.:
KY2024300), as an exempt study with a waiver of informed consent,
permitting a retrospective review of medical records.

Data set

The study employed a comprehensive dataset comprising
four key components: demographic characteristics (9 variables),
comorbidities (6 variables), medication history (9 variables), and
baseline laboratory values (63 variables). All predictor variables
were extracted from electronic medical records, with specific details
provided in Supplementary Table 1.

The endpoints

The endpoints of this study were the first occurrence or
recurrence of CVE and all-cause mortality. A broad definition of
CVE was adopted (24), which included stroke (including transient
ischemic attacks), severe cardiac arrhythmias (such as ventricular
fibrillation, ventricular tachycardia, atrial fibrillation, atrial flutter,
severe bradycardia, and heart block), acute myocardial infarction,
unstable angina pectoris, coronary artery revascularization,
development of various types of heart failure (HF) requiring
hospitalization, sudden cardiac death, and peripheral vascular
disease necessitating intervention or amputation. The follow-up
period concluded on June 30, 2024.

Statistical analysis

Data were stored and managed using Excel 2016, while
statistical analyses were conducted using the R language (version
4.4.1). Variables with missing rates exceeding 30% were excluded
from the analysis. For variables with missing rates <30%, the
following imputation methods were employed: median imputation,
mean imputation, or mode imputation, depending on the variable’s
trend. For count data, random interpolation was performed
based on the proportion of available positive and negative
data. Normality tests were conducted on continuous variables.
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Normally distributed variables were presented as mean =+ standard
deviation, while non-normally distributed variables were presented
as median (P25, P75). Categorical variables were expressed as
proportions. Comparisons of variable distributions between groups
were performed using ANOVA or the Kruskal-Wallis H test, as
appropriate. All statistical tests were two-sided, with a significance
level set at P < 0.05.

Development of the Cox model

The Cox regression model was constructed using the “coxph”
function in R. Initially, univariate Cox regression analyses were
conducted to identify potential risk factors associated with CVE
and all-cause mortality among MHD patients, with significance
set at P < 0.05. Variables that were significant in the univariate
analyses were subsequently included in the multivariate Cox
regression model to determine independent predictors. The
stability of the model was evaluated using 5-fold cross-validation.
For each fold, risk scores were calculated, and the validation
sets along with their predicted outcomes were integrated. The
optimal cutoff value for risk stratification was determined using
the ‘surv_cutpoint® function. Kaplan-Meier survival curves were
generated using the ‘ggsurvplot® function, and a nomogram was
created with the ‘nomogram‘ function. The predictive performance
of the model was assessed by plotting time-dependent receiver
operating characteristic (ROC) curves, which integrate specificity
and sensitivity. A model with an area under the curve (AUC)
greater than 0.70 was considered to have good discrimination.

Development of the ML model

Feature selection

This step aims to identify a subset of features from the
original dataset that maximizes the outcome benefit, thereby
reducing model complexity and enhancing generalizability. For
feature selection, we employed the Sequential Feature Selector
(SFS) method in conjunction with a Random Forest regressor. SFS
is a greedy algorithm that iteratively adds or removes features to
optimize model performance. The model-building process began
with an empty feature set, and features were added incrementally in
steps of 2. This iterative process continued until either a predefined
number of features was reached or further improvements in model
performance plateaued.

Model development

ML models were developed using Python software (version
3.10.0). Six classical ML algorithms were employed to predict
the risk of CVE and all-cause mortality in MHD patients.
These algorithms included logistic regression (LR), support vector
machine (SVM), random forest (RF), decision tree (DT), extreme
gradient boosting (XGBoost), and Naive Bayesian model (NBM).
The primary functions of these algorithms were defined, and the
models were iteratively trained with varying numbers of features
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TABLE 1 Confusion matrix for machine learning classification criteria.

Actual/predicted Positive Negative

‘ Ture positive (TP) ‘ False negative (FN)

Positive
Negative ‘ False positive (FP) ‘ Ture negative (TN)
TP+ TN
Accuracy = ——————————
TP+ TN + FP + FN
. P
Precision = ————
TP + FP
Recall = ——
TP + FN
2 X Precision x Recall
F1 —score= ———————
TP + FP

to generate corresponding prediction results and performance
reports. Five-fold cross-validation was used for internal validation,
and the average values of these validations were accepted as the final
results to mitigate the risk of overfitting.

Model evaluation

As our ML models were binary classifiers, their performance
was evaluated using several key metrics: accuracy, recall, precision,
Fl-score, and AUC. These metrics were derived from the four
possible outcomes of binary classification: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) (Table 1).
Accuracy measures the proportion of correct predictions (both TP
and TN) among all subjects. Recall (also known as sensitivity or
the “TP rate”) represents the proportion of actual non-surviving
patients that are correctly identified as non-surviving by the
classifier. Precision indicates the proportion of TP results among
all positive predictions, reflecting the classifier’s ability to avoid
FP results. F1-score is the harmonic mean of precision and recall,
providing a balanced measure of the two. Specificity (also known as
the “T'N rate”) measures the proportion of actual surviving patients
that are correctly predicted to survive. AUC was computed by
plotting sensitivity against 1-specificity across all possible cutoft
points. It serves as an overall measure of the model’s discrimination
ability, with higher AUC values indicating better performance.

Interpretability

To enhance the interpretability of ML models, Shapley Additive
exPlanations (SHAP) were employed. SHAP leverages the concept
of SHAP values, which are grounded in game theory, to quantify the
importance of each feature in the model. By calculating the SHAP
value for each feature, it assesses the contribution of that feature
to the prediction outcome. This approach generates both visual
and quantitative interpretations, enabling users to understand the
decision-making process of the ML model more transparently and
thereby enhancing the model’s credibility.

Results

Baseline characteristics

The flowchart of patient selection for this study is presented
in Figurel. A total of 373 patients undergoing MHD were
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N=373
maintenance hemodialysis
patients
between 01/01/ 2020 and
01/01/2022

Excluded

N=1I case of Parathyroidectomy
N=13 cases of Peritoneal dialysis
N=15 cases of Kidney transplantation
N=16 cases of Malignant tumors

Included
N=328 maintenance
hemodialysis patients

between 01/01/ 2020 and
01/01/2022

}Folk\w up

N=275 maintenance

hemodialysis patients

were included in the
final analysis

Excluded
N=26 cases of Lost to follow-up
N=27 cases of Transferred out

|

N=119 cases of
cardiovascular event group
N=156 cases of non-
cardiovascular event group

N=75 cases of death group

N=200 cases of survival group

FIGURE 1
The flowchart of patient selection for this study

identified at our hospital between January 1, 2020, and January
1, 2022. Patients with a history of parathyroidectomy (n =
1), peritoneal dialysis (n = 13), renal transplantation (n =
15), or malignancy (n = 16) were excluded. Ultimately, 328
patients were included in the study and followed up until
June 30, 2024. During this period, 26 patients were lost to
follow-up, and 27 were transferred to other dialysis centers.
Consequently, 275 participants were included in the final analysis.
The median age of the participants was 56.0 years [interquartile
range (IQR) 48.0-67.0], and the median dialysis vintage was
64.0 months (IQR 41.0-92.0). The cohort comprised 62.2%
males. The primary underlying renal diseases were chronic
glomerulonephritis (39.3%), diabetic nephropathy (28.7%), and
hypertensive nephropathy (18.9%). The remaining 13.1% of
patients had other renal diseases, including polycystic kidney
disease, obstructive nephropathy, gouty nephropathy, etc. The
overall rate of missing data was 0.51%, and these missing
values were imputed using the median method, as detailed in
Supplementary Table 1.

Follow-up outcomes of CVE

The median follow-up period was 50.0 months (IQR 34.5-
53.0). During this period, a total of 119 patients (43.3%)
experienced CVE. Among these patients, 80 were men
(incidence rate of 67.2%) and 39 were women (incidence
rate of 32.8%). The specific types of CVE included: HF
in 49 cases (41.18%), cerebral hemorrhage in 27 cases
(22.69%), cerebral infarction in 13 cases (10.92%), unstable
angina pectoris in 11 cases (9.24%), cardiac arrhythmia in
9 cases (7.56%), myocardial infarction in 4 cases (3.36%),
peripheral vascular disease in 4 cases (3.36%), and transient
ischemic attack in 2 (1.68%). Baseline

cerebral cases
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characteristics were compared between the CVE group
and the non-CVE group, with detailed data presented in

Supplementary Table 2.

Follow-up outcomes of all-cause mortality

During the follow-up period, a total of 75 patients (27.3%)
died. Of these, 52 (69.3%) were male and 23 (30.7%) were
female. CVE were the cause of death in 42 patients (56%).
The remaining 33 patients (44%) died from non-CVE causes,
including respiratory failure, sepsis, poisoning, gastrointestinal
hemorrhage, uremic encephalopathy, suicide, and an unknown
cause. Baseline characteristics were compared between the
death and survival groups, with detailed data presented in
Supplementary Table 3.

Cox model prediction results

In predicting CVE, multivariate Cox regression analysis
identified several independent risk factors: a history of CVD
[hazard ratio (HR): 1.984, 95% confidence interval (CI): 1.282-
3.070], creatine kinase isoenzyme (CK-MB) (HR: 1.098, 95% CI:
1.001-1.204), red cell distribution width-coefficient of variation
(RDW-CV) (HR: 1.007, 95% CI: 1.001-1.012), and mean
corpuscular hemoglobin (MCH) (HR: 0.935, 95% CI: 0.875-
0.998) (P < 0.05 for all). Based on a cutoff value of 0.61,
subjects were stratified into high-risk (cutoff > 0.61) and low-
risk (cutoff < 0.61) groups for CVE, comprising 180 and 95
cases, respectively. The Kaplan-Meier survival plot demonstrated
a significant difference in survival between the high-risk and
low-risk groups (P < 0.001) (Figure 2A). The time-dependent
ROC plot showed AUC values for predicting CVE at 1, 2, 3,
and 4 years were 0.681, 0.709, 0.728, and 0.743, respectively
(Figure 2B).

In predicting all-cause mortality, multivariate Cox regression
analysis identified several independent risk factors: age (HR:
1.030, 95% CIL 1.003-1.058), direct bilirubin (DBIL) (HR:
1.235, 95% CIL: 1.003-1.520), myohemoglobin (MYO) (HR:
1.0023, 95% CI: 1.000-1.004), dialysis vintage (HR: 0.95, 95%
CI: 0.935-0.966), and the use of roxadustat (HR: 0.395, 95%
CL: 0.193-0.810). Based on a cutoff value of 1.87, subjects
were stratified into high-risk (cutoff > 1.87) and low-risk
(cutoff < 1.87) groups for all-cause mortality, comprising 61
and 214 cases, respectively. The Kaplan-Meier survival plot
demonstrated a significant difference in survival between the high-
risk and low-risk groups (P < 0.001) (Figure 2C). The time-
dependent ROC plot showed AUC values for predicting all-
cause mortality at 1, 2, 3, and 4 years were 0.902, 0.927, 0.864,
and 0.858, respectively (Figure 2D). Finally, the nomograms for
predicting CVE (Figure 3A) and all-cause mortality (Figure 3B)
were constructed based on the selected independent factors.
Each variable was first scored on its corresponding subscale.
Subsequently, the scores of all variables were summed to obtain
a total score, which corresponded to the risk of CVE or all-cause
mortality occurrence.
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ML model prediction results

In predicting CVE, the average overall AUC of the six ML
models was 0.788. Among these models, RF achieved the highest
AUC value of 0.757, followed by XGBoost, SVM, LR, DT, and NBM
(Figure 4A). The time-dependent ROC curves of these models
demonstrate that prediction performance improves gradually as
the prediction time extends (Figure5). Detailed performance
evaluations of the six ML models are presented in Table 2. Notably,
both RF and XGBoost required the fewest predictors to achieve
optimal prediction performance. Although RF had the highest

Frontiersin Medicine

AUC value, XGBoost outperformed it in terms of accuracy, recall,
precision, and F1 score. Therefore, XGBoost was identified as the
optimal prediction model for CVE. The SHAP plot ranked the
variables according to their contribution to the XGBoost model’s
output. The most important feature variable was the history of
CVD, followed by total iron-binding capacity (TIBC), body mass
index (BMI), red blood cell (RBC) count, MCH, and serum
magnesium (Mg) (Figure 4C).

In predicting all-cause mortality, the average overall AUC of
the six ML models was 0.837. Among these models, RF and
XGBoost achieved the highest AUC value of 0.828, followed by
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SVM, LR, NBM, and DT (Figure 4B). The time-dependent ROC
curves indicate that the models exhibited the greatest superiority in
predicting all-cause mortality at 2 years. However, as the prediction
time extended beyond this period, the prediction performance
decreased somewhat (Figure 6). As shown in Table 3, RF required
the fewest predictors and demonstrated the best performance
in terms of accuracy, precision, and AUC value. Therefore, RF
was determined to be the best prediction model for all-cause
mortality. The SHAP plot reveals that dialysis vintage is the most
significant feature, followed by post-dialysis f2-microglobulin (B2-
MG), B-Carboxy-Terminal Peptide of Type I Collagen (8-CTX),
total bilirubin (TBA), lymphocytes (LYM), lactate dehydrogenase
(LDH), mean corpuscular hemoglobin concentration (MCHC),
and the use of roxadustat (Figure 4D).

Comparison of predictive performance
between Cox and ML model

As illustrated in Tables 4, 5, the XGBoost model demonstrates
superior overall predictive performance compared to the Cox
regression model in predicting CVE. While the Cox regression
model exhibits slightly better performance in the first and second
years, it still falls short of XGBoost in predicting the third and
fourth years. In predicting all-cause mortality, RF consistently
outperforms the Cox regression model both in overall performance
and at each individual time point.

Discussion

This study compared the predictive abilities of traditional
Cox regression analysis and ML methods for CVE and all-cause

Frontiersin Medicine

mortality risk in MHD patients. The results indicated that ML
models outperformed the Cox regression models. While ML
models did not show significant advantages at certain time
endpoints, this may be attributed to the relatively small sample size.

In recent years, ML algorithms have emerged as powerful
tools for predictive modeling across various fields of medicine
(25-27). Traditional survival analysis methods, such as Cox
proportional hazards regression and logistic regression, rely on the
assumption that the relationship between variables and outcomes
is linear. By contrast, ML algorithms do not depend on such
assumptions. They have more flexible requirements regarding data
distribution and can select from a wide range of algorithms based
on the characteristics of the data. Additionally, ML algorithms
can train on multiple randomly selected samples and balance
sample errors effectively. This ML-based approach is particularly
adept at handling large, multidimensional datasets. It does not
require the data to be normally distributed and mitigates the
risk of overfitting through techniques such as cross-validation
and regularization.

Several previous studies have compared the predictive
performance of ML models with that of traditional regression
models. For instance, Wang et al. (28) developed a HF prediction
model using the XGBoost algorithm. The XGBoost model
demonstrated significant advantages over traditional linear logistic
regression in terms of accuracy (78.5% vs. 74.8%), sensitivity
(79.6% vs. 75.6%), specificity (78.1% vs. 74.4%), and AUC
(0.814 vs. 0.722). Similarly, Xu et al. (29) trained models using
XGBoost, RE, and AdaBoost to assess the risk of 1-year and
5-year HF hospitalization and mortality in peritoneal dialysis
patients, compared them with Cox regression. The results showed
that the RF model (AUC = 0.853) was the best for predicting
HE and the XGBoost model (AUC = 0.871) was the best for
predicting mortality, both outperforming the Cox regression
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TABLE 2 Comparison of evaluation metrics for six machine learning models of cardiovascular events.

Model The number of optimal features AUC Accuracy F1-score Recall Precision
RF 6 0.757 0.698 0.621 0.571 0.680
XGBoost 6 0.748 0.731 0.694 0.706 0.683
Tree 14 0.686 0.695 0.638 0.622 0.655
LR 38 0.693 0.669 0.565 0.496 0.656
SVM 38 0.703 0.669 0.581 0529 0.643
NBM 4 0.677 0.665 0.574 0.521 0.639

models. These studies underscore the advantages of ML models
in clinical risk prediction. In the context of hemodialysis patients,
although Akbilgic et al. (30) and Sheng et al. (31) also employed
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ML methods to predict mortality risk, their studies focused on
short-term risk assessment and lacked direct comparison with
traditional models.
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TABLE 3 Comparison of evaluation metrics for six machine learning models of all-cause mortality.

Model The number of optimal features AUC Accuracy F1-score Recall Precision
RF 8 0.828 0.796 0.517 0.400 0.732
Tree 16 0.697 0.753 0.558 0.573 0.544
LR 24 0.768 0.789 0.508 0.400 0.698
SVM 24 0.793 0.775 0.500 0.413 0.633
XGBoost 26 0.828 0.793 0.571 0.507 0.655
NBM 84 0.738 0.738 0.438 0373 0528

Each of the six ML models employed in this study possesses
distinct characteristics. In predicting CVE, XGBoost emerged
as a standout model among the six, achieving the highest
accuracy, precision, and recall, with an AUC value second only
to RE. Compared to other ML algorithms, XGBoost demonstrates
robustness against overfitting in unbalanced datasets and can
be effectively tuned for such datasets (32). The SHAP analysis
revealed that history of CVD is the most contributive feature,
thereby confirming its significant role in risk prediction. This
finding also underscores the reliability of the ML model we
constructed. CVD and CKD can be causative of each other, forming
a vicious cycle. This bidirectional interaction is a characteristic
of what is commonly known as the “cardiorenal syndrome.”
They often share common pathophysiological mechanisms, such as
oxidative stress and inflammatory responses, activation of renin-
angiotensin system, abnormal signaling pathways (such as the
Wnt/p-catenin signaling pathway and the TGF-B1/Smad signaling
pathway), endothelial dysfunction, and vascular calcification (33).
CKD patients undergoing dialysis face a higher cardiovascular risk.
Each hemodialysis treatment causes drastic changes in the patient’s
electrolytes and hemodynamics, which can trigger subendocardial
ischemia, left ventricular hypertrophy, diastolic dysfunction, and
severe arrhythmias. This significantly increases the risk of acute
ischemic syndrome, arrhythmias, and sudden cardiac death. A
meta-analysis conducted in 2019 explored cardiovascular outcomes
in MHD patients, highlighting the very high incidence of CVE,
particularly among those with a history of CVD, as well as its
association with increased risks of all-cause mortality and cardiac
mortality (34). This suggests that heightened attention should be
given to this patient subgroup to prevent the recurrence of CVE.
Meanwhile, TIBC, BMI, RBC, MCH, and Mg were identified as
the optimal features by the XGBoost model. Previous studies (35-
38) have also associated these variables with CVD and all-cause
mortality in MHD patients. Therefore, they should be considered
important indicators for clinical monitoring and management.

RF is a classical and highly versatile supervised learning
algorithm. It integrates multiple unrelated decision trees to
construct a robust ensemble model, capable of performing both
regression and classification tasks in a stochastic manner (39).
Relative to traditional regression models, RF demonstrates superior
capability in managing non-linear relationships and intricate
interactions among variables. In our study, RF effectively predicted
all-cause mortality utilizing merely eight feature variables. It
attained the highest performance in terms of AUC value, accuracy,
and precision. However, its recall was comparatively lower. In
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TABLE 4 Comparison of the predictive ability for cardiovascular events
between XGBoost and Cox model.

AUC Overall 1-year 2-year 3-year 4-year
XGBoost 0.748 0.650 0.702 0.742 0.755
Cox model 0.669 0.681 0.709 0.728 0.743

TABLE 5 Comparison of the predictive ability for all-cause mortality
between RF and Cox model.

AUC Overall 1-year 2-year 3-year 4-year
RF 0.828 0.903 0.931 0.882 0.862
Cox model 0.779 0.902 0.927 0.864 0.858

the SHAP plot, dialysis vintage emerged as the most significant
feature. Similarly, in the RF model developed by Chen et al. (40),
dialysis vintage was identified as the most influential factor in CKD
progression, outweighing other factors. However, in our study,
dialysis vintage negatively impacted the RF model’s output. The
Cox regression results also indicated that patients with shorter
dialysis vintage have a relatively lower risk of all-cause mortality.
From a theoretical and clinical perspective, however, patients with
a longer dialysis vintage typically accumulate more cardiovascular
risk factors and comorbidities. As they age, their physical function
declines, placing them at higher risk for CVD and mortality.
Current research suggests that the dialysis vintage is associated
with an increased risk of death in HD patients and has different
impacts on specific causes of mortality (41). The findings in our
study may be attributed to treating dialysis vintage as a continuous
variable and the relatively small sample size, which could introduce
result bias. Further investigation is warranted to elucidate these
findings. Additionally, post-dialysis B2-MG, p-CTX, TBA, LYM,
LDH, MCHC were identified as the optimal features in RF model,
indicating that these variables may play a significant role in
assessing disease prognosis (42-45).

To conclude, our study aimed to accurately predict the
risks of CVE and all-cause mortality in MHD patients using
ML tools. Our ML prediction models exhibit several unique
characteristics: Firstly, ML has demonstrated its strengths in
processing large-scale medical data, making it particularly suitable
for studying MHD patients with complex comorbidities. In this
study, we constructed several ML models that outperformed
traditional Cox regression models. Unlike Cox regression, ML
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models do not rely on linear assumptions, can automatically
select feature variables, and provide more accurate predictions.
Secondly, data noise and missing data are inevitable in real-
world data collection, especially in retrospective studies. ML
algorithms are well-equipped to handle these complex issues
effectively. Thirdly, we employed the SHAP algorithm to interpret
the ML models. This approach allows developers and users to
better understand the intrinsic reasons behind the model’s validity,
reducing the “black box” effect and enhancing the reliability of
big data analytics (46). In actual clinical practice, it is hoped
that the model will be embedded into the hospital electronic
medical record system as a clinical decision support tool. Risk
stratification thresholds are defined based on the optimal cutoft
values derived from ROC analysis, and early intervention (such
as prioritized cardiology consultations and adjustment of dialysis
strategies) is carried out in combination with clinical pathways.
Measures such as regular model updates, user training, and
clinical feedback mechanisms are adopted to reduce the risk of
misclassification. In the future, ML models can transition from
“research tools” to “clinical assistants,” providing personalized,
interpretable, and sustainable risk management services for MHD
patients. Although we concluded that demographic characteristics
(9 variables), comorbidities (6 variables), medication history (9
variables), and baseline laboratory values (63 variables)-based on
machine learning models provided a prognosis for predicting
cardiovascular events and all-cause mortality in patients with
undergoing maintenance hemodialysis, the molecular mechanism
is unclear. Recent publications have shown that many risk
factors, such as hypertension, renin-angiotensin system activation,
and cardiorenal injury were implicated in CVD and CKD
including hemodialysis (47-49). In addition, many researches have
demonstrated that abnormal hyperlipidemia and inflammation
play a significant role in CVD and CKD (50-53). Moreover, a large
amount of literature has shown that the imbalance of intestinal flora
and its metabolites is involved in CVD and CKD (54-58).

The current study also has several limitations. First, our data
were derived from a single center with a relatively small sample
size, which may limit the generalizability of our findings. Second,
although our prediction model demonstrated strong performance,
it has not yet undergone external validation. Further research
is needed to confirm its clinical applicability. Third, this study
utilized only baseline data from MHD patients and was unable
to assess the impact of potential fluctuations in these variables
on CVE and all-cause mortality over time. Future research
should focus on conducting larger-scale, multicenter studies and
performing external validation to further verify and optimize the
model. Additionally, incorporating longitudinal data to account for
changes over time could enhance the robustness and accuracy of the
predictive models.

Conclusions

We implemented ML algorithms to accurately predict the risks
of CVE and all-cause mortality in MHD patients. Overall, the
ML models provided a more reliable prognostic assessment than
traditional Cox regression models.
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